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a b s t r a c t

Acoustoelasticity describes the relationship between elastic wave velocities and the
initial stress present in a material. Traditional theories consider successive deformations
involving small amplitude wave motion superimposed on an initially deformed material.
Then, a constitutive relationship must be applied to relate the initial static deformation
to the desired relationships involving initial stress, resulting in expressions of wave
velocities involving a mix of elastic stiffness and compliance constants. In this article, a
pure stress formulation is developed for acoustoelasticity. In this setting, the problem
involves the superposition of a dynamic stress wave on an initially stressed material
configuration, rather than the superposition of kinematic variables. The phase velocity
of the stress wave is naturally related to the initial stress through only the compliance
constants. Thus, compliances are the fundamental constants of acoustoelasticity.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Description of elastic wave motion in solid continua is usually considered using the displacement equations of motion,
.e., Navier’s equations [1]. While displacement forms are commonplace, it is possible to formulate so-called stress
quations of motion with stress being the dependent variable [2]. A pure stress formalism was pioneered by Ignaczak
eginning in the 1950s [2] followed by a proof of the necessary and sufficient conditions on the stress tensor appropriate
or elastodynamics [3]. However, modeling of elastic wave applications, in ultrasonics for example, are still largely based
n displacement equations [4–8]. More recently, Ostoja-Starzewski reinvigorated exploring elastic waves from the stress
quations of motion and gave several examples and applications [9]. One example included the scarce use of stress
quations of motion for nonlinear elastodynamics for which the work of Bustamante and Sfyris [10] was highlighted
9].

In our previous work, the pure stress equations of motion were derived and solved for a homogeneous anisotropic
olid [11]. Solutions arose from the consideration of an eigenvalue problem, which governs the phase velocity of the stress
ave and the tensorial stress components (eigenvectors). Both the phase velocities and stress components were found
o depend on elastic compliance constants rather than elastic stiffnesses [11]. It was demonstrated that these solutions
ere consistent with the displacement formalism and the stress eigenvalue problem is the dual formalism to the well-
nown Christoffel equations [11]. While the previous work demonstrated that displacement and stress formalisms were
onsistent, possible benefits of proceeding with the stress formalism were not explicitly given.
In this paper, the stress formalism is applied to acoustoelasticity [12], which describes how the velocities of an

lastic material are influenced by internal stresses. Acoustoelasticity is an inherent nonlinear effect in which the dynamic
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eformation of the wave couples with the initial deformation in the solid. Thus, the present paper provides an additional
evelopment [10] of the stress formalism to nonlinear elastodynamics. The topic of acoustoelasticity has garnered
ignificant interest over the years in its application to the nondestructive measurement of stress in addition to measuring
hird-order elastic constants when the stress is intentionally applied and known [13–19]. In both of these measurement
pplications the stress is the primary independent variable. Here, we show that the stress formulation provides a natural
reatment of acoustoelasticity because it focuses on the applied stress as the input to the velocity change. We also
how that the optimal third order constants are those of compliance, the inverse of stiffness. Readers interested in the
ackground and historical accounts of acoustoelasticity are encouraged to consult the references of Pao, Sachse, and
ukuoka [13], Kim and Sachse [14], Thurston [15], Norris [16], Man and Lu [17], Ogden [18], and Shams, Destrade, and
gden [19].
To provide some additional context and introduction to the present work, we recall the theory as given by Pao and

amer [20], and also borrow solutions from Thurston and Brugger [21]. The equation of motion or wave equation for an
lastic continuum containing a static stress follows from Cauchy’s first law of motion (Eq. (12) of Pao and Gamer [20])

∂

∂al

(
σ i
kl

∂ui

∂ak
+ σkl

∂ui
i

∂ak
+ σil

)
= ρ0

∂2ui

∂t2
. (1)

The superscript i follows the notation of Pao and Gamer [20] and refers to quantities present at the initial state of
the material, e.g., the initial stress is denoted as σ i and the initial displacement as ui. Here, the superscript i should
ot be confused with the index notation seen in the subscripts describing tensor components. The quantities σ and u

are the (incremental) dynamic stress and displacement of the elastic wave as a function of the natural coordinates a,
respectively, with notation fully defined in Section 2. A natural first step in solving any partial differential equation with
mixed variables like Eq. (1) is to cast it in terms of a single dependent variable, usually the displacement u. In doing so,
material dependent constitutive behavior must be applied to relate σ to u. For Eq. (1) specifically, it is also desirable to
ave a single independent variable, usually the stress σ i. Thus, constitutive relationships are also needed to relate ui to σ i.
pplying constitutive relations in the traditional displacement formulation leads to phase velocities that are complicated
xpressions containing a mix of fourth- and sixth-rank tensors of elastic stiffnesses (cijkl, cijklmn) and compliances (sijkl). For

example, the bulk wave phase velocity solution to Eq. (1) for an anisotropic material with an externally generated stress
σ i is [21]

ρ0c2 = ρ0c20 +
(
n̂pn̂q + 2ρ0c20 ûiûjsijpq + ûin̂jûkn̂lcijklmnsmnpq

)
σ i
pq, (2)

where ρ0, c0, n̂, and û are the density, phase velocity at zero stress, propagation direction, and displacement direction,
respectively. As an example, for a longitudinal wave propagating in an isotropic material containing a uniaxial stress σ i

33,
Eq. (2) reduces to [21]

ρ0c2 = ρ0c20 +
[
s12(2ρ0c20 + 3c123 + 10c144 + 8c456) + 2s44(c123 + 2c144)

]
σ i
33. (3)

While Eq. (3) is relatively simple, evaluation requires the knowledge of both compliance and stiffness constants or at least
the ability to convert between them.

