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Significant amplitude-independent and passive non-reciprocal wave motion can be
achieved in a one-dimensional (1D) discrete chain of masses and springs with bilinear
elastic stiffness. Some fundamental asymmetric spatial modulations of the bilinear spring
stiffness are first examined for their non-reciprocal properties. These are combined as
building blocks into more complex configurations with the objective of maximizing non-
reciprocal wave behavior. The non-reciprocal property is demonstrated by the significant
difference between the transmitted pulse displacement amplitudes and energies for inci-
dence from opposite directions. Extreme non-reciprocity is realized when almost-zero
transmission is achieved for the propagation from one direction with a noticeable transmit-
ted pulse for incidence from the other. These models provide the basis for a class of simple
1D non-reciprocal designs and can serve as the building blocks for more complex and
higher dimensional non-reciprocal wave systems. [DOI: 10.1115/1.4045501]
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1 Introduction
Reciprocity is a fundamental physical principle of wave motion

which requires symmetry in wave transmission between any two
points. The same incident wave traveling in opposite directions
should result in the same transmitted wave. Recent advances have
shown that the principle of reciprocity can be violated under
special conditions in electromagnetism [1], acoustics [2–10], and
other physical systems supporting wave propagation [11]. The
ability to violate reciprocity in a controlled and passive manner
opens the possibility of extreme wave dynamics and control mecha-
nisms such as one-way propagation, acoustic diodes, etc. and provide
revolutionary solutions to existing problems and useful tools for
promising applications. The focus of the present work is breaking
reciprocity of elastic waves using bilinear material properties.
There are several ways to break dynamic reciprocity. One is to

remove time-reversal symmetry. For instance, gyroscopic inertial
effects are used to break the time-reversal symmetry in a one-way
phononic waveguide [2]. Spatiotemporal modulation of density
and elastic properties provides another way to violate reciprocity.
The direct modulation of elastic moduli and mass density simulta-
neously in both space and time introduces non-reciprocity due to
the tilting of dispersion bands [3,4]. Non-reciprocal elastic wave
propagation can be achieved via modulated stiffness realized by
applying a wavelike deformation that alters the effective on-site
stiffness [11]. A third way is using nonlinearity, which unlike the
previous active examples provides a passive method to achieve non-
reciprocity. Usually, the non-reciprocal phenomenon can be
obtained by combining the nonlinearity with other assistant proper-
ties. In the acoustical domain, an acoustic diode can be achieved by
utilizing the second-harmonic generation property of the nonlinear
medium and the frequency selectivity of the sonic crystal [5,6].
Nonlinear acoustic non-reciprocity is also reported theoretically
and experimentally in lattice structures incorporating strong stiff-
ness nonlinearities, internal scale hierarchy, and asymmetry in
their unit cell designs [7–9]. Weak nonlinearity can be used in

band gap manipulation which in turn leads to non-reciprocal beha-
vior [10].
Bilinear springs present a unique case of nonlinearity, consisting

of two different linear load-deformation relations. Unlike other
nonlinearities, such as cubic [12,13], the bilinear relation is
amplitude-independent; the nonlinearity enters only through the
sign of the displacement. The analogous phenomenon in continuum
mechanics occurs in materials with bilinear (also known as hetero-
modular or bimodular) constitutive elastic behavior, which have
been proposed as nonlinear models for studying contact forces
[14], elastic solids containing cracks [15], and for the dynamics
of geophysical systems, including granular media [16]. The discon-
tinuity of the piecewise linear relation gives rise to a strong nonlin-
earity, for which it is difficult to find analytical solutions for simple
wave problems. Wave motion in bimodular media has been studied
extensively [17–26]. Even a small difference between the moduli
in tension and compression immediately causes the appearance
of shock waves [22]; however, linear viscosity eliminates the
shocks. A good review of the literature of wave motion in continu-
ous bimodular media, particularly the considerable work done by
Russian researchers, can be found in Ref. [22], while Ref. [27] pro-
vides an earlier review. There are far fewer studies of wave motion
in discrete spring-mass chains with bilinear spring forces. Of partic-
ular interest is the study [16] which analyzed impulse harmonic
wave propagation in a 1D system of bilinear oscillators. Although
they did not emphasize non-reciprocal effects, the authors noticed
that sign inversion of a signal can be obtained, from tension to com-
pression, that can lead to pulse spreading or shortening and possible
shock formation. However, none of these prior studies of either con-
tinuous or discrete systems considered spatial inhomogeneity and
asymmetry, which are necessary for producing non-reciprocal
wave motion in the presence of material nonlinearity.
Here, we leverage the bilinear property to break wave reciprocity

in a simple mechanical structure. Specifically, we consider a 1D
bilinear spring-mass chain system in which the spatial modulation
of bilinear stiffness is carefully investigated and designed. Incident
pulses, generated by an external harmonic loading, are used to
study transmitted pulse amplitudes and energies for incidence from
opposite directions in themodulated chain. The non-reciprocal prop-
erty of the system is demonstrated by the significant difference
between the transmitted wave amplitudes from opposite directions
and their energies. Zero transmission can be approximately achieved
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when the absolute amplitude ratio and energy ratio of the transmitted
and incident pulse are both small enough. One-way propagation can
be realized if almost-zero transmission is achieved for the propaga-
tion from one direction with a noticeable transmitted pulse from
the other. The final non-reciprocal structure is obtained after
careful design of the inhomogeneous and asymmetric spatial modu-
lation of the stiffness and will be shown to display significant
amplitude-independent non-reciprocity in a passive system. This
simple 1D design could be the building block for complex, multiple
dimensional non-reciprocal wave systems.
The paper is organized as follows: a 1D bilinear spring-mass

