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constants. Thus, compliances are the fundamental constants of acoustoelasticity.
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1. Introduction

Description of elastic wave motion in solid continua is usually considered using the displacement equations of motion,
i.e., Navier's equations [1]. While displacement forms are commonplace, it is possible to formulate so-called stress
equations of motion with stress being the dependent variable [2]. A pure stress formalism was pioneered by Ignaczak
beginning in the 1950s [2] followed by a proof of the necessary and sufficient conditions on the stress tensor appropriate
for elastodynamics [3]. However, modeling of elastic wave applications, in ultrasonics for example, are still largely based
on displacement equations [4-8]. More recently, Ostoja-Starzewski reinvigorated exploring elastic waves from the stress
equations of motion and gave several examples and applications [9]. One example included the scarce use of stress
equations of motion for nonlinear elastodynamics for which the work of Bustamante and Sfyris [10] was highlighted
[9].

In our previous work, the pure stress equations of motion were derived and solved for a homogeneous anisotropic
solid [11]. Solutions arose from the consideration of an eigenvalue problem, which governs the phase velocity of the stress
wave and the tensorial stress components (eigenvectors). Both the phase velocities and stress components were found
to depend on elastic compliance constants rather than elastic stiffnesses [11]. It was demonstrated that these solutions
were consistent with the displacement formalism and the stress eigenvalue problem is the dual formalism to the well-
known Christoffel equations [11]. While the previous work demonstrated that displacement and stress formalisms were
consistent, possible benefits of proceeding with the stress formalism were not explicitly given.

In this paper, the stress formalism is applied to acoustoelasticity [12], which describes how the velocities of an
elastic material are influenced by internal stresses. Acoustoelasticity is an inherent nonlinear effect in which the dynamic
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deformation of the wave couples with the initial deformation in the solid. Thus, the present paper provides an additional
development [10] of the stress formalism to nonlinear elastodynamics. The topic of acoustoelasticity has garnered
significant interest over the years in its application to the nondestructive measurement of stress in addition to measuring
third-order elastic constants when the stress is intentionally applied and known [13-19]. In both of these measurement
applications the stress is the primary independent variable. Here, we show that the stress formulation provides a natural
treatment of acoustoelasticity because it focuses on the applied stress as the input to the velocity change. We also
show that the optimal third order constants are those of compliance, the inverse of stiffness. Readers interested in the
background and historical accounts of acoustoelasticity are encouraged to consult the references of Pao, Sachse, and
Fukuoka [13], Kim and Sachse [14], Thurston [15], Norris [16], Man and Lu [17], Ogden [18], and Shams, Destrade, and
Ogden [19].

To provide some additional context and introduction to the present work, we recall the theory as given by Pao and
Gamer [20], and also borrow solutions from Thurston and Brugger [21]. The equation of motion or wave equation for an
elastic continuum containing a static stress follows from Cauchy’s first law of motion (Eq. (12) of Pao and Gamer [20])

d oy u Py .

aa ‘Tklaak +(7klaak +0i ) = po PR (1)
The superscript i follows the notation of Pao and Gamer [20] and refers to quantities present at the initial state of
the material, e.g., the initial stress is denoted as ¢' and the initial displacement as u'. Here, the superscript i should
not be confused with the index notation seen in the subscripts describing tensor components. The quantities ¢ and u
are the (incremental) dynamic stress and displacement of the elastic wave as a function of the natural coordinates a,
respectively, with notation fully defined in Section 2. A natural first step in solving any partial differential equation with
mixed variables like Eq. (1) is to cast it in terms of a single dependent variable, usually the displacement u. In doing so,
material dependent constitutive behavior must be applied to relate o to u. For Eq. (1) specifically, it is also desirable to
have a single independent variable, usually the stress ¢'. Thus, constitutive relationships are also needed to relate u' to o'.
Applying constitutive relations in the traditional displacement formulation leads to phase velocities that are complicated
expressions containing a mix of fourth- and sixth-rank tensors of elastic stiffnesses (cjjx, Cijkimn) and compliances (sjj). For

example, the bulk wave phase velocity solution to Eq. (1) for an anisotropic material with an externally generated stress
o'is [21]

2 2 A A 2/\ ~ A A A A i
poc® = poch + (Tipitg + 2p0c4 UilljSifpg + uinjuknlCzjkzmnSmnpq)Cféq, (2)

where py, o, 0, and G are the density, phase velocity at zero stress, propagation direction, and displacement direction,
respectively. As an example, for a longitudinal wave propagating in an isotropic material containing a uniaxial stress o3,,
Eq. (2) reduces to [21]

poc® = pocs + [512(2,00(35 + 3c123 + 10C144 + 8C456) + 2544(C123 + 2C144)] 033 (3)

While Eq. (3) is relatively simple, evaluation requires the knowledge of both compliance and stiffness constants or at least
the ability to convert between them.

