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Retrieval method for the bianisotropic polarizability tensor of Willis acoustic scatterers

Xiaoshi Su* and Andrew N. Norris†

Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854, USA

(Received 26 August 2018; published 26 November 2018)

Acoustic materials displaying coupling between pressure and momentum are known as Willis materials. The
simplest Willis materials are comprised of subwavelength scatterers that couple monopoles to dipoles and vice
versa, with the interaction defined by a polarizability tensor. We propose a method for retrieving the polarizability
tensor for subwavelength Willis acoustic scatterers using a finite set of scattering amplitudes. We relate the
polarizability tensor to standard T-matrix and S-matrix scattering formalisms. This leads to an explicit method for
retrieving the components of the polarizability tensor in terms of a small set of scattered pressure data in the near
or far field. Numerical examples demonstrate the retrieval method for one- and two-dimensional configurations.
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I. INTRODUCTION

Acoustic metamaterials comprised of subwavelength in-
clusions have attracted much attention due to their extraor-
dinary acoustical effects. By proper design of the inclusions
one can achieve a variety of exotic effective material prop-
erties such as negative bulk modulus and density [1–3], zero
index [4,5], and anisotropic and pentamode properties [6–8].
Numerous applications have been demonstrated, e.g., acoustic
cloaking [9,10], negative refraction [11,12], and nonreciprocal
transmission [13,14]. The medium of particular interest in
this paper is known as a Willis material, which requires
strain-velocity cross coupling in elasticity or pressure-velocity
coupling in acoustics [15–19].

It is well known that monopole and dipole moments are
dominant sources of the scattered field for subwavelength
scatterers. For Willis type acoustic scatterers, the scattering
requires cross coupling between pressure and velocity fields
[20]. Sieck et al. [20] first introduced the concept of acoustic
bianisotropic polarizability, which relates the monopole and
dipole moments to pressure and velocity, due to its similarity
to bianisotropy in electromagnetics. One interesting finding
in their work is that both the pressure and velocity fields can
produce monopole and dipole responses. Later, Quan et al.
[21] exploited this idea to explore maximum cross coupling
between pressure and velocity fields. It is found that, in some
circumstances, the cross-coupling-induced scattering can
be dominant for properly designed subwavelength scatterers.
The interaction between pressure and velocity fields makes
the scattering problem more complicated, while also present-
ing novel wavefront manipulation possibilities that conven-
tional metasurfaces [22–27] do not have. For example, Koo
et al. [28] took advantage of the pressure-velocity coupling
to achieve simultaneous control of transmitted and reflected
wavefronts. Li et al. [29] proposed a systematic design ap-
proach to improve the efficiency of acoustic metasurfaces
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using bianisotropic unit cells. The aforementioned two exam-
ples are based on the cross coupling in uniaxial materials;
the coupling in two- and three-dimensional (2D and 3D)
Willis scatterers contain richer physics and can be potentially
used in unprecedented applications. In order to design such
scatterers, a rigorous and handy retrieval method for the polar-
izability tensor needs to be established. There are several re-
trieval methods available in the literature of electromagnetics
[30–33]. However, the retrieval method must be redeveloped
in acoustics due to the difference in the constitutive equations.

Examples of acoustic retrieval of Willis properties are
limited. Thus, Muhlestein et al. [34] established a method
for extracting the effective bulk modulus and mass density
for a one-dimensional (1D) Willis material. More recently,
Quan et al. [21] provided a robust method for retrieving the
polarizability tensor for 2D structures by directly calculating
the monopole and dipole moments based on the orthogonal-
ity of each mode. Their method requires knowledge of the
scattered field in all directions for different types of wave
incidence, i.e., an infinite data set. The polarizability tensor
contains a finite number of independent elements, 3 in 1D
and 6 in 2D, and it should therefore be possible to retrieve
these using finite data sets of similar size. The purpose of
this paper is to present a simple and efficient approach for
obtaining the Willis polarizability tensor in both 2D and 1D
that requires only limited data. We do this by first interpreting
the polarizability tensor in terms of a scattering (or T) matrix.
This places the Willis polarizability in the context of standard
scattering theory in which the T matrix has full coupling. The
scattering approach also implies bounds on the polarizability
in a natural way by using the relation between the T matrix
and the S matrix. The bounds are a consequence of energy
conservation which implies that the eigenvalues of the S
matrix must be of magnitude less than or equal to unity.

