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We derive a formula for the gradients of the total scattering cross section (TSCS) with respect
to positions of a set of cylindrical scatterers. The analytic form enhances modeling capability when
combined with optimization algorithms and parallel computing. As application of the method we
consider a gradient-based minimization of TSCS for a set of cylindrical obstacles by incrementally
repositioning them so that they eventually act as an effective cloaking device. The gradient-based
optimization algorithm reduces the TSCS by evaluating its derivative with respect to the cylinder
positions and then perturbatively optimizing the position of each cylinder in the cloaking device
while taking into account acoustic multiple scattering between the cylinders. The method is illus-
trated for clusters of hard cylinders and sets of elastic thin shells in water.
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1. Introduction

An acoustic cloak renders an object invisible to incident waves. There are two types of
acoustic cloak, namely, passive 1,2,3 and active 4. Here, we consider passive mechanisms,
and propose a semi-direct method for cloaking design using gradient-based optimization al-
gorithms. In particular we demonstrate how the analytical form of gradients of the objective
function improves the accuracy of the optimized solution. Passive cloaking can be achieved
using metamaterials with the acoustic anisotropy required by Transformation Acoustics
1,2,3. Here, however, we seek more limited cloaking for a limited incidence direction at a
single frequency and band of frequencies by minimizing the scattering of a given cluster
of scatterers. This can indeed be achieved with an appropriate arrangement of the targets.
If one allows for rearrangement then the same cluster can operate at different, although
unique, frequencies.

In the first study in this area Garcia-Chocano et al. 5 proposed an inverse design of a 2D
acoustic cloak for airborne sound using a multiple scattering (MS) theory and non-gradient
optimization technique combining genetic algorithms (GA) and simulated annealing (SA).
They 6 further designed a 3D axisymmetric cloak and demonstrated the cloaking perfor-
mance experimentally. They had previously used MS theory and GA in inverse design of
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photonic crystals 7 and flat acoustic lenses 8,9. Romero-García et al. 10 studied the optimiza-
tion of the attenuation and focusing of phononic crystal arrays resulting from the deliberate
creation of holes using multiobjective evolutionary algorithm and MS theory. Gao et al. 11

presented a dual-layer acoustic cloak made up of homogeneous single-negative medium us-
ing genetic algorithm. The parallelized version of genetic algorithms was also used by Serna
et al. 12 to design a multilayer homogeneous dielectric filler for electromagnetic invisibility
based on plasmonic cloaking.

Andkjær and Sigmund 13,14,15 designed a topology-optimized acoustic cloak that conceals
an aluminum cylinder from airborne sound using a gradient-based topology optimization
algorithm and FEM analysis; they also studied the dependency of cloaking performance on
the incidence angle, and designed a broadband cloak by optimizing it at three frequencies.
Lin et al. 16 also designed a broadband acoustic cloak using the gradient-based topology op-
timization. Diest 17 has discussed and reviewed optical metamaterial designs using gradient
free optimization such as direct methods, surrogate models, stochastic search algorithms as
well as gradient based optimization methods using level set method based on shape and/or
topological derivatives. Arridge and Schweiger 18 derived optical tomography schemes using
non-linear optimization and FEM analysis; they demonstrated a simple means to obtain
the gradient of the objective function directly, and applied gradient-based optimization
based on Newton-like methods. Amirkulova et al. 19 presented a gradient-based optimiza-
tion of pressure amplitude at the focal point to design an acoustic lens. Blankrot and and
Heitzinger 20 presented a gradient based optimization of dielectric metamaterial devices by
means of MS theory and FMM using Nyström discretization for a single prototype inclu-
sion. However, they 20 did not provide explicit analytical formulas for the gradients of the
objective function. Kalantari and Bakr 21 proposed 2D and 3D electric cloaks of arbitrarily
shaped objects using steepest descent approach with line search where the gradients were
supplied by an adjoint variable method. Chen et al. 22 used the gradient descent method
to solve different material design optimization problems; they discussed both eigenfunction
optimization and level sets optimization algorithms, and demonstrated the robustness of
the gradient based approach with numerical results. Ronellenfitsch et al. 23 presented the
spectral optimization of a set of spring stiffnesses in the unit cell to control the appearance
and number of band-gaps in the vibrational spectrum of an acoustic spring network. Per-
alta and Fachinotti 24 designed heat flux manipulation devices for heat concentration and
a cloak using a Discrete Material Optimization method and IPOPT software. However, a
cloak design using the analytical form of the gradients of the pertinent objective function
has not yet been shown. Fachinotti et al. 25 also used the Discrete Material Optimization
technique and the finite element method to design elastostatic cloaking device by solving a
nonlinear optimization problem where the objective function defines the error in matching
a desired displacement field.

One of the advantages of using stochastic global optimization is that these methods
do not require the evaluation of the gradient of the objective function. However, when the
analytical form of the gradient is available, it can be used to improve the numerical per-
formance of stochastic optimization enhancing the quality and precision of global optimal
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solution 26,27. The accuracy of solutions obtained with gradient-based optimization algo-
rithms 26,27 exceed those obtained with traditional stochastic algorithms such as GA and
SA. In addition, non-gradient optimization algorithms require orders of magnitude more
function evaluations than is required for gradient based optimization approaches 28.