chain system is introduced and the governing equations are dis-
cussed in Sec. 2. Some fundamental spatial modulations of the
bilinear stiffness are presented and investigated in Sec. 3. Two non-
reciprocal models are designed and demonstrated in Sec. 4. Section
5 concludes the paper.

2 One-Dimensional Bilinear Chain Overview
Consider a spring-mass chain system consisting of a linear part

sandwiching a bilinear region as shown in Fig. 1. The bilinear
section is a chain of identical masses, weak dampers, and bilinear
springs with possible spatially dependent stiffness. The linear
section consists of two chains of identical masses and uniform
linear springs attached to both ends of the bilinear chain. An exter-
nal loading is applied to generate the incident pulse in the linear
chain. A perfectly matched layer (PML) is added to each end of
the test chain (labeled chain in Fig. 1) in order to eliminate reflec-
tions, and hence the bilinear chain lies between two effectively
semi-infinite linear chains. The PML is itself a chain of damped
oscillators with damping coefficients that are incrementally
“ramped-up” to prevent internal reflections [12].
The governing equations of the test chain system can be found by

concentrating on the jth mass and its nearest neighbors, as shown by
the central box in Fig. 1. The index j, which starts from 1 at the
beginning of the test chain, also represents the jth spring Kj or
damper Cj. Suppose that the number of masses in the linear part is
2 Nl and the number of masses in the bilinear part is Nbl. The total
number of identical masses in this test chain isN= 2 Nl+Nbl. There-
fore, the number of the linear springs is 2 (Nl+ 1) and the number of
the bilinear springs is Nbl− 1. The total number of all springs is N+
1. The equation of motion for the jth mass is as follows:

M Üj − [Kj+1 (Uj+1 − Uj) + Kj (Uj−1 − Uj)]

− [Cj+1 (U̇ j+1 − U̇j) + Cj (U̇ j−1 − U̇j)] = F δ j1 , j = 1, . . . , N

(1)

A pulse is used for the investigation of non-reciprocal proper-
ties [16]. The specific pulse adopted here is generated by an external
harmonic loading of the form F = ±F0 H(T)H(2π/Ω − T) sinΩT ,
where F0 > 0 is the forcing amplitude and Ω is the excitation
frequency. The positive sign results in an incident pulse with com-
pression followed by tension, called a compression–tension (CT)
pulse (see Fig. 2). Conversely, the negative sign produces a
tension–compression (TC) type of pulse.

We rewrite the equation of motion (Eq. (1)) in terms of dimen-
sionless displacement u and time t

u =
U

L
, t = Ω0 T (2)

whereΩ0 =
�������
K0/M

√
is the basic frequency and K0 is the linear stiff-

ness. The dimensionless form of Eq. (1) is

u′′j − [κ j+1 (u j+1 − uj) + κ j (u j−1 − uj)]

− [ζ j+1 (u
′
j+1 − u′j) + ζ j (u

′
j−1 − u′j)] = f δ j1, j = 1, . . . , N

(3)

where u′ and u′′ denote the derivatives with respect to dimensionless
time t, and the dimensionless stiffness and damping coefficients are

κj =
Kj

K0
, ζj =

Cj������
MK0

√ (4)

and the dimensionless external forcing is

f = ±f0 H(t)H 2π
ω

− t

( )
sinωt (5)

with f0=F0/(L K0) and ω=Ω/Ω0. Both the dimensionless stiffness
κj and the dimensionless damping coefficient ζj depend on their
location or the index j. In the linear sections, the index takes the
values 1≤ j≤Nl+ 1 or Nl+Nbl < j≤N+ 1, and in the bilinear
middle section, Nl+ 1 < j≤Nl+Nbl. The stiffness is

κj =
1 + Δ j,c if uj − u j−1 < 0 bilinear section
1 + Δ j,t if uj − u j−1 > 0 bilinear section
1 linear sections

⎧⎨
⎩ (6)

where Δj,c and Δj,t are the dimensionless compressive and tensile
stiffness increment, respectively. In terms of the bilinear stiffness,
Δj=ΔKj/K0 with ΔKj assuming different values depending on
whether the spring is in compression or tension. The damping coef-
ficient is taken as

ζj =
ζ0 bilinear section
0 linear sections

{
(7)

where ζ0 is the constant damping coefficient in the bilinear chain.
Expressions for the stiffness and damping coefficient in the PML
can be found in Appendix A. Damping is not included in the
linear sections so that we can more clearly see the incident and
transmitted waves. The weak dampers in the bilinear section do
not significantly affect the transmission. However, a small
amount of damping has a strong smoothing effect in the presence
of discontinuities, such as eliminating those shock-like structures
that can arise in bilinear media. Details of comparison with and
without damping are included in Appendix B. In this paper, we
choose to include sufficient damping such that the transmitted
wave forms are smooth. This allows us to make quantitative com-
parisons between transmission for incidence from opposite
directions.