In the present work, we demonstrate that casting Eq. (1) to include only σ as the dependent variable results in
solutions that depend only on compliance constants. This proves that compliance constants are the fundamental material
parameters in acoustoelasticity, at least when acoustoelasticity is defined as the relationship between the phase velocity
c of an elastic wave and stress σ i. Alternatively, the dual problem of considering the relationship between the phase
velocity c of an elastic wave and strain ϵi would depend on only stiffnesses. Consistency between the formulations is
easily observed through application of stiffness–compliance relationships, which are well-known for fourth-rank tensors
cijmnsmnkl = Iijkl, but relations between cijklmn and sijklmn are more obscure. This obscurity likely prevented researchers from
noticing that expressions, like Eq. (3), could be written in terms of compliance constants only, which is a primary result
of the current article.

This article is organized as follows. The general formalism of acoustoelasticity using stress as the dependent variable
is given in Section 2. Plane wave propagation is considered in Section 3 using a perturbation expansion to find the
dependence of phase velocity of the elastic wave on the initial stress. Consistency between the present stress formulation
and the traditional displacement formalism is established in Section 4 using a newly proposed set of constants that
simplify conversion between third order stiffness and compliance.

2. Stress formulation of acoustoelasticity

The notation follows closely to that of Pao and Gamer [13,20]. Consider three material configurations: a natural one
having coordinates a, an initial one having coordinates X, and a current one having coordinates x. The displacement
ui

= X− a is the displacement associated with a static and homogeneous deformation. The displacement from the initial
to the current configuration is that of the wave u = x − X, which is dynamic and spatially-dependent, and the full, or
final displacement is uf

= ui
+ u = x − a [20]. The second Piola–Kirchhoff stress associated with the initial deformation

is σ i, the dynamic deformation is σ a, t , and, thus, σ f
= σ i

+ σ. Cauchy’s law governs the wave motion and is given in
( )

2
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q. (1) [see also Eq. (12) of Ref. [20]]. To begin the process of casting Eq. (1) to be in terms of σ and σ i, we differentiate
q. (1) with respect to the coordinate a to give

∂2

∂aj∂al

(
σ i
kl

∂ui

∂ak
+ σkl

∂ui
i

∂ak
+ σil

)
= ρ0

∂ üi

∂aj
, (4)

where the standard dot notation is employed for time differentiation. The Lagrangian strain associated with the superpo-
sition of the deformations is

E f
ij =

1
2

(
∂uf

i

∂aj
+

∂uf
j

∂ai
+

∂uf
k

∂ai

∂uf
k

∂aj

)
. (5)

Differentiating Eq. (5) twice with respect to time gives

Ë f
ij =

1
2

(
∂ üi

∂aj
+

∂ üj

∂ai
+

∂ui
k

∂ai

∂ ük

∂aj
+

∂ ük

∂ai

∂ui
k

∂aj

)
, (6)

where the relationship u̇f
= u̇i

+u̇ = u̇ is applied as the initial displacement is assumed to be static and time-independent.
Additionally, dynamic displacements of order two and higher are neglected. Clearly, the right-hand side of Eq. (4) is
related to and contained in Eq. (6). Now, the strain and its time-derivatives in terms of stress can be obtained through
the constitutive relation,

E f
ij = sijklσ

f
kl +

1
2
sijklmnσ

f
klσ

f
mn

≈ sijkl
(
σ i
kl + σkl

)
+ sijklmnσ

i
klσmn, (7)

where sijkl and sijklmn are compliance tensors and we used σ f
= σ i

+ σ to arrive at the second expression. Eq. (7) is
constitutive relationship between the Green–Lagrange strain Ef and the second Piola–Kirchhoff stress σ f including the

effects of the initial stress σ i. A dual constitutive relationship between stress and strain was derived by Pao and Gamer [20]
in their Eq. (21). Theories of large acoustoelasticity have been obtained through constitutive relationships expanded to
third-order [22,23]. Eq. (7) could also be expanded to third-order in stress by including the fourth-order compliances
sijklmnpq, but is beyond the scope of the current article. Two time-derivatives of Eq. (7) lead to

Ë f
ij = sijklσ̈kl + sijklmnσ

i
klσ̈mn, (8)

which combined with Eq. (6) gives

sijklσ̈kl + sijklmnσ
i
klσ̈mn =

1
2

(
∂ üi

∂aj
+

∂ üj

∂ai
+

∂ui
k

∂ai

∂ ük

∂aj
+

∂ ük

∂ai

∂ui
k

∂aj

)
. (9)

ow, the displacements in the right-hand side of Eq. (9) can be eliminated using Eq. (4). After simplification, the stress
quation of motion is obtained,