In this work, we obtain a semi-analytical formula for the gradient of the Total Scattering
Cross Section (TSCS) with respect to cylinder positions. We combine these formulae with
gradient-based optimization algorithms and apply them to design a directional acoustic
cloak that conceals a ring of rigid cylinders (or elastic shells) submerged in water. This
enhances optimization studies by allowing the use of exact gradients with optimization
algorithms and parallel computing, reducing the number of function calls, time to converge
29, and improving the solution accuracy on large scales, especially at high frequencies and
for a large number of scatterers. As example application, we consider the minimization of
TSCS that leads to cloaking designs for acoustic waves for a given incident plane wave. The
acoustic cloaking device is achieved by optimizing the spatial placement and distribution
of the scatterers in the acoustic medium. The location and distribution of the cylinders
(shells) are optimized such that their combined scattering pattern cancel the scattering
from a cylinder or a configuration of cylinders located inside the cloaked region. Here, we
study how efficiently objects can be cloaked when using rigid cylinders and thin cylindrical
shells made of conventional simple isotropic materials readily available in nature.

The paper is organized as follows. Section 2 begins with a definition of the multiple
scattering problem and the position dependent total scattering cross section. Gradients
of the TSCS with respect to the scatterer positions are then obtained by means of MS
theory 30 and by employing the optical theorem. Some properties of the gradient vectors
are illustrated through numerical examples in Section 32.5. Application of the closed form
for the TSCS gradient to acoustic cloaking are given in Section 3.2. Single frequency and
broadband cloaking are illustrated using multiple reconfigurable cylinders as the cloaking
mechanism.

2. Problem definition

We consider multiple scattering in the context of the acoustic time harmonic wave equa-
tion in two dimensions. Time harmonic dependence e− iωt is assumed but omitted in the
following. The governing equation for the acoustic pressure p(x), x ∈ R2, is the Helmholtz
equation

∇2p+ k2p = 0, (2.1)

where k = ω/c is the wavenumber, c is the acoustic speed, and ω is the frequency. The
total field p(x) is defined as the sum of incident pinc and scattered psc pressure fields:

p = pinc + psc. (2.2)

The incident field is a plane wave which interacts with a given configuration of M

separate scatterers. For simplicity, we take these to be circularly cylindrical scatterers, which
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may be either rigid cylinders or thin elastic shells. Our objective is to reduce the scattering
by rearranging the scatterers. As a measure of the scattering we use total scattering cross
section (TSCS). The critical quantity that we use in the process is the gradient of the TSCS,
defined next.

2.1. Gradient of the scattering cross section

Fig. 1: An arbitrary planar configuration of M cylinders Sm with outer radius am and inner
radius bm, m = 1,M .

Let σ denote the total scattering cross section. For a single cylinder, σ is obviously inde-
pendent of the position of the scatterer. For a pair of cylinders, the TSCS depends on the
relative positions, σ = σ

(
r1−r2

)
, where the vectors r1, r2 define the cylinder centers shown

in Fig. 1. For M cylinders, we have dependence on M − 1 relative position vectors, e.g.

σ = σ
(
r1 − r2, r1 − r3, r1 − r4, · · · , r1 − rM

)
. (2.3)

This redundancy has the following physical implication. Define the gradient vectors

sj =
∂σ

∂rj
, j = 1, 2, . . .M. (2.4)

If scatterer j is moved incrementally by ∆rj the associated change in the TSCS is

∆σ =

M∑
j=1

sj ·∆rj . (2.5)

However, if all the scatterers are shifted (translated) the same amount, ∆rj = ∆r for all j,
then σ cannot change, i.e. ∆σ = 0. Since the direction of ∆r is arbitrary it implies

M∑
j=1

sj = 0. (2.6)
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This single relation for the M gradient vectors sj is a consequence of translation invariance.
It can also be seen as a result of direct differentiation of eq. (2.3).

2.2. Total scattering cross-section

The total scattering cross-section is directly related by the optical theorem to the scattering
amplitude in the forward direction, i.e. the direction of propagation of the incident plane
wave, here assumed to be e1 or the x−direction. Thus 31

σ = −2Re f(0). (2.7)

where the far-field amplitude form function, f(θ) = f(θ, r1, r2, . . . , rM ), θ = arg(x), is
defined by the scattered pressure psc in the far-field by eq. (A.16). Thus,

σ = −4

k
Re

∞∑
n=−∞

M∑
m=1

(− i)ne− i kxmB(m)
n (2.8)

where xm = e1 · rm. Let N be the truncation value of the infinite sum in eq. (2.8) chosen so
that the TSCS is well approximated. In practice, the value of N depends upon frequency,
but typically N ≈ 2.5ka is adequate, see Figure 2(a).
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(a) TSCS versus ka: M = 79 (b) Optimized configuration: M = 79

Fig. 2: Variation of TSCS versus non-dimensional wavenumber ka at different values of
mode order truncation, N , with N

ka = 2; 2.5; 2.75; 3; 3.5; 4.5 for a configuration optimized
at ka = 1.5 with M = 79 scatterers of radii a = 0.0075m, and depicted in Figure 2(b); the
optimization process is described in Section 3.2.