In the present work, we demonstrate that casting Eq. (1) to include only ¢ as the dependent variable results in
solutions that depend only on compliance constants. This proves that compliance constants are the fundamental material
parameters in acoustoelasticity, at least when acoustoelasticity is defined as the relationship between the phase velocity
c of an elastic wave and stress o'. Alternatively, the dual problem of considering the relationship between the phase
velocity ¢ of an elastic wave and strain € would depend on only stiffnesses. Consistency between the formulations is
easily observed through application of stiffness—compliance relationships, which are well-known for fourth-rank tensors
CijimnSmnki = lijji, but relations between Cjjmn and Sijumn are more obscure. This obscurity likely prevented researchers from
noticing that expressions, like Eq. (3), could be written in terms of compliance constants only, which is a primary result
of the current article.

This article is organized as follows. The general formalism of acoustoelasticity using stress as the dependent variable
is given in Section 2. Plane wave propagation is considered in Section 3 using a perturbation expansion to find the
dependence of phase velocity of the elastic wave on the initial stress. Consistency between the present stress formulation
and the traditional displacement formalism is established in Section 4 using a newly proposed set of constants that
simplify conversion between third order stiffness and compliance.

2. Stress formulation of acoustoelasticity

The notation follows closely to that of Pao and Gamer [13,20]. Consider three material configurations: a natural one
having coordinates a, an initial one having coordinates X, and a current one having coordinates X. The displacement
ul = X —a is the displacement associated with a static and homogeneous deformation. The displacement from the initial
to the current configuration is that of the wave u = x — X, which is dynamic and spatially-dependent, and the full, or
final displacement is W = u’ + u = x — a [20]. The second Piola-Kirchhoff stress associated with the initial deformation
is o', the dynamic deformation is & (a, t), and, thus, ¢/ = ¢' 4+ . Cauchy’s law governs the wave motion and is given in
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Eq. (1) [see also Eq. (12) of Ref. [20]]. To begin the process of casting Eq. (1) to be in terms of ¢ and o', we differentiate
Eq. (1) with respect to the coordinate a to give

32 oi i dul N dil; @)
7 - oty
da;0a, k’aa, Maa, ") T 0%

where the standard dot notation is employed for time differentiation. The Lagrangian strain associated with the superpo-
sition of the deformations is

; o oul | o o

E. = — 4+ — (5)
i 2\ ag 8a, aa, Ba;

Differentiating Eq. (5) twice with respect to time gives

w1 /9l dl;  dul dily iy Oul

f i i k Otk k 9%k

E = kTR Tk 6
T2 <8a, * 94 da; * da; da; * aa; 8aj) ®

where the relationship /' = @/ +u = u is applied as the initial displacement is assumed to be static and time-independent.
Additionally, dynamic displacements of order two and higher are neglected. Clearly, the right-hand side of Eq. (4) is
related to and contained in Eq. (6). Now, the strain and its time-derivatives in terms of stress can be obtained through
the constitutive relation,

1
Ef;- = St'jklal{l + ESUklan’{,G,';n
= Sijki (0']:-1 + le) + sijklmno']ilo'mns (7)
where sy and Sjmn, are compliance tensors and we used o/ = o' + o to arrive at the second expression. Eq. (7) is
a constitutive relationship between the Green-Lagrange strain E and the second Piola-Kirchhoff stress ¢ including the
effects of the initial stress ¢'. A dual constitutive relationship between stress and strain was derived by Pao and Gamer [20]
in their Eq. (21). Theories of large acoustoelasticity have been obtained through constitutive relationships expanded to
third-order [22,23]. Eq. (7) could also be expanded to third-order in stress by including the fourth-order compliances
Sijimnpg,» but is beyond the scope of the current article. Two time-derivatives of Eq. (7) lead to
E{; = 5z'jklé:kl + SUlclan]i[&mnv (8)
which combined with Eq. (6) gives
; 1 /9l ol oul dliy iy dul
SiikOx + SikmnOyomn = = | — + — + —— + ——|.
UL Gkimn 7l mn 2 (aaj Bai 3(1,' Baj aa,- Baj

