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Abstract Cloud computing has emerged as a dominant paradigm that has been
widely adopted by enterprises. Clouds provide on-demand access to computing
utilities, an abstraction of unlimited computing resources, and support for on-
demand scale up, scale down and scale out. Clouds are also rapidly joining
high performance computing system, clusters and grids as viable platforms for
scientific exploration and discovery. Furthermore, dynamically federated Cloud-of-
Clouds infrastructure can support heterogeneous and highly dynamic applications
requirements by composing appropriate (public and/or private) cloud services and
capabilities. As a result, providing scalable and robust mechanisms to federate
distributed infrastructures and handle application workflows, that can effectively
utilize them, is critical. In this chapter, we present a federation model to support
the dynamic federation of resources and autonomic management mechanisms that
coordinate multiple workflows to use resources based on objectives. We demonstrate
the effectiveness of the proposed framework and autonomic mechanisms through
the discussion of an experimental evaluation of illustrative use case application
scenarios, and from these experiences, we discuss that such a federation model can
support new types of application formulations.

1 Introduction

Cloud computing is revolutionizing the enterprise world, much as the Internet
did not so long ago. Clouds are fundamentally changing how enterprises think
about IT infrastructure, both internally and externally, by providing on-demand
access to always-on computing utilities, an abstraction of unlimited resources, a
potential for scale-up, scale-down and scale-out as needed, and for IT outsourcing
and automation. Clouds also provide a usage-based payment model where users
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essentially “rent” virtual resources and pay for what they use. Underlying these
cloud services are typically consolidated and virtualized data centers that exploit
economies of scale to provide attractive cost—benefit ratios. In spite of being in its
early stages, cloud computing is already reshaping IT world. In fact, according to
The Wall Street Journal, four out of five businesses are moving or planning to move
some of their business functions to cloud services.

At the same time that cloud computing is redefining IT, extreme data and
compute scales are transforming science and engineering research by enabling
new paradigms and practices—those that are fundamentally information/data-driven
and collaborative. Cloud abstractions and infrastructures are rapidly becoming
part of the overall research cyberinfrastructure, providing viable platforms for
scientific exploration and discovery. It is expected that cloud services will join more
traditional research cyberinfrastructure components—such as high performance
computing (HPC) system, clusters and grids, as part of Cyberinfrastructure Frame-
work for Twenty-First Century Science and Engineering (CIF21) in supporting
scientific exploration and discovery. Analogous to their role in enterprise IT, clouds
can enable the outsourcing of many of the mundane and tedious aspects research
and education, such as deploying, configuring and managing infrastructure, and
enable scientists to focus on the science. Computational and Data-enabled Science
and Engineering (CDS&E) applications enabled by an advanced cyberinfrastructure
(ACI) are providing unprecedented opportunities for understanding and managing
natural and engineered systems, and offering unique insights into complex problems
and, in addition to support traditional enterprise data analytics services (e.g., those
based on MapReduce). For example, clouds can provide a platform for applications
when local infrastructure is not available or supplement existing platforms to
provide additional capacity or complementary capabilities to meet heterogeneous
or dynamic needs [20, 42, 66]. Clouds can also serve as accelerators, or provide
resilience to scientific workflows by moving the execution of the workflow on
alternative or fewer resources when a failure occurs. The simplicity of the cloud
abstraction can alleviate some of the problems scientific applications face in current
HPC environments. The analysis of high-dimensional parameter spaces, uncertainty
quantification by stochastic sampling, or statistical significance assessment through
resampling, are just few examples of a broad class of problems that are becoming
increasingly important in a wide range of application domains. These applications
can be generally described as many task computing applications [48] and can benefit
from the easy access to on-demand elastic customizable resources and the ability
to easily scale up, down or out [49]. Clearly, realizing these benefits requires the
development of appropriate application platforms and software stacks.

In this chapter, we present a model to support the dynamic federation of
resources and the coordinated execution of application workflows on such federated
environments. These resources can be of different types of infrastructure including
traditional HPC clusters, supercomputers, grids, and clouds. Additionally, the
federation provides autonomic scheduling mechanisms that create an abstraction
with cloud-like capabilities to elastically provision the resources based on user
and application policies and requirements. We discuss the requirements to enable
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our federation model followed by the description of our federation model and
mechanisms. In contrast to previous work such as [52] or [10], which propose
models to federate and combine clouds with local resources for cloudbursting, this
chapter focuses on providing abstractions to seamlessly federate and provision on-
demand a wider range of resources such as high-end systems that are not typically
exposed in federated systems or grids. A key aspect of our federation model is the
autonomic management and optimization of application execution through cross-
layer application/infrastructure adaptation. To demonstrate the effectiveness of the
federation model, mechanisms and autonomic management policies we present
an experimental evaluation with relevant usage scenarios of the proposed frame-
work, including: (1) medical image research, which aims at achieving extended
capacity, (2) molecular dynamics simulations using asynchronous replica exchange,
which provides adaptivity and elasticity at the application-level, and (3) data
analytics workflow based on clustering, which focuses on adaptation to achieve
user objectives and requirements. From these use case applications, we discuss
ongoing work towards enabling such a federation model to support new types of
application formulations such as adaptive workflows where dynamic provisioning
and federation is essential to respond to non-deterministic behaviors.

2 State of the Art

This section collects different research efforts aimed to federate resources in the
context of grid and cloud computing as well as standards to ease the interoperability
among infrastructures. These efforts are mainly focused on providing an infrastruc-
ture to compute large scale scientific applications.