Introduce the vectors a,b ∈ CM×(2N+1). The components of the scattering coefficient
vector b = {B(j)

n }, j ∈ (1,M), n ∈ (−N,N), are B
(j)
n = {Bn(rj)} from eq. (2.8). The

elements of the dual vector a = {A(j)
n } = {An(rj)} are A

(m)
n = An(rm) = in ei kxm , such
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that

a =


a(1)

a(2)

...
a(M)

 , b =


b(1)

b(2)

...
b(M)

 , a(j) =


A

(j)
−N

A
(j)
−N+1

...
A

(j)
N

 , b(j) =


B

(j)
−N

B
(j)
−N+1

...
B

(j)
N

 . (2.9)

The TSCS can then be expressed

σ = −4

k
Re a†b (2.10)

where a† is the Hermitian transpose.

2.3. The scattering vector b

The column vector b satisfies the relation

Xb = a, (2.11)

where X is the interaction matrix that defines the coupling between each scatterer of the
configuration (see Appendix A for details)

X =


T(1)−1 −P1,2 −P1,3 · · · −P1,M

−P2,1 T(2)−1 −P2,3 · · · −P2,M

...
...

... . . . ...
−PM,1 −PM,2 −PM,3 · · · T(M)−1

 . (2.12)

Here T(j) is the transition or T-matrix for scatterer j, and Pj,m =
[
Pj,m

ql

]
is a Toeplitz

matrix that depends on the position vector rjm depicted in Figure 1. The matrix Pj,m

takes into account the interaction between the scatterers, whereas the transition matrix
T(j) depends on the shape and the physical properties of the material of cylinder, as well
as the boundary conditions on the interfaces.

The matrix X and its inverse is represented by four-indices, satisfying
M∑
i=1

∞∑
n=−∞

X−1
pqinXinml =

M∑
i=1

∞∑
n=−∞

XpqinX
−1
inml = δpmδql. (2.13)

Here we consider 2-dimensional configurations of circularly cylindrical scatterers, for which
the T-matrices become diagonal, see 32 for specific details. In particular, Pj,m =

[
P j,m
ql

]
for

j,m ∈ (1,M), j ̸= m, l, q ∈ (−N,N),

P j,m
ql = Pql(rjm) = H

(1)
l−q(krjm)ei(l−q) arg rjm (2.14)

where rjm = rj − rm and H
(1)
n is the Hankel function of the first kind of order n.
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Fig. 3: Variation of components of the gradient vector with non-dimensional wavenumber
for a configuration of M = 4 rigid cylinders that is non-symmetric with respect to the x

and y axes.

2.4. Explicit form of the gradient vector sj

The TSCS follows from (2.10) and (2.11) as

σ = −4

k
Re a†X−1a. (2.15)

This expression for σ, combined with the definition (2.4) will be used to find the gradient
of the TSCS. A critical simplification in the process is that the T-matrices are independent
of the scatterer positions. This is true not only for the circularly symmetric scatterers
considered here but more generally since the T-matrix is translation invariant. However, in
the more general case of non-circularly symmetric scatterers one can also define gradients
with respect to scatterer orientation, which are identically zero in the present case. Noting
that ∂X−1

∂r = −X−1 ∂X
∂r X

−1, the vector sj may be written as

sj = −4

k
Re

[∂a†

∂rj
b + a†X−1

( ∂a
∂rj

− ∂X
∂rj

b
)]

. (2.16)



8 Amirkulova and Norris

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Symmetric configuration: M = 4

0 5 10 15
ka

0

0.5

1

1.5

2

2.5

(b) Scattering cross-section

0 0.5 1 1.5 2 2.5ka
-15

-10

-5

0

5

10

15
s

x
sx1

sx2

sx3

sx4

(c) x component of sj

0 0.5 1 1.5 2 2.5ka
-15

-10

-5

0

5

10

15
s

y

sy1

sy2

sy3

sy4

(d) syj components

Fig. 4: Variation of components of a gradient vector, sj , with ka for a symmetric configura-
tion of M = 4 rigid cylinders. Here sx1 = −sx2 = sx3 = −sx4 andsy1 = sy2 = −sy3 = −sy4.

Based on the fact that the T-matrices are independent of position, the gradient of the
components of the matrix X are

∂Xinml

∂rj
=

{
Onlδij , i = m,

δjm
∂Pnl
∂rj (rji)− δji

∂Pnl
∂rj (rjm), i ̸= m,

(2.17)

where Onl are components of the zero matrix. The gradients in eq. (2.17) follow from

∂Pnl

∂rj
(rjm) =

k

rjm
V + ′

l−n(rjm) rjm +
i (l − n)

r2jm
V +
l−n(rjm) e3 × rjm, (2.18)

where V +
n and the derivative function V + ′

n are defined as

V +
n (x) = H(1)

n (k|x|)ein arg x, V + ′
n (x) = H(1)

n
′(k|x|)ein arg x. (2.19)

The gradient of the components of a with respect to the position of the j-th scatterer
is ∂a(m)/∂rj = δjma(m) ⊗ i k e1 ∈ CM×(2N+1) × C2. Finally, eq. (2.16) can be written in
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(d) TSCS after moving cylinder 1.

