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A material that exhibits Willis coupling has
constitutive equations that couple the pressure–
strain and momentum–velocity relationships. This
coupling arises from subwavelength asymmetry and
non-locality in heterogeneous media. This paper
considers the problem of the scattering of a plane
wave by a cylinder exhibiting Willis coupling using
both analytical and numerical approaches. First, a
perturbation method is used to describe the influence
of Willis coupling on the scattered field to a first-
order approximation. A higher order analysis of
the scattering based on generalized impedances is
then derived. Finally, a finite-element method-based
numerical scheme for calculating the scattered field
is presented. These three analyses are compared and
show strong agreement for low to moderate levels of
Willis coupling.

1. Introduction
Recent homogenization research relevant to the topic of
metamaterials has noted that acoustical systems with
subwavelength asymmetry in properties or structure
cannot be adequately described in terms of the
standard material properties: mass density and bulk
modulus [1–3]. These and other similar systems may be
described more appropriately with the Willis constitutive
equations, which couple the acoustic pressure and the
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momentum density to both the volume strain and the particle velocity using an additional
material property called the Willis coupling vector. This additional material property is analogous
to bi-anisotropy in electromagnetism [2], and is attractive to designers of acoustic metamaterials
as it opens a new dimension of material parameter space relative to standard materials. One
potential application of Willis materials, or materials with non-trivial Willis coupling vectors,
uses scattering for localization, imaging and classification of objects.

Scattering of mechanical waves from Willis materials has received only limited and tangential
attention. Muhlestein & Haberman [4] used a Green’s function approach to describe the total
displacement field in a Willis elastic matrix with Willis inclusions in the long-wavelength limit,
but restricted their analysis to the field immediately surrounding the inclusions. On the other
hand, electromagnetic scattering from bi-anisotropic materials has received more attention.
Lakhtakia used a Green’s function-based approach to describe Rayleigh (long wavelength)
scattering from bi-anisotropic ellipsoids within a bi-isotropic background material [5], and
described scattering from more general geometries using a discrete-dipole approximation [6].
Jakoby [7] used a propagator matrix formalism to describe scattering of obliquely incident
electromagnetic plane waves from impedance cylinders with inhomogeneous bi-anisotropic
coatings. Zhang et al. [8] studied the scattering from arbitrary three-dimensional bi-anisotropic
materials using a hybrid finite-element–boundary integral method. The problem examined here
may be considered as a generalization of previous studies of scalar wave scattering from circular
domains in the context of acoustics with anisotropic density [9], anti-plane (SH) elastic waves with
anisotropic stiffness [10] and two-dimensional electromagnetics with anisotropic permitivity and
permeability [11].

The purpose of this paper is to provide an analytical foundation for scattering of acoustic plane
waves from Willis-fluid cylinders. The basic equations of a Willis material are introduced in §2,
which also describes the anisotropic wave equation in Willis materials. In §3, an exact analysis
of two-dimensional scattering (normal incidence on infinite cylinders) is provided. Since the
resulting equations that describe the scattered field do not have analytical solutions, two types
of asymptotic expansions for weak Willis coupling are used to provide an explicit description
of the scattered field. Section 4 describes a finite-element-based approach to the same problem,
which is then compared with and validates the analytical predictions. Some final thoughts are
provided in §5.

2. Willis materials
A Willis fluid may be described by the constitutive equations

− p = κε + ψ · v̇ (2.1a)

and
μ= ρ · v + ψ ε̇, (2.1b)

where p is the acoustic pressure (hereafter just pressure), ε is the volume strain, v is the particle
velocity (hereafter just velocity), μ is the momentum density, κ is the bulk modulus, ρ is
the effective mass density tensor and ψ is the Willis coupling vector. For this analysis, the
material properties are assumed to be constants with respect to frequency. Note that the standard
constitutive equations are recovered if ψ → 0 and ρ→ ρI, where ρ is the standard mass density
scalar and I is the second-order identity tensor [12,13]. Assuming a time-harmonic acoustic field
(e−iωt time convention), the constitutive equations may be inverted to yield

ε = �−1
[−p

κ
+ iω

κ
ψ · ρ−1 · μ

]
, � = 1 + ω2

κ
ψ · ρ−1 · ψ (2.2a)

and

v=�−1 ·
[−iω

κ
ρ−1 · ψp + ρ−1 · μ

]
, �= I + ω2

κ
(ρ−1 · ψ) ⊗ ψ , (2.2b)
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where ⊗ is the tensor product. For simplicity of this initial analysis, only isotropic mass density
tensors will be considered such that ρ = ρI. Then the inverted constitutive equations simplify to