(9)

Now, the displacements in the right-hand side of Eq. (9) can be eliminated using Eq. (4). After simplification, the stress
equation of motion is obtained,

. . 1 820"k aZU'k
Lo (Sijkl + Sijklmnﬁrlnn) Okl == ( = 4+ J

2 8(11'8(1]( 8(11'8(1](
820'k1 82(7 820!(! i
Sikl ———— + Si s , 10
+ < ijkl aamaan + ikmn 9a a + jkmn 8a,~8a1 Umn ( )

where terms involving two or more spatial derivatives on the initial displacement are zero because of the homogeneity of
the initial stress and the linearized strain-stress relationship was used. In the absence of an initial stress o', the traditional
stress equation is readily observed [11]. Eq. (10) can be cast into the equivalent form

az(fkl
da,0aq

of which the factoring is made possible through the use of the Kronecker delta function. It is noted that while strain-
stress constitutive relationships were used to arrive at Eqs. (10) and (11), elastic stiffness constants never entered the
picture. Thus, acoustoelasticity is fundamentally connected to second- and third-order compliance constants (s and
Sijkimn,» TESPECtively).

Now, homogeneity of the stress field and material properties permits the assumption that wave motion is a function of
a single spatial coordinate x = fi-a so that o = a(x, t). Then, Eq. (11) reduces to a uni-dimensional stress wave equation

P0 (Sijkt + SijkimnOmn) 6 = [Sigliikp + (8ipSigSikmn ~+ SipSigSikmn + SmpSngSijta) Ty | (11)

i\ 020w
Lo (Sukl +5uk1mn0mn) On = (Nukl + Ngklmndmn) a2

(12)
and

1, .. R o o
Niji = y (8 + Syeify + Sufyf + i), (13a)



CM. Kube and A.N. Norris Wave Motion 114 (2022) 103002

1, . A A A A A
Nijkimn = E(aipnj + Sjpni) (6kqnl + 51an)5pqmn =+ SijkiMmn. (13b)

The resulting expression in Eq. (12) is a wave equation with the dynamic stress wave o(x, t) as the dependent variable,
which couples with the initial stress ¢'. Thus, Eq. (12) is a generalization of the stress equations of motion derived
previously for stress-free anisotropic solids [11].

In closing this section, we offer a couple of remarks. Firstly, Eq. (12) governs the propagation of the stress a(x, t)
where x describes spatial coordinates along n relative to the undeformed material configuration. Thus, both x and n
are not influenced by the deformation. Alternatively, a formulation relative to initial or deformed coordinates causes
the propagation direction and associated coordinates to be influenced by loading. Thurston and Brugger [21] discuss
the advantages of using the undeformed configuration when utilizing applied loads for measuring third-order elastic
constants. Several references derive and report resulting formulas when utilizing the different coordinates [16,20,21,23-
25]. In Refs. [24] and [25], the focus is on electroelastic materials containing a bias (via external static loading or electric
field) for which the natural and initial coordinates describe points in the described reference and intermediate material
configurations as a result of the bias. Tiersten [25] motivates the employment of natural coordinates by stating, “Since in
the typical situation it is undesirable to measure the geometry each time the bias is varied, it is advantageous to use the
X, (natural coordinates) as independent variables”. Further discussion was provided by Sinha [24].

Lastly, the present stress formalism incorporates the homogeneous initial stress o' more naturally than the traditional
displacement formulations. In displacement based acoustoelastic models several steps are generally required to incor-
porate ¢' into the model. For example, a homogeneous irrotational deformation is assumed to allow displacement or
deformation gradients to be transformed to strain (sometimes using polar decomposition). Then, the strain is written in
terms of the homogeneous stress o' via a constitutive relationship [see Eqgs. (82)-(86) of Huang et al. [26] as an example].

3. Plane wave propagation

Assume the stress wave o(x, t) to be of harmonic form with wave number k, angular frequency w, and amplitude
described by the second rank tensor ¢. Then, Eq. (12) can be written as an algebraic system of equations

{Nija + NijtmnOpn — A (Sijia + Sijklmno}irm)} 6 =0, (14)

where . = poc?. Note that Nijit, N,-jklmnor"nn and sijklmna;,, carry the same symmetry as the compliance sy in that
components are unaltered under the interchange i <> j or k <> [ or ij <> kl. Eq. (14) is the dual form to the traditional
Christoffel equations derived from the displacement formulation,

{ Tty — A8} T = 0, (15)

which is reported in Eq. (36) in Pao and Gamer [20] where I' is a tensor containing second- and third-order elastic
stiffnesses. Note that we utilize the notation ¢ rather than & as the tensorial part of ¢ is not normalized in general.
Further discussion of stress and displacement eigenvectors is provided in previous work [11].