Fig. 5: Knowledge of the gradient provides a way to increase TSCS in a frequency range
where it does not display a local maximum. The initial and final TSCS are compared in
(b). Note that the displacement in (a) also produces a local minimum at about ka = 3. The
almost zero gradients in (d) verify the local minimum and maximum.

component form as

sj =− 4

k
Re

M∑
m=1

∞∑
l=−∞

[∂A∗
l (rm)

∂rj
B

(m)
l +A∗

l (rm)
M∑
i=1

∞∑
n=−∞

(X−1)lmin

×
(∂An(ri)

∂rj
−

M∑
p=1

∞∑
q=−∞

∂Xinpq

∂rj
B(p)

q

)]
, j ∈ (1,M). (2.20)

2.5. Numerical examples

The gradient sj has some interesting features that will be presented before considering
the cloaking problem. Figure 3 considers a configuration of four rigid cylinders that is not
symmetric with respect to the x and y axes. The numerical results show that while the sxj
and syj components have different values, the sum of all four components vanishes at every
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Fig. 6: The elapsed time spent in seconds for the sequential evaluation of TSCS, σ, and a
gradient vector, sj , with respect to wavenumber ka for a symmetric configuration of M = 4

rigid cylinders depicted in Figure 4 (a). The blue curve corresponds to elapsed time spent for
the individual evaluation of σ, and the red curve corresponds to the concurrent evaluation
of σ and gradient vectors sj evaluated at 1000 discrete values of ka ∈ (0, 15].

value of ka:
∑4

j=1 sxj = 0 and
∑4

j=1 syj = 0. Geometrical symmetry, such as the four rigid
cylinders in Figure 4, implies corresponding symmetry conditions on the gradient vectors.
In this case sx1 = sx3, sx2 = sx4, which, combined with the fact that

∑4
j=1 sxj = 0, means

that there is only one independent sxj . The y−components satisfy the geometrical identities
sy1 = −sy3 and sy2 = −sy4, but since these already guarantee that

∑4
j=1 syj = 0 the

latter does not provide any further information. However, one can use a different argument
to again show that there is only a single independent component. Consider the incident
wave as the sum of two fields: one comprising a wave from the left and a wave from the
right of equal amplitude, the other as two waves of opposite amplitude. These fields are
symmetric/antisymmetric about the y− and for each we see that sy1 = sy2 and sy3 = sy4.
In summary: sx1 = −sx2 = sx3 = −sx4 and sy1 = sy2 = −sy3 = −sy4.

Figure 5 illustrates a simple application of the gradient vector for maximizing the scat-
tering cross-section. For a given initial configuration of two rigid cylinders the cross-section
for ka ≤ 2.5 is as shown in Fig. 5c. The large gradient at approximately ka = 2.25 indicates
that slight relative movement of cylinder 1 could significantly effect the TSCS. Since both
components are negative and approximately equal, this suggests displacing the rigid cylin-
der as shown in Fig. 5a. The resulting TSCS is compared with the original in Fig. 5b, and
Fig. 5d now shows zero gradient at ka ≈ 2.25, indicating a local maximum in TSCS.

Figure 6 illustrates the elapsed time for the sequential evaluation of TSCS function, σ,
and gradient vectors sj as compared with the time taken for σ alone. There is an additional
cost for the gradient evaluation but this cost is compensated during the optimization process
when combined with parallel computation. Providing the gradients allows the solver to
converge faster and provide more accurate results. For example, for a multiring configuration
of thin elastic shells with M = 79 and ka = 0.15, using 4 CPUs on MacbookPro with 16GB
of RAM and providing the gradients reduced the total compute time for one optimization
simulation from 17.58 hours to 0.57 hours while improving the accuracy from 1.681e − 07
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to 1.145e− 07.

3. Minimizing scattering cross-section: acoustic cloaking

For given scatterer location points the gradients sj are in the direction of greatest increase
of TSCS. As seen in the example of Figure 5 this provides the optimal directions to increase
TSCS by incremental displacement. In contrast, in order to minimize the TSCS of cloaking
annulus we will move the cylinders in the annulus in the direction opposite to the gradient
vectors, i.e. −sj . This is achieved in MATLAB with the use of Global Optimization and
Parallel Computing Toolboxes, and by supplying the derived analytic form of the gradients
vectors from eq. (2.20).
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(c) Initial configuration: M = 23

Fig. 7: Configuration of a ring of rigid cylinders and initial random configurations of cylin-
ders in a cloaked annulus around the object to be cloaked.

3.1. Cloak Design

In order to study the cloaking efficiency we consider two cases. In the first we minimize
the TSCS at a fixed value of frequency while supplying the gradients sj . In the second case
we minimize the root mean square of a set of TSCS over a range of frequencies. In both
cases, we supply the analytical formulas for the gradients of objective functions. The cost
functions are non-convex with many local minima; we solve the non-convex optimization
problems with non-linear constraints. For simplicity and demonstration of implementation
of the proposed approach, we consider a configuration of uniform cylinders/shells of radius
a.