ρ0
(
sijkl + sijklmnσ

i
mn

)
σ̈kl =

1
2

(
∂2σik

∂aj∂ak
+

∂2σjk

∂ai∂ak

)
+

(
sijkl

∂2σkl

∂am∂an
+ sikmn

∂2σkl

∂aj∂al
+ sjkmn

∂2σkl

∂ai∂al

)
σ i
mn, (10)

here terms involving two or more spatial derivatives on the initial displacement are zero because of the homogeneity of
he initial stress and the linearized strain-stress relationship was used. In the absence of an initial stress σ i, the traditional
tress equation is readily observed [11]. Eq. (10) can be cast into the equivalent form

ρ0
(
sijkl + sijklmnσ

i
mn

)
σ̈kl =

[
δlqIijkp +

(
δjpδlqsikmn + δipδlqsjkmn + δmpδnqsijkl

)
σ i
mn

] ∂2σkl

∂ap∂aq
, (11)

f which the factoring is made possible through the use of the Kronecker delta function. It is noted that while strain-
tress constitutive relationships were used to arrive at Eqs. (10) and (11), elastic stiffness constants never entered the
icture. Thus, acoustoelasticity is fundamentally connected to second- and third-order compliance constants (sijkl and
ijklmn, respectively).

Now, homogeneity of the stress field and material properties permits the assumption that wave motion is a function of
single spatial coordinate x = n̂ · a so that σ = σ(x, t). Then, Eq. (11) reduces to a uni-dimensional stress wave equation

ρ0
(
sijkl + sijklmnσ

i
mn

)
σ̈kl =

(
Nijkl + Nijklmnσ

i
mn

) ∂2σkl

∂x2
, (12)

nd

Nijkl =
1 (

δikn̂jn̂l + δjkn̂in̂l + δiln̂jn̂k + δjln̂in̂k
)
, (13a)
4
3
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Nijklmn =
1
2

(
δipn̂j + δjpn̂i

)(
δkqn̂l + δlqn̂k

)
spqmn + sijkln̂mn̂n. (13b)

he resulting expression in Eq. (12) is a wave equation with the dynamic stress wave σ(x, t) as the dependent variable,
hich couples with the initial stress σ i. Thus, Eq. (12) is a generalization of the stress equations of motion derived
reviously for stress-free anisotropic solids [11].
In closing this section, we offer a couple of remarks. Firstly, Eq. (12) governs the propagation of the stress σ(x, t)

here x describes spatial coordinates along n̂ relative to the undeformed material configuration. Thus, both x and n̂
re not influenced by the deformation. Alternatively, a formulation relative to initial or deformed coordinates causes
he propagation direction and associated coordinates to be influenced by loading. Thurston and Brugger [21] discuss
he advantages of using the undeformed configuration when utilizing applied loads for measuring third-order elastic
onstants. Several references derive and report resulting formulas when utilizing the different coordinates [16,20,21,23–
5]. In Refs. [24] and [25], the focus is on electroelastic materials containing a bias (via external static loading or electric
ield) for which the natural and initial coordinates describe points in the described reference and intermediate material
onfigurations as a result of the bias. Tiersten [25] motivates the employment of natural coordinates by stating, ‘‘Since in
he typical situation it is undesirable to measure the geometry each time the bias is varied, it is advantageous to use the
L (natural coordinates) as independent variables’’. Further discussion was provided by Sinha [24].
Lastly, the present stress formalism incorporates the homogeneous initial stress σ i more naturally than the traditional

isplacement formulations. In displacement based acoustoelastic models several steps are generally required to incor-
orate σ i into the model. For example, a homogeneous irrotational deformation is assumed to allow displacement or
eformation gradients to be transformed to strain (sometimes using polar decomposition). Then, the strain is written in
erms of the homogeneous stress σ i via a constitutive relationship [see Eqs. (82)–(86) of Huang et al. [26] as an example].

. Plane wave propagation

Assume the stress wave σ(x, t) to be of harmonic form with wave number k, angular frequency ω, and amplitude
escribed by the second rank tensor σ̊. Then, Eq. (12) can be written as an algebraic system of equations{

Nijkl + Nijklmnσ
i
mn − λ

(
sijkl + sijklmnσ

i
mn

)}
σ̊kl = 0, (14)

here λ = ρ0c2. Note that Nijkl, Nijklmnσ
i
mn and sijklmnσ

i
mn carry the same symmetry as the compliance sijkl in that

omponents are unaltered under the interchange i ↔ j or k ↔ l or ij ↔ kl. Eq. (14) is the dual form to the traditional
hristoffel equations derived from the displacement formulation,{

Γijkln̂jn̂l − λδik
}
ûk = 0, (15)

hich is reported in Eq. (36) in Pao and Gamer [20] where Γ is a tensor containing second- and third-order elastic
tiffnesses. Note that we utilize the notation σ̊ rather than σ̂ as the tensorial part of σ̊ is not normalized in general.
urther discussion of stress and displacement eigenvectors is provided in previous work [11].