Fig. 1 Schematic view of the 1D test chain system of identical masses with uniform linear springs and spatially varying bilinear
springs. A PML is attached to each side of the test chain. An external force F is applied on the first mass in the linear chain on the
left. The length L, assumed uniform, denotes the spacing between the equilibrium positions of two adjacent masses. Index j
denotes the mass number, with identical masses m assumed. The box in the middle is the unit cell for equilibrium. Uj denotes
the displacement of the jth mass; Kj and Cj denotes the jth spring and damper between jth and ( j−1)th mass, respectively.
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The system of N linear and bilinear ordinary differential equa-
tions, Eq. (3), is solved numerically using ODE45 in MATLAB with
time step Δt= 0.01.

3 Spatial Modulation of the Bilinear Stiffness
In this section, we explore the dynamic properties of several

underlying spatial modulations of the bilinear stiffness in the test
chain. The designs strictly follow the principle of spatial inhomoge-
neity and asymmetry which are critical for creating non-reciprocal
propagation in the presence of nonlinearity.
A CT pulse, generated by setting a positive sign in the external

forcing (Eq. (5)), is used to test the different modulations. As
Fig. 2 depicts, the positive displacement corresponds to the move-
ment of mass to the right and the negative to the left. Numerical
results presented in this section are obtained using the parameters
listed in Table 1.
We first assume that the stiffness of the bilinear spring is greater

in compression than in tension. For simplicity, we set the stiffness in
tension equal to the linear stiffness. Therefore, Δj,c>Δj,t= 0.
Suppose that the increment Δj,c can be either linearly increasing
or decreasing over location with non-dimensional stiffness
ranging in values between 1 and 2. For the linearly increasing mod-
ulation with Nl+ 1 < j≤Nl+Nbl, we have

Δ j,c =
j − Nl − 1
Nbl − 1

(8)

and for the linearly decreasing modulation

Δ j,c =
Nl + Nbl + 1 − j

Nbl − 1
(9)

Figures 3(a) and 3(b) depict the stiffness modulations of Eqs. (8)
and (9), respectively.
Figures 3(c) and 3(d ) show the displacement fields along the test

chain at four different moments tn= n t1 (n= 1, 2, 3, 4) where t1=
44 for modulations Figs. 3(a) and 3(b), respectively. The incident
pulse propagates from left to right. Since a compressive wave
travels with a higher speed than a tensile one in the bilinear

chain, we expect an increase in the distance between compressive
and tensile zones with time for both modulations. A zero deforma-
tion zone, which is the horizontal region with nearly constant pos-
itive displacement, clearly indicates that the gap between
compressive and tensile wave fronts is increasing with time. This
phenomenon always happens when a faster wave is followed by a
slower one.
Note that Figs. 3(a) and 3(b) consider a stiffness modulation

slope of 1/100 (maximum value of Δj,c/number of bilinear
springs) with the maximum Δj,c equal to 1. By modifying the
slope of the stiffness curve (increasing or decreasing the
maximum value of Δj,c), we find that the length of the zero defor-
mation regime changes. See details in Appendix C.
It is clear that the different modulations of the bilinear stiffness

result in distinct propagation processes. The decreasing modulation
(Fig. 3(b) and Eq. (9)) leads to a more effective increase in the dis-
tance between two zones than the increasing modulation (Fig. 3(a)
and Eq. (8)) because it is evident that an almost-zero deformation
zone appears between times t1 and t2 in Fig. 3(d ). By contrast, in
Fig. 3(c), a noticeable almost-zero deformation zone appears
between t2 and t3.
The modulations of Figs. 3(a) and 3(b) induce impedance discon-

tinuities, which in turn cause reflections. The discontinuity for
Fig. 3(a) is seen as the incident wave from the left exits the bilinear
chain, and conversely the discontinuity for Fig. 3(b) occurs as the
wave enters the bilinear section. Interestingly, the latter situation
results in a larger transmitted displacement amplitude, and in both
cases, the transmitted displacement amplitudes are only slightly dif-
ferent from the incident amplitude. It is difficult to quantify the
effect of impedance discontinuities for linear-to-bilinear springs
since the latter do not have a single impedance. Any model of reflec-
tivity at such interfaces would necessarily depend upon the pulse
shape; however, we do not pursue that question in this paper.
We now examine the case where the bilinear spring stiffness is

greater in tension than in compression: Δj,t >Δj,c= 0. As before,
two types of modulations are considered for Nl+ 1 < j≤Nl+Nbl:
the linearly increasing modulation

Δ j,t =
j − Nl − 1
Nbl − 1

(10)

and the linearly decreasing modulation

Δ j,t =
Nl + Nbl + 1 − j

Nbl − 1
(11)

Figures 4(a) and 4(b) show the modulations of Eqs. (10) and (11),
respectively.
Figures 4(c) and 4(d ) depict the displacement fields for modula-

tions Figs. 4(a) and 4(b), respectively. These modulations are of
particular interest due to the fact that a slower wave speed is