3.1.1. Constraints

The constraints are as follows:
1. The cylinders are constrained to move inside a fixed cloaking annulus between the inner
r = Ri and outer r = Rout boundaries surrounding the object being cloaked, see Figure 7.
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Thus

Ri < |rj | < Rout (3.21)

where rj = (xj , yj) and j = 1+Mc, 2+Mc, ...,Ma+Mc; Mc is the total number of cylinders
being cloaked, and Ma is the total number of cylinders in the annulus with Ma +Mc = M ,
M is the total number of cylinders.
2. In order to avoid overlapping the distance between the centers of cylinders/shells are
constrained by

|ri − rj | > 2a+ δ, with a = 0.0075m, δ = 0.0005m. (3.22)

To avoid overlapping in cloak design, Andkjær and Sigmund 15 used the penalty function
method with gradient-based topology optimization by penalizing the distance between the
cylinders, i.e. adding the distance measure to the objective function as a penalty. Con-
strained problems can be approximated using penalty function methods that satisfy the
constraints as well as use an unconstrained problem logic. Penalty function approaches
are useful for incorporating constraints into derivative-free and heuristic search algorithms.
However, here we use direct optimization methods such as Sequential Quadratic Program-
ming (SQP) algorithms to get the best performance by taking advantage of the analytical
form for the gradients of objective functions combined with parallel computing. In 33, it
is suggested to include a gradient evaluation in the objective function for faster or more
reliable computations.

MATLAB build fmincon solver is a nonlinear programming solver that finds a local
minimum of constrained nonlinear multivariable function. The fmincon interior-point and
SQP algorithms 33 work with both constraints, however, in our simulations, the interior-
point algorithm produced less accurate results than SQP. Therefore, here we use the SQP
method 34,35 as it provides more efficient and accurate result. The SQP is widely used in
engineering applications and has fast convergence for many problems. The SQP algorithms
represent the state of the art in non-linear programing methods. They are considered to
be one of the best gradient-based algorithms 35. Schittkowski found 36 the SQP methods
to require fewer function and gradient evaluations and outperform many other methods in
terms of efficiency, accuracy, and percentage of successful solutions for a large number of
test problems.

The closest proximity according to the constraint (3.22) should be far greater than the
viscous skin depth δv = (2ν/ω)1/2. 37 In water, at temperature T = 5oC with kinematic
viscosity ν = 1.5182mm2/s, 38 this is δv = 0.000695m/

√
s√

f
for frequency f (Hz); hence the

undamped acoustic model is accurate for frequencies in kHz and above, which is the range
of practical interest.

3.1.2. Broadband Cloak Design

The procedure for a broadband gradient based optimization is as follows. First, we define
the cost function as the root mean square (RMS) of a set of TSCSs over some range of
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normalized wavenumbers kia (i = 1, 2, ..., Nk):

σRMS(rjm) =
( 1

Nk

[(
σ(k1a, rjm)

)2
+
(
σ(k2a, rjm)

)2
+ ...+

(
σ(kNk

a, rjm)
)2])1/2

. (3.23)

Then, we define the broadband gradient vectors with respect to positions rj

qj =
∂σRMS(rjm)

∂rj
, j = 1, 2, . . .M, (3.24)

which can be found in terms of the individual single frequency gradients as

qj =
1

σRMS

1

Nk

[
σ(k1a)sj(k1a) + σ(k2a)sj(k2a) + ...+ σ(kNk

a)sj(kNk
a)

]
, (3.25)

where sj(kia) are evaluated at normalized wavenumbers kia (i = 1, 2, ..., Nk).
A similar approach can be applied to minimizing the RMS of TSCS over a range of

incident angles. However, in this case, the formula for the TSCS using the optical theorem,
eq. (2.7), needs to be modified to become angle-dependent. This aspect will be studied
elsewhere.

3.2. Numerical examples of acoustic cloaking
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(a) No cloak: σ = 0.12595
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(b) ka = 0.525, σr = 1.4106e− 04
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(c) ka = 1.5, σr = 0.0126

Fig. 8: The real part of the total acoustic pressure ptotal a for a core of 7 rigid cylinders
of radii a = 0.0075m without (a) and with (b,c) an optimized annular cloaking ring of
40 rigid cylinders. bNote that in this and the following figures σr is the normalized TSCS
σr = σwith cloak/σwithout cloak.

Numerical results are demonstrated using MATLAB for configurations of rigid cylinders
and empty thin elastic nickel cylindrical shells of thickness h = 0.1a with mechanical prop-
erties: ρ = 8850 kg/m3, cp = 5480 m/s where a is the outer radius. We consider cylinders
and shells submerged in a medium with the acoustic properties of water: ρ0 = 1000 kg/m3,
c0 = 1480 m/s. All computations are for a plane wave incident from left to right.
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(a) ka = 0.525, σr = 0.0168
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(b) ka = 1.5, σr = 0.2303

Fig. 9: Real part of total acoustic pressure field at different values of non-dimensional
wavenumber ka = 0.525, 1.5, for a ring of 7 rigid cylinders with an optimized annular cloak
of 16 cylinders .
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(a) ka = 0.525, σr = 7.1734e− 07
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(b) ka = 1.125, σr = 3.8575e− 05
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(c) ka = 1.5, σr = 0.0143

Fig. 10: Real part of total acoustic pressure field at different values of non-dimensional
wavenumber ka = 0.525, 1.125, and 1.5, for M = 79: a multiring of Mc = 13 rigid cylinders
with an optimized annular cloak of Ma = 66 cylinders .