ε = �−1
[−p

κ
+ iω

ρκ
ψ · μ

]
, � = 1 + ω2

ρκ
ψ · ψ (2.3a)

and

v =�−1 ·
[−iω

ρκ
ψp + μ

ρ

]
, �= I + ω2

ρκ
ψ ⊗ ψ . (2.3b)

The constitutive equations may be further simplified with the definition of the non-dimensional
‘asymmetry factor’

W = ωψ

Z
(2.4)

and the wavenumber k = ω/c, where Z = ρc is the characteristic impedance and c = √
κ/ρ is the

wave speed. When combined with the dynamic equation μ̇= −∇p, the constitutive equations
may then be written as

ε = −1
ωZ

(1 + W2)−1(kp − W · ∇p) (2.5a)

and
v = −i

ωρ
(I + W ⊗ W)−1 · (kWp + ∇p), (2.5b)

where W2 = W · W. Note that equation (2.5b) may also be written as

v = −i
ωρ

(1 + W2)(kpW − (W · ∇p)W + (1 + W2)∇p), (2.6)

which may be verified by multiplication by I + W ⊗ W.
Using the definition of the volume strain rate ε̇ = ∇ · v, equations (2.5a) and (2.6) may be

combined into a single anisotropic wave equation for the acoustic pressure,

(1 + W2)∇2p − (W · ∇)2p + k2p = 0. (2.7)

In order to see the anisotropy in detail, let p = p0 eiξ ·x, with vector wavenumber ξ = ξ n̂ and |n̂| = 1.
Then equation (2.7) may be written as

(1 + W2 − (W · n̂)2)ξ2 = k2. (2.8)

This provides an equation for the phase velocity cph = ω/ξ in the n̂ direction:

c2
ph = (1 + W2 − (W · n̂)2)c2. (2.9)

Note that the phase velocity is a minimum and equal to c for n̂ = ±W/W, and is a maximum
and equal to c

√
1 + W2 in the directions orthogonal to W. The group velocity vector is defined as

cgr = dω/dξ . It may be evaluated as cgr = (1/2ω)(dc2
phξ2/dξ ) using equation (2.9) for c2

ph, which
gives

cgr = [(1 + W2)n̂ − (W · n̂)W]cph. (2.10)

As is common in dealing with anisotropic wave equations, it is instructive to consider the inverse
of the phase speed, i.e. the slowness s = 1/cph. The slowness surface, i.e. the surface S(x) = sn̂,
therefore, has the form of a prolate spheroid. It may be checked that the direction of the group
velocity is perpendicular to the slowness surface, a result that is standard in anisotropic elastic
solids [14]. Note that equation (2.10) takes into account the assumption that W is a linear function
of ω. If W is independent of ω the group velocity becomes

cgr0 = c2

cph
[(1 + W2)n̂ − (W · n̂)W]. (2.11)

Note that cgr0 · n̂ = cph, which is typical of frequency-independent anisotropy [14], whereas cgr ·
n̂ = c3

ph/c2. In summary, the dependence of W on ω leaves the direction of cgr unchanged while

its magnitude is increased by a factor c2
ph/c2 ≥ 1.



4

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180571

...................................................

r

pinc = p0 e
ikx

a

pcyl (r, q)
x

y

pscat (r, q)

k 0, r0
k, r

q
f

y

Figure 1. Schematic of plane wave scattering from aWillis-coupled cylinder of radius a. The incident wave has a wavenumber
k0 = k0 x̂. The background material has the mass density ρ0 and bulk modulus κ0 and the cylinder has mass density ρ , bulk
modulus κ and coupling vectorψ .

3. Willis cylinder scattering
Consider a Willis cylinder of radius a, bulk modulus, mass density and Willis coupling vector of κ ,
ρ and ψ , respectively, in a background fluid with bulk modulus κ0, mass density ρ0, impedance
Z0 = √

ρ0κ0 and wavenumber k0 = ω
√

ρ0/κ0. Let the origin of a Cartesian coordinate system be
set in the centre of the cylinder with the z-axis parallel to the cylinder axis. A schematic of this
situation is shown in figure 1. It is worth noting that the cylinder is assumed to have no boundary
layer, meaning that the material properties of the cylinder are homogeneous throughout the
entire cylinder, including right at the edges. This assumption is equivalent to assuming that
the microstructure is sufficiently small compared with a wavelength that interface effects are
negligible [15].