2.1 Federating Computational Grids

In the late 1990s, grid computing [16] emerged as the model to support large sci-
entific collaborations by providing their computational resources and the structure
behind them. The core concept of grid computing defines an architecture to support
shared access to resources provided by members of virtual organizations (VO) [17]
that are formed by collaborative data centers and institutions. Some examples of
grids are Open Science Grid (OSG) [88] in US, GridX1 in Canada [1], Naregi
in Japan [83], APACGrid in Australia [12], Garuda in India [50], Grid’5000 in
France [6,78], DAS-3 in the Netherlands [73], D-Grid in Germany [75], e-Science in
UK [21], and EGI (following EGEE and DataGrid research efforts) in Europe [76].
Note that the majority of grids result from regional initiatives. However, large
dedicated grids have been also built to serve as scientific instruments, such as
XSEDE [91] in the US, DEISA [74], HPC-Europa [41] and PRACE [89] in the
EU, OSG in US, EGI in Europe, and Grid’5000 in France.
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As science was pushing new limits in terms of levels of computation and data and
collaboration between scientists from multiple scientific domains across the globe,
there was a need for interoperability among different grid systems to create large
grid environments that would allow users to access resources of various VOs trans-
parently [54]. Among the grid federation efforts we can find InterGrid [9] along with
the work by Assuncao et al. [3] that promotes interlinking different grid systems
through economic-based peering agreements to enable inter-grid resource sharing,
Gridway [67] through its grid gateways [22] along the work by Leal et al. [35]
that proposed a decentralized model for scheduling on federated grids to improve
makespan and resource performance, LAGrid meta-scheduling [5, 55, 59] that
promotes interlinking different grid systems through peering agreements to enable
inter-Grid resource sharing, Koala [39] with the use of delegated matchmaking [24]
to obtain the matched resources from one of the peer Koala instances, VIOLA [61]
that implements grid interoperability via WS-Agreement [2] and provides co-
allocation of multiple resources based on reservations, Grid Meta-Brokering Service
(GMBS) [28, 29] proposes an architecture for grid interoperability based on high
level abstractions to describe the broker’s capabilities and properties using a specific
language [30-32,57], the work by Elmroth et al. [13] that presents a grid resource
brokering service based on grid standards, Guim et al. [56] studied scheduling
techniques for multi-site grid environments, and within EGEE, efforts to enable
interoperability between gLite and UNICORE [14] systems [38,51].

2.2 Federation in Cloud Computing

Cloud computing has emerged as a dominant paradigm that has been widely
adopted by enterprises. Clouds provide on-demand access to computing utilities,
an abstraction of unlimited computing resources, and support for on-demand scale
up, scale down and scale out. Furthermore, dynamically federated ‘“cloud-of-
clouds” infrastructure can support heterogeneous and highly dynamic applications
requirements by composing appropriate (public and/or private) cloud services and
capabilities. At the same time that cloud computing is redefining IT, it is rapidly
joining high-performance computing system, clusters and grids as viable platforms
for scientific exploration and discovery. Current cloud platforms can provide
effective platforms for certain classes of applications, for example high-throughput
computing (HTC) applications. There have been several early projects that have
reported successful deployments of applications on existing clouds [11, 18,27, 68].
Additionally, there are efforts exploring other usage modes [43] and to combine
clouds, such as Amazon EC2 [71], with integrated computing infrastructures.
Villegas et al. [69] proposed a composition of cloud providers as an integrated
(or federated) cloud environment in a layered service model. Assuncao et al. [10]
described an approach of extending a local cluster to cloud resources using different
scheduling strategies. Along the same lines, Ostermann et al. [42] extended a grid
workflow application development and computing infrastructure to include cloud
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resources, and experimented with Austrian Grid and an academic cloud installation
of Eucalyptus using a scientific workflow application. Similarly, Vazquez et al. [66]
proposed architecture for an elastic grid infrastructure using the GridWay meta-
scheduler, and extended grid resources to Globus Nimbus; Vockler et al. [70] used
Pegasus and Condor to execute an astronomy workflow on virtual machine resources
drawn from multiple cloud infrastructures based on FutureGrid, NERSC’s Magellan
cloud and Amazon EC2; Gorton et al. [20] designed a workflow infrastructure for
Systems Biology Knowledgebase (Kbase) and built a prototype using Amazon EC2
and NERSC’s Magellan cloud; and Bittencourt et al. [4] proposed an infrastructure
to manage the execution of service workflows in the hybrid system, composed of
the union of a grid and a cloud.

Given the growing popularity of virtualization, many commercial products and
research projects, such as OpenNebula [62, 86], OpenStack [87], Nimbus [84],
Eucalyptus [40, 77], IBM Smart Cloud [80], Amazon EC2, and VMware vCloud
Connector are being developed to dynamically overlay physical resources with
virtual machines. Analogously, Riteau et al. [52] proposed a computing model
where resources from multiple cloud providers are leveraged to create large-
scale distributed virtual clusters. They used resources from two experimental
testbeds, FutureGrid in the United States and Grid’5000 in France. In [8], Celesti
et al. proposed a cross-federation model based on using a customized cloud
manager component placeable inside the cloud architectures. Other example is
the Resevoir [53] that aims at contributing to best practices with a cloud and
federation architecture. In general, these efforts are intended to extend the benefits
of virtualization from a single resource to a pool of resources, decoupling the VM
not only from the physical infrastructure but also from the physical location.