In this section, we illustrate the effect of an exterior annulus cloaking device on plane
wave scattering from a ring of cylinders/shells. In Figures 8 through 9, and 12 and 13, the
object to cloak is a ring of Mc = 7 identical rigid cylinders or thin shells of radii a = 0.0075m

centered at the origin shown in Figure 7(a). To show the efficiency of cloaking for larger
objects, we consider a multiring configuration of Mc = 13 rigid cylinders in Figures 10 and
11. Note that in all these figures: Figures 8 through 9, and then 11 through 13 , σr is the
normalized TSCS

σr =
σwith cloak

σwithout cloak
. (3.26)
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(a) Optimized for 0 < ka ≤ 1 (b) 0.35 ≤ ka ≤ 0.45 (c) 0.35 ≤ ka ≤ 0.45

Fig. 11: A broadband cloak optimization is performed for the configuration of Figure 10.
The numbers beside the curves indicate how many discrete frequencies employed, Nk = 1, 8.
The range of normalized wavenumbers considered is 0 < ka < 1 in (a), and 0.35 ≤ ka ≤ 0.45

in (b) and (c). The stars, ∗, denote minimum values of σ for different values of Nk. In (b)
and (c), the dashed light blue curve ”(a) 5” shows the enlarged view of curve with Nk = 5

from subfigure (a).

Various values are taken for the non-dimensional wavenumber, ka, the total number of scat-
terers, M , the number of scatterers in the cloaking annulus, Ma, and the number of discrete
frequency points Nk for broadband cloaking as defined in eq. (3.23). Greater accuracy is
observed, as expected, with increased number of scatterers Ma. However, large values of ka
and Ma require longer computation times, and some numerical experimentation is necessary
to find the smallest values for which the pressure field vanishes to the desired degree in the
cloaked annulus.
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(a) ka = 0.525, no cloak
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(b) ka = 0.525, cloaked
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(c) ka = 0.75, cloaked

Fig. 12: The real part of the total acoustic pressure field ptotal for a ring of 7 empty nickel
thin cylindrical shells of thickness a/10 in water: without cloak, σ = 0.13447 (a), and
with an annular cloak of 40 similar cylinders at ka = 0.525 : σrel = 2.6436e − 05 (b) and
ka = 0.75σrel = 0.0018 (c).

Computations are performed on MATLAB using parallel optimization algorithms with
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a MultiStart optimization solver, and supplying the gradients of TSCS with respect to
position vectors.We start with an initial random planar configuration of rigid cylinders of
uniform size, and radius a = 0.0075m, e.g. as shown in Figures 7(b)- 7(c), and use MATLAB
build function fmincon with MultiStart and the derived equations for the TSCS gradient,
eq. (2.16). MultiStart has efficient local solvers, and can search a wide variety of start
points in parallel. Providing the analytical gradients of the TSCS improves the optimized
solution accuracy, reduces run time, and enables parallel computing using MultiStart. If
the gradients are not supplied then fmincon estimates the derivatives using finite differ-
ence schemes which can be evaluated in parallel. But parallelization can be done only at one
level: either at the outermost loop running MultiStart for different starting points or at the
outermost parfor loop running fmincon and estimating gradients in parallel. Therefore,
providing the gradients saves computational time, and can lead to increased accuracy. In
addition, for constrained problems like the one considered here, providing a gradient has
another advantage. As mentioned in fmincon documentation 33: ”a solver can reach a point
x such that x is feasible, but finite differences around x always lead to an infeasible point.
In this case, a solver can fail or halt prematurely. Providing a gradient allows a solver to
proceed.” Therefore, supplying the gradients accelerates the optimization process by search-
ing a wide variety of start points in parallel and allows the solver to reach the optimum
values which may otherwise be impossible. Here we present results for a ring configuration
of Mc = 7 cylinders running 200 different random configurations concurrently on 8 CPUs
of workstation. Computations for a multiring configuration of Mc = 13 cylinders were per-
formed concurrently on 12 CPUs running 12, 36, or 100 scenarios (random configurations),
described next.

3.2.1. Cloak design using rigid cylinders

Figures 8 through 10 show the cloaking effect for plane wave incidence on a core of rigid
cylinders (the scatterer). The optimized cloak in each instance is an annular ring of similar
rigid cylinders surrounding the core. The Figures consider various combinations of frequency
ka and number of cylinders in the cloaking annulus. Figure 8 considers an annulus of 40
cylinders cloaking a core of 7 cylinders. It is noticed that cloaking performance diminishes
with increase of frequency. This can be improved by increasing the number of cloaking
cylinders and also by extending the outer radius of the cloaking annulus to allow the cylin-
ders to explore a larger area, leading to faster convergence of the constrained optimization
problem. A smaller number of cloaking cylinders, 16, is considered in Figure 9. This leads to
more evident decrease in cloaking effectiveness at higher frequency. A larger cloaked object
is considered in Figure 10: a core of 13 rigid cylinders, with a cloaking annulus of Ma = 66