Now, consider an incident plane wave propagating in the x-direction. The incident wave may
be written as

pinc = p0 eikx = p0

∞∑
m=−∞

imJm(k0r) eimθ , (3.1)

where p0 is the pressure amplitude and Jm is the mth Bessel function of the first kind. The scattered
pressure field may be written as

pscat = p0

∞∑
m=−∞

AmH(1)
m (k0r) eimθ , (3.2)

where H(1)
m is the mth order Hankel function of the first kind. The pressure inside the cylinder

satisfies equation (2.7) and can be converted into isotropic form by rescaling the coordinates,
which allows the separation of variables solution,

pcyl =
∑

n
CnJn(kR)einγ , where

R = r

√
1 + W2 cos2(θ − φ)

1 + W2 ,

γ = tan−1 tan(θ − φ)√
1 + W2

,
(3.3)

and where φ denotes the direction of W in terms of the regular polar coordinates r, θ , that is,
W = Wr̂(φ), where r̂(θ ) = r/r is the unit vector in the radial direction.

The boundary conditions are continuity of pressure and the normal component of the velocity
at the surface of the cylinder. The latter follows from equation (2.5b) as

vr ≡ v · r̂ = −i
ρω

(
∂rp + W · r̂

1 + W2 (kp − W · ∇p)
)

. (3.4)
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Equations (3.3) and (3.4) provide an exact solution inside the circular cylindrical scatterer of radius
a. The difficulty arises in trying to match the interior solution to the exterior one. Specifically,
the representation of p in equation (3.3) does not translate to a simple one in terms of r, θ . We,
therefore, assume W 	 1 and consider asymptotic expansions of the solution in terms of the small
coupling parameter W.

(a) First-order approximation
At this level of approximation, we consider only the contributions of order W in the equation for
the velocity in equation (2.6) and the pressure in equation (2.7), which become, respectively,

v = −i
W
Z

p − ∇p
kZ

and ∇2p + k2p = 0, (3.5)

where Z = √
ρκ is the characteristic impedance of the Willis material. The solution in the cylinder

is, therefore,

pcyl = p0

∞∑
m=−∞

BmJm(kr) eimθ , (3.6)

where, referring to equation (3.3), Bm = Cm e−imφ . Continuity of the pressure combined with
orthogonality yields

imJm(k0a) + AmH(1)
m (k0a) = BmJm(ka). (3.7)

The condition for continuity of the normal component of velocity is more complicated to derive
(see appendix A), but results in

Z
Z0

[imJ′m(k0a) + AmH(1)′
m (k0a)] = BmJ′m(ka) + W

2
[e−iφBm−1Jm−1(ka) + eiφBm+1Jm+1(ka)]. (3.8)

Since equation (3.8) depends on Bm−1, Bm and Bm+1, it becomes impractical to determine Am

and Bm in closed form from equations (3.7) and (3.8). A perturbation analysis, however, may be
used to provide explicit expressions up to first order (FO). For W 	 1 but �= 0, the coefficients may
be expanded in a series over W as

Am = W0A(0)
m + W1A(1)

m + W2A(2)
m + · · · (3.9a)

and
Bm = W0B(0)

m + W1B(1)
m + W2B(2)

m + · · · . (3.9b)

Substituting these expansions into equations (3.7) and (3.8) and setting W = 0 (no Willis coupling),
the leading coefficients may be written as

A(0)
m = −im

ZJm(ka)J′m(k0a) − Z0J′m(ka)Jm(k0a)

ZJm(ka)H(1)′
m (k0a) − Z0J′m(ka)H(1)

m (k0a)
(3.10a)

and

B(0)
m = 2im+1Z(πk0a)−1

ZJm(ka)H(1)′
m (k0a) − Z0J′m(ka)H(1)

m (k0a)
, (3.10b)

which is the classic result of scattering from a fluid cylinder. Substituting from equation (3.9) into
equations (3.7) and (3.8), differentiating with respect to W and setting W = 0 yields