Explicit formulas are given for retrieving the polarizability
tensor from finite sets of scattering data and are illustrated
using numerical simulations. The method developed here is
significantly simpler than that of Quan et al. [21] in that it
only requires a few probes of the scattered pressure in the
near or far field for several plane wave excitations. For a
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Willis scatterer in 2D free field, there are nine polarizability
components in total but only six are independent. One only
needs to simulate plane wave excitations along the ±x and
±y directions and probe the far-field scattered pressure along
the ±x and ±y directions. Note that the choice of the incident
directions and probe locations are not unique. For a Willis
scatterer in a 1D waveguide, the total number of polarizability
components reduces to four with three independent ones. In
this case one only needs incidence along opposite directions
and data for the scattered pressure on both sides. Such an
easy-to-implement method can drastically facilitate the opti-
mization process during the inclusion design. It also offers the
experimentalist a simple method to measure the polarizability.
Two examples will be presented to demonstrate our retrieval
method. It should be noted that higher order multipole mo-
ments also exist in the scattered field, but their contributions
are negligible for deep subwavelength scatterers. Moreover,
a filtering technique for the quadrupole is provided so that
the method still works well when ka ∼ 1. We will see from
the two examples that the curves obtained using the method
developed here match well with that obtained using the more
computationally or data expensive method in Ref. [21]. In
addition, the parameters retrieved using the present approach
automatically satisfy the constraints imposed by reciprocity
and energy conservation.

This paper is arranged as follows. In Sec. II, we formulate
the scattered fields for both 2D and 1D problems. Then we
present our retrieval method in Sec. III with Eqs. (16) and (18)
being the main results. Numerical examples are shown in Sec.
IV to validate our method. Section V concludes the paper.

II. SCATTERING FROM SUBWAVELENGTH WILLIS
ACOUSTIC ELEMENTS

The type of scatterer considered is one that couples
monopole and dipole terms with little or no contribution
from higher order multipoles. In this way it is the simplest
embodiment of a Willis material, analogous to a standard
lumped element in unidimensional acoustics. For that reason
we refer to the scatterer as a Willis scatterer or a Willis
element. The scattered fields from a Willis element under
arbitrary incidence can be written in terms of the bianisotropic
polarizability as first introduced by Sieck et al. [20] and later
summarized in tensor form by Quan et al. [21]. Explicit ex-
pressions for the pressure fields can be found by relating them
to the multipole components of the scattered wave. In this
section we derive the equations for the scattered fields using
the polarizability tensor and reveal several general properties.

Consider sound radiation from a point source in a back-
ground medium with mass density ρ and sound speed c.
The radiated pressure can be written in terms of the Green’s
function as

ps (x) = ω2MG(x) − ω2 D · ∇G(x) + · · · , (1)

where ω is the angular frequency (e−iωt assumed). All high
order multipole terms are dropped in the multipole expansion
except for the monopole mass M and dipole moment D. The

Green’s function G(x) takes the form

G(x) =

⎧⎪⎨
⎪⎩

1
i2kS

eik|x|, 1D waveguide,
1
i4H

(1)
0 (k|x|), 2D free field,

−1
4π |x|e

ik|x| 3D free field,

(2)

where S is the cross-sectional area of the 1D waveguide;
k = ω/c is the wave number in the background medium;
H (1)

n is the Hankel function of the first kind. The mass and
dipole moment are proportional to the incident pressure pi

and velocity vi , (
M

D

)
= α

(
pi

vi

)
, (3)

where α is the polarizability tensor with components

α =
(

αpp αpvT

αvp αvv

)
. (4)

The diagonal terms in Eq. (4) correspond to the pressure ex-
cited monopole and velocity excited dipole; the off-diagonal
terms correspond to the cross-coupling-induced monopole
and dipole moment. The objective of this paper is to provide
a method to determine the components of α. We focus on
the retrieval method for the 2D and 1D cases; the 3D case
can be derived in a manner similar to the 2D case.

A. Scattering from a Willis element in 2D

Consider an acoustically small asymmetric scatterer in
2D, with incident pressure and velocity fields at the scatterer
location defined as⎛

⎝pi

vxi

vyi

⎞
⎠ =

⎛
⎜⎝

1 0 0
0 1√

2ρc
0

0 0 1√
2ρc

⎞
⎟⎠

⎛
⎝A0

Ax

Ay

⎞
⎠. (5)

Using Eqs. (1) and (2), the scattered pressure field from a
Willis element is

ps (x) = ω2

i4

(
MH

(1)
0 (kr ) + kx̂ · DH

(1)
1 (kr )

)
= T0H

(1)
0 (kr ) + (Tx cos θ + Ty sin θ )i

√
2H

(1)
1 (kr ),

(6)

where

t ≡
⎛
⎝T0

Tx

Ty

⎞
⎠ = ω2

i4

⎛
⎜⎝

1 0 0
0 − ik√

2
0

0 0 − ik√
2

⎞
⎟⎠

⎛
⎝M

Dx

Dy

⎞
⎠. (7)

The 2D (scattering) T-matrix T is defined by t = T a with a =
(A0 Ax Ay )T , and hence