Table 1 Parameters for numerical experiments: Npml is the
number of mass in each PML; Nl and Nbl are the numbers of
masses in different parts of the chain system, see Eqs. (6) and
(7); ζ0 is the dimensionless damping coefficient in Eq. (7); and
f0 is the dimensionless force amplitude in Eq. (5)

Npml Nl Nbl ζ0 f0 ω

200 49 101 0.1 0.01 0.5

(a) (b)

Fig. 2 Incident pulses generated by an external forcing propagate in the linear chain
and form the incident wave on the bilinear section. The dashed line divides the pulse
into two different parts each of which contains springs in the same state, compres-
sion or tension. (a) CT pulse and (b) TC pulse.
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(a) (b)

(c) (d )

Fig. 3 Dynamic properties of the bilinear spring chain with compressive stiffness
varying linearly with position. The shaded region is the bilinear part of the test chain.
(a) and (b) Two basic bilinear stiffness spatial modulations. (a) Linearly increasing com-
pressive stiffness. (b) Linearly decreasing compressive stiffness. (c) and (d) Displace-
ment fields at different moments for modulations (a) and (b), respectively.

(a) (b)

(c) (d )

Fig. 4 Dynamic properties of the bilinear spring chain with linearly varying tensile stiff-
ness. The two basic spatial modulations of bilinear stiffness are shown in (a) linearly
increasing tensile stiffness and (b) linearly decreasing tensile stiffness while (c) and (d)
are the corresponding displacement fields of the test chain at different moments.
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followed by a faster one in the bilinear chain. Consequently, the
faster tensile wave front catches up with the slower compressive
one, which makes a CT pulse change to TC one after transmission.
This phenomenon of pulse-type change always happens when a
slower wave is followed by a faster one. Similarly, we can
observe distinct propagation processes for the different modula-
tions. The linearly decreasing modulation (Fig. 4(b) and Eq. (11))
results in an effective change of pulse type that happens between
times t2 and t3 in Fig. 4(d ). However, for the other modulation
(Fig. 4(a) and Eq. (10)), the change in pulse type takes place
between t3 and t4 in Fig. 4(c).
Finally, we note the alternative TC incident pulse, which is gen-

erated by setting the negative sign in Eq. (5). Based on the previous
findings, we expect (i) a change of pulse type for the modulations
with the greater compressive stiffness and (ii) an increase in the dis-
tance between two zones for the modulations with the greater tensile
stiffness. These expected dynamic properties are corroborated in
Appendix C.
To sum up, the various spatial modulations of the bilinear stiff-

ness investigated in this section can be used as the building
blocks for more complex bilinear chain models with the potential
of significant violation of wave reciprocity. This possibility is
explored in the next section.

4 Non-Reciprocal Properties of the Bilinear Chain
4.1 Two Non-Reciprocal Models. Based on the findings in

Sec. 3, we now design two spatially asymmetric and inhomoge-
neous models to break wave reciprocity. The bilinear chain in
either model of Fig. 5 can be separated into two parts each of
which is of the same form as one of the fundamental stiffness
modulations discussed in Sec. 3. In the following discussions,
blue and red arrows indicate the opposite pulse propagation direc-
tions in these models; blue for incidence from the left and red
from the right.
We first define the models’ parameters. For a pulse incident from

the left , the section on the left-hand side of the dashed line is similar
to the modulation in Fig. 3(b), but with different slope. The
maximum difference between the compressive and tensile stiffness
of the bilinear spring is a, and the total number of bilinear springs in
this part is c. The section on the right is analogous to the modula-
tion in Fig. 4(a) with the maximum stiffness difference b and
the total bilinear springs number d. The index j takes the values
Nl+ 1 < j≤Nl+ 1+ c(Nbl− 1)/(c + d) for the section on the left
and Nl+ 1+ c(Nbl− 1)/(c + d) < j≤Nl+Nbl on the right. Hence,

the dimensionless stiffness incrementsΔj,c andΔj,t can be expressed
as

Δ j,c =
a
Nl + 2 +

c

c + d
(Nbl − 1) − j

c

c + d
(Nbl − 1)

left section

0 right section

⎧⎪⎪⎨
⎪⎪⎩

Δ j,t =

0 left section

b
j − Nl − 1 −

c

c + d
(Nbl − 1)

d

c + d
(Nbl − 1)

right section

⎧⎪⎪⎨
⎪⎪⎩

(12)

For pulse propagation from the right, the right-hand section is anal-
ogous to the modulation in Fig. 4(b) and the section on the left to the
modulation in Fig. 3(a). The dimensionless stiffness increments
follow accordingly; see Appendix D for details.
Our objective is that a CT pulse incident from the left produces a

transmitted pulse with the same pulse type as the incident one and of
comparable amplitude. Therefore, a long enough distance between
the compression and tension zones is necessary in the left section.
We introduce the linearly decreasing modulation in this section. If
we set a small but c large as model I in Fig. 5(a) shows, the
effect of the other section on the right is consequently weak
because of the linearly increasing modulation and the small value
of d. For model I, we have a< b and c> d. Alternatively, we set a
large but c small in the left section for model II depicted in
Fig. 5(b), and consequently the effect of the other section is weak
because of the linearly increasing modulation and the small value
of b. We have a> b and c< d for model II. When the same CT
pulse is incident from the right, we require that the catch-up phe-
nomenon takes place sequentially in each section to gradually min-
imize the pulse amplitude. In order to ensure the change in pulse
type in the section on the right, we apply the linearly decreasing
modulation in that region. We can either set b large and d small
as model I in Fig. 5(a) shows or b small but d large as model II
in Fig. 5(b) shows for this section. The linearly increasing modula-
tion and the small value of a in model I or increasing modulation
plus small c in model II causes the catch-up process in the section
on the left to be relatively weak for both models.