A(1)
m = Z0

2

e−iφB(0)
m−1Jm(ka)Jm−1(ka) + eiφB(0)

m+1Jm(ka)Jm+1(ka)

ZJm(ka)H(1)′
m (k0a) − Z0J′m(ka)H(1)

m (k0a)
(3.11a)

and

B(1)
m = Z0

2

e−iφB(0)
m−1Hm(k0a)Jm−1(ka) + eiφB(0)

m+1Hm(k0a)Jm+1(ka)

ZJm(ka)H(1)′
m (k0a) − Z0J′m(ka)H(1)

m (k0a)
. (3.11b)
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Combining equations (3.2) and (3.6) with (3.10) and (3.11) gives the FO approximation to the
scattered and interior fields,

Am ≈ A(0)
m + WA(1)

m , Bm ≈ B(0)
m + WB(1)

m . (3.12)

An important limiting case is that of ka, k0a 	 1. For mathematical concreteness, let ka = ηk0a
and assume k0a is small and η is of order 1. In this case, one finds the m = 0, ±1 scattering
coefficients dominate and may be approximated as

A0 ≈ (k0a)2 π

4

[
Z − ηZ0

iZ
+ WηZ0

Z0 + ηZ
2 cos(φ)

]
(3.13a)

and

A±1 ≈ ±(k0a)2 π

4

[
Z0 − ηZ
Z0 + ηZ

− iWηZ0

Z0 + ηZ
e∓iφ

]
. (3.13b)

Thus in the long-wavelength limit the presence of a uniform Willis coupling modifies the relative
strength of the monopole and dipole moments as a function of incidence angle.

(b) Higher order approximation
As shown above, the traditional approach to determining the scattered acoustic fields becomes
difficult for higher order (HO) approximations of the pressure equation in equation (2.7).
However, a more general approach [16] to acoustic scattering that partitions the solution into
three distinct physically meaningful impedances reduces the problem to the easier task of finding
one of the impedances. As before, assume that the total acoustic pressure p comprises the incident,
pinc, and scattered, pscat, components

p = pinc + pscat, (3.14)

which for the moment are treated as vectors with an infinite number of components and will
later be identified as the coefficients of eimθ . The radial part of the velocity may also be written as
infinite vectors as

vr = vr,inc + vr,scat. (3.15)

Surface impedance matrices Zinc, Zscat and Zcyl are then introduced, which are defined such that
on the surface bounding the scatterer from the exterior fluid

p + Zcylvr = 0, (3.16a)

pinc + Zincvr,inc = 0 (3.16b)

and pscat − Zscatvr,scat = 0. (3.16c)

Assuming that the impedances are known, the solution for the scattered field is just

pscat = Spinc, (3.17)

where the scattering matrix is

S = (Yscat + Ycyl)
−1(Yinc − Ycyl), (3.18)

and Yinc = Z−1
inc, Yscat = Z−1

scat and Ycyl = Z−1
cyl are mobility matrices.

In the case considered here the surface is circular, so that the infinite vectors p, vr, etc. in
equation (3.16) represent the components of these physical quantities in terms of einθ , where θ
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is the polar angle and n are integers. We use the standard representation for the incident and
scattered pressure,

(pinc, pscat) = p0
∑

n
(FnJn(k0r), AnH(1)

n (k0r)) einθ

= p0
∑

n

(
F̂n

Jn(k0r)
Jn(k0a)

, Ân
H(1)

n (k0r)

H(1)
n (k0a)

)
einθ , (3.19)

where (see equation (3.1)) Fn = in for the assumed plane wave incidence. Equation (3.17) then
becomes

Â = SF̂, (3.20)

where F̂ and Â are vectors with elements F̂n, Ân. Alternatively, using the original F and A matrices
we may write

A = diag

(
1

H(1)
n (k0a)

)
S diag(Jn(k0a))F, (3.21)

where diag(xn) denotes a diagonal matrix with xn being the (n, n)th element. Note that Zinc and
Zscat (and hence Yinc and Yscat) are diagonal with components

[Zinc]mn = −iZ0
Jn(k0a)
J′n(k0a)

δmn (3.22a)

and

[Zscat]mn = iZ0
H(1)

n (k0a)

H(1)′
n (k0a)

δmn. (3.22b)

The main difficulty is with the impedance or mobility matrices for the cylinder itself. The total
fields on the cylinder surface may be represented as

(vr(a), p(a)) =
∑

n
(Vn, Pn) einθ , (3.23)

and, writing the elements of the cylinder admittance matrix Ycyl as Ymn, the coefficients Vm may
be written as

Vm =
∑

n
YmnPn. (3.24)

Knowledge of Ycyl is crucial to evaluating the scattered field. Methods for estimating Ycyl are
discussed next.