.1. Perturbation expansion

To help determine the acoustoelastic relations, a perturbative solution is assumed,

λ = λ0
+ ∆λ, (16a)

σ̊ = σ̊0
+ ∆σ̊, (16b)

here λ0
= ρ0c20 and σ̊0 represent the solutions in the absence of initial stress, and the additional terms are linear in the

initial stress σ i. A standard perturbation expansion of Eq. (14) yields{
Nijkl − λ0sijkl

}
σ̊ 0
kl = 0, (17a){

Nijkl − λ0sijkl
}
∆σ̊kl +

{(
Nijklmn − λ0sijklmn

)
σ i
mn − ∆λsijkl

}
σ̊ 0
kl = 0. (17b)

ultiplying Eq. (17b) by σ̊ 0
ij and using Eq. (14) gives

∆λ =

(
Nijklmn − λ0sijklmn

)
σ̊ 0
ij σ̊

0
klσ

i
mn

spqrsσ̊ 0
pqσ̊

0
rs

= n̂iσ
i
ijn̂j +

(
2n̂in̂ksjlmn − λ0sijklmn

)
σ̊ 0
ij σ̊

0
klσ

i
mn

spqrsσ̊ 0
pqσ̊

0
rs

= n̂iσ
i
ijn̂j +

2
λ0 σ̊ 0

ikn̂kσ̊
0
jl n̂lsijmnσ

i
mn − sijklmnσ̊

0
ij σ̊

0
klσ

i
mn. (18)

ote that s σ̊ 0 σ̊ 0 is positive on account of the positive definite nature of the compliance.
pqrs pq rs

4
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Table 1
Terms found in ∆λ of Eq. (20) for longitudinal (L) and shear wave modes (T) where the first subscript ⊥ or || indicates the propagation direction
eing perpendicular or parallel to the loading direction for uniaxial stress cases, respectively. For shear waves, a second subscript (⊥ or ||) indicates
he displacement direction relative to the loading direction. No subscripts are needed for equal triaxial loading case. Note that s = 3s12 + 2s44 and
= 1/(s44s). The following relationships can be used for converting the entries to stiffnesses: s = 1/(3κ), s44 = 1/(4c44), βs = 4c44 , and βs44 = 3κ
here c44 and κ are the shear and bulk moduli, respectively.
Mode Loading n̂ · σ in̂ n̂ · σ̊σ iσ̊n̂ tr σ̊ tr (σ̊σ i) tr σ̊2 tr (σ̊σ iσ̊)

L⊥ Uniaxial 0 0 βs44 (2s44 − s) βσ i/6
(
2s244 + s2

)
β2/3 (2s44 − s)2 β2σ i/36

L|| Uniaxial σ i σ i βs44 (s44 + s) βσ i/3
(
2s244 + s2

)
β2/3 (s44 + s)2 β2σ i/9

T⊥|| Uniaxial 0 σ i 0 0 (βs)2 /8 (βs)2 σ i/16

T⊥⊥ Uniaxial 0 0 0 0 (βs)2 /8 0

T||⊥ Uniaxial σ i 0 0 0 (βs)2 /8 (βs)2 σ i/16

L Equal triaxial σ i σ i βs44 βs44σ i
(
2s244 + s2

)
β2/3

(
2s244 + s2

)
β2σ i/6

T Equal triaxial σ i σ i 0 0 (βs)2 /8 (βs)2 σ i/8

Analysis [11] of the leading order equation in Eq. (17a) shows that it has six independent solutions, three of which have
λ0 positive non-zero corresponding to propagating wave modes. The other three solutions with λ0

= 0 are associated with
incompatible stresses and strains that are not physically permissible solutions. Therefore, the following will only consider
the propagating wave modes.

3.2. Propagating stress wave solutions: λ0 > 0

Define the traction vector of the leading order unstressed solution t̊0i = σ̊ 0
ij n̂j. The traction vectors of the propagating

solutions are non-zero, which can be deduced from the displacement formulation in Section 4. Then, Eq. (18) can be
rewritten as

∆λ = n̂kn̂lσ
i
kl +

(
2t̊0i t̊

0
j sijmn − λ0sijklmnσ̊

0
ij σ̊

0
kl

)λ0σ i
mn

t̊0 · t̊0
. (19)

or an isotropic solid, Eq. (19) reduces to

∆λ = n̂ · σ in̂ + 2λ0 (s12 tr σ i
+ 2s44n̂ · σ̊σ iσ̊n̂

)
−

s1
27

(tr σ̊)2 tr σ i

−
s2
3

[
2 tr (σ̊σ i) tr σ̊ − (tr σ̊)2 tr σ i

+ tr σ̊2 tr σ i]
−

s3
9

[
9 tr (σ̊σ iσ̊) − 3 tr σ̊2 tr σ i

− 6 tr (σ̊σ i) tr σ̊ + 2 (tr σ̊)2 tr σ i] (20)

here s1, s2 and s3 are new third-order compliance constants defined in Appendix. Several acoustoelastic relationships
or specific propagation and displacement directions relative to uniaxial or equal triaxial stress can be established from
q. (20) and use of Table 1 where the various operations involving σ̊ have been determined. In Table 1 the term σ i is the
ertinent stress component for the particular loading case. For general σ i, consider a longitudinal wave propagating in
he n̂ = [100] direction, then Eq. (20) can be shown to reduce to