2.3 Interoperability Standardization Activities

There are several projects with the goal enabling the interoperability of federated
infrastructures. The Open Middleware Infrastructure Institute for Europe (OMII-
Europe) aims to significantly influence the adoption and development of open
standards that facilitate interoperability between gLite and UNICORE such as
OGSA Basic Execution Service (BES) or Job Submission Description Language
(JSDL). The Grid Scheduling Architecture Research Group (GSA-RG) of Open
Grid Forum (OGF) is currently working on enabling grid scheduler interaction.
They are working to define a common protocol and interface among schedulers
enabling inter-grid resource usage, using standard tools (e.g., JSDL, OGSA,
WS-Agreement). However, the group is paying more attention to agreements.
They proposed the Scheduling Description Language (SDL) to allow specification
of scheduling policies based on broker scheduling objectives/capabilities (e.g.,
time constraints, job dependencies, scheduling objectives, preferences). The Grid
Interoperation Now Community Group (GIN-CG) of the OGF also addresses the
problem of grid interoperability driving and verifying interoperation strategies. They



206 J. Diaz-Montes et al.

are more focused on infrastructure with five sub-groups: information services, job
submission, data movement, authorization, and applications. Aligned with GIN-
CG, the OGF Production Grid Infrastructure Working Group (PGI-WG) aims
to formulate a well-defined set of profiles and additional specifications. Some
recommendations of these initiatives have been considered in existing work which
has identified standardization as a key element towards interoperability [15].

There are also two main activities of the OGF for job management: SAGA
[19] and DRMAA (Distributed Resource Management Application API) [65].
SAGA provides a set of interfaces used as the application programming model for
developing applications for execution in grid environments. DRMAA defines a set
of generalized interfaces that applications used to interact with distributed resource
management middleware. Both SAGA and DRMAA focus on applications.

Finally, there are other interoperability activities focused in the context of the
cloud. We have Siena [90], Open Cloud Computing Interface (OCCI) [85], under
the OGF umbrella, that aim at defining standards for cloud interoperability. There
is an IEEE Intercloud WG Working Group [81] that is working in standards such as
Standard for Intercloud Interoperability and Federation (SIIF) [82].

3 Federation Model to Aggregate Distributed Resources

The federation model that we propose is aimed to orchestrate geographically
distributed resources using cloud-like capabilities and abstractions. Our proposed
federation model is different from the existing ones, presented in Sects. 2.1 and 2.2,
in the sense that we provide a platform to access federated resources using cloud-like
capabilities such as on-demand provisioning, dynamic aggregation or cloudbursting.
Moreover, we are able to federate various kind of resources (HPC, cloud, and
grid) and enable autonomic computing features such as objective-driven workflow
execution to efficiently compute large scale problems.

3.1 Requirements

In order to design a federation model to support large scientific and engineering
problems, it is imperative to clearly define the characteristics that the resulting
system should provide. Having a well determined set of necessary and sufficient
requirements simplifies the design process by focusing on the essential functionality.
Thus, we used our past and present collaborations with domain scientists to identify
key requirements our solution should offer in order to be easy to use and flexible.
Next, we describe each one of these requirements.

* Scalability and Extended Capacity: Due to the computational requirements
of modern scientific applications, it becomes necessary to scale across
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geographicallydistributed resources. This is because oftentimes a single resource
is not sufficient to execute a given scientific workload (e.g. because the resource
is of limited scale, or it mismatches application requirements).

e Interoperability: While the scalability and extended capacity requirement
ensures that diverse resources can be incorporated into the federation, the
interoperability requirement guarantees that the federation will be able to interact
with these resources. Specifically, the federation must offer mechanisms to
interface with common platforms such as personal supercomputers, MPI and
MapReduce clusters, massively parallel and shared memory supercomputers, and
clouds. At the same time, it must be open such that new platforms can be added
in the future.

* Capability: By having heterogeneous resources as part of the federation, we
can take advantage of their particular characteristics and optimize the resource
allocation. In our model tasks and resource allocation can be achieved via a push
model with central scheduler, or a pull model where resources obtain tasks via
attribute-based queries. Thus, the federation must be aware of the capabilities of
each resource to allow optimal usage.

» Elasticity and On-Demand Access: The important factor affecting applicability
of the federation is its ability to scale up/down or out as needed. For many prac-
tical workloads it is difficult to predict computational and storage requirements.
Moreover, many applications are dynamic in the sense of convergence, and hence
provide no guarantees on the cost of execution. Consequently, the federation
must be able to aggregate or drop resources seamlessly. What is important,
the resulting elasticity makes the infrastructure resilient and hence improves its
ability to sustain computational throughput.

e Self-discovery: Having the right monitoring mechanisms in place is important
to ensure that the federation provides a realistic view of resources, taking into
account their variability over time. Here multiple factors should be taken into
account including availability, load, failure-rate, etc. The ability to self-discover
strongly affects how the federation manages the offered services and optimizes
resources allocation.

* Democratization: Users of the federation may have access to a larger number of
resources or to specific resources, which enables them to tackle more important
scientific challenges. This requires the capability of sharing resources and more
importantly controlling their usage to ensure a fair use among all users.

3.2 Federation Architecture

The federation is designed to be dynamically shaped as it is created in a collaborative
way, where each site talk with each other to identify themselves, negotiate the terms
of adhesion, discover available resources, and advertise their own resources and
capabilities. In this way, a federated management space is created on runtime and
sites can join and leave at any point. Users can access the federation from any site,
see Fig. 1.
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Fig. 1 Federation architecture. Here (M) denotes a master, (W) is a worker, (IW) an isolated
worker, (P) a proxy, and (R) is a request handler

The federation model is based on the Comet [36] coordination spaces concept.
These Comet spaces are used to coordinate the different aspects of the federation.
In particular, we have decided to use two kind of spaces in the federation. First, we
have a single federated management space used to create the actual federation and
orchestrate the different resources. This space is used to interchange any operational
message for discovering resources, announcing changes in a site, routing users’
request to the appropriate sites, or initiating negotiations to create ad-hoc execution
spaces. On the other hand, we can have multiple shared execution spaces that are
created on demand to satisfy computing needs of the users. Execution spaces can
be created in the context of a single site to provision local resources and cloudburst
to public clouds or external HPC systems. Moreover, they can be used to create a
private sub-federation across several sites. This case can be useful when several sites
have some common interest and they decide to jointly target certain type of tasks as
a specialized community.