3.1. Perturbation expansion

To help determine the acoustoelastic relations, a perturbative solution is assumed,
A =204 Ax, (16a)
6 =6+ Aé, (16b)

where 10 = pocg and 6 represent the solutions in the absence of initial stress, and the additional terms are linear in the
initial stress o'. A standard perturbation expansion of Eq. (14) yields

{Nij — A%sij1a} 63 = 0, (17a)
{Nij — )Losijkl} Ay + {(Nijklmn - )»OSijkzmn)U,im - A)»Sijkl} 69 =0. (17b)
Multiplying Eq. (17b) by 6,-;) and using Eq. (14) gives

0 2020 _i
(Nijklmn - A Sijklmn)aij UkIU;nn

AL = 0=

050
SquSquars
A A 0 o O o O i
(zninksjlmn - A sijklmn)o-ij O-kl(;r,nn

A in
N+

1 <0 50
Spqrsopqars

n'—l—i"oﬁ 5 0 Sijmn O — Sifkimn Gy GO (18)
j )\oaik kO iSijmnOmp — SijkimnOjj OO mp -

Note that $gs62 62

2¢O 1S Positive on account of the positive definite nature of the compliance.
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Table 1

Terms found in AA of Eq. (20) for longitudinal (L) and shear wave modes (T) where the first subscript L or || indicates the propagation direction
being perpendicular or parallel to the loading direction for uniaxial stress cases, respectively. For shear waves, a second subscript (L or ||) indicates
the displacement direction relative to the loading direction. No subscripts are needed for equal triaxial loading case. Note that s = 3s1, + 2544 and
B = 1/(5445). The following relationships can be used for converting the entries to stiffnesses: s = 1/(3«), Sqq = 1/(4c44), BS = 4cC4s, and Bs4q = 3k
where c44 and « are the shear and bulk moduli, respectively.

Mode Loading n-o'h i Goloh tré tr(éo') tr 2 tr(60'6)

L, Uniaxial 0 0 BSas (2544 — ) Bo'/6 (252, + %) B?/3 (2544 — )% B20'/36
L Uniaxial o o BSas (S4a +5) Bo'/3 (253, + %) B2/3 (Saq +5)* B20'/9
Ty Uniaxial 0 ol 0 0 (Bs)? /8 (Bs)?0i/16

Ti Uniaxial 0 0 0 0 (Bs)? /8 0

TyL Uniaxial o 0 0 0 (Bs)? /8 Bs)20'/16

L Equal triaxial o! o BSas BSasct (253, +5%) B?/3 (253, +5%) B20'/6
T Equal triaxial of of 0 0 (Bs)? /8 (Bs)*o'/8

Analysis [11] of the leading order equation in Eq. (17a) shows that it has six independent solutions, three of which have
A0 positive non-zero corresponding to propagating wave modes. The other three solutions with A% = 0 are associated with
incompatible stresses and strains that are not physically permissible solutions. Therefore, the following will only consider
the propagating wave modes.

3.2. Propagating stress wave solutions: 1° > 0

Define the traction vector of the leading order unstressed solution &) = ;. The traction vectors of the propagating
solutions are non-zero, which can be deduced from the displacement formulation in Section 4. Then, Eq. (18) can be
rewritten as

i 2020 0 0.0\ * 0,
AN = nknlalﬁ, + (Zfi tjsijmn — A Sijklmnaijakl)ﬁ' (19)
For an isotropic solid, Eq. (19) reduces to

PP 0 i PRI I S1 sN2 i
Ak =o'+ 210 (12 tro’ + 25441 - 60'61) —ﬁ(tra) tro
S ) ) )
- 32 [2tr(60')tré — (tré)’ tro’ + tré? tro']
_53 s ey %) i o i o oN\2 i
5 [9tr(60'6) —3tré° tro’ —6tr(60')tré + 2 (tré)” tro’] (20)

where s, s, and s3 are new third-order compliance constants defined in Appendix. Several acoustoelastic relationships
for specific propagation and displacement directions relative to uniaxial or equal triaxial stress can be established from
Eq. (20) and use of Table 1 where the various operations involving ¢ have been determined. In Table 1 the term ¢ is the
pertinent stress component for the particular loading case. For general o', consider a longitudinal wave propagating in
the i = [100] direction, then Eq. (20) can be shown to reduce to