∆λ[100] =
(
1 + 4s44λ0)σ i

11 +

(
4s12λ0

−
s1

27s2
−

s2
18s244

) (
σ i
11 + σ i

22 + σ i
33

)
−

(
s2

9s44s
+

s3
36s244

) (
2σ i

11 − σ i
22 − σ i

33

)
, (21)

here the subscript [100] is used to denote the displacement direction, λ0
= (1 + s12/s44)/s, and s = 3s12 + 2s44. For a

hear wave propagating in the n̂ = [100] direction and displacement in the û = [010] direction,

∆λ[010] = σ i
11 + σ i

22 +

(
s12
2s44

−
s2

24s244

) (
σ i
11 + σ i

22 + σ i
33

)
−

s3
48s244

(
σ i
11 + σ i

22 − 2σ i
33

)
. (22)

here λ0
= (4s44)−1. The case of a shear wave propagating in the n̂ = [100] direction with displacement in the

ˆ = [001] direction follows by interchanging the 22 and 33 components of the stress tensor σ i in Eq. (22). Acoustoelastic
irefringence is observed when constructing the difference in these two shear wave cases, ∆λ[010] − ∆λ[001] = (1 −

s3/(4s44)2)(σ i
22 − σ i

33), which is equivalent to the traditional expression ∆λ[010] − ∆λ[001] = (1 + c456/c44)(σ i
22 − σ i

33).
Often, the third-order elastic parameters are determined from observing how the parameter ∆λ changes as a function

of stress [16,21,27]. Thus, the so-called stress derivatives d∆λ/dσ i are of importance. Table 2 gives expressions for the
stress derivatives for the uniaxial and equal triaxial stress cases. The expressions in Eqs. (21), (22), and the entries in
Table 2 are new forms of acoustoelastic expressions and are fully consistent with the ‘‘natural velocity’’ formulas seen in
5
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Table 2
Stress derivatives. The first subscript (⊥ or ||) is propagation direction relative to the loading direction in the uniaxial
stress. For shear waves, a second subscript (⊥ or ||) indicates the displacement direction relative to the loading direction.
No subscripts are needed for equal triaxial loading case. Note that s = 3s12 + 2s44 .
Mode Loading d∆λ/dσ i

L⊥ Uniaxial −
2
9 +

2s
9s44

−
4s44
9s −

1
108s2s244

[
4s244s1 + 6s2s (s − 2s44) − 3s3s2

]
L|| Uniaxial 19

9 +
2s

9s44
+

8s44
9s −

1
54s2s244

[
2s1s244 + 3s2s (s + 4s44) + 3s3s2

]
T⊥|| or T||⊥ Uniaxial 2

3 +
s

6s44
−

1
48s244

(2s2 + s3)

T⊥⊥ Uniaxial −
1
3 +

s
6s44

−
1

24s244
(s2 − s3)

L Equal triaxial 5
3 +

2s
3s44

−
1

18s2s244

(
2s1s244 + 3s2s2

)
T Equal triaxial 1 +

s
2s44

−
s2

8s244

Table 3
Stress derivatives for incompressible solids. In the incompressible limit, s → 0, s1 → 0,
s2 → 8s244 , s3 → 8s456 with s44 and s456 remaining finite.

Mode Loading d∆λ/dσ i

T⊥|| or T||⊥ Uniaxial 1
3

(
1 −

s3
16s244

)
T⊥⊥ Uniaxial −

2
3

(
1 −

s3
16s244

)
T Equal triaxial 0

Table IV of Thurston and Brugger [21] once the conversions between stiffnesses and compliances are made. The natural
velocity as defined by Thurston and Brugger [21] refers to the wave speed relative to the natural dimensions of the solid.
The natural velocity is advantageous in practical cases involving applied loads because it can be calculated using the travel
time of the wave and the distance of propagation in the undeformed configuration of the material [21]. In other words, the
model naturally accounts for changes in the distance of propagation during loading. In addition, as explained by Thurston
and Brugger [21], the natural velocities (eigenvalues) are not influenced by the rotation of the displacement directions
(eigenvectors) during the deformation. One does not need to consider how the displacements are being influenced by
stress when measuring the stress-derivative of the natural velocity. Thus, a set of experiments to measure the several
third-order elastic constants (or compliances) can be constructed by performing wave experiments along various pure
mode directions [28,29]. Formulas for the natural velocities found in Thurston and Brugger [21] were used to measure
the third-order elastic constants of quartz [27] and langasite [30] crystals.

