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ABSTRACT

Many applications require data to be captured and processed
in real time, migrating all the data to a central site prior to
analysis, a procedure that can create significant overhead.
Examples include the variety of sensor network-based ap-
plications, where sensors interface with real world artifacts
and must respond to physical phenomenon that cannot be
predicted apriori. The amount of data likely to be gener-
ated by a sensor and processing requirements in such ap-
plications can not be pre-determined (as they are often de-
pendent on the rate of change of the physical phenomenon
being measured and potential occurrence of “trigger events”
which are non-deterministic). We propose the use of a multi-
layer Cloud infrastructure that distributes processing over
both sensing nodes, multiple intermediate/gateways nodes
and the more complex centralised data centre. Such layers
need to work in coordination to ensure more reliable and
efficient use of computing and network resources, prevent-
ing the need to move data to a central location when this
is not necessary and creating data processing paths from
data capture to analysis. We outline the basis for a decision
function that evaluates: (i) where processing should be car-
ried out; (ii) what processing should be undertaken centrally
vs at an edge node; (iii) how processing can be distributed
across multiple data centre locations to achieve QoS and cost
targets. We present a prototype that has been implemented
using the CometCloud system, deployed across three sites in
the UK and the US and validate using an application which
calculates energy flow in a Sports facility in Italy.

Categories and Subject Descriptors
H.4 [Information Systems Applications|: Miscellaneous; D.2.8

[Software Engineering]: Metrics—complezity measures, per-
formance measures
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There has been significant interest recently in cre-
ating “multi-Clouds” or a Cloud-of-Clouds. Such in-
frastructures are generally distributed and involve inte-
gration of capability from a variety of different Cloud
providers. The key benefits suggested for such an ag-
gregation is: (i) reduced reliance on a single vendor’s
infrastructure; (ii) improved fault tolerance (whereby
failure in one Cloud system does not render the en-
tire infrastructure inoperable); (iii) improved security —
similar argument to fault tolerance, i.e. a breach in one
Cloud system does not impact the entire infrastructure;
(iv) the ability to utilise capability (and data) that may
only be available in one Cloud system and not be eas-
ily transferrable to another. Various efforts have been
proposed to implement such multi-Clouds, ranging from
research efforts focused on Cloud interoperability (e.g.
the Open Cloud Computing Interface (OCCI) effort! at
the Open Grid Forum and the implementation of spe-
cialist gateways to connect different Cloud systems), the
development of a Cloud Operating System (CloudOS)
to connect distributed Clouds (European FP7 “UNIFY”
projectz) to the use of specialist in-network capability
to process data in network elements between different
end points (GENICloud project®). Similarly, on-line
sites such as CloudHarmony* report over 1004+ Cloud
providers that offer capability ranging from storage and
computation to complete application containers that
can be acquired at a price, primarily using service-based
access models.

In previous work, the STACEE system [17] was devel-
oped for dynamically creating storage distributed Clouds
using edge devices, such as routers, routing switches,
multiplexers, mobile phones, PCs/media centers, set-
top boxes and modems. The functional architecture
within STACEE makes use of edge device capacity in

"http://occi-wg.org/

2http:/ /www.fp7-unify.eu/
Shttp://groups.geni.net/geni/wiki/ GENICloud
“http://cloudharmony.com/
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a Cloud using Peer-to-Peer (P2P) technology, thereby
reducing energy consumption at a single site and max-
imising user engagement with the system. With a four
layer architecture, the system ensures a high level of
communication, control, synchronization and data ac-
cess. Additional work in this context included develop-
ment of a distributed “Social Cloud” [18], which enables
users to share heterogeneous resources within the con-
text of a social network. The Social Cloud model as-
sumes the existence of trust between users within such
a system, thereby overcoming some of the restrictions
to sharing that would arise within a more open environ-
ment.

In this paper we describe how a distributed cloud sys-
tem can be used to perform a number of different data
analysis operations (in-situ vs. in-transit) based on pre-
defined application requirements. Our prototype is im-
plemented using CometCloud [2],[1] and demonstrated
through an application fora whole building energy sim-
ulation using EnergyPlus. This time-step based sim-
ulation package can be used to model heating, cool-
ing, lighting, ventilation and other energy flows within
a building. Our distributed Cloud is across three sites
(Cardiff (UK), Rutgers and Indiana (USA)) — all host-
ing EnergyPlus. The reminder of this paper is organised
as follows: sections 1, 2 and 3 present the idea on in-
transit data analysis and use of distributed clouds, pro-
viding a key motivation for our research and analysing
several related approaches. Section 5 presents our model
identifying how CometCloud has been utilized. The
evaluation of our implemented system is presented in
section 5.4, with conclusion and future work in section 6.