As shown in Fig. 1, each shared execution space is controlled by an agent that
creates such space and coordinates the resources for the execution of a particular
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set of tasks. Agents can act as master of the execution or delegate this duty to
a dedicated master (M) when some specific functionality is required. Moreover,
agents deploy workers to actually compute the tasks. These workers can be in a
trusted network and be part of the shared execution space, or they can be part of
external resources such as a public cloud and therefore in a non-trusted network.
The first type of workers are called secure workers (W) and can pull tasks directly
from the space. Meanwhile, the second type of workers are called isolated workers
(IW) and cannot interact directly with the shared space. Instead, they have to interact
with a proxy (P) and a request handler (R) to be able to pull tasks from the space.

A key aspect of this federation is the autonomic management and optimization
(of multiple objectives, including performance, energy, cost, and reliability) of
application execution through cross-layer application/infrastructure adaptations. It
is essential to be able to adapt to the application’s behavior as well as system
configuration, which can change at run time, using the notion of elasticity at the
application and workflow levels. Hence, the federated infrastructure increases the
opportunities to provision appropriate resources for given workflows based on user
objectives or policies and different resource classes can be mixed to achieve the
user objectives. Resources scale up/down/out based on the dynamic workflow and
the given policies. A user objective can be to accelerate application runtime within a
given budget constraint, to complete the application in a time constraint, or to select
better resources matching to the application type, such as computation-intensive
and data-intensive. Furthermore, application requirements and resource status may
change, for example, due to workload surges, system failures or emergency system
maintenance, and as a result, it is necessary to adapt the provisioning to match these
changes in resource and application workload.

3.3 CometCloud

Our federation model is built on top of CometCloud [33,72] and the concepts that
CometCloud is based on. CometCloud is an autonomic computing engine based on
the Comet [36] decentralized coordination substrate, and supports highly hetero-
geneous and dynamic cloud/grid/HPC infrastructures, enabling the integration of
public/private clouds and autonomic cloudbursts, i.e., dynamic scale-out to clouds
to address extreme requirements such as heterogeneous and dynamics workloads,
and spikes in demands.

Conceptually, CometCloud is composed of a programming layer, service layer,
and infrastructure layer. The infrastructure layer uses the Chord self-organizing
overlay [63] and the Squid [60] information discovery to create a scalable content-
based coordination space for wide-area and a content-based routing substrate,
respectively. The routing engine supports flexible content-based routing and com-
plex querying using partial keywords, wildcards, or ranges. It also guarantees that
all peer nodes with data elements that match a query/message will be located. The
service layer provides a range of services to support autonomics at the programming
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and application level. This layer supports a Linda-like [7] tuple space coordination
model, and provides a virtual shared-space abstraction as well as associative access
primitives. Dynamically constructed transient spaces are also supported to allow
applications to explicitly exploit context locality to improve system performance.
Asynchronous (publish/subscribe) messaging and event services are also provided
by this layer. The programming layer provides the basic functionality for application
development and management. It supports a range of paradigms including the
master/worker/BOT. Masters generate tasks and workers consume them. Masters
and workers can communicate via virtual shared space or using a direct connection.
Scheduling and monitoring of tasks are supported by the application framework.
The task consistency service handles lost/failed tasks.

3.4 Autonomic Management

The autonomic management capabilities are provided by the autonomic manager,
which is responsible for managing workflows, estimating runtime and scheduling
tasks at the beginning of every stage based on the resource view provided by the
agents. At each stage, the adaptivity manager monitors tasks runtimes through
results, handles the changes of application workloads and resource availability,
and adapts resource provisioning if required. Figure 2 shows the architecture of
the autonomic management framework. We detail the different components of the
autonomic manager below.

Workflow Manager The workflow manager is responsible for coordinating the
execution of the overall application workflow, based on user’s objectives and status
of the infrastructure.

Runtime Estimator The runtime estimator estimates computational runtime and
cost of each task. This estimate can be obtained through a computational complexity
model or through quick, representative benchmarks. Since performance is strongly
affected by the underlying infrastructure (clouds, HPC, or grids) it is more effective
to use benchmarks to obtain runtime and cost estimates.

Autonomic Scheduler It uses the information provided by the estimator modules
to determine the initial hybrid mix HPC/grids/cloud resources based on user/sys-
tem-defined objectives, policies and constraints. The autonomic scheduler also
profiles the tasks to allow agents to get the most suitable ones for their resources.
The scheduler is dynamic and it can update both the allocations and the scheduling
policy at runtime.

Elasticity Manager The status of the resources or the performance of the applica-
tion can change over time and differ from the initial estimation. Thus, the elasticity
manager is responsible for preventing the violation of the objectives and policies by
elastically adapting the resources allocated to each workflow.
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The autonomic manager takes advantage of the cloud abstraction provided by
CometCloud to seamlessly interact with any kind of infrastructures. Each infras-
tructure has specific properties that define the characteristics of its resources. This
information is essential to allow the autonomic manager to dynamically federate
resources. Since it uses CometCloud, it inherits the support for the master/worker,
MapReduce and workflow programming models. Nevertheless, applications are
usually described as workflows. Typically, the workflow programming model
considers a workflow with multiple stages, where stages should be executed in
an order, each stage can run a different application or the same application with
different length of tasks, computational requirements, and data.

3.5 Enabling Autonomics

The essence of the autonomic manager resides in the user objectives and policies.
They are used to drive the execution of the workflow by provisioning the appropri-
ated number and type of resources. The allocated resources can vary over time,
to make sure the application requirements are respected, if a deviation over the
estimate execution plan is detected. Deviations on the plan occur due to unexpected
failures, performance fluctuation, queue wait time variation, etc. In this Section we
present several use cases that represent typical scenarios from the user’s perspective
and how to achieve them using autonomic techniques.
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User Objectives Currently, the autonomic manager supports three main objectives
namely acceleration, conservation, and resilience. Nonetheless, new objectives such
as energy-efficiency can be easily integrated.