(i) Perturbation solution

A perturbation approach provides a useful means of approximating the true cylinder admittance
matrix. First, consider p as a function of polar coordinates such that equation (3.4) becomes

vr = −i
ρω(1 + W2)

([
1 + W2

2

]
∂p
∂r

+ Wkp cos(θ − φ) − W2

2
∂p
∂r

cos 2(θ − φ) + W2

2r
∂p
∂θ

sin 2(θ − φ)

)
.

(3.25)

Equation (3.25) is relatively simple in r, θ , as compared with the pressure in equation (3.3).
This suggests that using the former in an exact sense combined with an approximation for p
in equation (3.3) may lead to useful results.
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Consider the regime of W 	 1 for which a perturbation solution can be developed. Expanding
R and γ of equation (3.3) in the small parameter W gives

R = r

{
1 − W2

4
[1 − cos 2(θ − φ)] + O(W4)

}

and γ = (θ − φ) − W2

4
sin 2(θ − φ) + O(W4).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.26)

Hence, the pressure and the radial velocity may also be expanded to yield

p =
∑

n
Bneinθ

(
Jn(kr) − W2

4
[krJ′n(kr)(1 − cos 2(θ − φ)) + inJn(kr) sin 2(θ − φ)]

)
+ O(W4) (3.27a)

and

vr = −i
Z

∑
n

Bn einθ

((
1 − W2

2

)
J′n(kr) + W2

4

(
kr − n2

kr

)
Jn(kr) + (W − W3)Jn(kr) cos(θ − φ)

− W2

4

[[
2J′n(kr) +

(
kr − n2

kr

)
Jn(kr)

]
cos 2(θ − φ) − in

[
2Jn(kr)

kr
− J′n(kr)

]
sin 2(θ − φ)

])

+ O(W4). (3.27b)

Equations (3.23) and (3.27) imply that

Pm =
∑

n
DmnBn, Vm =

∑
n

EmnBn, (3.28)

from which the admittance defined in (3.24) is given by

Ycyl = ED−1. (3.29)

Recalling that the anisotropic wave equation this analysis is based on is only valid up to O(W2),
only terms up to O(W2) from equation (3.27) will be retained, which gives the admittance matrices
E and D as

Dmn =
(

Jn(ka) − ka
W2

4
J′n(ka)

)
δmn + W2

8
(kaJ′n(ka) ∓ nJn(ka))e∓i2φδmn±2 + O(W4) (3.30a)

and

Emn = i
Z

{(
J′n(ka) + W2

4

[(
ka − n2

ka

)
Jn(ka) − 2J′n(ka)

])
δmn + W − W3

2
Jn(ka) e∓iφδmn±1

− W2

8

[(
ka − n2

ka

)
Jn(ka) + 2J′n(ka) ∓ n

[
2
ka

Jn(ka) − J′n(ka)
]]

e∓i2φδmn±2

}
+ O(W4). (3.30b)

These expressions may then be used to get a good approximation of the scattering. Note that
δm n+1 is a diagonal string of ones below the main diagonal, δm n−1 is above the main diagonal, and
the symbols ± and ∓ should be treated as both the plus and the minus cases (e.g. (A ± B)ei∓c ≡
(A + B)e−ic + (A − B) eic).

(ii) First-order approximation revisited

In order to compare the second-order impedance approach with the FO approximation of §3a,
first write D and E of equations (3.30) as series in W,

D = D(0)+WE(1) + W2D(2) + O(W4)

and E = E(0) + WE(1) + W2E(2) + O(W3).