T = ω2

i4

⎛
⎜⎝

1 0 0
0 − ik√

2
0

0 0 − ik√
2

⎞
⎟⎠α

⎛
⎜⎝

1 0 0
0 1√

2ρc
0

0 0 1√
2ρc

⎞
⎟⎠

= i
ω2

8
α′, (8)
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where the modified polarization tensor α′ is

α′ =
⎛
⎝αpp′ α

pv′
x α

pv′
y

α
vp′
x αvv′

xx αvv′
xy

α
vp′
y αvv′

yx αvv′
yy

⎞
⎠

=

⎛
⎜⎜⎝

−2αpp −
√

2
ρc

α
pv
x −

√
2

ρc
α

pv
y

ik
√

2α
vp
x

ik
ρc

αvv
xx

ik
ρc

αvv
xy

ik
√

2α
vp
y

ik
ρc

αvv
yx

ik
ρc

αvv
yy

⎞
⎟⎟⎠. (9)

This expression is consistent with that in Ref. [21]. Reci-
procity implies that αvv′

xy = αvv′
yx , α

pv′
x = −α

vp′
x , and α

pv′
y =

−α
vp′
y . We will see later in the numerical examples that the

retrieved parameters satisfy these reciprocity requirements.
The explicit form of the scattered field for any incident

wave can be obtained using the above equations. For exam-
ple, a plane wave incident along the +x direction with unit
magnitude is defined by A0 = Ax/

√
2 = 1 and Ay = 0; the

unit plane wave incident along the positive diagonal direction
corresponds to A0 = Ax = Ay = 1.

The importance of using the T-matrix formalism is that it
is related to the S matrix, S = I + 2T , which is unitary in
the absence of absorption: SS† = I . This places direct limits
on the polarizability tensor, specifically that the eigenvalues
of I + i

4ω2α′ must be of unit magnitude. In the case of
energy dissipation the eigenvalue magnitudes must be less
than or equal to unity. This result and its implications, which
generalizes the bounds obtained in Ref. [21], will be discussed
at further length separately.

B. Scattering from a Willis element in a 1D waveguide

The scattering problem in a 1D waveguide is simpler in that
it only involves forward and backward scattered waves. In this
case the incident pressure and velocity fields at the scattering
location are (

pi

vi

)
=

(
1 0
0 1

ρc

)(
A1

A2

)
. (10)

Using Eqs. (1) and (2), the scattered pressure field from a
Willis element in the waveguide is

ps (x) = ωc

i2S
(M − ikD sgn x)eik|x|

= (T0 + T1 sgn x)eik|x|. (11)

Note that the size of the scatterer must be much smaller than
the radius of the waveguide, so we do not need to consider the
narrow region nearby. The frequency range is sufficiently low
so that only the fundamental waveguide mode propagates. By
analogy with the 2D case,

t ≡
(

T0

T1

)
= iωc

2S

(−1 0
0 ik

)(
M

D

)
. (12)

The scattering matrix, defined by t = T (A1 A2)T , is

T = iωc

2S

(−1 0
0 ik

)
α

(
1 0
0 1

ρc

)
= iωc

2S
α′, (13)

and the modified polarizability tensor is

α′ =
(

αpp′ αpv′

αvp′ αvv′

)
=

(
−αpp − 1

ρc
αpv

ikαvp ik
ρc

αvv

)
. (14)

Reciprocity requirements impose the constraint: αpv′ =
−αvp′. It should be pointed out that the monopole and dipole
moments are more dominant in this case since only the
fundamental mode can propagate within the frequency range
of interest. Therefore, the two eigenvalues of the S-matrix
S = I + 2T must be close to unity.

The explicit form of the scattered field can be obtained as
in 2D. The form of the incident waves are simpler with A1 =
A2 = 1 corresponding to a unit amplitude wave incident wave
in the +x direction, while A1 = −A2 = 1 corresponds to a
wave incident along the −x direction.

III. RETRIEVAL METHOD FOR THE POLARIZABILITY
TENSOR

The coupling between monopoles and dipoles in a Willis
scatterer is achieved by a physically asymmetric object, for
which there are rarely closed-form expressions available for
the polarizability tensor α. It is therefore essential to have a
rigorous and efficient numerical retrieval method. The objec-
tive of this section is to provide a simple recipe for retrieving
α from FEM simulations or experimental data.