Acceleration Cloud infrastructures provide large amount of resources that can
perfectly be used to execute certain scientific applications. Thus, they can be used
to boost the execution of the applications by dramatically increasing the number of
allocated resources and hence reducing the overall computational time.

Conservation HPC resources are essential to compute many scientific applications.
However, the access to this type of resources is very limited and their use is typically
controlled by awards. Therefore, optimizing the use of those resources is very
important. The idea of this use case is to use clouds to conserve HPC allocations.
For example, we could use the cloud to do an initial exploration of the application
domain and migrate to the HPC resources only those tasks that progress as expected.
This could be done considering runtime and budget constraints.

Resilience This use case investigates how clouds can be used to handle unexpected
situations such as an unanticipated HPC/grid downtime, inadequate allocations,
unanticipated queue delays or failures of working nodes. Additional cloud resources
can be requested to alleviate the impact of the unexpected situations and meet user
objectives.

Scheduling Policies To achieve the above user objectives, several policies can be
defined. Two of the most representative policies are described as follows.

Deadline The scheduling decision is to select the fastest resource class for each task
and to decide the number of nodes per resource class based on the deadline. If the
deadline can be achieved with a single node, then only one node will be allocated.
When an application needs to be completed as soon as possible, regardless of cost
and budget, the largest useful number of nodes is allocated.

Budget When a budget is enforced on the application, the number of allocatable
nodes is restricted by the budget. If the budget is violated with the fastest resource
class, then the next fastest and cheaper resource class is selected until the expected
cost falls within the budget limit.

4 Application Scenarios

This section provides a comprehensive discussion of different representative use
case applications and experiences to illustrate the effectiveness of our proposed
federation architecture, mechanisms and autonomic strategies. Specifically we dis-
cuss different Computational and Data-Enabled Science and Engineering (CDS&E)
applications and an enterprise business data analytics workflow. Although the result
of these applications is not the goal of this chapter, we believe the discussion of these
experiences are useful to define next steps towards advanced cyberinfrastructure and
clouds federation for different usage modes [43].
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4.1 CDS&E Applications

Two different CDS&E applications are discussed below, namely medical image
research and molecular dynamics simulations using asynchronous replica exchange.
Both application use cases use federated advanced cyberinfrastructure in combina-
tion with clouds, however, they represent different usage modes.

Medical Image Research includes both medical image registration and content-
based image retrieval. In the former, we focused on autonomically balancing
completion time and cost using federated resources including private data centers,
grids and private clouds [34]. In the latter, we use the proposed federation
mechanisms to achieve extended capacity to respond to its large computational
power requirements, which is described as follows.

Content-based image retrieval (CBIR) has been one of the most active research
areas in a wide spectrum of image-related fields over the last few decades. In
pathology, hematology already contains a large number of tools to automatically
count blood cells. To classify abnormal white blood cells and compare diagnosis
between a new case and cases with similar abnormalities is an interesting appli-
cation. In this application use case we focus on CBIR on digitized peripheral
blood smear specimens using low-level morphological features. Specifically, we
use CometCloud to execute CBIR in federated heterogenous advanced cyberinfras-
tructure and cloud resources with the goal of reducing the completion time (i.e.,
provide answers within minutes or hours rather than weeks). The CBIR code was
ported from Matlab to Java as a native CometCloud application to avoid licensing
constrains in non-proprietary resources and to enable future implementations of the
application on specialized hardware (e.g., accelerators). Since the most computation
expensive part is searching query patches within each database image, we chose to
use master/worker programming model, thus each image within the database was
assigned to a worker. The implementation using the master/worker programming
model is shown as Fig.3. A master and a number of workers (one per physical
core) form an overlay at runtime and synchronize using a tuple space (execution
space). The master generates tasks (one for each image or subset of images to be
processed) and then the workers pull the tasks and process the associated images
simultaneously. In order to improve scalability and fault tolerance, workers store
intermediate results on disk rather than returning the results back to the master using
the comet space. When the workers finish, the intermediate results are consolidated
(which represents a small part of the overall execution).

In order to obtain extended capacity, we federated a cluster at Rutgers (a Dell
Power Edge system with 256 cores in 8-core nodes) with distributed cyberin-
frastructure from NSF Extreme Science and Engineering Discovery Environment
(XSEDE), NSF FutureGrid, the National Energy Research Scientific Computing
Center (NERSC) and public clouds (Amazon EC2). Specifically, we used Ranger
(Sun constellation with 62,976 cores in 16-core nodes) and Lonestar (with 22,656
cores in 12-core nodes) from XSEDE, Hotel (an IBM iDataPlex system with
672 cores in 8-core nodes) from FutureGrid, Hopper (a Cray XE6 system with
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153,216 cores in 24-core nodes) from NERSC, and medium instances from Amazon
EC2. The former resources were used through startup awards and the later in pay-
as-you-go basis. We used advanced cyberinfrastructure systems “opportunistically”
by using short waiting time queues, i.e., queues with limitations such as reduced
runtime and number of queued/running jobs. Data transfer was overlapped with
computation.

Figure 4 shows the completion time of CBIR algorithm over the database of
925 images for the 50 different configurations (in minutes, using logarithmic scale)
and Fig. 5 shows the average throughput (i.e., processed images per minute) that a
single node of each of the different platforms can achieve. Completion time for the
federated scenario was obtained with real executions while for sequential and local
cluster scenarios completion time is an estimation based on the actual execution of
the subset of configurations, due to the limitations of very long executions.