2. RELATED WORK

In-transit data analysis refers to the manipulation
and transformation of data using resources in the data
path between source and destination, and can be ex-
tremely advantageous for data intensive applications.
Various reactive management strategies for in-transit
data manipulation have been undertaken [14]. Stud-
ies have investigated the possibility of coupling these
strategies with various application levels to create a co-
operative management framework and in-transit data
manipulation for data-intensive scientific and engineer-
ing workflows [12]. Several in-situ system workflows
study the problem of visualization for monitoring pur-
poses. Recently, such systems facilitate the coupling of
simulation codes with popular visualization and anal-
ysis toolkits, such as Vislt [10] and ParaView [11], ex-
posing a broader suite of analytics tools for undertaking
simulations. The performance design for these work-
flows are becoming increasingly important as they bal-
ance between a number of parameters such as latency
and run-time performance both for in-situ and in-transit
workflows [12].
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A method for optimising in-transit data analysis is
to use Software Defined Networks (SDNs), where net-
work control plane is decoupled and is directly pro-
grammable. This migration of control, formerly tightly
bound in individual network devices, into accessible com-
puting devices enables the underlying infrastructure to
be abstracted for applications and network services, which
can treat the network as a logical or virtual entity.
There are several monitoring tools based on SDN con-
cept [15] which allow the development of more expres-
sive traffic measurement application by proposing a clean
slate design of the packet processing pipeline. These
tools focus more on efficiently measuring traffic ma-
trix using existing technology and aim to determine
an optimal set of switches to be monitored for each
flow. Topology-based analysis techniques for simula-
tion data have been also intensively explored and used
due to their efficient representation of the feature space
of scalar functions. These techniques use various algo-
rithms and graphs such as contour trees and merge trees
and are mainly employed for encoding threshold based
feature definitions and contribute in a number of large
scale science applications [16].

The increasing volume of data generated by the ap-
plications has added constraints on how easily and ef-
ficiently it can be processed. Requiring the application
to move the data to disk before processing can be com-
pleted is not a viable mechanism at extreme scale and
can have space and time constraints. Satisfying these
requirements of data analysis can be challenging, espe-
cially in large-scale and highly dynamic environments
with shared computing and communication resources,
where capability, capacity and costs for resources in un-
determined [14].

3. ARCHITECTURE

The distributed cloud system presented in Figure 1
consists of three main layers: (i)L3(Layer 3): data cap-
ture point, (ii) L2(Layer 2): gateway nodes (in practice,
multiple levels may exist) and (iii) L1(Layer 1): data
centre/computing cluster. At L1 various data capture
devices, such as sensors, mobile phones (with human
input) record values based on an observed phenomena.
These devices capture data with a pre-defined frequency
(often dictated by the rate of change of the phenomenon
being observed), depending on the capacity of the de-
vice to record/collect data and also based on specific
system requirements that need to be satisfied. A variety
of standards have recently been proposed at L3, such as
the Constrained Application Protocol (CoAP) [5] — sup-
ported through Erbium REST interface and Contiki [4].
L2 involves the use of multiple gateways, which may be
realised in practice using network switches and routers,
fronted by OpenFlow software, which enables such net-
work components to be remotely controlled. However,



such gateways may also be computational devices that
aggregate data from a variety of L3 sensors. We envision
a variety of devices (with varying degrees of complexity
and controllability) to exist at L2. Finally, L1 contains
more complex computing clusters and data centre ca-
pability, where greater computational and storage ca-
pability is made available to application users, enabling
more complex, generally long running, simulations to
be carried out on the data.
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Figure 1: System Architecture

Devices at L2 can carry out various operations on the
raw data collected at L3 — such as performing stream op-
erations (average, min, max, filtering etc) on a time/sample
window of data, carrying out encryption of an incoming
data stream or a variety of other data encoding/transcoding
operations before forwarding this data for subsequent
analysis to L1. Hence, devices at L2 retrieve data but
can also perform some preliminary analysis. We envi-
sion a distributed Cloud to be composed of devices at
all of these levels, and with a need to coordinate work
across these levels to achieve particular data analysis
and performance targets. Each level also has its own
objective function which influences the types of opera-
tions carried out.