⎫⎬
⎭ (3.31)
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It then follows from equations (3.29) and (3.30) that to O(W) the impedance is

Ycyl = Y(0)
cyl + WY(1)

cyl + O(W2), (3.32)

where Y(0)
cyl is a diagonal matrix and Y(1)

cyl is a bi-diagonal matrix

Y(0)
mn = 1

Zn
δmn with Zn = −iZ

Jn(ka)
J′n(ka)

(3.33a)

and

Y(1)
mn = i

2Z
e∓iφδm n±1. (3.33b)

Substitution from equation (3.32) into equation (3.18) yields the FO approximation of the
scattering matrix,

S = S(0) + WS(1) + O(W2), (3.34)

where
S(0) = (Yscat + Y(0)

cyl)
−1(Yinc − Y(0)

cyl), S(1) = −(Yscat + Y(0)
cyl)

−1Y(1)
cyl(I + S(0)). (3.35)

Substituting the two terms from equation (3.34) into (3.21) for plane wave incidence (Fn = in) it
can be shown that S(0) and S(1) produce the analytical expressions for the scattering amplitudes
A(0)

m and A(1)
m given by equations (3.10) and (3.11), respectively. The equivalence has also been

checked numerically.

(c) Comparison of the first- and higher-order approximations
In order to compare the HO approximation based on equations (3.18), (3.21), (3.29) and (3.30) with
the FO approximation of (3.12) we consider how each satisfies the boundary conditions. An exact
solution will have perfect continuity of pressure and of radial particle velocity at the boundary r =
a. The approximate solutions will display discontinuities of these quantities to differing degrees.
Here, we focus on the pressure condition, and define the angle-dependent parameter

�p(θ ) = pinc(a, θ ) + pscat(a, θ ) − pcyl(a, θ ). (3.36)

Here, pinc and pscat are defined by the incident and scattered fields in equation (3.19). The incident
field is assumed to be a plane wave of amplitude p0. The internal pressure pcyl is defined by
the exact series in equation (3.3) with coefficients determined by equation (3.28). That is, Cm =
eimφ

∑
n(D−1)mnPn, where Pn are the coefficients of the exterior pressure pinc(a) + pscat(a), i.e. Pn =

FnJn(k0a) + AnH(1)
n (k0a), where Fn = in and An are determined by the FO or the HO approximation.

The matrix D is defined by equation (3.30a) for the HO approximation and is Dmn = Jn(ka)δmn for
the FO approximation. Thus,

�p(θ ) =
∑

n
{(FnJn(k0a) + AnH(1)

n (k0a)) einθ − CnJn(kR|r=a) einγ }. (3.37)

In the following, we present comparisons of the quantity

�(θ ) =
∣∣∣∣�p(θ )

p0

∣∣∣∣ . (3.38)

Examples for various values of relevant parameters are shown in figure 2. The parameters in
figure 2 cover a wide range of those physically admissible in terms of frequency and impedance.
In particular, we note that the HO approximation shows smaller discontinuity in the pressure
over a wide range of the perturbation parameter W, up to 0.7.

(i) Scattered far field

The comparisons of figure 2 provide confidence that the HO approximation provides more
accurate estimates of the scattered pressure for plane wave incidence. Based on this, we show
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Figure 2. Comparison of the higher order (HO) approximation (solid) and the first-order (FO) approximation (dashed) for values
ofW fromW = 0.3 toW = 0.7. The polar plots show the values of the pressure boundary condition error�(θ ) of (3.38) for
plane wave incidence from the left. Parameters common among all subfigures: k/k0 = 2

3 . (Online version in colour.)

in figure 3 the far-field amplitude for different values of the parameters Z, φ, k0a and for values
of W as large as 0.7. These plots indicate that the FO Born approximation is good for values of W
less than 0.5. For larger values, the HO approximation indicates different scattering patterns and
amplitudes, particularly in some scattering directions.

4. Finite-element analysis
A model based on the finite-element method (FEM) has been derived to assess the accuracy of
the approximations in §3. This model provides a solution of the full scattering problem whose
error is independent of the magnitude of the Willis coupling vector. Instead, the sources of error
are the familiar inaccuracies associated with FEM, including the discretization of the geometry
into a triangular mesh and the projection of the scattered field onto a finite set of basis functions.
However, the overall error is bounded by the size of the mesh elements, which decreases as the
mesh is refined [17].

The geometry of the problem under consideration is shown in figure 1. As with the analytical
solutions presented in §3a,b, the FEM will only consider the two-dimensional case since all fields
are assumed constant along the z-axis. The resulting far-field calculation of the pressure field will
take into account the invariance of the solution along the axis of the cylinder by using the scattered
field expansion in equation (3.2). The implementation of FEM requires a variational formulation
for the wave equation, often called the weak formulation, which accounts for Willis coupling in
the constitutive equations. The derivation of the weak formulation is provided below, followed
by the projection of the computed scattered field solution to the far field.