4.2 Optimal Non-Reciprocity. Numerical simulations were
performed to test for non-reciprocal transmission. All results pre-
sented in this section are obtained using the parameters of
Table 1 with totally 100 bilinear springs.

(a) (b)

Fig. 5 Asymmetric stiffness-location modulation models. The dashed line separates the
bilinear chain into two parts. On the left-hand side, a is the maximum difference between
the stiffness of a bilinear spring in compression and in tension, and c is the number of
the bilinear springs in this part. On the right-hand side, b is the maximum stiffness differ-
ence, and d is the number of bilinear springs. For model I, we have a<b and c>d; a>b
and c<d for model II. In subsequent simulations, the blue and red arrows are used to indi-
cate the opposite pulse propagation directions: blue for incidence from the left and red from
the right. (a) Modulation model I. (b) Modulation model II. (Color version online.)
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We start with model I in Fig. 5(a) for an incident CT pulse. We fix
the values of a, c, and d listed in Table 2 and vary the value of b only.
Figures 6(a) and 6(c) show the transmitted pulse amplitudes for dif-
ferent values of b/a. The incident pulse from the left first shows an
effective increase in the distance between compressive and tensile
zones in the section on the left. Then, the slow catch-up decreases
the pulse amplitude in the section on the right. We therefore expect
a CT pulse with diminished amplitude after transmission as shown
in Fig. 6(a). Conversely, the same pulse propagating from the right
first has an effective catch-up in the right section, which results in
a change of pulse type. In the left section, the second catch-up
process evolves slowly. We therefore expect a TC pulse if no pulse-
type change occurs, e.g., cases b/a= 6, 8, 10 in Fig. 6(c), or the exis-
tence of both pulse types such as case b/a= 4, or a CT pulse with the
smaller amplitude if the fully second pulse-type change happens like
case b/a= 2. Most importantly, the amplitudes of the transmitted
waves from the opposite directions are of different orders of magni-
tude, as evident from Figs. 6(a) and 6(c), demonstrating significant
non-reciprocal transmission.
Transmission from the opposite incidence directions is quantified

by calculating the amplitude ratios of the transmitted and incident
pulses based on the data in Fig. 6. These demonstrate significant
wave non-reciprocity. Figure 7(a) shows results for all b/a cases.

Since the transmitted envelope (transmitted results for incidence
from the right) consists of two types of pulses, we only take one
of the greater absolute value into consideration. Here, we consider
fully non-reciprocal or one-way propagation to be approximately
achieved when the absolute amplitude ratio in Fig. 7(a) is less
than 10%. To find the value of b/a that satisfies this almost-zero
transmission condition, we introduce a box to Fig. 7(a). The
upper and lower edges of the box, respectively, indicate the 10%
and 0% amplitude ratios, and left and right edges give us the bound-
aries of the b/a range. Since the pulse propagation from the right
results in almost zero transmission but the transmitted pulse from
the left remains significant in amplitude, and the difference
between the amplitude ratios for the opposite propagation direction
is about one order of magnitude, we conclude that essentially
one-way propagation can be realized using model I.
Next, model II in Fig. 5(b) is considered with only the value of a

varied, and the ratio a/b is used as the indicator for different tests;
the values of b, c, and d are listed in Table 2. The CT pulse goes
through the exactly same process as we described in the first
model. Figures 6(b) and 6(d ) show the transmitted pulse amplitudes
from the opposite directions for various values of a/b, demonstrat-
ing evident non-reciprocal transmission. In Fig. 7(b), we find a
broader parameter range that gives almost-zero transmission in
model II, as compared with model I. As a result, one-way propaga-
tion can be realized in model II over a wide range of parameters,
allowing tuning of the transmitted pulse.
Finally, we consider the non-reciprocal effect from the perspective

of total incident and transmitted energy, kinetic plus potential. We
calculate the input energy after the external forcing is fully applied;
the transmitted energy is measured after the transmitted pulse has
fully entered the linear part of the chain system as shown in Fig. 6.
The velocities of the masses yield the kinetic energy and the relative
displacements between adjacent masses define the potential energy.
We focus on the non-dimensional ratio of transmitted to incident

(a) (b)

(c) (d)

Fig. 6 Transmitted amplitudes for the twomodels in Fig. 5: (a) and (c) model I on the left and
(b) and (d) model II on the right. The curve indicated in (a) and (b) is the incident CT pulse;
other curves represent the transmitted waves. Transmitted results for incidence from the
left for model I are in (a) and from the right in (c), in both cases for b/a=2, 4, 6, 8, 10, demon-
strating very significant non-reciprocal transmission; similar phenomena are evident in (b),
the resultsof incidence fromthe left, and (d), incidence fromthe right,whichconsidera/b=2,
4, 6, 8, 10 for model II.