cylinders. Figure 10 (c) depicts the results for ka = 1.5 when the size of a configuration is
around two wavelength which is of similar size to the scatterer considered in 15; in this case
the TSCS is of order 10−3. The cloaking performance here can be improved by adding more
cylinders in the cloaking annulus and increasing the size of the annulus. The design could
be further enhanced by considering the cylinder radii as an additional design parameter.
This requires deriving the gradients of TSCS with respect to the cylinder radii and will be
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studied elsewhere.
Figure 11 illustrates broadband cloaking performance. We optimize σRMS defined by

eq. (3.23) for a given set of normalized wavenumbers Nk = 1, 8 while supplying the derived
analytic form of the gradients qj from eq. (3.24). The results for Nk = 4, 5 in subfigure
11(a) consider a relatively wide frequency range: 0 < ka ≤ 1 range. For instance, in Figure
11(a) for Nk = 5, σ is optimized for ka = 0.2, 0.4, 0.6, 0.8 and 1.0. The resulting TSCS is
indeed reduced at the individual frequencies, but the overall TSCS still exhibits large values
in the frequency range considered. This suggests that the frequency range is too ambitious
for the small number of of discrete frequencies considered, and we therefore narrow it down
to concentrate on a bandwidth around ka = 0.4. Subfigures 11(b) and 11(c) show results
for Nk = 3, 8 for the narrower interval 0.35 ≤ ka ≤ 0.45 which corresponds to frequencies
from 11 kHz to 14.1 kHz. It is evident from subfigures 11(b) and 11(c) that the cloaking
performance range broadens with increasing Nk, and the peaks are smoothed out at Nk = 8.
Interestingly, subfigure 11(c) indicates reduced TSCS values outside the optimized range of
frequencies. Note that the TSCS is σ = 4.6095e−04 when optimized at the single frequency
Nk = 1 : ka = 0.4, the black curve in Figure 11 (c). The tradeoff between the increase of the
frequency band and cloaking efficiency leads to a reduced peak performance for broadband
cloaking.
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(a) Ma = 4, σr = 0.1413
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(b) Ma = 6, σr = 0.0521
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(c) Ma = 8, σr = 0.0065

Fig. 13: The effect of increasing the number of number of thin cylindrical shell scatterers,
Ma, in the annular cloak around a set of 7 central cylinders in water. The plots show the
real part of total acoustic pressure at ka = 0.525.

3.2.2. Cloak design using thin elastic cylindrical shell

Finally, we illustrate the cloaking mechanism for thin cylindrical shells in water. This type
of scatterer is quite different than the rigid cylinder because it can display large scattering
effects at low frequency due to internal resonances of extensional and flexural waves. The
thin shells considered have outer radii a = 0.0075m, thickness h = a/10, with mechanical
properties of nickel, cp = 4.6e3, ρsh = 8.90e3, and the properties of water are ρo = 1e3, co =

1.48e3.
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Figure 12 compares the response from a ring of 7 thin nickel shells with and without a
cloaking annulus of 40 shells at two frequencies. The effectiveness of the cloak is obvious
from the plots, and also from numerical values of the TSCS, e.g. at ka = 0.75 it is σ = 0.116

without the cloak, and σ = 2.03e− 4 when the cloaking device is on. Figure 13 displays the
effect of varying the number of scatterers Ma = 4, 6, 8, in the cloaking annulus, showing how
cloaking performance is enhanced with more scatterers. Note that the optimized cloaking
configurations are not symmetric and do not completely surround the object being cloaked.
This is advantageous from a practical point of view; the object being cloaked can be easily
moved in or out of cloaking region.

4. Conclusions

The analytical form of the gradients of TSCS with respect to the cylinder positions are
derived by means of MS theory and the optical theorem. As application of the method, a
directional acoustic cloak is designed using a gradient based optimization method explicitly
using the analytical formulas for the gradients of TSCS. Starting from a random spatial
distribution, the cylinder positions are relocated in the process of minimizing the TSCS.
The scatterer locations are optimized such that their combined scattering pattern cancel the
scattering from a core (fixed) configuration of cylinders located inside the cloaked region.
here we have examined acoustic MS from 2D cylindrical structures, although the method
may be extended to 3D including elastodynamic 32 or electromagnetic material properties.
The numerical results provide a means to establish realistic strategies for practical under-
water applications. One area for consideration is the low-frequency range. The numerical
simulations presented in this paper indicate that a small number of scatterers provide ade-
quate cancellation at low frequencies. Cloaking performance can be improved by increasing
the number of scatterers in the cloaking annulus as well as by increasing the size of the
annular region at higher frequencies.
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Appendix

A. Multiple Scattering Formulation

Consider acoustic scattering by M obstacles, which for simplicity are taken to be cylinders
Sm, (m = 1,M) centered at rm. A schematic configuration of cylindrical elastic shells is given
in Fig. 1. The incident wave of unit amplitude in direction e1 = (1, 0) in the neighborhood
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of cylinder Sm is

p
(m)
inc (x) =

∞∑
n=−∞

A(m)
n U +

n (xm), (A.1)

with the coefficients A(m)
n = in ei kxm and U +

n (x) = Jn(k|x|)ein arg x, are the regular solutions
associated with the radiating functions V +

n of (2.19). Also, arg x ∈ [0, 2π), and xm is a
position vector of point P with respect to the centers of multipoles at Om (see Figure 1):

xm = x − rm. (A.2)