S1 S2

0) i 0
Ahprooy = (1+ 4s442°) oy + (‘“”k T8 182,
44

s s . ) )
_< 2 + 3 )(201’]—0212—03'3), (21)

95445 3654214

> ((’{1 +o5,+ Uaia)

where the subscript [100] is used to denote the displacement direction, A’ = (1 4 $13/544)/s, and s = 3sq5 + 2544. For a
shear wave propagating in the fi = [100] direction and displacement in the &t = [010] direction,

S12 S2

Ahor0) = 041 + 0y + <f44 ey
44

) (0111 o3+ ‘73'3) - 4;732 (‘7111 oy — 2‘7313) : (22)
S44
where A% = (4s4)"!. The case of a shear wave propagating in the i = [100] direction with displacement in the
@ = [001] direction follows by interchanging the 22 and 33 components of the stress tensor ¢ in Eq. (22). Acoustoelastic
birefringence is observed when constructing the difference in these two shear wave cases, Aljpi0) — Arpor; = (1 —
53/(4544)2)(02'2 — 033), which is equivalent to the traditional expression Aijg10; — AXoo1) = (1 + Cas6/Ca4)(05, — O33).
Often, the third-order elastic parameters are determined from observing how the parameter A\ changes as a function
of stress [16,21,27]. Thus, the so-called stress derivatives dAA/do’ are of importance. Table 2 gives expressions for the
stress derivatives for the uniaxial and equal triaxial stress cases. The expressions in Eqs. (21), (22), and the entries in

Table 2 are new forms of acoustoelastic expressions and are fully consistent with the “natural velocity” formulas seen in
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Table 2

Stress derivatives. The first subscript (L or ||) is propagation direction relative to the loading direction in the uniaxial
stress. For shear waves, a second subscript (L or ||) indicates the displacement direction relative to the loading direction.
No subscripts are needed for equal triaxial loading case. Note that s = 3s1 + 2544.

Mode Loading dAxr/do!
iaxi 24 2 Asae 1 2 _ — 2
L, Uniaxial St - TrEE [4s3451 + 6525 (5 — 2544) — 3535%]
L Uniaxial P o+ 58— o [2515% + 3525 (5 + 4saa) + 35357
44
iaxi 24 s 1
Ty or TjL Uniaxial 5t en e, (253 + 53)
iaxi 14 s 1 _
T, Uniaxial 3+ Corilrey (53 — S3)
i 5., 2 1 2 2
L Equal triaxial S+ 3 — e (25152, + 3s25%)
iaxi s s
T Equal triaxial 1 Ta T a,
Table 3

Stress derivatives for incompressible solids. In the incompressible limit, s — 0, s; — 0,
Sy —> 8542‘4, S3 — 85456 With s44 and s456 remaining finite.

Mode Loading dA)\/doi

Ty or TyL Uniaxial ! (1 _ 15'53?;4)
jaxi _2 _ 53

Ty Uniaxial 2 (1 165‘2”)

T Equal triaxial 0

Table IV of Thurston and Brugger [21] once the conversions between stiffnesses and compliances are made. The natural
velocity as defined by Thurston and Brugger [21] refers to the wave speed relative to the natural dimensions of the solid.
The natural velocity is advantageous in practical cases involving applied loads because it can be calculated using the travel
time of the wave and the distance of propagation in the undeformed configuration of the material [21]. In other words, the
model naturally accounts for changes in the distance of propagation during loading. In addition, as explained by Thurston
and Brugger [21], the natural velocities (eigenvalues) are not influenced by the rotation of the displacement directions
(eigenvectors) during the deformation. One does not need to consider how the displacements are being influenced by
stress when measuring the stress-derivative of the natural velocity. Thus, a set of experiments to measure the several
third-order elastic constants (or compliances) can be constructed by performing wave experiments along various pure
mode directions [28,29]. Formulas for the natural velocities found in Thurston and Brugger [21] were used to measure
the third-order elastic constants of quartz [27] and langasite [30] crystals.