Table 2 Parameters for the non-reciprocal models of Fig. 5,
using Eq. (12), to calculate the bilinear stiffness increments

a b c d

Model I 1 1–10 67 33
Model II 1–10 1 33 67

Note: For model I, a, c, and d are fixed and only b changes; for model II, we
set b, c, and d constant and vary only a.
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energy. Figure 8(a) shows the energy ratios for various b/a values in
model I. Comparison with the results in Fig. 7(a) shows that both
absolute amplitude ratios and energy ratios show similar tendencies
as functions of b/a. This phenomenon is also found in Fig. 8(b) which
depicts all a/b cases in model II. Therefore, b/a and a/b values which

satisfy the almost-zero transmission condition from the amplitude
perspective also produce significantly low transmitted energy. Fur-
thermore, we find that a considerable amount of the incident energy
is lost in transmission, over half as Fig. 8 shows. The remaining
energy is mainly reflected with a small amount lost from damping.

(a) (b)

Fig. 7 Transmission ratios for the two models in Fig. 5. The transmission is quantified by
measuring the amplitude ratios of the transmitted and incident pulses based on the data in
Fig. 6. The upper plots in (a) and (b) denote the ratios of incidence from the left, and the
lower plots show the incidence from the right. Pulses maintain the same type (CT) before
and after transmission for incidence from the left; the transmitted envelopes consist of
CT and TC pulse for incidence from the right and we pick one of the greater absolute
value for calculation. We consider that almost-zero transmission occurs when the absolute
amplitude ratio is less than 10%. The boxes indicate the range of b/a and a/b values that
satisfy the almost-zero transmission condition. Model II has a broader parameter range
for one-way propagation.

(a) (b)

Fig. 8 Transmitted energy ratios for the two models in Fig. 5. The upper plots in (a) and (b)
denote the ratios of incidence from the left, and the lower plots show the incidence from the
right. The values of b/a and a/b which satisfy the almost-zero transmission condition in
Fig. 7 also produce significant non-reciprocal energy transmission.

(a) (b)

Fig. 9 Transmission as a function of frequency for model I with b/a=4 from amplitude and
energy perspectives: (a) transmitted amplitude and (b) transmitted energy. The box in (a)
indicates the frequency range for almost-zero transmission according to its definition
(ratio <10%). The additional curve in (b) is the ratio of the transmitted energy for incidence
from the right versus left.
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Only the CT incident pulse has been considered in this section.
Non-reciprocal wave behavior is also found for TC input pulses,
with details given in Appendix E.

4.3 The Effect of Incident Frequency on Non-Reciprocity.
Here, we consider non-reciprocal transmission for a given model

optimized with constant value of incident frequency ω and
examine how it behaves for different frequencies.
Significant non-reciprocitywas found in Sec. 4.2 for the case b/a=

4, based on the results in Figs. 7(a) and 8(a). We therefore focus on
model I with fixed b/a= 4 and examine what happens as ω is
varied. Figure 9(a) shows that the transmitted amplitude is strongly
dependent on the incident frequency. The almost-zero transmission
condition (absolute amplitude ratio <10%) can only be satisfied
over a relatively small frequency range around ω= 0.5, as the box
in Fig. 9(a) shows. The behavior of the right-to-left transmitted
energy ratio in Fig. 9(b), is consistent with this conclusion. These
limited parameter studies suggest that the bilinear non-reciprocity
effect is a relatively narrow band phenomenon.
However, for any given input forcing frequency ω, there is

always a model (a set of parameters) giving significant non-
reciprocal transmission. We consider non-dimensional frequency
ω from 0.3 to 0.8 for model I and vary the parameter b/a (the rest
of the parameters remain the same as in Table 2) to obtain
optimal non-reciprocity. Table 3 shows the parameter b/a and cor-
responding transmission ratios when significant non-reciprocal
propagation occurs. We note that all absolute amplitude ratios
(AR/L) in this table are less than 15% and all energy ratios (ER/L)
are less than 1%.

Table 3 The model parameter b/a and corresponding
transmission ratios when the non-reciprocal wave motion
occurs for different values of the incident pulse frequency ω

ω b/a AL AR/L EL ER/L

0.3 10 0.660 0.126 0.407 0.033
0.4 6 0.672 0.099 0.356 0.024
0.6 2 0.825 0.088 0.311 0.025
0.7 1.5 0.876 0.110 0.207 0.051
0.8 1.2 0.757 0.146 0.147 0.095

Note: AL and EL are the amplitude and energy magnitudes from the left,
relative to incident values. AR/L and ER/L represent ratios for incidence
from the right versus left.