The results show that CBIR is dramatically speeded up when using the (dedi-
cated) dell cluster at Rutgers with respect to using a single node (from around two
weeks of computation to 12 h). However, using federated infrastructure (i.e., much
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Federating Advanced Cyberinfrastructures with Autonomic Capabilities 215

Node Throughput (img/min)
o = N W ~ O
d

Fig. 5 Average node throughput for different platforms

more resources but not under own control) provides much shorter completion time
(about 170 min). In our experiments the jobs used a single node (i.e., up to 24 cores)
to run a set of 100 images, however, if we used a smaller set of images per job
the penalty due to the queuing times would be higher. In case of Amazon EC2 a
job processes a smaller set of images because the nodes have smaller core count.
Figure 5 also shows the impact of queuing time on the average throughput in the
HPC systems (i.e., Lonestar, Ranger and Hopper). Furthermore, Fig. 6 shows the
throughput (i.e., number of processed images per minute) during a time interval
of 3h of the Dell cluster at Rutgers and Hopper, respectively. The Dell cluster
shows more stable throughput behavior than Hopper, whose throughput presents
spikes over time. Although Hopper nodes are more powerful, the queuing times and
the limitation of the number of concurrent running jobs penalizes significantly the
throughput.

The proposed federated system presents many opportunities and challenges in
the context of medical image research such as exploiting heterogeneous federated
resources from the point of view of their capabilities. For example, the Matlab
incarnation of CBIR can be run when licenses are available or an incarnation for
accelerators (e.g., GPU or Intel MIC) can be run when resources with accelerators
are available.

Molecular Dynamics Simulations Using Asynchronous Replica Exchange
Replica exchange [23,64] is a powerful sampling algorithm that preserves canonical
distributions and allows for efficient crossing of high-energy barriers that separate
thermodynamically stable states. In this algorithm, several copies or replicas, of
the system of interest are simulated in parallel at different temperatures using
“walkers”. These walkers occasionally swap temperatures and other parameters
to allow them to bypass enthalpies barriers by moving to a higher temperature.
The replica exchange algorithm has several advantages over formulations based on
constant temperature, and has the potential for significantly impacting the fields of
structural biology and drug design—specifically, the problems of structure based
drug design and the study of the molecular basis of human diseases associated
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with protein misfolding. Traditional parallel implementations of replica exchange
target either tightly coupled parallel systems or relatively small clusters. However,
an asynchronous formulation of the replica exchange algorithm was designed and
implemented [37,79], which was proven to be effective, efficient and suitable for
grid- based systems. Additionally, it is possible to reformulate the workflow to
better utilize the ACI as described below.

Typically molecular dynamics simulations are very static in terms of execution
models—the simulations go from start to finish irrespective of whether replicas are
progressing towards correct folding. The ability to bias a trajectory by identifying
pathways that are progressing towards a fully folded structure and those that are
diverging away is an exciting direction for replica exchange formulations. The
quality of the protein structure can be monitored by comparing the progress of each
replica using secondary structure prediction methods and the radius of gyration.
For example, in ubiquitin folding simulation replicas with large radius of gyration
would be considered for termination because ubiquitin is a globular protein with a
small radius of gyration. However, replicas exhibiting short radius of gyration would
remain in the simulation due to the close resemblance to the completely folded
ubiquitin protein. In addition to killing diverging replicas, the described application
formulation can also spawn new replicas if they are making progress towards correct
folding. As a result, the entire simulation would follow a sequence where radius of
gyration and secondary structure prediction information will be used to terminate
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some replicas, cause a conformation to spawn new replicas across a temperature
range, and modulate the probability of exchanging to nearby temperatures. By
utilizing such a formulation we can dynamically adapt the molecular dynamics
simulations, bias trajectories to find pathways towards correct folding and, in doing
so, accelerate scientific discovery.

The use of CometCloud provides the opportunity to run simulations on dynami-
cally federated large-scale distributed resources. Thus, what we see is a hierarchical
formulation that provides adaptivity and elasticity at the application-level, through
asynchronous replica exchange, and at the infrastructure-level, through Comet-
Cloud. By utilizing CometCloud’s capabilities and its cloud computing abstractions,
we can run asynchronous NAMD [44] replica exchange on a federated, distributed
environment. From an application perspective, the amount of time a simulation
takes is proportional to the size of the protein or system and the desired length of
the trajectory. However, by using CometCloud and asynchronous replica exchange
scientists can explore the folding of very large proteins and run trajectories at
microsecond or potentially even millisecond scale. This larger scale of science
also gives rise to interesting scenarios at the CometCloud layer. For example, if
we find that the initial allocation of resources is not enough then CometCloud
can dynamically federate other distributed sites in order to obtain more resources.
Conversely, in the context of protein folding, CometCloud can dynamically kill
replicas if it finds that the protein structures being generated by the replicas do
not progress towards the known structure or show predicted secondary structure
features. By eliminating non-converging replicas we can ensure that CPU cycles are
not wasted and speed-up the application.

In order for large-scale simulations to be effective the asynchronous formulation
must show good scaling on this heterogeneous distributed environment. Perfor-
mance evaluation is a necessary tool for understanding the limitations of the various
environments provided by CometCloud. This is especially true for commodity and
virtualized resources—such as those provided by FutureGrid and Amazon EC2.
Thus, the performance of the entire ensemble of simulations depends on the slowest
platform. In this case, the slowest platforms correspond to FutureGrid and Amazon
EC2 where NAMD replica exchange is deployed on virtual machines. In terms of
the simulation, the downward slope shows that the simulation time (in days) for a
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nanosecond trajectory is decreasing—meaning faster simulations. From Fig. 7 we
can conclude that all environments tested exhibit good scalability and consistently
report faster simulation times each time the processor count is doubled. More
importantly, these results provide justification for a federated architecture where
all machines can run simulations in parallel. The close grouping of simulations on
large-scale HPC sites (i.e., Ranger, Hopper, Lonestar) also show that distributing
replicas across these environments might also be feasible. Combining the fact of
the low performance of virtualized environments to run tightly couple simulations
[18,25] and NAMD scaling on HPC infrastructure, we find that there is sufficient
motivation for the formulation described above.