The acoustoelastic relations can be formulated for incompressible materials by substituting the behavior of the compli-
nces or stiffnesses subject to constraints of incompressibility. Destrade and Ogden [31] and Saccomandi and Vergori [32]
erived the behavior of the third- and fourth-order stiffnesses and demonstrated that the shear stiffnesses remain
inite whereas other constants are unbound. Destrade and Ogden applied these results to traditional acoustoelasticty
o derive the velocities of shear waves in incompressible solids undergoing either uniaxial or uniform pressure loading
31]. Recently, Kube derived the behavior of the second-, third-, and fourth-order compliances for use in stress-based
ormalisms of elastodynamics including the present work [33]. Unlike the stiffnesses, all of the compliance constants
ere found to remain finite when constraints of incompressibility are applied [33]. The present model is easily extended
o incompressibility by utilizing the results: s → 0, s12 → −

2
3 s44, s1 → 0, s2 → 8s244, s3 → 8s456 with s44 and s456

emaining finite [33]. Applying these results to the case of the shear wave in Eq. (22) gives

∆λ[010] =

(
s3

(4s44)2
− 1

) (
pi + σ i

33

)
(23)

here pi = −
(
σ i
11 + σ i

22 + σ i
33

)
/3. The case for a shear wave propagating in n̂ = [100] while having displacement in

ˆ = [001] direction is obtained, as before, by swapping the terms σ i
22 and σ i

33. The birefringence relationships are the
ame as the compressible case. Table 3 provides the three finite cases when incompressibility is applied to the compliance
erms seen in the entries of Table 2.

The formula in Eq. (23) and results in Table 2 with the stiffness/compliance relationships s3 = −c456/c344 and
44 = 1/(4c44) are new and different than those reported previously [31,34]. This disparity stems simply from the present
erivation being formulated relative to the natural coordinates rather than the initial coordinates. The expressions relative
o initial and natural coordinates are found in Tables II and V of Kube et al. respectively [23]. The results in the present
ork are consistent with Table V whereas the results seen in Table 2 are consistent with Refs. [31] and [34] as expected.
The consideration of acoustoelasticity of incompressible materials demonstrates a possible advantage of using the

tress formulation. Namely, the stress formulation relies on second- and third-order compliance constants that must
6
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emain finite for incompressible solids whereas some stiffness components are unbound and can asymptotically approach
nfinity at different rates [31–33].

. Connection with the displacement formulation

In this section, the results obtained in Section 3 are shown to be consistent with the traditional acoustoelastic formulas
erived previously [20,21,23,27]. The time harmonic displacement solution for the unstressed medium satisfies(

cijkln̂jn̂l − λ0δik
)
ûk = 0 (24)

here cijklsklmn = sijklcklmn = Iijmn. Hence, σ̊ 0
ij → cijkln̂lûk and t̊0i → cijkln̂jn̂lûk = λ0ûi. At the same time, the analog of Eq. (7),

hich relates strain to stress is

σ
f
ij = cijklE

f
kl +

1
2
cijklmnE

f
klE

f
mn (25)

here the third order stiffness is

cijklmn = −cijpqcklrscmntuspqrstu. (26)

ecall, that the small initial strain is

eiij = sijklσ i
kl (27)

hen Eq. (19) becomes

∆λ = n̂kn̂lσ
i
kl + 2λ0ûiûjeiij + cijklmnûiûkn̂jn̂leimn. (28)

t this order of approximation, the small initial strain in Eqs. (27) and (28) allows for the second Piola–Kirchhoff stress
o be approximated by the Cauchy stress if desired. For an isotropic solid, Eq. (28) expressed in terms of the initial strain
i reduces to

∆λ = 2λ0û · eiû +
1
3

(3κ − 2µ) tr ei + 2µ n̂ · ein̂ +
c1
27

(
n̂ · û

)2 tr ei
+

c2
6

[(
1 − (n̂ · û)2

)
tr ei + 4

(
n̂ · û

) (
n̂ · eiû

)]
+

c3
36

[
9
(
n̂ · ein̂ + û · eiû

)
− 2

(
3 − (n̂ · û)2

)
tr ei − 6

(
n̂ · û

) (
n̂ · eiû

)]
, (29)

where κ = (9s12 + 6s44)−1 and µ = c44 = (4s44)−1 are the bulk and shear moduli, respectively. In arriving at Eq. (29), we
made use of the isotropic tensors having components of the third-order elastic stiffnesses given in Appendix. Using the
stiffness/compliance relations derived in the Appendix, Eq. (29) can be cast in terms of the initial stress σ i,

∆λ =
λ0

µ
û · σ iû +

2
3
λ0
(

1
3κ

−
1
2µ

)
tr σ i

+ n̂ · σ in̂ +
c1
81κ

(
n̂ · û

)2 tr σ i

+
c2
18

[(
1
κ

+

(
1
3κ

−
2
µ

) (
n̂ · û

)2) tr σ i
+

6
µ

(
n̂ · û

) (
n̂ · σ iû

)]
+

c3
72µ

[
9
(
n̂ · σ in̂ + û · σ iû

)
− 2

(
3 − (n̂ · û)2

)
tr σ i

− 6
(
n̂ · û

) (
n̂ · σ iû

)]
. (30)

he expression seen in Eq. (30) is equivalent to Eq. (41) in Kube et al. [23] once the third-order elastic constants c1, c2,
nd c3 are converted to the Landau and Lifshitz constants A, B, and C through the relationships c1 = 6A + 54B + 54C,
2 = 2A+6B, and c3 = 2A. We remind the reader that the expressions derived in this work and Eq. (41) in Kube et al. [23]
re based on coordinates and density in the undeformed or natural configuration. The corresponding expressions based
n coordinates and density relative to the deformed material configuration are found in Kube et al. [23] and Thurston
nd Brugger [21]. By writing Eq. (30) in terms of s1, s2, and s3 using the relationships found in Eq. (A.11), we obtain the
lternative expression in terms of compliances,

