Export 494 results:
Filters: Author is Manish Parashar  [Clear All Filters]
2014
R. Tolosana-Calasanz, Diaz-Montes, J., Rana, O., and Parashar, M., Extending CometCloud to Process Dynamic Data Streams on Heterogeneous Infrastructures, Proceedings of the International Conference on Cloud and Autonomic Computing (CAC 2014). IEEE, London, UK, 2014.PDF icon 8. Extending CometCloud to Process Dynamic Data Streams on Heterogeneous Infrastructures.pdf (909.24 KB)
J. Diaz-Montes, Rodero, I., Zou, M., and Parashar, M., Federating Advanced Cyberinfrastructures with Autonomic Capabilities, in Cloud Computing for Data-Intensive Applications, Springer, 2014, pp. 201–227.PDF icon 2. Federating Advanced Cyberinfrastrcutres with Autonomic Capabilities.pdf (798.93 KB)
N. Podhorszki, Logan, J., Abbasi, H., Choi, J., Liu, Q., Mu, J., Klasky, S., Parashar, M., and Wolf, M., Flexible I/O Programming API for Big Data Analytics, Proceedings of the Fifth International Workshop on Big Data Analytics: Challenges, and Opportunities (BDAC-14) & SC’14, The ACM/IEEE International Conference for High Performance Computing, Networking Storage and Analysis. New Orleans, LA, 2014.
M. Fatih-Aktas, Haldeman, G., and Parashar, M., Flexible Scheduling and Control of Bandwidth and In-Transit Services for End-to-End Application Workflows, Proceedings of the Fourth International Workshop on Network-aware Data Management (NDM) & SC’14, The ACM/IEEE International Conference for High Performance Computing, Networking Storage and Analysis. Proceedings of the Fourth International Workshop on Network-aware Data Management (NDM) & SC’14, The ACM/IEEE International Conference for High Performance Computing, Networking Storage and Analysis, 2014.PDF icon 7. Flexible Scheduling and Control of Bandwidth and In Transit Services for End to End Application.pdf (177.77 KB)
Q. Liu, Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J. Youl, Klasky, S., Tchoua, R., Lofstead, J., Oldfield, R., Parashar, M., Samatova, N., Schwan, K., Shoshani, A., Wolf, M., Wu, K., and Yu, W., Hello ADIOS: The Challenges and Lessons of Developing Leadership Class I/O Frameworks, Concurrency and Computation: Practice and Experience, vol. 26, pp. 1453–1473, 2014.PDF icon 9. Hello ADIOS The Challenges and Lessons.pdf (1.53 MB)
N. Clauvelin, Diaz-Montes, J., Zola, J., Parashar, M., and Olson, W. K., How Do Nucleosomes Bundle into Chromatin?. 2014.
I. Petri, Rana, O., Diaz-Montes, J., Zou, M., Parashar, M., Beach, T., Li, H., and Rezgui, Y., In-transit Data Analysis and Distribution in a Multi-Cloud Environment using CometCloud, Proceedings of the International Workshop on Energy Management for Sustainable Internet-of-Things and Cloud Computing (EMSICC'14) & FiCloud 2014, the Second International Conference on Future Internet of Things and Cloud. Barcelona, Spain, 2014.PDF icon 10. In-transit Data Analysis and Distribution in a Multi-Cloud Environment using CometCloud.pdf (337 KB)
T. Jin, Zhang, F., Sun, Q., Bui, H., Podhorszki, N., Klasky, S., Kolla, H., Chen, J., Hager, R., Chang, C. - S., and Parashar, M., Leveraging Deep Memory Hierarchies for Data Staging in Coupled Data-Intensive Simulation Workflows. 2014.PDF icon 3. POSTER Leveraging Deep Memory Hierarchies for Data Staging in Coupled Data Intensive Simulation Workflows.pdf (174.46 KB)
A. Pelaez, Quiroz, A., Chuah, E., Browne, J. C., and Parashar, M., Online Failure Prediction for HPC Resources Using Decentralized Clustering, Proceedings of the 21st Annual IEEE International Conference on High Performance Computing (HiPC 2014). IEEE, Goa, India, 2014.
A. Pelaez, Parashar, M., Browne, J. C., Quiroz, A., and Chuah, E., Online Monitoring of HPC resources using decentralize clustering . 2014.PDF icon 4. Online monitoring of HPC resources using decentralized clustering.pdf (46.17 KB)
V. K. Potluru, Diaz-Montes, J., Hanagandi, V., Zola, J., and Parashar, M., Preliminary Study of Longitudinal EMR data for Diabetes Forecasting. 2014.PDF icon 2. A Preliminary Study of Longitudnal EMR data for Diabetes Forecasting.pdf (304.58 KB)
Q. Sun, Jin, T., Zhang, F., Bui, H., Wu, K., Shoshani, A., Kolla, H., Klasky, S., Chen, J., and Parashar, M., Scalable Run-time Data Indexing and Querying for Scientific Simulations, Proceedings of the Fifth International Workshop on Big Data Analytics: Challenges, and Opportunities & SC’14, The ACM/IEEE International Conference for High Performance Computing, Networking Storage and Analysis. 2014.
M. Parashar, Bellur, U., Kumar, S. D. Madhu, Chandran, P., Krishnan, M., Madduri, K., Prasad, S. K., C. Sekhar, C., Narendra, N. C., Valera, C., Chaudhary, S., Arya, K., and Li, X., Eds., Seventh International Conference on Contemporary Computing, IC3 2014. IEEE , Noida, India, 2014.
D. Katz, Allen, G., Hong, N. Chue, Parashar, M., and Proctor, D., Working towards Sustainable Scientific Software: Practice and Experiences (WSSSPE), Proceedings of the International Symposium on Grids and Clouds (ISGC 2014). Taipei, Taiwan, 2014.
2015
M. Parashar and Hariri, S., Autonomic Computing: Foundations for a New Era in Computing. Kluwer Academic Publishers, 2015.
J. Diaz-Montes, Abdelbaky, M., Zou, M., and Parashar, M., CometCloud: Enabling Software-Defined Federations for End-to-End Application Workflows, Internet Computing, IEEE, vol. 19, no. 1, pp. 69–73, 2015.PDF icon 2. CometCloud Enabling Software.pdf (770.23 KB)
T. Jin, Sun, Q., Bui, H., Romanus, M., Podhorszki, N., Klasy, S., Kolla, H., Chen, J., Hager, R., Chang, C. - S., and Parashar, M., Exploring Data Staging Across Deep Memory Hierarchies for Coupled Data Intensive Simulation Workflows, Proceedings of the 29th IEEE International Parallel & Distributed Processing Symposium. Hyderabad, India, 2015.
I. Petri, Zou, M., Zamani, A. Reza, Diaz-Montes, J., Rana, O. F., and Parashar, M., Integrating Software Defined Networks within a Cloud Federation, 15th International Symposium on Cluster, Cloud and Grid Computing (CCCGrid 2015). Shenzhen, China, 2015.
I. Petri, Diaz-Montes, J., Zou, M., Beach, T., Rana, O., and Parashar, M., Market Models for Federated Clouds, pp. 1-14, 2015.PDF icon 1. Market Models for Federated Clouds.pdf (1.42 MB)

Pages

The National Science Foundation DARPA Dept of the Navy Science and Technology Department of Energy Department of Homeland Security

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer