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Abstract—Coordination of multiple concurrent data stream
processing, carried out through a distributed Cloud infrastruc-
ture, is described. The coordination (control) is carried out
through the use of a Reference net (a particular type of Petri
net) based interpreter, implemented alongside the CometCloud
system. One of the benefits of this approach is that the model
can also be executed directly to support the coordination action.
The proposed approach supports the simultaneous processing
of data streams and enables dynamic scale-up of heterogeneous
computational resources on demand, while meeting the particular
quality of service requirements (throughput) for each data stream.
We assume that the processing to be applied to each data stream
is known a priori. The workflow interpreter monitors the arrival
rate and throughput of each data stream, as a consequence of
carrying out the execution using CometCloud. We demonstrate
the use of the control strategy using two key actions – allocating
and deallocating resources dynamically based on the number
of tasks waiting to be executed (using a predefined threshold).
However, a variety of other control actions can also be supported
and are described in this work. Evaluation is carried out using
a distributed CometCloud deployment – where the allocation of
new resources can be based on a number of different criteria,
such as: (i) differences between sites, i.e. based on the types of
resources supported (e.g. GPU vs. CPU only, FPGAs, etc), (ii)
cost of execution; (iii) failure rate and likely resilience, etc.

I. INTRODUCTION

Over recent years, the significant proliferation of geograph-
ically distributed sensors has led to a number of applications
in areas such as surveillance and monitoring, smart- traffic
management, cities, energy management in built environments,
etc. Examples of these applications include: weather forecast-
ing and ocean observation [1], “Urgent Computing” [2], and
more recently data analysis from electricity meters to support
“Smart (Power) Grids” [3]. In all these scenarios, data source
(sensor) nodes can vary in complexity from smart phones to
specialist instruments. Sensors transmit raw data continuously,
that needs to be processed over long periods of time with the
purpose of monitoring physical or environmental conditions,
such as energy consumption, temperature, traffic congestion,
noise-levels, humidity at a particular geographical location,
or sentiment analysis of a particular user community (using
Twitter data, for instance), etc. Often the raw data elements
captured from different sources can also be aggregated into
complex events – which are subsequently further analysed.

Data capture sources (sensors) often have limited compu-
tational resources and battery power, requiring data elements
to be processed at destination or en-route (also referred to

as in-transit processing) [4]. These applications also have
Quality of Service (QoS) constraints, requiring processing
to be completed within a particular time interval (deadline).
In some cases any missed deadline can lead to results that
are unusable, to scenarios where infrequent deadline misses
can be tolerated. Moreover, data streams in such applications
are generally large-scale and generated continuously at a rate
that cannot always be estimated in advance. Determining the
optimal computational resource configuration for the system
becomes important – therefore, dynamic computational re-
source provisioning remains a major challenge in order to
handle variable event loads efficiently, and in order to meet
the particular QoS targets (often specified within an Service
Level Agreement (SLA)) per stream.

When processing is accomplished at destination involving
a pool of heterogeneous computing resources, such as data-
centres, and private and public Clouds, the scaling mechanisms
also need to deal with variable communication requirements.
They are imposed by the diversity of different resources as well
as different overheads. These requirements can be achieved by
introducing communication orthogonality in the interactions,
whereby interacting peers do not have any prior knowledge
about each other. Linda [5] communication & coordination
paradigm is based on this principle, leading to two important
consequences: space-uncoupling (also referred to as distributed
naming) and time-uncoupling. Since the interacting processes
do not have to know each other in advance, the scalability of
the system can be achieved in a more flexible way.

This communication orthogonality is also one of the
foundations of the CometCloud autonomic framework [6].
CometCloud supports real-world applications on dynamically
federated, hybrid infrastructures integrating public & private
Clouds, data-centers and Grids. At the infrastructure-level,
CometCloud provides a range of services for dynamic feder-
ation and coordination in order to enable on-demand scale-
up (to scale vertically: adding more resources to a single
site), scale-out (to scale horizontally: adding more resources
from external sites), and scale-down (to reduce either nodes
or resources). CometCloud also supports a number of pro-
gramming models and services for autonomic management
and monitoring of an application, as well as of the underlying
infrastructure. Among the supported programming models is
master/ worker, whereby one process (the master) submits the
computational tasks to the workers via a (virtually) shared
“tuplespace”, which typically performs computations for the
master in parallel.



In this paper, we extend CometCloud with an autonomic
streaming workflow interpreter, which is specified using Refer-
ence nets (a particular type of Petri net), and which is directly
executable. It supports the simultaneous processing of data
streams and the dynamic scale-up of heterogeneous computa-
tional resources on demand, while meeting the particular QoS
requirements (throughput) for each data stream. Our focus is
to handle data analytics for data streams whose processing
deadlines are of the order of minutes or hours, rather than data
streams which have strict real time processing requirements.
Two main contributions are provided in this paper: the first
one is conceptual and provided by our workflow streaming
interpreter based on Reference nets. The interpret demonstrates
how simultaneous processing of multiple data streams can be
achieved using a tuplespace abstraction using CometCloud.
In this paper, we assume mutual independence of streams,
having each their own functional and non-functional (SLA)
requirements. The non-functional requirement being stream
throughput. We also assume that for each data stream its func-
tional requirements can be explicitly specified as a sequence
of operations to be applied to each data element. Additionally,
each workflow task (operation), in our proposal, is specified as
a sequence of two Linda operations: i) an out operation writes a
request into CometCloud’s tuplespace, specifying the operation
name and its arguments; and ii) an in operation retrieves a
result back upon completion. Therefore, the effect is that the
functional requirements for each data stream are defined in an
orthogonal way, and they are uncoupled in time and space from
the interacting peers that actually perform the computations.

This characteristic leads to the second contribution of this
paper. The uncoupling between workflow task submission and
peers which execute tasks, allows CometCloud to dynamically
modify the capacities and capabilities allocated for each data
stream. The relevance and novelty of the contribution lies in
the fact that most existing systems [4], [7], [8] consider homo-
geneous nodes to support scale-up. Our workflow interpreter
can dynamically allocate/ deallocate resources based on the
number of pending tasks (using a pre-defined threshold to
trigger such allocation/ deallocation). The rest of the paper
is structured as follows. In Section II, we provide a brief
overview of Reference nets. In Section III, CometCloud’s ar-
chitecture and functionality is briefly described. Our workflow
streaming interpreter is presented in Section IV. An evaluation
scenario is given in Section VI. Related work is discussed
in Section VII, and finally conclusions and future work are
outlined in Section VIII.

II. BACKGROUND: REFERENCE NETS

Reference nets are a particular type of Petri net that
supports Java code inscriptions, which are typically embedded
and also Reference nets can be interpreted by Renew [9], a
Java-based editor and simulator. The most important conse-
quence of this fact is that Petri net based models become
executable, converting the formal specification models into
rapid prototyped systems. Although it is out of the scope of this
paper, further formal analysis can be conducted on the Petri
nets models, providing insights on the system’s behaviour and
performance.

Petri nets [10] have been recognised by their ability to rep-
resent parallel or concurrent processes. A Petri net is a graph

with two kind of nodes, places and transitions, which represent
conditions and actions respectively. Places can also contain
elements called tokens, which evolve through the places to
complete the state representation. The execution of actions
require the satisfaction of preconditions represented by input
arcs going from places to transitions, whereas postconditions
are specified by output arcs. In high-level Petri nets nodes are
typed representing the type of state for each place, the type
of event for each transition, and the type of objects associated
with the tokens that flow through the net.

The Reference net formalism is a special class of high-level
Petri net (adhering to the Nets-within-Nets [11] paradigm)
that uses Java as an inscription language, and extends Petri
nets with dynamic net instances, net references, and dynamic
transition synchronisation through synchronous channels. Ref-
erence nets consist of places, transitions and arcs. The input
and output arcs have a behaviour similar to ordinary Petri nets.
Every net element can have associated semantic inscriptions:
places can have initialisation expressions, which are evaluated
and serve as their initial markings. Arcs can have optional
arc inscriptions: when a transition fires, its arc expressions
are evaluated and tokens are moved according to the result.
Transitions can be equipped with a variety of inscriptions,
including Java inscriptions, in which the equality operator “=”
can be used to influence the binding of variables that are
elsewhere. The binding is similar to the way variables are used
in logic programming languages such as Prolog. Additionally,
the inscription language of Reference nets has been extended
to include tuples. A tuple is denoted by a comma-separated list
of expressions that are enclosed in square brackets. Tuples are
useful for storing a whole group of related values inside a token
and hence in a single place. The nets hold two kinds of tokens:
valued tokens and tokens which correspond to a reference.
By default, an arc will transport a black token, denoted by
[]. In case an inscription is added to an arc, that inscription
will be evaluated and the result will determine which kind of
token is moved. Additionally, there are creation inscriptions
that deal with the creation of net instances. Net instances
can communicate with each other by means of synchronous
channels. They synchronise two transitions which both fire
atomically at the same time. Both transitions must agree on
the name of the channel and on a set of parameters before
they can synchronise. The initiating transition must have a
special inscription – called downlink – which makes a request
to a designated subordinated net. A downlink consists of an
expression that must evaluate to a net reference (usually a
variable), a colon (:), the name of the channel, and an optional
list of arguments. On the other side, the transition must be
inscribed with an uplink, which serve requests for everyone.
Channels can also take a list of parameters. Although there is
a direction of invocation, this direction need not coincide with
the direction of information transfer. Indeed, it is possible that a
single synchronisation transfers information in both directions.

III. BACKGROUND: THE COMETCLOUD AUTONOMIC
COMPUTING FRAMEWORK

CometCloud is an autonomic framework for enabling real-
world applications on software-defined federated cyberinfras-
tructure, including hybrid infrastructures integrating public &
private Clouds, data-centers and Grids. The overarching goal
of CometCloud is to realize a software-defined federation with
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Fig. 1: CometCloud system architecture

cloud abstractions that offer resources in an elastic and on-
demand way. It also provides abstractions and mechanisms to
support a range of programming paradigms and applications
requirements on top of the federation. In this section, essential
aspects of CometCloud’s architecture are briefly discussed,
including its autonomic support and behaviour, and the pro-
vided master/ worker programming model. CometCloud uses a
Linda-like tuple space referred to as “CometSpace” – which is
implemented using a Peer-2-Peer overlay network. In this way,
a virtual shared space for storing data can be implemented by
aggregating the capability of a number of distributed storage
and compute resources.

CometCloud’s system architecture is depicted in Fig. 1. It
consists of three architectural layers, namely the programming
layer for giving support to different programming models (e.g.
master / worker, MapReduce or data-driven workflows), the
middleware layer for supporting inter-process communication,
and the infrastructure layer for exploiting different computa-
tional infrastructures transparently.

Specifically, CometCloud enables policy-based autonomic
cloudbridging and cloudbursting [6]. Autonomic cloudbridging
enables on-the-fly integration of local computational environ-
ments (datacenters, grids) and public cloud services (such as
Amazon EC2 and Eucalyptus), and autonomic cloudbursting
enables dynamic application scale-out to address dynamic
workloads, spikes in demands, and other extreme requirements.
Key motivations for autonomic cloudbursts include load dy-
namics for applications whose workloads can vary signifi-
cantly. This includes the number of application tasks as well
the computational requirements of a task. The computational
environment must dynamically grow (or shrink) in response
to these dynamics while still maintaining strict deadlines. The
computational environment must be able to dynamically adapt
to satisfy the functional requirements while still maintaining
the non-functional ones.

Since application tasks can have very heterogeneous and
dynamic priorities, and must be assigned resources and sched-
uled accordingly, budgets and economic models can be used to
dynamically provision computational resources based on the
priority and criticality of the application task. For example,

application tasks can be assigned budgets and can be assigned
resources based on this budget. The computational environ-
ment must be able to handle heterogeneous and dynamic
provisioning and scheduling requirements. On the other hand,
failures can have negative consequences for meeting non-
functional constraints. CometCloud integrates different fault
tolerance & recovery mechanisms, so that in the presence
of faults, where possible computations can finalise correctly
without impacting application QoS, including deadlines and
accuracies.

A. Autonomics in CometCloud

Two main approaches are available in CometCloud for
autonomic behaviour, namely master-based and worker-based
autonomics. In the worker-based autonomics, each worker acts
as agents in a marketplace [12], where a worker can select the
type of tasks it is interested in, in other words, a worker has
the autonomy to decide when to select a tuple based on its
utility function (in this instance, each tuple contains properties
of the task required to be executed by the master). In such a
context, based on the incurred cost and on the revenue when
charging for their services, workers aspire to maximise their
profit. A worker therefore can opportunistically select tuples
that enable it to maximise its revenue. Over time, a worker
is able to identify tasks which are most suitable based on
resources it has, and can build reputation in the marketplace for
executing such tasks. Alternatively, workers select tuples based
on a blind auction process, i.e. the master puts a task into the
tuplespace, and then each worker places an offer. The master
decides which worker has the best offer, and considering the
reputation, it decides which worker takes the task.

In master-based autonomics, the master uses monitoring
data to decide a control action, such as: load balancing,
resource provisioning and resource federation management
available within CometCloud at the infrastructure and services
layers. While in this approach, the workers’ sole responsibility
is to execute tasks, the master can dynamically allocate new
workers from preferred sites, or add additional sites to the
federation [13]. In this paper, we are focused on master-based
autonomics, by adding a Reference net interpreter at the master
for support work load management subject to specific QoS
constraints.

IV. AUTONOMIC WORKFLOW STREAMING IN
COMETCLOUD

In order to support workflow streaming programming
model, we designed and implemented a Reference net-based
workflow interpreter that can process multiple data streams
simultaneously coming from different distributed sources for
processing. The workflow interpreter coordinates the process-
ing of the data elements (based on task dependency con-
straints identified in the workflow specifications), and it also
dynamically scales the required resources on demand, while
enforcing the particular QoS requirements for each data stream,
measured in terms of throughput. For both purposes, the
interpreter interacts with CometCloud in two different ways:
i) to dispatch processing tasks to distributed computational
resources in CometCloud’s federation (by inserting task tuples
into CometSpace and by retrieving the results back), and ii)



Fig. 2: Autonomic High-level System Architecture for Large-
Scale Stream Processing in CometCloud

to monitor and control the computational resources around the
tuple space for dynamically scaling them on demand.

Figure 2 depicts the workflow interpreter, CometCloud, and
the federation of computational resources. In particular, the
mechanism is as follows. The interpreter is responsible for
creating and enacting the workflow instances and for receiving
the data elements of the streams. When a data element arrives
in the interpreter, it is injected into the corresponding streaming
workflow pipeline instance for processing. Then, as a data
element advances through its corresponding workflow pipeline,
task tuples will be written to and retrieved from CometSpace.
Initially, the interpreter allocates a number of worker nodes
to each data stream, based on historical executions. These
nodes will withdraw workflow task tuples, perform the re-
quired computations, and finally they will write the result
tuple back into CometSpace. The result tuple will be taken
by the streaming interpreter, which will re-direct it to the
corresponding workflow instance.

Hence, CometSpace acts as a buffer of task requests which
are waiting to be retrieved by worker nodes. CometCloud’s
middleware components can be configured so that workflow
tasks from the same data stream are stored within the same
location.

A. Streaming Workflow Specification

We assume that the operations to be applied to each data
stream have to be specified a priori, and the workflow stream-
ing model of computation will be applied for this purpose.
This model of computation consists of a sequence of one
or more tasks applied sequentially to a vector of input data
elements as they are received from sensors. We assume that a
data element can pass through a workflow pipeline task as it
is produced by its predecessor (avoiding blocking semantics).
In consequence, unlike other pipeline models of computation,
multiple data elements could be executing the same task at a
time, or even data elements can finalise their execution in an
out-of-order manner.

Each of our workflow tasks are specified in an abstract way
– without binding to any computational resource, and exclu-
sively in terms of two CometCloud’s Linda-like operations:

Fig. 3: a) Linda-based Streaming Workflow Task Pattern; b)
Streaming Workflow Example

an out operation writing the operation name and its arguments
into CometSpace, and an in operation retrieving the results
from CometSpace upon completion. The main advantage of
having explicit and abstract streaming workflow specifications
is that by doing so, each task is uncoupled in time and space
from the worker node that will execute it, and this provides
greater degrees of flexibility in the execution.

In our proposal, a streaming workflow is specified as de-
picted by Fig. 3. As the Reference nets are actually interpreted,
these specifications are also utilised for the actual execution
of the coordination mechanism. A simple workflow task is
specified in Fig. 3 a). It consists of two transitions, Transitions
t1 and t2. Both of them require a data element as a prerequisite
in order to get fired once, and only one data element at a time
is consumed at each firing. After the firing of a transition, the
results get synchronised with the streaming workflow master
Reference net by means of synchronous channels. Transition
t1 has Synchronous Channel out associated with it, whereas
Transition t2 has Synchronous Channel in. The arguments
taken at Channel out are the operation name and the data
element, the variable taskid is received so that it can be
subsequently used by retrieving the value at Channel in. Then,
once the task is performed, Channel in obtains corresponding
result.

Fig. 3 b) shows a streaming workflow example. Data
elements are introduced by means of Channel begin at the
initial transition, whereas a data element finalises its execution
and sends the result at Channel end. The illustrated workflow
is a sequential composition of two tasks, named “task A” and
“task B”, respectively. In particular, tasks are expected to be
connected by means of a data dependency, the output dout
of a tasks becomes the input din of the following task in the
sequence. It is important to note that the model is following
streaming semantics, whereby multiple data elements can be
executing a task simultaneously, and even the processing for
a data element can finalise out of order for previously arrived
data elements.



B. Streaming Workflow Interpreter

The streaming workflow interpreter presented in Figure 2
is now specified in terms of a Reference net in Fig. 4. Its
transitions are labelled functionally in 3 main groups: the ones
starting with letter i are responsible for initialisation purposes,
the ones starting with letter t are responsible for coordination
and execution of data elements within the workflows, and
finally the ones starting with letter c are responsible for the
autonomic behaviour of the interpreter.

A workflow instance as specified in Fig. 3 b) is created by
each firing of Transition i2 of the net of Fig. 4. This Transition
i2, when fired, retrieves a unique streamid from Transition t6,
creates a workflow instance and introduces it in the Place p2
where all the workflow instances are stored in the net. Thus,
any workflow instance in that place can be identified by its
streamid. It should be noted that the interpreter can trigger
four different operations to any workflow instance stored in
that place, namely out (write a tuple), in (retrieve a tuple),
begin (introduce a data element in the workflow pipeline), and
end (get a data element processed from the workflow pipeline).
The begin operation is accomplished when firing Transition t3,
this transition uses three synchronous channels when firing.
An external net invokes Channel receive, providing both a
data element to be processed, and the corresponding streamid,
identifying the workflow instance that will perform the compu-
tation. In turn, that transition invokes Channel Rin to register
the entrance of a data element for subsequent monitoring
purposes, and also invokes Channel begin of the workflow
instance associated to streamid, introducing the data element
into it. Analogously, Transition t4 has a similar mechanism of
operation: it consists of three channels, Channel end of the
workflow instance is invoked to extract the final data element
from the workflow, Channel Rout is invoked for monitoring
purposes (to compute the throughput), and Channel receive is
invoked by an external net to store the output.

Transitions t1, t2 are utilised for writing (out operation)
and retrieving tuples (in operation) from CometCloud re-
spectively. In addition to the workflow, they also utilise a
subnet called CometCloudConn (stored in Place p1) which
directly interacts with CometCloud’s tuplespace, and with
CometCloud’s middleware, by means of Java calls. Transi-
tion t2 invokes a Synchronous Channel out of a workflow
instance (w:out(taskid,op,d), see both Figs. 3 & 4), receiv-
ing the task name (op), and the input (d), then it gets a
unique identifier for a task from Channel getId, and finally
invokes Synchronous Channel out of the CometCloudConn
(m:out(streamid,taskid,op,d)), providing the task identifier, the
task name, and the input. Once, the CometCloudConn gets
the results from CometCloud, Transition t2 can be fired.
In such a case, the Channel in from CommetCloudConn
(m:in(streamid,taskid,d)) provides the output data element d,
which is subsequently provided to the workflow by means of
its Channel in (w:in(taskid,d)).

C. Autonomic Behaviour of our Streaming Workflow Inter-
preter

Our assumption in this paper is that the workload coming
from the data streams cannot be predicted in advance. Bursty
behaviours from sensor generation rates often require elastic

scaling of computational resources so that the QoS of the data
streams are enforced, and resources are not under utilised. The
goal of the workflow interpreter is therefore to process multiple
data streams in accordance with their respective workflow plan,
and enforce QoS for each data stream. In addition to bursty
behaviours of any particular data stream, deviations from the
QoS goal may also be due to the computational infrastructure:
unexpected failures, performance fluctuation, queue wait time
variation, etc. For all these cases, the workflow interpreter has
to guarantee that data stream computations are isolated and
not affecting one another.

Our focus in this paper is to develop a reactive autonomic
behaviour for our streaming workflow interpreter, in combi-
nation with some limited near-future prediction. For such a
purpose, the workflow interpreter is monitoring the incoming
data rate for each stream, and also the obtained departure rate
(throughput), as a consequence of the processing carried out
on the data. In Fig. 4, the arrival rate for each data element is
recorded by Transition c1, which is fired every time a data el-
ement is introduced into a workflow (synchronisation between
Transitions c1 and t3). The departure rate is recorded by the
firing of Transition c2 (synchronisation between Transitions
c2 and t4). It also makes use of CometCloud capabilities to
query the number of workflow tasks per data stream that have
not been taken from the tuplespace. This value can act as
an indicator for predict changes likely to take place in the
near future. The number of pending tasks above or below
established thresholds indicates that the workload of a data
stream has varied and, in consequence, the number of workers
must be updated accordingly without manual intervention. The
thresholds constitute a dead-zone to prevent inefficient and
ineffective control brevity when a system is sufficiently close
to its target value [14]. No action is therefore taken when the
number of tuples is between the low and upper values.

The autonomic behaviour for the interpreter is built upon
a closed feedback-loop, which is triggered periodically, it is
configured now to be performed every second (however, this
parameter will be considered to be self-modified in the future).
The mechanism makes use of Transition c3 that generates a
token every 1000ms, which will subsequently fire Transition
c4. On firing Transition c4, Channel getTuples from Comet-
CloudConn is invoked, providing the number of tuples per data
stream that have been written into CometSpace, but have not
been retrieved yet. CometCloudConn net queries CometCloud
middleware system for such a purpose. Furthermore, Channel
getCurrentRates is also invoked, retrieving for each stream,
the arrival rate and the output, which have been previously
recorded. Once Transition c4 is fired, it enables Transition c5,
where the workflow controller is invoked for accomplishing
autonomic actions. The controller receives the monitored infor-
mation previously gathered (input rate, throughput and number
of pending tuples per stream) and provides a list of actions,
one per stream. By means of the double arc getting out of
Transition c5, a token (representing an action) is generated
per each element of the list. This means that Transition c6
will be enabled as many times as tokens (representing actions)
generated. Each token specifies the number of workers to be
allocated / deallocated to a data stream. Transition c6, when
fired, invokes Synchronous Channel workers of CometCloud-
Conn net, which in turn re-directs the action to CometCloud’s
middleware.



Fig. 4: Autonomic Workflow Streaming Master Reference net

Essentially, we provide the controller with two main ac-
tions: i) to dynamically allocate a computational resource to
a data stream; which is triggered when the number of tasks
pending to be executed is above the higher threshold, ii) to
dynamically deallocate a computational resource to a data
stream; which is triggered when the number of tasks pending to
be executed is below a threshold and the output rate is below
the goal throughput. For the configuration of the dead zone
logic-based threshold interval, if it is too wide, the system will
have a slow response, incurring into QoS penalties, whereas
if it is too short, there may be ineffective resource allocations
/ deallocation leading to resource underutilisation. Therefore,
the interval must consider the income rate (it indicates the
accumulation of tuples), the goal throughput, and how the
workers selected perform, also including related overheads,
such as network transmissions, new worker allocations, queue-
ing waiting times, etc. We currently based it on historical
executions, and we expect to dynamically adjust it in the future
to suit changes in environment volatility.

Nevertheless, the action of allocating a new resource can
be enriched by the possibility of choosing the resources among
different sites. The following criteria may be used to support
this action:

• Data burst acceleration: whenever there is a consid-
erable burst of data, tuples will begin to accumulate
in CometSpace. In such a situation, resources need to

be allocated over a short time span in order to avoid
QoS penalties. A key action in this instance would be
to utilise resources from distributed sites involved in
a Cloud federation (as demonstrated in here). Cloud
infrastructures provide access to a potentially large
pool of resources which can be used execute tasks.

• High Performance Computing (HPC) resource conser-
vation: tightly coupled HPC resources are often essen-
tial for executing scientific applications, and access to
such resources is very limited. It is therefore necessary
to decide when to use HPC resources over more gener-
ally available Cloud resources. For example, we could
use a Cloud to process high throughput tasks and HPC
resources to process tasks which are computationally
intensive. This could be done considering runtime and
budget constraints.

• Resilience: resource selection may also be influenced
by failure rates, average time between failures or
fault management mechanisms in place. This choice
may lead to the consumption of a greater number of
resources (replicas). Once a fault has been detected,
additional Cloud resources can be requested dynami-
cally.

• Cost: when a budget is enforced on the workflow in-
terpreter for the overall processing of the data streams,
the number of allocatable resources is restricted by the



budget.

V. EXPERIMENT METHODOLOGY

We consider two independent streaming workflows that re-
quire data processing at two different rates. In this experiments,
we are going to show how our autonomic manager is able
to independently adapt the number of resources to the input
data to meet our QoS objective, which consists of maintaining
throughput equal to input rate. The streaming workflow 0 starts
inserting tasks at a rate of one and a half seconds during a
period of 30 seconds, then its rate increases and inserts a task
every 700 milliseconds during another 30 seconds, finally its
rate slows down to a rate of one task every 3 seconds. The
streaming workflow 1 inserts tasks at a constant rate of one
and a half seconds. Every task takes around 4 seconds.

We are going to study the behaviour of our autonomic
framework by the simultaneous execution of the two workflows
in two different computational environments: (a) only re-
sources from our local datacenter, and (b) a federation context
where we have local resources and external cloud resources.
Table I show the number of resources we use from each site.
Next, we provide the description of each site:

• Rutgers site (local resources): cluster based infrastruc-
ture with 32 dedicated cluster machines. Each node
has 8 cores, 6 GB memory, 146 GB storage and
Gigabit Ethernet connection. The measured latency on
the network is 0.227ms in average.

• Hotel cloud site: cloud infrastructure based on the
Nimbus [15] IaaS, which is located at the University
of Chicago. We have used instances of type small,
where each instance has 1 cores and 2 GB of memory.
The networking infrastructure is DDR Infiniband and
the measured latency of the cloud virtual network is
0.096ms in average.

• India cloud site: cloud infrastructure based on the
OpenStack [16] IaaS, which is located at Indiana
University. We have used instances of type small,
where each instance has 1 cores and 2 GB of memory.
The networking infrastructure is DDR Infiniband and
the measured latency of the cloud virtual network is
0.706ms in average.

TABLE I: Resources available at each site.

Site Number of Workers

Rutgers 6
India 3
Hotel 7

The interconnection network overhead between sites is as
follows: 36 ms between Rutgers and India; 4 ms between
Rutgers and India; and 6.7 ms between India and Hotel.

VI. EXPERIMENTAL VALIDATION

Figure 5 shows the result for both scenarios, on the left
column, we only use resources local to our data center. On
the right column, we federate cloud resources to complement

local ones. We show two types of graphs for both scenarios:
i) one type that displays instant input and output rates, as well
as the resources involved in the computation; and ii) another
type that displays average input and output rates. The instant
graphs can reflect how sudden changes on input rate trigger an
action, the allocation / deallocation of resources, and how that
action is affecting the throughput. In contrast, average graphs
can show the behaviour in average terms, eliminating the effect
of sudden changes.

It should also be noted that for the execution of the
workflows, it is not enough with the local resources, and
remote ones are required. In all the cases, both workflows have
allocated 2 resources (see Figures 5a, 5c, 5b, 5d). Therefore, in
the scenario where only local resources are involved, when the
rate of workflow 1 increases at second 30 (see Figure 5a), the
controller of the workflow interpreter cannot find more local
resources to enforce its QoS. Figure 5c. Three resources were
allocated at that time for workflow 0, whereas workflow 1 has
the three remaining ones. Therefore, for workflow 0, the QoS
is missed for the period 30 - 60. At second 60, the input rate
of workflow 0 significantly decreases, allowing the pending
tasks to be processed. That circumstance is also reflected by
the average input and output rates for workflow 0, displayed
on top of Figure 5e.

For the scenario combining local and remote resources,
it can be seen that at second 30, the workflow interpreter
can allocate remote resources for maintaining throughput for
workflow 0 (see Figure 5c). The income rate of workflow 0
is decreased by second 60, which eventually provokes that the
number of allocated resources is decreased by around second
70. Average throughputs for workflow 0 can be compared in
Figures 5e and 5f, top. With remote resources (Figure 5f, top),
average throughput is close to the average input rate. Besides,
having some additional remote resources for workflow 1 also
improve the enforcement of throughput, as it can be seen by
comparing Figures 5e and 5f, bottom.

VII. RELATED WORK

In the past few years, due to the proliferation of sensors in
a number of domains (road traffic, social network analysis,
etc.), there has been an emergence of applications that do
not fit into that model of traditional databases and querying
paradigm. Indeed, the increasing deployment of sensor net-
work infrastructures has led to large volumes of data becoming
available, leading to new challenges in storing, processing and
transmitting such data [17]. Distributed systems represent an
essential paradigm for addressing the challenges of the large
amounts of generated data.

For that reason, stream processing frameworks such as
Yahoo’s S4 [18], or IBM InfoSphere Streams [19] provide
streaming programming abstractions to build and deploy tasks
as distributed applications at scale for commodity clusters and
clouds. Nevertheless, even that these systems support high
input data rates, they do not consider variable input rates,
which is our focus in this paper. In some other approaches,
the parallelism is extracted from the data stream query op-
erators they provide, Aurora [20], Borealis [21] and Stream
Cloud [22], which differs that in our case, we explicitly exploit
the parallelism by having multiple data elements in multiple
workflow pipelines.
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(c) Instant input-output rates for workflow 1
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(d) Instant input-output rates for workflow 1
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Fig. 5: Summary of experimental results. On the left column, we only use resources local to our data center. On the right column,
we federate cloud resources to complement local ones

On the other hand, there is a number of scientific workflow
engines that incorporate the streaming workflow model of
computation and elastic infrastructures, such as Kepler [23],
[24] and Triana [25]. But to the best of our knowledge they
are not considering dynamism in streaming income rate or
heterogeneity in the infrastructure.

Our work is closely related to three approaches. In [26],
the goal is to allocate resources dynamically from a Cloud, so
that the processing rate can match the rate of data arrival. They
also consider variable transient input rates. In our approach
we make use of a federation of heterogeneous resources

and for the selection of resources, we propose autonomic
based mechanisms and policies. In [7], the authors propose
a workflow specification where each task consists of one or
more alternate implementations with different non-functional
properties, so that the system can choose any of them dy-
namically at runtime. In this paper, we have not considered
dynamism at workflow-level, but our dynamic provisioning of
resources is accomplished in a federation of heterogeneous
resources. Finally, the work in [4], [27], [28], [29] consists
of a sequence of nodes, where each node has multiple data
buffers and computational resources – whose numbers can



be adjusted in an elastic way. They utilize the token bucket
model for regulating, on a per stream basis, he data injection
rate into such nodes. The main difference to our approach in
here is that instead of utilising multiple nodes, we assume
CometCloud system as a coordination mechanism that can
outsource the computation when required. Besides, instead of
the token bucket mechanism we exploit autonomic behaviours,
and CometSpace for buffering.

VIII. CONCLUSION

In this paper, we describe how autonomic capability could
be integrated with a federated Cloud environment. Our ap-
proach is demonstrated by extending the capabilities of a
master in the CometCloud system with an autonomic stream-
ing workflow interpreter, which is specified in terms of an
executable Reference net (a type of Petri net) model. The
benefit of this approach is that the model can be analysed
directly but can then also be executed. Using Reference nets,
the model is therefore also the actual executable system. Our
workflow interpreter supports the simultaneous processing of
data streams and enables elastic scale-up of heterogeneous
computational resources, while meeting the the QoS require-
ment of throughput for each data stream. We assume that
the processing to be applied to each data stream must be
specified a priori, and the workflow streaming model of
computation and Petri nets will be applied for this purpose.
The workflow interpreter monitors the arrival rate of each data
stream, and the obtained departure rate, as a consequence of
the execution. It also makes use of CometCloud capabilities
to query the number of workflow tasks per data stream that
have not been taken from CometSpace. This value can act
as an indicator to adapt the behaviour of the interpreter over
the near future. Essentially, we provide the controller with
two main actions: i) to dynamically allocate a computational
resource to a data stream; which is triggered when the number
of tasks pending to be executed is above the higher threshold,
ii) to dynamically deallocate a computational resource to a
data stream; which is triggered when the number of tasks
pending to be executed is below a threshold and the input
rate is below the throughput. The action of allocating a new
resource can be enriched by the possibility of choosing the
resources among different sites, involving a number of policies
that consider either cost, resilience, reduced use of more costly
(high performance computing) resources, or the occurrence of
severe data bursts.
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