∆λ =
λ0

µ
û · σ iû +

2
3
λ0
(

1
3κ

−
1
2µ

)
tr σ i

+ n̂ · σ in̂ −
s1κ2

3

(
n̂ · û

)2 tr σ i

−
2s2µ
9

[(
3µ + (µ − 6κ)

(
n̂ · û

)2) tr σ i
+ 18κ

(
n̂ · û

) (
n̂ · σ iû

)]
−

s3µ2

9

[
9
(
n̂ · σ in̂ + û · σ iû

)
− 2

(
3 − (n̂ · û)2

)
tr σ i

− 6
(
n̂ · û

) (
n̂ · σ iû

)]
. (31)

Finally, this form for ∆λ is equal to the expression in Eq. (20) by noting the stress terms in the latter can be expressed
as tr σ̊ = 3κ(n̂ · û), n̂ · σ̊σ iσ̊n̂ = û · σ iû, tr (σ̊σ i) = (κ − 2µ/3)(n̂ · û) tr σ i

+ 2µn̂ · σ iû, tr σ̊2
= 2µ2

+ (3κ2
+ 2µ2/3)(n̂ · û)2,

tr (σ̊σ iσ̊) = κ − 2µ/3 2 (n̂ · û)2 tr σ i
+ 2µ 2κ − µ/3 (n̂ · û)n̂ · σ iû + µ2

(
n̂ · σ in̂ + û · σ iû

)
.
( ) ( )

7
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. Conclusion

The pure stress formulation of elastodynamics [2,9] has been extended and applied to acoustoelasticity. The stress
quations of motion provide a more natural setting for acoustoelasticity when the initial stress in the material is of primary
nterest (rather than initial strain). In the derivation, it is shown that the second- and third-order compliance constants
undamentally connect the wave velocities to initial stress. This differs from the traditional displacement formulation in
hich wave velocities relate to initial stress through combinations of stiffnesses and compliances. Consistency between
he present model and displacement-based model is established through the stiffness–compliance relationships developed
n the Appendix. The stiffness–compliance relationships are not new. Thus, the traditional acoustoelastic relations could
ave been cast in terms of compliances only without resort to the pure stress formulation. To our knowledge, this
onnection has not been established previously. The new acoustoelastic relations are established for the canonical loading
ases of uniaxial and equal triaxial stress. General formulas for isotropic symmetry and arbitrary loading are given
xplicitly. The corresponding relationships for incompressible materials is then given using the behavior of the compliance
onstants [31] for situations when the material tends toward incompressibility.
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ppendix. Relations between isotropic third order stiffness and compliance moduli

.1. Proposed new third order elasticity coefficients

In addition to the standard reduced index or Voigt notation cIJK (= cijklmn) there are several alternative notations for
third-order elastic constants, including those of [35–39] which can each be expressed in terms of cIJK , see Table 1 of
Ref. [16] and of Ref. [40]. Despite this multiplicity of notation, none are convenient for relating elements of stiffness cIJK
and compliance sIJK to one another. Here we propose a notation for TOE coefficients designed for just this purpose.

The motivation is the fact that isotropic linear elasticity is simply cast using the hydrostatic and deviatoric parts of the
stress and strain. These are defined respectively as σ ′, e′ and σ ′′, e′′, through the relations

σ = σ ′
+ σ ′′, σ ′

= δ̂ tr σ,

e = e′
+ e′′, e′

= δ̂ tr e,
(A.1)

here

δ̂ij =
1
3
δij. (A.2)

The linearly elastic constitutive relations are then

σ ′
= 3κ e′ and σ ′′

= 2µ e′′ (A.3)

where κ and µ = c44 are the bulk and shear moduli.
The only second order, or quadratic, isotropic combinations of the hydrostatic and deviatoric parts of e are (tr e)2 and

tr(e′′2), implying that the strain energy density is a linear combination of the two. Similarly, the only third order isotropic
combinations are (tr e)3, tr e tr(e′′2), and tr(e′′3). This indicates that the strain energy density U can be expressed as

U =
1
2!

(
3κ

(tr E)2

3
+ 2µ tr(E′′2)

)
+

1
3!