The acoustoelastic relations can be formulated for incompressible materials by substituting the behavior of the compli-
ances or stiffnesses subject to constraints of incompressibility. Destrade and Ogden [31] and Saccomandi and Vergori [32]
derived the behavior of the third- and fourth-order stiffnesses and demonstrated that the shear stiffnesses remain
finite whereas other constants are unbound. Destrade and Ogden applied these results to traditional acoustoelasticty
to derive the velocities of shear waves in incompressible solids undergoing either uniaxial or uniform pressure loading
[31]. Recently, Kube derived the behavior of the second-, third-, and fourth-order compliances for use in stress-based
formalisms of elastodynamics including the present work [33]. Unlike the stiffnesses, all of the compliance constants
were found to remain finite when constraints of incompressibility are applied [33]. The present model is easily extended
to incompressibility by utilizing the results: s — 0, s;, — —§s44, 51 > 0,55 — 85314, S3 — 85456 With 544 and sus6
remaining finite [33]. Applying these results to the case of the shear wave in Eq. (22) gives

S . .
Ak[o]o] = (ﬁ —_ 1) (p' _|_ O’%3) (23)
where p' = — (o}, + 03, + 04;) /3. The case for a shear wave propagating in i = [100] while having displacement in

1 = [001] direction is obtained, as before, by swapping the terms aziz and o3;. The birefringence relationships are the
same as the compressible case. Table 3 provides the three finite cases when incompressibility is applied to the compliance
terms seen in the entries of Table 2.

The formula in Eq. (23) and results in Table 2 with the stiffness/compliance relationships s; = —6456/624 and
Sa4 = 1/(4c44) are new and different than those reported previously [31,34]. This disparity stems simply from the present
derivation being formulated relative to the natural coordinates rather than the initial coordinates. The expressions relative
to initial and natural coordinates are found in Tables II and V of Kube et al. respectively [23]. The results in the present
work are consistent with Table V whereas the results seen in Table 2 are consistent with Refs. [31] and [34] as expected.

The consideration of acoustoelasticity of incompressible materials demonstrates a possible advantage of using the
stress formulation. Namely, the stress formulation relies on second- and third-order compliance constants that must

6
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remain finite for incompressible solids whereas some stiffness components are unbound and can asymptotically approach
infinity at different rates [31-33].

4. Connection with the displacement formulation

In this section, the results obtained in Section 3 are shown to be consistent with the traditional acoustoelastic formulas
derived previously [20,21,23,27]. The time harmonic displacement solution for the unstressed medium satisfies

(Cijklﬁjﬁl — )LOSj,{)flk =0 (24)

where CijuSkimn = SijkiCimn = lijmn. Hence, &l.;’ — Cyafyll and &7 — ¢l = A°0;. At the same time, the analog of Eq. (7),
which relates strain to stress is

ol = cijEy + %c,-jk,m,,E{,E;n (25)
where the third order stiffness is

Cijkimn = — CijpqCkirsCmntuSparstu- (26)
Recall, that the small initial strain is

el = sijuoy (27)
then Eq. (19) becomes

Al = fyfyoy + 22°1iljel; + Cimn il (28)

At this order of approximation, the small initial strain in Eqs. (27) and (28) allows for the second Piola-Kirchhoff stress
to be approximated by the Cauchy stress if desired. For an isotropic solid, Eq. (28) expressed in terms of the initial strain
e' reduces to

5904 ain L i P G on a2
Ak_zxu~eu+3(3x—zu)tre +2ufi-efi+ — (A-a) tre

27
+ o1 (- a7)we +a(a- @) (-e'd)]
+ o2 [9(h-eh+ i) —2(3— (R @) e — 6 (- @) (3 )] .

where k = (9515 + 6544) " and 1 = 44 = (4544)" ! are the bulk and shear moduli, respectively. In arriving at Eq. (29), we
made use of the isotropic tensors having components of the third-order elastic stiffnesses given in Appendix. Using the
stiffness/compliance relations derived in the Appendix, Eq. (29) can be cast in terms of the initial stress o',

A0 2 1 1 A c A :
Ar="H-da+ ZA° (———)tral+n-a'n+8—l(n~u)2tra’

% 3 3k 21 1k
el (L _2Vh. 82 ) wo + 2 (2. 8) (8- o'
+ 35 [<K+<3K M) () )tra —|—M(n ) (A au)]
+%[9(ﬁ-aiﬁ+ﬁ~aiﬁ)—2(3—(ﬁ-ﬁ)2)trai—G(ﬁ-ﬁ)(ﬁ-aiﬁ)]. (30)
"