(a) Weak form
Let ΩW, ΩF and Γ represent the domains of the Willis fluid, the exterior fluid and the boundary
shared between the two domains, respectively (figure 4). The weak form for the acoustic pressure
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Figure 3. Comparison of the far-field scattering amplitudes using the higher order (HO) approximation and the first order (FO)
approximation for plane wave incidence from the left. Predictions using a finite-element method (FEM) that are described
in §4 are also shown. Parameters common among all subfigures: k/k0 = 2
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in the Willis domain is derived by multiplying the time-harmonic equation ∇ · v + iωε = 0 by a
test function φcyl and integrating over the Willis domain to yield the integral equation

∫
ΩW

(∇ · v)φcyl dΩW + iω
∫
ΩW

εφcyl dΩW = 0. (4.1)

Using Green’s identity on the first integral gives the equation

− i
ω

∫
ΩW

v · ∇φcyl dΩW −
∫
ΩW

εφcyl dΩW + i
ω

∫
Γ

φcyl(v · n) dΓ = 0, (4.2)

where it is assumed that the boundary of the Willis medium completely shares a boundary
with the exterior fluid. The relationship for volume strain and velocity fields provided in
equations (2.5a)–(2.6) are substituted in equation (4.2) to yield the weak form for the acoustic
pressure in a Willis fluid,

−1
ω2ρ(1 + W2)

∫
ΩW

[(1 + W2)∇pcyl · ∇φcyl − k2pcylφcyl + kpcyl(W · ∇φcyl) + kφcyl(W · ∇pcyl)

− (W · ∇pcyl)(W · ∇φcyl)] dΩW + i
ω

∫
Γ

φcyl(v · n) dΓ = 0. (4.3)

Similarly, the weak form for the scattered pressure in the exterior fluid, pscat, may be found to
be [18]

−1
ρ0ω2

∫
ΩF

(∇pscat · ∇φscat − k2
0pscatφscat) dΩF − i

ω

∫
Γ

(v · n)φscat dΓ = 1
ρ0ω2

∫
Γ

φscat(∇pinc · n) dΓ ,

(4.4)

where φscat is the test function of the scattered pressure field in the exterior fluid. Equations (4.3)
and (4.4) are combined to yield the total integral equation for the coupled fields (pcyl, pscat)

IΩW + IΩF = Iinc, (4.5)
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Figure 4. Finite-elementmethod computational domain, whereΩW is theWillis cylinder,ΩF is the exterior fluid domain and
PML is the perfectly matched layer used to truncate the computational domain.

where IΩW is the volume integral in equation (4.3), IΩF is the volume integral in equation (4.4)
and Iinc is the surface integral on the right-hand side of equation (4.4). The surface integrals in
equations (4.3) and (4.4) are used to describe the continuity of normal particle velocity at the
interface, as described below. Galerkin’s method is used to numerically solve equation (4.5) by
seeking approximations to pcyl and pscat that are written as a linear combination of basis functions,
which are chosen to be piecewise quadratic Lagrange polynomials [19]. The continuity of pressure
on the interface, pcyl = pinc + pscat, is directly enforced on the basis functions. The weak form is
made symmetric by choosing test functions that are represented with the same basis functions as
the unknown dependent variables. Given this choice in test functions supplemented with the fact
that the incident wave is known, the continuity of normal particle velocity is naturally enforced

i
ω

∫
Γ

φcyl(v · n) dΓ − i
ω

∫
Γ

φscat(v · n) dΓ = 0, (4.6)

and therefore does not appear in equation (4.5). Equation (4.5) is solved using the finite-element
software package COMSOL Multiphysics using the weak form PDE module and making use of
built-in perfectly matched layers to truncate the computational domain (figure 4) and satisfy the
Sommerfeld radiation condition [18,20]. A sufficiently fine mesh of the computational domain
was used to obtain convergence. It is also worthwhile noting that the exterior fluid can be
modelled with a boundary integral method instead of equation (4.4). A hybrid FEM/boundary-
element method may be obtained using similar techniques in acoustic fluid–structure interaction
problems [21].