(
c1(tr E)3 + c2 tr E tr(E′′2) + c3 tr(E′′3)

)
+ · · · . (A.4)

here c1, c2 and c3 are the proposed TOE constants. We next relate these elastic constants to the standard ones appearing
n the general form of the strain energy

U =
1
cijklEijEkl +

1
cijklmnEijEklEmn + · · · . (A.5)
2! 3!
8
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.2. Connection with cijklmn and sijklmn

Define the fourth order isotropic tensors J and K

Jijkl =
1
3
δijδkl, Kijkl = Iijkl − Jijkl (A.6)

where Iijkl =
1
2 (δikδjl + δilδjk) is the identity. Note that J and K have the symmetries of elastic moduli, and satisfy J2 = J,

2
= K, JK = KJ = 0 where (AB)ijkl = AijmnBmnkl. The partition of unity J + K = I lies behind the independence of the

ydrostatic/deviatoric components of stress and strain: σ ′
= Jσ, σ ′′

= Kσ. Also, second order stiffness and compliance
ensors are

cijkl = 3κ Jijkl + 2µKijkl, sijkl = (3κ)−1Jijkl + (2µ)−1Kijkl. (A.7)

Referring to Eqs. (A.4) and (A.5), the third order isotropic moduli can be expressed as linear combinations of three
ndependent tensors,

cijklmn = c1Pijklmn + c2Qijklmn + c3Rijklmn (A.8)

here the sixth order isotropic tensors P, Q and R have elements

Pijklmn = δ̂ijδ̂klδ̂mn, (A.9a)

Qijklmn = δ̂ijKklmn + δ̂klKmnij + δ̂mnKijkl, (A.9b)

Rijklmn = KijpqKklqrKmnrp. (A.9c)

t then follows from Eq. (26) and the definitions in Eqs. (A.9), using the properties of J and K, along with identities like
ijklδ̂kl = δ̂ij, that

sijklmn = s1Pijklmn + s2Qijklmn + s3Rijklmn, (A.10)

here

s1 = −
c1

(3κ)3
, (A.11a)

s2 = −
c2

3κ(2µ)2
, (A.11b)

s3 = −
c3

(2µ)3
. (A.11c)

These simple connections between the TOE coefficients are the primary reason for introducing a new set of TOE moduli.
In addition, the new coefficients have physical meaning analogous to the bulk and shear moduli: the c1 term involves only
hydrostatic stress/strain, the c3 term is related to deviatoric (shear) stress/strain, while c2 is the only energy contribution
at cubic approximation to involve coupling between hydrostatic and deviatoric deformations.

This suggests an algebra for relating sIJK and cIJK . Of the six moduli c111, c112, c123, c166, c144, c456, we choose c112, c144
and c456 as primary, in terms of which the others are(c111

c123
c166

)
=

[1 4 8
1 −2 0
0 1 2

](c112
c144
c456

)
. (A.12)

Evaluation of the elements of P , Q and R, as indicated in Table 4, imply the relations

c1 = 27c112 + 24c456, (A.13a)

c2 = 6c144 + 8c456, (A.13b)

c3 = 8c456. (A.13c)

These, along with the pivot relations in Eq. (A.11), imply explicit relations between the TOE stiffness and compliance,(c112
c144
c456

)
=

⎡⎢⎣
1
27 0 −

1
9

0 1
6 −

1
6

0 0 −
1
8

⎤⎥⎦
⎡⎢⎣−(3κ)3 0 0

0 −3κ(2µ)2 0

0 0 −(2µ)3

⎤⎥⎦
⎡⎢⎣27 0 24

0 6 8

0 0 8

⎤⎥⎦
⎛⎜⎝s112
s144
s456

⎞⎟⎠ . (A.14)

n summary,(c112
c144
c456

)
= − (3κ)3

⎡⎢⎢⎣1 0 8
9 (1 − α3)

0 α2 4
3 (1 − α)α2

3

⎤⎥⎥⎦
⎛⎜⎜⎝s112
s144

⎞⎟⎟⎠ , (A.15a)
0 0 α s456
9
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Table 4
Elements of the third order isotropic tensors P , Q and R.
IJK PIJK QIJK RIJK

112 1
27 0 −

1
9

144 0 1
6 −

1
6

456 0 0 1
8

(s112
s144
s456

)
= − (3κ)−3

⎡⎢⎢⎣1 0 8
9 (1 − α−3)

0 α−2 4
3 (1 − α−1)α−2

0 0 α−3

⎤⎥⎥⎦
⎛⎜⎜⎝c112
c144
c456

⎞⎟⎟⎠ (A.15b)

where α =
2µ
3κ . More explicitly,

s123 = −
1

27κ3

(
c123 + 2c144 +

8
9
c456

)
+

1
18κµ2 (3c144 + 4c456) −

2
9µ3 c456, (A.16a)

s144 = −
1

36κµ2 (3c144 + 4c456) +
1

6µ3 c456, (A.16b)

s456 = −
1

8µ3 c456 (A.16c)

and s112 = s123 + 2s144, s155 = s144 + 2s456, s111 = s123 + 6s144 + 8s456.
The relations Eq. (A.11) between third order stiffness and compliance coefficients are known. Thus, Cousins [41]

presented six such relations valid for materials of cubic symmetry, which reduce to the three in Eq. (A.11) under isotropy,
although the physical connection with the hydrostatic and deviatoric partition of stress and strain was not noted. In a
separate note we show how the six Cousins identities derive from an analogous partition of stress and strain appropriate
to cubic symmetry.
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