4.2 Enterprise Business Data Analytics

Current enterprise business data analytics workflows combine different techniques
in their stages such as MapReduce-like applications that aggregate large amounts of
data from different sources for business intelligence with clustering techniques. For
example, the output of a topic-based text analysis approach such as Latent Dirichlet
Allocation (LDA) is represented in a multi-dimensional information space, which
includes different topics, information categories, etc. These data points in the multi-
dimensional information space can be clustered using Distributed Online Clustering
(DOC) to search results and correlate them with known data sources, and allow
visualizing and interpreting the results interactively through a GUI. The specific
solution in this application use case is a federated hybrid cloud for handling “big
data” through DOC.

DOC is a clustering algorithm that targets networked systems in which individual
components can monitor their operational status or actions, represent them using
sets of globally known attributes, and periodically publish this status or interactions
as semantic events that contain a sequence of attribute-value pairs. The algorithm
specification, along with details about its implementation and robustness to failures,
were the subject of previous publications [47]. Other applications of DOC have
been also studied in the context of autonomic resource provisioning [45, 58] and
autonomic policy adaptation [46] Here, we explain the main characteristics of the
algorithm, and refer the reader to the cited publications for further details.

In DOC, each of the events to be clustered is represented as a point in a
multidimensional space, each dimension in this space, referred to as an information
space, corresponds to one of the event attributes, and the location of a point within
the space is determined by the values for each of its attributes. It is assumed that
the range of values of each attribute is an ordered set. For each set, a distance
function can be defined in order to measure the similarity between points (i.e.,
similarity is inversely proportional to distance). This definition is straightforward
for quantitative attributes, and can be applied to non-quantitative attributes as
well with an appropriate encoding. The notion of similarity based on distance in
each dimension extends to the multidimensional information space, for which a



Federating Advanced Cyberinfrastructures with Autonomic Capabilities 219

a b
12004 _ _. Deadline 12009 _ _.peadline
‘_g 10001 — completion 7_‘,,: 10001 —— Completion »
S 800 S 800 .-
o o =
2 600 9 600 -
o o _==7
g 400 g 400
= 200 = 200
0+ T T T T T T T 0+ T T T T T T \
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Workflow ID Workflow ID
€ 12004 ---Deadline d 1200, __. Deadline .
% 1000{ — Completion % 1000{ — Completion
T e}
S 800 § 800
Q o
2 600 2 600
[ [}
g 400 g 400
F 200 F 200
0+ T T T T T T , 0+ T T T T T T .
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Workflow ID Workflow ID

Fig. 8 Deadline and completion time of each workflow with and without cloudburst. (a) Only
Rutgers (No Cloudburst), deadline 300 s. (b) Rutgers+EC2 (CloudBurst), deadline 300 s. (¢) Only
Rutgers (No Cloudburst), deadline 420 s. (d) Rutgers+EC2 (CloudBurst), deadline 420 s

distance function can also be defined in terms of the uni-dimensional distances.
Conceptually, a cluster is a set of points for which mutual distances are relatively
smaller than the distances to other points in the space [26]. However, the approach
for cluster detection described in this chapter is not based primarily on evaluating
distances between points, but rather on evaluating the relative density of points
within the information space. In this case, point similarity is directly proportional to
point density.

The approach used for the evaluation of point density, and thus for the detection
of clusters and outliers, is dividing the information space into regions and to observe
the number of points within each region. If the total number of points in the
information space is known, then a baseline density for a uniform distribution
of points can be calculated and used to estimate an expected number of points
per region. Clusters are recognized within a region if the region has a relatively
larger point count than this expected value. Conversely, if the point count is
smaller than expected, then these points are potential outliers. However, clusters
may cross region boundaries and this must be taken into account when verifying
potential outliers. The approach described above lends itself to a decentralized
implementation because each region can be assigned to a particular processing node.
Nodes can then analyze the points within their region and communicate with nodes
responsible for adjoining regions in order to deal with boundary conditions.

As part of this application scenario, we evaluated the autonomic manager by
showing how to achieve user objectives such as time constraint and deadline using
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cloudbursts to a public cloud when the local resources are limited. We have used
Rutgers cluster as a local resource class with 27 nodes where each node has 8 cores,
6 GB memory, 146 GB storage and 1 GB Ethernet connection. For a public cloud,
we used Amazon EC2, cl.medium instance type. We are going to use workflows
of the DOC application with three different stages each, with different parameters
and input files. Therefore, each stage of the workflow has a different execution
time. From the point of view of the autonomic manager, each stage is a task and
is executed by a single agent. We decided that each agent uses two workers to
execute a stage. Hence, the maximum number of agents that can be allocated in
the Rutgers cluster is nine because each agent involves three machines (one for the
agent and two for the workers). Moreover, each agent can only execute one stage
at a time, which means that if there are multiple workflows submitted in a short
time, then their stages should wait in the space for some time until they are selected.
Therefore, the autonomic manager has to autonomically scale-up/down agents to
adapt the provisioned resources to the workload.

User objectives can be set for each stage of the workflow separately as each
stage can run a different application with different constraints and the length of
computation or the amount of required resources can vary among stages even for
the same application. In this experiment, we set a deadline for each stage and we
have used shortest deadline first serve (SDFS) policy for task selection. Hence,
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agents sequentially select stages which have the shortest remaining time to deadline.
The number of agents is related to the number of stages which should immediately
start to meet the deadline constraint. Thus, the autonomic scheduler starts agents
to execute urgent stages. The scheduler tries to allocate resources from the cluster
at Rutgers and only if the local cluster does not have enough resources it allocates
resources from Amazon EC2 (cloud burst).