The expression seen in Eq. (30) is equivalent to Eq. (41) in Kube et al. [23] once the third-order elastic constants cy, ¢,
and c; are converted to the Landau and Lifshitz constants .4, B, and C through the relationships c; = 6.4 + 548 + 54c¢,
¢, = 2A+68, and c3 = 2.A4. We remind the reader that the expressions derived in this work and Eq. (41) in Kube et al. [23]
are based on coordinates and density in the undeformed or natural configuration. The corresponding expressions based
on coordinates and density relative to the deformed material configuration are found in Kube et al. [23] and Thurston
and Brugger [21]. By writing Eq. (30) in terms of s;, S, and s3 using the relationships found in Eq. (A.11), we obtain the
alternative expression in terms of compliances,

Moo 2 1 1 T PO 7 < i
Ar="d-da+ 20— - — tral+n-a'n—i(n-u)2tra’
% 3 3k 2u 3
25

9
2
— 2 [9(R- o'+ ii-o') —2(3— (R ) tro’ — 6 (R 4) (A~ 0'd)]. (31)

[(30+ (e~ 61) (8- )7) tro’ + 18« (A - ) (A - 0'8)

Finally, this form for AL is equal to the expression in Eq. (20) by noting the stress terms in the latter can be expressed
astré = 3k(f- @), fi-6o'on = - o', tr(60') = (k — 2u/3)(0- W) tro’ + 2uh - o', tré? = 2u? + (3k2 +2p2/3) (0 - G),
tr(66'6) = (k —2u/3)* (A - a2 tro’ + 2 2k — p/3) (A - @) - o't + p2 (ﬁ .o'f+a- a‘ﬁ).
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5. Conclusion

The pure stress formulation of elastodynamics [2,9] has been extended and applied to acoustoelasticity. The stress
equations of motion provide a more natural setting for acoustoelasticity when the initial stress in the material is of primary
interest (rather than initial strain). In the derivation, it is shown that the second- and third-order compliance constants
fundamentally connect the wave velocities to initial stress. This differs from the traditional displacement formulation in
which wave velocities relate to initial stress through combinations of stiffnesses and compliances. Consistency between
the present model and displacement-based model is established through the stiffness—compliance relationships developed
in the Appendix. The stiffness—compliance relationships are not new. Thus, the traditional acoustoelastic relations could
have been cast in terms of compliances only without resort to the pure stress formulation. To our knowledge, this
connection has not been established previously. The new acoustoelastic relations are established for the canonical loading
cases of uniaxial and equal triaxial stress. General formulas for isotropic symmetry and arbitrary loading are given
explicitly. The corresponding relationships for incompressible materials is then given using the behavior of the compliance
constants [31] for situations when the material tends toward incompressibility.

CRediT authorship contribution statement

Christopher M. Kube: Conceptualization, Writing - original draft, Writing - review & editing. Andrew N. Norris:
Conceptualization, Writing - original draft, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix. Relations between isotropic third order stiffness and compliance moduli

A.1. Proposed new third order elasticity coefficients

In addition to the standard reduced index or Voigt notation cyx (= Cjjumn) there are several alternative notations for
third-order elastic constants, including those of [35-39] which can each be expressed in terms of ¢y, see Table 1 of
Ref. [16] and of Ref. [40]. Despite this multiplicity of notation, none are convenient for relating elements of stiffness ¢y
and compliance sy to one another. Here we propose a notation for TOE coefficients designed for just this purpose.

The motivation is the fact that isotropic linear elasticity is simply cast using the hydrostatic and deviatoric parts of the
stress and strain. These are defined respectively as o’, ¢ and ¢”, e”, through the relations

o=0+d’, o =6tro,

A (A1)
e=¢ +e’, & =4§tre,
where
A 1
The linearly elastic constitutive relations are then
o' =3ke and ¢" =2ue€” (A.3)

where k and p = c44 are the bulk and shear moduli.
The only second order, or quadratic, isotropic combinations of the hydrostatic and deviatoric parts of e are (tre)? and

tr(e”?), implying that the strain energy densit% is a linear combination of the two. Similarly, the only third order isotropic
/!

combinations are (tre)?, tre tr(e”?), and tr(e”*). This indicates that the strain energy density U can be expressed as
1 trE)? 1
U= 5<3K ( 3 ) + 21 tr(E”z)) + a(q(trE)3 + e trE tr(E"%) + 3 tr(E”3)> 4 (A4)

where ¢y, ¢; and c3 are the proposed TOE constants. We next relate these elastic constants to the standard ones appearing
in the general form of the strain energy