The total scattered field psc, considered as a superposition of the fields scattered by all
cylinders, may be expanded as a sum of multipoles:

psc(x) =
M∑

m=1

p(m)
sc (x), p(m)

sc (x) =
∞∑

n=−∞
B(m)

n V +
n (xm), (A.3)

where p
(m)
sc is the wave scattered by cylinder m, and B

(m)
n are unknown coefficients. In order

to apply boundary conditions on the surface of each cylinder we express the total field using
Graf’s theorem 39 :

V +
l (x − y) =

∞∑
n=−∞

{
V +
n (x)U −

n−l(y), |x| > |y|,
U +
n (x)V −

n−l(y), |x| < |y|,
(A.4)

where U −
n (x) = Jn(k|x|)e− in arg x = (−1)nU +

−n(x) and V −
n (x) = H

(1)
n (k|x|)e− in arg x =

(−1)nV +
−n(x). The U ±

n and V ±
n functions therefore satisfy

W+
n (x) = W−

−n(−x), W = U, V. (A.5)

Let rjm = rj − rm be a position vector of multipole Om with respect to multipole Oj .
Since x = rm + xm = rj + xj ⇒ xm = xj + (rj − rm), the total field in the neighborhood
of cylinder Sj can be written as

p =
∞∑

n=−∞

{
A(j)

n U +
n (xj) +B(j)

n V +
n (xj) +

M∑
m=1
m̸=j

B(m)
n V +

n (xj + rjm)

}
. (A.6)

Then using Graf’s theorem, we obtain for |xj | < lj , where lj = min |rjm|:

p =
∞∑

n=−∞

[
A(j)

n U +
n (xj) +B(j)

n V +
n (xj) +

M∑
m=1
m ̸=j

B(m)
n

∞∑
l=−∞

U +
l (xj)V

−
l−n(rmj)

]

=

∞∑
n=−∞

{
B(j)

n V +
n (xj) +A(j)

n U +
n (xj) + U +

n (xj)

M∑
m=1
m ̸=j

∞∑
l=−∞

Pnl(rjm)B
(m)
l

}
, (A.7)
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where Pnl(x), defined in (2.14), can be identified as V +
l−n(x). Here the matrix P = [Pnl] is

equal to the transpose of Martin’s S = [Snl] matrix 40. The total incident field impinging
on the cylinder Sj is a sum of the last two terms on the right hand side of eq. (A.7), i.e

p
(j)
inc +

M∑
m=1
m ̸=j

p(m)
sc =

∞∑
n=−∞

{
A(j)

n +
M∑

m=1
m ̸=j

∞∑
l=−∞

Pnl(rjm)B
(m)
l

}
U +
n (xj). (A.8)

The response of cylinder Sj to the incident field (A.8) can be obtained by incorporating
the boundary conditions at the interface and the transition matrix elements T (j)

nq of cylinder
Sj 41,42:

p(j)sc =

∞∑
n=−∞

∞∑
q=−∞

T (j)
nq

{
A(j)

q +

M∑
m=1
m̸=j

∞∑
l=−∞

Pql(rjm)B
(m)
l

}
V +
n (xj). (A.9)

Equations (A.3) and (A.9) yield a linear system of equations

B(j)
n −

∞∑
q=−∞

T (j)
nq

M∑
m=1
m ̸=j

∞∑
l=−∞

Pql(rjm)B
(m)
l =

∞∑
q=−∞

T (j)
nq A

(j)
q , n ∈ Z. (A.10)

Equivalently,
∞∑

q=−∞
T (j)
nq

−1
B(j)

q −
M∑

m=1
m ̸=j

∞∑
l=−∞

Pnl(rjm)B
(m)
l = A(j)

n , n ∈ Z, (A.11)

where T
(j)
nq

−1
are elements of the inverse of the jth T-matrix. Finally, we arrive at a system

of equations for the unknowns B
(m)
l ,

M∑
m=1

∞∑
l=−∞

XjnmlB
(m)
l = A(j)

n , j = 1,M, n ∈ Z, (A.12a)

Xjnml =

{
T
(j)
nl

−1
, j = m,

−Pnl(rjm), j ≠ m.
(A.12b)

The truncated version of the infinite sum in equation (A.12a) yields a finite algebraic system
of equations:

M∑
m=1

N∑
l=−N

XjnmlB
(m)
l = A(j)

n , j = 1,M, n ∈ (−N,N), (A.13)

or in matrix form

Xb = a, (A.14)
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where X, b, and a are given by eqs. (2.9) and (2.12).
Finally, the scattered field psc of eq. (A.3) in the far-field, k|x| ≫ 1, becomes

psc = f(θ)

√
k

i 2π|x|e
i k|x|

[
1 +O

( 1

k|x|

)]
, (A.15)

where the far-field amplitude function is

f(θ) =
2

k

M∑
m=1

e− i k|rm| cos(θ−arg (rm))
∞∑

n=−∞
(− i)nB(m)

n einθ. (A.16)
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