The average interval of workflow submission has been set to 10 s during the first
600 s of execution. We show two set of experiments, fixing the deadline for each
stage of the workflow to 100 and 140, respectively. Since each workflow has a
three stages, the deadline for each workflow is 300 and 420 s, respectively. Results
are shown in Figs. 8 and 9. Specifically, Fig. 8 shows the deadline and completion
time of each workflow for 300 and 420s. Note that the deadline and completion
times of each workflow are relative to the time it was submitted. We can observe that
when we executed the workflows using Rutgers resources only (without cloudburst),
around a 90 % of the workflow violated deadline constraints, even for a large
deadline. However, when we enabled cloudburst to EC2, all workflow were able
to meet the deadline constraints by allocating as many EC2 instances as required
on-demand.

On the other hand, Fig. 9 shows the number of waiting stages and the number
of allocated agents over time. It also shows the deadline-urgent stages, which are
those waiting stages that need to be executed immediately to have a chance to meet
their deadlines. We can observe in Fig.9a, c, that local resources were not able
to provide the computational power needed to guarantee the deadline constrains.
It caused that the waiting time of each stage and the number of deadline-urgent
stages to be increased, and therefore deadlines were eventually violated. However,
Fig. 9b, d shows that when we enabled cloudburst, the autonomic manager was able
to dynamically scale up and down the number of allocated agents to satisfy the
demand of deadline-urgent stages. Scaling up the number of allocated agents was
immediately done when needed. However, we delayed the deallocation of agents
to avoid too much fluctuation. Therefore, by using the autonomic manager, all the
workflow stages were able to meet the deadline constraints.

5 Lessons Learned

The different use cases presented in previous sections clearly demonstrate feasibility
and capability of an elastic, dynamically federated infrastructure. These use cases
have shown how it is possible to use the autonomic capabilities of our framework
for different objectives, including acceleration and conservation.

Oftentimes, a single resource is not sufficient to execute a given scientific work-
load (e.g. because it is of limited scale, or it mismatches application requirements).
Although the majority of researchers with large computational demands have access
to multiple infrastructures, such as HPC, computational grids, and clouds, taking
advantage of the collective power of these systems is not trivial. Our results
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show how a federated framework can help to aggregate the computational power
(i.e. capacity) of geographically distributed resources and offer them in an elastic
way to the users. In the CBIR use case (Sect.4.1), we shown how the execution
can be dramatically sped up, from weeks to minutes. One important element that
contributed to the success of this experiment, was the ability of the federation to
scale across institutional and geographic boundaries.

As discussed above, it is clear from the state of the art that cloud platforms can
effectively support certain classes for CDS&E applications, such as for example,
high throughput computing (HTC) applications. However, many other existing
CDS&E application formulations are not directly suited for cloud platforms. As
a result, it is essential to explore alternate formulations of these applications that
could potentially benefit from cloud services. This idea has been demonstrated in
the replica exchange use case (Sect.4.1) where an asynchronous implementation
allowed us to take advantage of the capabilities offered by different resources.
Therefore, having highly heterogeneous resources as a part of the federation,
it is crucial to take advantage of their particular characteristics and optimize
resources allocation. This is synergistic with the concept of autonomic computing.
In particular, in the replica exchange case we used clouds to complement HPC
resources, which allowed us to save HPC allocations.

Finally, one important aspect of clouds is the ability of adapting the resources
to the demands of applications and users. In the majority of cases predicting
computational and storage requirements is extremely difficult. Therefore, scaling
up/down or out as needed becomes essential for dynamic workloads. Our results
show that elasticity allows to adapt the number of provisioned resources to the
demands. In this way, it is possible to meet the deadline for different applications
while utilizing just the appropriated number of resources. This concept is shown
in the business data analytics application, Sect.4.2. Additionally, the elasticity
can also be used to make the infrastructure resilient to changes in the federation.
Consequently, the federation is able to better sustain computational throughput.

Conclusions

We have presented a federation model that enables the orchestration of
hybrid distributed infrastructures and the coordinated execution of application
workflows on such federated environments. We experimentally investigated,
from an application’s perspective, possible usage modes for integrating HPC
and clouds as well as how autonomic computing can support these modes.
In particular, we used three use case scenarios to highlight different aspects
of the federation. First, we showed how medical image research applications
can benefit from the federation of distributed resources and their aggregated
computational power. Then, we exploited the principles of adaptivity and
elasticity at the application level, through asynchronous replica exchange,

(continued)



Federating Advanced Cyberinfrastructures with Autonomic Capabilities 223

and at the infrastructure level, through CometCloud, in the context of a
molecular dynamics application. We specifically argue how clouds can be
beneficial to quickly explore the application domain space saving the HPC
allocations to compute only those replicas that were identified as relevant
during the exploration. Finally, we performed a deadline objective-driven
workflow execution to further study the behavior of the autonomic manager.
The workflow was based on a decentralized online clustering application and
the results showed autonomic manager is able to achieve deadline constraint
by provisioning resources on demand (cloudburst).

Our ongoing work includes the exploration of new scientific application
scenarios that require the coordinated used of distributed hybrid infrastruc-
tures and supporting new types of application formulations such as adaptive
workflows where dynamic provisioning and federation is essential to respond
to non-deterministic behaviors. Moreover, we are also working in enabling
new cloud-like paradigms to provide a platform where scientist only need
to change the application driver to benefit from an existing federation
infrastructure. Finally, we would also like to evaluate new ways to manage
the different sites of the federation. Currently, it is based on a pull mode and
we believe that other mechanisms such as publish/subscribe would bring us
many more interesting use cases.
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