1 1
U= EcijklEijEkl + ?CijklmnEijEklEmn +--- (A5)
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A.2. Connection With Cijkymn and Sijkimn

Define the fourth order isotropic tensors J and K
1
Jij = §5ij5kh Kijt = Tijta — Jijia (A.6)

where Iy = %(Sik(Sﬂ + 8idjk) is the identity. Note that J and K have the symmetries of elastic moduli, and satisfy P =]
K> = K, JK = KJ = 0 where (AB)jji = AjjmnBmnii- The partition of unity J + K = I lies behind the independence of the
hydrostatic/deviatoric components of stress and strain: ¢’ = Jo, 6” = Ko. Also, second order stiffness and compliance
tensors are

Cija = kSt + 20K, St = (3x) ™ ia + (240) " Kigua. (A7)

Referring to Egs. (A.4) and (A.5), the third order isotropic moduli can be expressed as linear combinations of three
independent tensors,

Cijkimn = C1Pijktmn + €2 Qijkimn + C3Rijkimn (A.8)
where the sixth order isotropic tensors P, Q and R have elements

Pikimn = 88aBmn, (A.9a)

Qijktmn = Sinklmn + SkIKmnij + gmnKijkl’ (A.9b)

Rijkimn = KijpqKrigr Kmnrp- (A.9¢)

It then follows from Eq. (26) and the definitions in Egs. (A.9), using the properties of J and K, along with identities like
Jijkl(skl = 51']', that

Sijkimn = S1Pijkimn + $2Qjjtimn + S3Rijkimn (A.10)
where

51 = —(;71)3, (A.11a)

s = —3K(C22M)2, (A11b)

53 = —(23)3. (A110)

These simple connections between the TOE coefficients are the primary reason for introducing a new set of TOE moduli.
In addition, the new coefficients have physical meaning analogous to the bulk and shear moduli: the c¢; term involves only
hydrostatic stress/strain, the c3 term is related to deviatoric (shear) stress/strain, while c; is the only energy contribution
at cubic approximation to involve coupling between hydrostatic and deviatoric deformations.

This suggests an algebra for relating syx and cy. Of the six moduli ¢111, €112, €123, Ci66, C144, Ca56, We choose €112, C1a4
and c4s6 as primary, in terms of which the others are

C111 1 4 87 /an
cp3)=(1 -2 0 C144 ) . (A.12)
C166 0 1 2] \cgs6

Evaluation of the elements of P, Q and R, as indicated in Table 4, imply the relations

C1 = 27C112 + 24C456, (A13a)
C2 = 6C144 + 8Cys6, (A.13Db)
C3 = 8C455. (A13C)
These, along with the pivot relations in Eq. (A.11), imply explicit relations between the TOE stiffness and compliance,
C112 % 0 _% —(3«) 0 0 27 0 24| (s
?44 =10 & -3 0 —3k(2u)? 0 0 6 8| |suml- (A.14)
46 0 0 -4 0 0 —2u)J Lo 0 8 \suss
In summary,
Ci12 ; 10 S(l —a?) S112
Cag | == Gk 10 o 2(1—a)e? || s> (A.15a)
C456 3
0 0 o S456
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Table 4
Elements of the third order isotropic tensors P, Q and R.
K Pyk Quk Ryk
112 % 0 -1
144 0 1 -2
456 0 0 3
S112 1 0 g(] —0(_3) C112
S144 | = — (3/()_3 0 o2 %(] _ a’1)a’2 Ciaa (A.15b)
S
436 0 0 a3 C456
where o = 2. More explicitly,
1 8 1 2
S123 = ——— | C123 + 2C144 + =C + 3c144 + 4c. — —— (456, A.16a
123 773 ( 123+ 2C1aa + g 456) 18k 22 (3C144 + 4Cus6) 93 ( )
1
Siaq = — 3c144 + 4c — Cas6, A.16b
144 36122 (3C144 + 4Cy56) + e 456 ( )
1
S456 = —8—”3C456 (A.16¢)

and $112 = S123 + 25144, S155 = S144 + 2S456, S111 = S123 + 65144 + 8S4s6.

The relations Eq. (A.11) between third order stiffness and compliance coefficients are known. Thus, Cousins [41]
presented six such relations valid for materials of cubic symmetry, which reduce to the three in Eq. (A.11) under isotropy,
although the physical connection with the hydrostatic and deviatoric partition of stress and strain was not noted. In a
separate note we show how the six Cousins identities derive from an analogous partition of stress and strain appropriate
to cubic symmetry.
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