(a) (b)

(c) (d)

(e) (f )

Fig. 10 Dynamic properties of model I with b/a=4 when the incident wave consists of mul-
tiple cycles of a CT pulse. The plots on the left (right) correspond to incidence from the left
(right). From the perspective of total energy, we find that EL=0.180 and ER/L=0.019 for (c)
and (d); and for (e) and (f), EL=0.112 and ER/L=0.019.
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4.4 Propagation of Different Types of Incident Wave. Our
design of the non-reciprocal bilinear system is based on a single
cycle of a CT or TC pulse. Here, we explore more general scenarios
where the incident wave either consists of several cycles of a single
pulse type or is a combination of both pulse types. We consider
model I with b/a= 4 for testing (see Fig. 5(a), with the other param-
eters as the same in Table 2).
Significant non-reciprocal wave motion is still observed if

the incident wave consists of several cycles of a single pulse
type, CT or TC. Figure 10 shows the dynamic response of model
I for an incident wave consisting of n cycles of a CT pulse, for
n= 1, 2 and 4, corresponding to the forcing (obtained according
to Eq. (5))

f = f0 H(t)H 2nπ
ω

− t

( )
sinω t (13)

In each case of the wave with multiple cycles incident from the
left, it is observed that the transmitted wave is a single cycle but
extended in space and time. This characteristic shape is due to
an approximate zero deformation zone in the transmitted wave.
Conversely, a multiple cycle wave incident from the right pro-
duces a very low amplitude transmitted wave.
Finally, we consider an incident wave that contains both CT and

TC pulse types. The forcing

f = f0 H(t)H 2π
ω

− t

( )
sinω t

− f0 H t −
2π
ω

( )
H 4π

ω
− t

( )
sinω t (14)

produces the incident wave in Figs. 11(a) and 11(b), which is a CT
pulse followed by a TC pulse. The incident wave in Figs. 11(c) and
11(d ) is two cycles of the CT/TC pulse. In both cases, Fig. 11 shows
that there is always a non-zero transmitted pulse of either CT or TC
type, with the pulse type dependent on the incidence direction.

Thus, incidence from the left (right) produces a transmitted
wave that is purely of CT (TC) type. This phenomenon can be
understood by recalling Fig. 6 for CT incidence and Fig. 15 in
Appendix E for TC incidence. When a wave consisting of both
pulse types propagates from one side, one of them results in zero
transmission (e.g., TC input pulse propagates form left in model
I, as Fig. 15(a) shows) and the other a transmitted pulse with type
unchanged and amplitude slightly decreased (e.g., CT input pulse
propagates form left in model I, as Fig. 6(a) shows). In sum, the
transmission is purely CT or TC for incidence from the left or
right, respectively. This filtering effect is strongly non-reciprocal.

5 Conclusion
We have demonstrated a passive 1D spring-mass-damper chain

structure that breaks elastic wave reciprocity. Amplitude-
independent non-reciprocity is a result of introducing bilinear
springs and carefully designing the spatially inhomogeneous and
asymmetric modulations of the bilinear stiffness. A compression–
tension pulse is used to quantify non-reciprocal transmission. Inci-
dent pulses from opposite directions result in significantly different
transmitted pulses; almost-zero transmission with significant trans-
mission from the other direction has been demonstrated. The results
shown here indicate that a simple 1D bilinear chain system can
produce non-reciprocal wave dynamics and is therefore suited for
a variety of elastic wave control mechanisms, such as one-way
propagation, pulse-type inversion, pulse-type filtering, etc. More-
over, these simple models can work as the building blocks for
some more complex, higher dimensional non-reciprocal structure
designs.
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(a) (b)

(c) (d)

Fig. 11 Dynamic properties of model I for an incident wave consisting of both pulse types. The plots
on the left (right) correspond to incidence from the left (right). The incident wave in (a) and (b) corre-
sponds to the forcing (Eq. (14)).
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Appendix A: Stiffness and Damping Coefficients in
the Perfectly Matched Layer
A PML is attached to the test chain at each end to eliminate

reflections, see Fig. 1. Suppose that the index j starts from 1 at
the beginning of the PML on the left. Each PML is a linear
spring-mass-damper chain in which the damping coefficients are
“ramped-up” to avoid internal reflections. The location-dependent
parameters of the left and right PMLs are symmetric about the
central test chain. Here, we concentrate on the PML on the left in
which the dimensionless stiffness is κj= 1. The PML index takes
the values 1≤ j≤Npml, with dimensionless damping coefficient

ζj = ζmax
Npml + 1 − j

Npml

( )3

(A1)

where ζmax is the maximum damping coefficient of the PML. All the
numerical experiments take ζmax= 10.

Appendix B: The Effect of Damping in the Bilinear Chain
We include damping in the bilinear section in order to understand

how any realistic damping affects wave propagation. Figure 12
compares cases with and without damping. We find that the weak
dampers in the bilinear chain do not significantly affect the propa-
gation results in terms of the pulse shape and size. Shock-like
wave structures can be observed in Fig. 12(a). Damping has a
strong smoothing effect as can be seen in Figs. 12(b) and 12(c).
In particular, Fig. 12(c) shows a clear pulse shape with the charac-
teristic feature of a zero deformation zone. For this reason, we
choose to set dimensionless damping coefficient ζ0= 0.1 for numer-
ical simulations in this paper.