(b) Far-field calculation
The far-field solution is found by numerically calculating the scattered field coefficients in
equation (3.2), which can then be compared with the approximate solutions found using the
methods developed in §3. The resulting pscat from the FEM at a radius b is expanded into
outward-propagating cylindrical waves

pscat(r = b, θ ) =
∞∑

−∞
AmH(1)

m (k0b) eimθ , (4.7)

where b is chosen to be a sufficient distance away from the cylinder surface such that the
evanescent waves are attenuated. Numerical studies show that a radius of one wavelength from
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Figure 5. Scattered directivity of a plane wave incident upon aWillis-coupled cylinder. The directivity is shown as a function of
the wavenumber multiplied by the cylinder radius ka and of the scattered angle θ . Directivities are shown using the first-order
(FO) approximation and a finite-element method (FEM) and for φ = 45◦ and φ = 90◦, where φ represents the orientation
of the Willis coupling vector.

the cylinder surface is sufficient. Orthogonality in θ is used to uniquely determine the scattered
field coefficients using a Fourier integral

Am = 1

2πH(1)
m (k0b)

∫π

−π

pscat(r = b, θ ) e−imθ dθ . (4.8)

The above integral is a Fourier transform, which may be numerically approximated using
optimized algorithms such as the fast Fourier transform.

The directivity pattern for the FEM prediction is shown in figure 3 along with the analytical
predictions. As may be seen in figure 3, the FEM and analytical predictions are nearly identical for
W = 0.3, and the behaviour of each prediction is qualitatively the same for all cases shown. As W
increases the FEM prediction is consistently closer to the HO prediction than to the FO prediction.
The similarity of the HO and FEM predictions despite their different approaches suggests that the
results are accurate.

Plots of the directivity patterns of the FO and FEM predictions as a function of ka and θ are
shown in figure 5 for φ = 45◦ and φ = 90◦. For these plots W = 0.1 and k0a = ka. As may be seen
in the figure, there is no discernible difference between the FO and FEM predictions, suggesting
that the FO approximation is sufficient to provide accurate predictions for these conditions.

5. Conclusion
Two types of approximations have been derived for small values of the non-dimensional Willis
coupling W. Numerical results compare the FO O(W) and HO O(W3) approximations in terms
of how well they satisfy the pressure boundary condition. As expected the HO approximation
shows less error. Comparisons of the scattered far fields indicate that the O(W) approximation
does not differ much from the O(W3) approximation for W ≤ 0.7. This suggests that the simpler
FO approximation may as well be used, especially for smaller values of W.
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Furthermore, a FEM for predicting the far-field scattering pattern that is not limited to small
W or cylindrical geometry of the scatterer has been developed and implemented. This additional
method was compared with the FO and HO analytical approximations and good agreement was
found for W ≤ 0.7. The correlation of the numerical and analytical predictions provides support
for both solutions and suggests that Willis coupling does indeed modify the far-field scattering
pattern in measurable ways.
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Appendix A. First-order particle velocity boundary condition
The FO approximation to the normal component of the incident, scattered and interior particle
velocities at the surface of the cylinder are given by

r̂ · vinc|a = − 1
k0Z0

∂pinc

∂r

∣∣∣∣
r=a

= −p0

Z0

∞∑
m=−∞

imJ′m(k0a) eimθ , (A 1)

r̂ · vscat|a = − 1
k0Z0

∂pscat

∂r

∣∣∣∣
r=a

= −p0

Z0

∞∑
m=−∞

AmH(1)′
m (k0a) eimθ (A 2)

and r̂ · vcyl|a = − 1
kZ

∂pcyl

∂r

∣∣∣∣
r=a

− i
r̂ · W

Z
pcyl

∣∣∣∣
r=a

= −p0

Z

∞∑
m=−∞

[BmJ′m(ka) + ir̂ · WBmJm(ka)] eimθ . (A 3)

In order to apply orthogonality, all of the θ dependence should be represented by the eimθ term,
which is not the case in the form due to the presence of r̂. Note that

r̂ · W = W cos(θ − φ) = W
2

[eiθ e−iφ + e−iθ eiφ]. (A 4)

Then we may write

∞∑
m=−∞

r̂ · WBmJm(ka) eimθ = W
2

∞∑
m=−∞

[eiθ e−iφ + e−iθ eiφ]BmJm(ka) eimθ (A 5)

= W
2

∞∑
m=−∞

[e−iφBm−1Jm−1(ka) + eiφBm+1Jm+1(ka)] eimθ . (A 6)

Now, applying orthogonality results in the condition (3.8).
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