Distributing analysis of data across these different
levels can improve the overall system performance and
reduce the load on L1 infrastructure. We also observe
that raw data collected at L3 may not necessarily be
needed (in its entirety) at L1 — and aggregate opera-
tions on the data (e.g. average, summation, etc) may
be enough for the type of analysis required at L1. It is
therefore not necessary to transfer all the collected data
to the data centre (as often undertaken currently — even
with the availability of recent systems such as Amazon
Kinesis [6] or Google BigQuery [7] for streaming data),
wasting network bandwidth and buffer/ storage space
at levels L2 and L1. We identify the following classes of
data analysis:

In-situ analysis: is carried out at L1, on a pre-agreed
number of computing resource. This is the current
mode of operation with many Cloud systems — whereby
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data is aggregated at a central site prior to analysis. In
streaming systems (e.g. Amazon Kinesis), data shard-
ing is carried out prior to transfer of this to Amazon
VM instances hosted at a particular data centre. This
approach can have major disadvantages in terms of load
and response time, as collection at a central server can
be time consuming (and sometimes not necessary) —
thereby limiting QoS targets that can be met in prac-
tice.

Data-drop analysis: After data values are collected by
edge devices, and sent over the network, the actual data
analysis process starts when the data sets are dropped
into a specific folder. Data-drop analysis is the ability to
trigger on-demand analysis making use of elastic com-
puting resources available at L1 (at the data centre). A
key challenge in this type of analysis is to predict the
number of computing resources needed (as data is dy-
namically made available) based on heuristics or prior
execution history. This type of analysis can suffer from
the same QoS limitations at In-situ analysis, as it still
requires data to be shipped over the network from L3
to L1 infrastructure.

In-transit data analysis: Identifies the type of distributed
analysis carried out at L3 and (more generally) L2.
In-transit analysis makes use of capability available in
software defined networks to undertake partial analysis
while the data is in transit from source (L3) to the data
processing engine (generally L3). This approach can
significantly improve overall analysis time (and limit
use of resources at L1), as pre-analysis can help identify
what needs to be carried out at L1. In-transit analysis
therefore makes more effective use of computing capa-
bility available at L2.

4. DECISION PARAMETERS

In-transit data analysis can bring substantial benefits
in terms of execution time and system performance es-
pecially in cases when the system workflow is complex
and involves different computational layers. As each
layer has distinct computing capabilities (Figure 1), it
is necessary to identify: (i) where analysis should be car-
ried out; (ii) when to start the analysis. For instance,
for edge devices data capture frequency and its impact
on battery life is useful to identify, for gateways it is
important to provide a certain level of performance in
transferring data sets between L1 and L3 resources.

In addition to these functional objectives, it is also
important to identify the properties of the data sets,
such as data format used by edge devices and the data
transfer time between layers. The decision process is
influenced by the objectives of each architectural level.
In our system the decision mechanism relies on:

For Clouds Level: (i) Where to compute the tasks: (a)
locally or (b) remotely; (ii) How many combinations to
run giving the deadline and accuracy constrained re-




quired by the user. For Gateway Level: What task to
schedule at this level in order to reduce the workload
at the Cloud. For Capture Points Level: The required
frequency over which sensors should provide values.

5. APPLICATION SCENARIO

In our scenario we consider that a user job is de-
fined as job : [input,obj, deadline], where input data
is represented as [IDF, W, [param]], IDF represents
the building model to be simulated, W represents the
weather file required for the simulation, [param] de-
fines the parameter ranges associated with the IDF
file that need to be optimised [param] [r: —
(T, xn)]. A job obj therefore encodes the optimisation
objective objective : [outVarName, min/mazx], defin-
ing the name of the output variable to be optimised
outVarName and the target of the optimisation pro-
cess min/max, min:minimising the outVarName or
max:maximising the outVarName.Deadline is a pa-
rameters defining the time interval associated with the
job submitted.

A job contains a set of tasks N = {t1,ta,t3,...,tn}
mapped into tuples within the CometCloud tuple-space.
Each task ¢; is characterised by two parameters ¢; —
[ID,data] with the first parameter being a task iden-
tifier and data represents one set of results (given a
particular parameter range). /The application scenario
used in this paper is based on EnergyPlus [3], a simu-
lation engine that enables energy simulation of a built
environment based on various inputs from sensors. The
simulation output represents an optimum setpoint to be
implemented within the building using suitable actua-
tion mechanisms. We use sensor data from the SportE?
project pilot called FIDIA 3. The SportE? project, funded
under the European FP7 ICT programme, focuses on
developing energy efficient products and services dedi-
cated to the needs and unique characteristics of sporting
facilities.
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Figure 2: Application Scenario
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5.1 Sensors Level

Each sensor in our pilot can communicate via a gate-
way or can be directly linked (using wired infrastruc-
ture) with the pilot automation server (identified as I/O
to Automation Server (AS) in the table). Sensors are
usually battery powered meters with a typical auton-
omy. Sensors can measure: (i) indoor temperature and
air temperature inlet — usually battery powered with a
Modbus IP protocol connected to the AS gateway; (ii)
Water Temperature using a regular I/O operation to the
AS gateway; (iii) Indoor Humidity — battery powered,
and communicating to the AS gateway; (iv) Supplied
Air Flow Rate measured with a velocity sensor and us-
ing 1/O operations to the AS gateway.

5.2 Gateways Level - BMS and AS

There are two distinct gateways:(i) Building Manage-
ment System (BMS) and (ii) Automation Server (AS).
The BMS gateway is a server machine that controls
the activities and spaces within the building. BMSs
are most commonly implemented in large projects with
extensive mechanical, electrical, and plumbing systems
and are a critical component to manage energy demand.
In addition to controlling the building’s internal envi-
ronment, BMS systems are sometimes linked to access
control (turnstiles and access doors controlling who is
allowed access to the building) or other security systems
such as closed-circuit television (CCTV) and motion de-
tectors. The AS gateway is a hardware-based server
that is factory programmed with StruxureWare Build-
ing Operation software [8] (for instance). In a small
installation, the embedded AS acts as a stand-alone
server, mounted with its I/O modules with a small foot-
print. In medium and large installations, functionality
is distributed over multiple Automation Servers (ASs)
that communicate over TCP/IP. Capable of coordinat-
ing traffic from above and below its location, the AS can
deliver data directly to you or to other servers through-
out the site.

5.3 CometCloud Sites Level

Table 1: Parameters Range

Pl [P2 [ P3| P4] Deadline
16,18 [ 0,1 [ 0,1 [ 0,1 | 30 Min/task
16 [0,1]0,1]0,1] 30 Min/task |

Parameters
Before filter
| After filter ||

At this level, we have a CometCloud-based federa-
tion of resources [19], where each site has access to a
set of heterogeneous and dynamic resources, such as
public/private clouds, supercomputers, etc. These re-
sources are uniformly exposed using cloud-like abstrac-
tions and mechanisms that facilitate the execution of
applications across the resources. Each site decides
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Figure 3: Summary of experimental results for use cases with filtering and without filtering. 3a collects the total
execution time in each case; 3b collects the total cost spent on computing all jobs; 3¢ shows the number of rejected

jobs, 100% Completed and Not 100% Completed jobs

on the type computation it runs, as well as the prices
based on various decision functions that include factors
such as availability of resources, computational cost,
etc. This federation is dynamically created at runtime
where sites can join or leave at any given time. Notably,
this requires a minimal configuration at each site that
amounts to specifying the available resources, a queuing
system or a type of cloud, and credentials. We consider
three sites in these scenario — one based at Cardiff, at
Rutgers, and at Indiana. A federation site therefore
refers to a deployment which is connected over a net-
work and not co-located with a master node. Our sites
are: Cardiff site: has a virtualized cluster-based infras-
tructure with 12 dedicated physical machines. Each
machine has 12 CPU cores at 3.2 GHz. Each VM uses
one core with 1GB of memory. The networking infras-
tructure is 1Gbps Ethernet with a measured latency of
0.706 ms on average. Rutgers site: has a cluster-based
infrastructure with 32 nodes. Each node has 8 CPU
cores at 2.6 GHz, 24 GB memory, and 1Gbps Ether-
net connection. The measured latency on the network
is 0.227 ms on average. FutureGrid site: make use of
an OpenStack cloud deployment at Indiana University.
We have used instances of type medium, where each
instance has 2 cores and 4 GB of memory. The mea-
sured latency of the cloud virtual network is 0.706 ms
on average.

5.4 Experiments

We consider two use cases: in the first case, all in-
formation collected by sensors is used to create jobs.
In the second use case, information collected by sensors
will be processed in-transit in the Gateway layer to filter
out unimportant information (e.g. values out of range
or certain combination of parameters that cannot lead
to reasonable results) and then create jobs to be sent
to federations sites level. In this case, one job might
require less computation capability due to in-transit fil-
tering. We explore the benefit of in-transit data analysis
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by comparing differences between these two scenarios in
terms of the total cost for each site to compute all jobs,
the overall time spent and number of jobs completed
successfully.

‘We consider sensors in two geographically distributed
buildings that are collecting information about the sta-
tus of the building and sending this information via
their gateways. In order to better explore the behav-
ior of in-transit data analysis and task distribution, we
emulate the execution of the tasks and use a Poisson dis-
tribution to periodically generate sensor collected infor-
mation every 100 minutes. A job is generated after the
gateway has received data from sensors. One job will
produce multiple EnergyPlus computation sub-tasks.
All the three sites, Rutgers, FutureGrid and Cardiff,
bid for computing those jobs based on their available re-
sources and how many sub-tasks they can finish before
the deadline. No single winner will get all the sub-tasks.
Instead, these sub-tasks will be distributed to all bidder
sites based on their estimation of job completion dead-
line. Each site will get bidNum/allSitesTotal BidNum
sub-tasks to compute. We allocate two local and two
external workers to each site. Once a site consumes a
list of sub-tasks, these tasks will be sent to workers to
finish computation. These nodes are further used to
compute the tasks that the master generated based on
the parameters values received from buildings.

No filtering: From Table 1 we can see that the original
parameters we get from sensors includes four types of
parameters which then gives a combination of 16 En-
ergyPlus sub-tasks per job. Each EnergyPlus sub-task
takes 30 minutes to compute on all three sites. In Fig-
ure 3c, we can notice that due to resource limitation,
some jobs are rejected because these sub-tasks cannot
be completed before the deadline by these three sites.
Among those accepted jobs, Not 100% Completed Jobs
are those whose sub-tasks were completed within the
given deadline. When no processing is applied to gate-
way level, the load on the cloud increases, the number



of tasks to be processed is higher hence some jobs are
rejected. The rejection of jobs is also caused by various
other factors such as network speed, scheduling con-
straints, placing multiple bids without knowing results
of previous auctions, etc. Those 100% completed jobs
have all sub-tasks completed on time.

With filtering: After analysis of sensor data, we can fil-
ter out some of those unnecessary parameters. These
parameters can have values which are out of a specific
range or different values of these parameters can be col-
lected as an average(i.e. distributed sensors recording
indoor temperate in various parts of a room). In Ta-
ble 1, we can find that the number of sub-tasks for each
job is reduced to eight. In order to better compare with
this use case with the previous one, in this experiment
we assume that jobs are generated following the same
time series as the previous experiment. This means the
total number of jobs are the same, only the sub-task
number per job is smaller. Figure 3c shows that the
number of rejected jobs are reduced significantly after
filtering. The percentage of Not 100% Completed Jobs
in accepted jobs is also decreased. From Figure 3a, we
can see that the total execution time for completing all
jobs is decreased. We give a cost for each task in mone-
tary units(m.u.)and consider that all sites use the same
cost convention. The total execution cost also shows
rapid decrease in Figure 3b. This is mainly because
the number of sub-tasks per job is reduced from 16 to
eight after filtering part of the parameters. Therefore,
we can prove the necessity of performing in-transit data
analysis at different layers.

6. CONCLUSION

In data-intensive applications executing tasks in a
distributed way can lead to significant benefit — reduc-
ing the need to capture all the data at a single site
(e.g. at a data centre). Calculating energy in build-
ings is one example of such an application, where the
flow of data to be processed presents challenges due to
the computational requirements and timing constraints.
We describe an implementation of a distribute Cloud
using CometCloud. We show how our distributed cloud
model facilitates EnergyPlus simulations to be deployed
with data recorded from building sensors and how var-
ious analysis can be applied at intermediate architec-
tural layers to ease the energy optimization of buildings.
We have presented the design and implementation of
the proposed approach and experimentally evaluated a
number of scenarios where the execution of EnergyPlus
tasks. The experimental results have shown a number
of benefits that our system provides with regards to task
completion and costs.
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