Appendix C: Spatial Modulation of the Bilinear Stiffness
The fundamental modulations in Sec. 3 are designed based on the

rule of spatial inhomogeneity and asymmetry, necessary but not
sufficient for achieving wave non-reciprocity. Spatial inhomogene-
ity and asymmetry are obtained by a linear modulation of the stiff-
ness. Figure 13 shows how the slope of the stiffness curve affects
transmission, in this case through the length of the zero deformation
regime. The reason is that larger values of Δj,c increase the slope of
the stiffness curve, leading to greater compressive wave speeds,
which in turn results in larger sizes of the zero deformation zone.
A TC pulse is used for testing the different configurations, gen-

erated using the negative sign in the external loading (Eq. (5)).
Assuming that the stiffness of the bilinear spring is greater in com-
pression than in tension, we set Δj,c>Δj,t= 0 and Δj,c changes lin-
early over location according to Eqs. (8) and (9). Figures 14(a) and
14(b) depict the displacement fields along the test chain at four dif-
ferent moments for the stiffness modulations of Figs. 3(a) and 3(b),
respectively. Conversely, when the bilinear spring has a greater
stiffness in tension than compression: Δj,t >Δj,c= 0 where Δj,t

changes linearly according to Eqs. (10) and (11), the displace-
ment fields for the modulation of Figs. 4(a) and 4(b) are shown in
Figs. 14(c) and 14(d ), respectively.

Appendix D: Dimensionless Stiffness for Incidence From
the Right
Two asymmetric stiffness-location modulation models for break-

ing wave reciprocity are considered, as shown in Fig. 5. The designs
are based on the fundamental asymmetric nonlinear configurations
in Sec. 3. For pulse propagation from the right (as the red arrow
indicates), the index j starts from 1 at the right end of the test

(a) (b) (c)

Fig. 12 A comparison of the response with and without damping in the bilinear section. (a) The displacement fields at
different instants for the modulation of Fig. 3(a) without damping, (b) and (c) with constant weak damping (ζ0=0.05 and
0.1, respectively).

(a) (b)

Fig. 13 The effect of the stiffness modulation slope in Fig. 3(a) on the length of the zero
deformation zone. Zero deformation is barely observed in (a). However, as compared with
Fig. 3(c), (b) indicates that the greater slope leads to a significantly longer zero deformation
regime. (a) Slope = 0.5/100 and (b) Slope = 2/100.
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(a) (b)

(c) (d )

Fig. 14 Dynamic properties of the bilinear spring chain. (a) and (b) The displacement fields
of the bilinear chain at four different moments for modulations given by Figs. 3(a) and 3(b),
respectively. (c) and (d) The displacement fields for modulations shown in Figs. 4(a) and
4(b), respectively.

(a) (b)

(c) (d)

Fig. 15 Transmitted amplitudes for the two models in Fig. 5 with a TC input pulse:
(a) and (c) model I on the left and (b) and (d) model II on the right. The curve with
the largest pulse amplitude in (c) and (d) is the incident TC pulse; other curves repre-
sent the transmitted waves. Incidence from the left for model I is in (a) and from the
right in (c), in both cases for b/a=2, 4, 6, 8, 10, demonstrating very significant non-
reciprocal transmission; similar phenomena are evident in (b), the results of incidence
from the left, and (d), incidence from the right, which consider a/b=2, 4, 6, 8, 10 for
model II.
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chain in Fig. 1 (reverse parity) and takes the value Nl+ 1 < j≤Nl+
1+ d(Nbl− 1)/(c + d) for the right section of the bilinear part and
Nl+ 1+ d(Nbl− 1)/(c + d) < j≤Nl+Nbl for the left. The dimen-
sionless stiffness increments Δj,c and Δj,t are

Δ j,c =

0 right section

a
j − Nl − 1 −

d

c + d
(Nbl − 1)

c

c + d
(Nbl − 1)

left section

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δ j,t =
b
Nl + 2 +

d

c + d
(Nbl − 1) − j

d

c + d
(Nbl − 1)

right section

0 left section

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(D1)

Appendix E: Propagation of a Tension–Compression
Input Pulse
A CT incident pulse is considered in Sec. 4 for demonstrating

non-reciprocal wave effects. In the same way, it is able to realize
non-reciprocal wave behavior when the input pulse is TC type, as
shown in Fig. 15. Figures 15(a) and 15(c) show the transmitted
pulse amplitudes for different b/a values in model I. These results
are equivalent to sign inversion of the data presented in Figs. 6(d )
and 6(b), which are the results for CT pulse incidence. The same
phenomenon can be found in model II. Table 4 summarizes the rela-
tionship between the simulation results using the two different inci-
dent pulse types.
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Table 4 The relation between the simulation results of the cases using CT pulse in Fig. 6 and TC pulse in Fig. 15

Model I (L) Model I (R) Model II (L) Model II (R)

CT pulse Fig. 6(a) Fig. 6(c) Fig. 6(b) Fig. 6(d)
TC pulse Fig. 15(a) = −Fig. 6(d ) Fig. 15(c) = −Fig. 6(b) Fig. 15(b) = −Fig. 6(c) Fig. 15(d) = −Fig. 6(a)

Note: L and R represent the case of incidence from the left and right, respectively. The negative sign in the second row denotes sign inversion of the
displacements.
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