A. 2D free field

In this section we will use the nine-component form of the
3 × 3 polarizability tensor for later comparison, even though
it has only six independent components due to reciprocity. We
consider four plane wave excitations along the ±x and ±y

directions. These are defined by taking appropriate amplitudes
in Eq. (5). For instance, a plane wave incident along the +x

direction with pressure and velocity at the scatterer location
(the origin) equal to 1 and 1/ρc, respectively, corresponds to
A0 = Ax/

√
2 = 1 and Ay = 0. Similarly, A0 = −Ax/

√
2 =

1 and Ay = 0 for −x incidence; A0 = Ay/
√

2 = 1 and Ax =
0 for y incidence; A0 = −Ay/

√
2 = 1 and Ax = 0 for −y

incidence. The scattered pressure for the four cases are

±
x ps (x) = iω2

8

(
αpp′ ±

√
2αpv′

x

)
H

(1)
0 (kr )

−
√

2ω2

8

[(
αvp′

x ±
√

2αvv′
xx

)
cos θ

+ (
αvp′

y ±
√

2αvv′
yx

)
sin θ

]
H

(1)
1 (kr ),

±
y ps (x) = iω2

8

(
αpp′ ±

√
2αpv′

y

)
H

(1)
0 (kr )

−
√

2ω2

8

[(
αvp′

x ±
√

2αvv′
xy

)
cos θ

+ (
αvp′

y ±
√

2αvv′
yy

)
sin θ

]
H

(1)
1 (kr ), (15)

where the superscript and subscript on the left side of ps

denote the incident direction. For example, −
x ps (x) is the

scattering solution for incidence along the −x direction.
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The retrieval method uses four scattered pressure measure-
ments at distance r = |x| along ±x and ±y directions for
each excitation, implying 16 data points. The probed pres-
sure values are ±

x p±
sx (r ), ±

x p±
sy (r ), ±

y p±
sx (r ), and ±

y p±
sy (r ), with

the superscript and subscript on the right side of ps denot-
ing the location r = |x|, at which the pressure is measured
along the specific axis. For instance, −

x p+
sy (r ) is the scattered

pressure at distance r along the +y direction for incidence
along the −x direction. However, the quadrupole compo-
nent is not negligible when ka ∼ 1. In order to obtain more
accurate results, we filter the quadrupole out based on the
orthogonality of each harmonic. For example, the quadrupole
components in the four scattered fields for +x incidence can
be filtered by setting +

x R = (+x p+
sx − +

x p+
sy + +

x p−
sx − +

x p−
sy )/4

and redefining the pressures as +
x p+

sx − +
x R → +

x p+
sx , +

x p−
sx −

+
x R → +

x p−
sx , +

x p+
sy + +

x R → +
x p+

sy , and +
x p−

sy + +
x R → +

x p−
sy .

All the other probed data corresponding to different inci-
dences should be filtered in a similar fashion, such that they
only include monopole and dipole components. Plugging the
16 filtered pressures into Eq. (15) and omitting (r ) for con-
ciseness, we may invert the extracted data to get the modified
polarizability components:

αpp′ = −i

ω2H
(1)
0 (kr )

(+x p−
sx + +

x p+
sx + +

y p−
sy + +

y p+
sy + −

x p−
sx

+ −
x p+

sx + −
y p−

sy + −
y p+

sy ),

αpv′
x = −i√

2ω2H
(1)
0 (kr )

(+x p−
sx + +

x p+
sx + +

x p−
sy + +

x p+
sy

− −
x p−

sx − −
x p+

sx − −
x p−

sy − −
x p+

sy ),

αpv′
y = −i√

2ω2H
(1)
0 (kr )

(+y p−
sy + +

y p+
sy + +

y p−
sx + +

y p+
sx

− −
y p−

sy − −
y p+

sy − −
y p−

sx − −
y p+

sx ),

αvp′
x = 1√

2ω2H
(1)
1 (kr )

(+x p−
sx − +

x p+
sx + −

x p−
sx − −

x p+
sx

+ +
y p−

sx − +
y p+

sx + −
y p−

sx − −
y p+

sx ),

αvp′
y = 1√

2ω2H
(1)
1 (kr )

(+y p−
sy − +

y p+
sy + −

y p−
sy − −

y p+
sy

+ +
x p−

sy − +
x p+

sy + −
x p−

sy − −
x p+

sy ),

αvv′
xx = 1

ω2H
(1)
1 (kr )

(+x p−
sx − +

x p+
sx − −

x p−
sx + −

x p+
sx ),

αvv′
xy = 1

ω2H
(1)
1 (kr )

(+y p−
sx − +

y p+
sx − −

y p−
sx + −

y p+
sx ),

αvv′
yx = 1

ω2H
(1)
1 (kr )

(+x p−
sy − +

x p+
sy − −

x p−
sy + −

x p+
sy ),

αvv′
yy = 1

ω2H
(1)
1 (kr )

(+y p−
sy − +

y p+
sy − −

y p−
sy + −

y p+
sy ). (16)

Note that the combinations of the pressures in Eq. (16) for
each polarizability are not unique (at least 4 out of the 16
probed pressures for each polarizability); here we took more
pressure data into account to give more robust results. When
implementing this retrieval method in FEM simulations, one

only needs to simulate the aforementioned four plane wave
excitations and extract the necessary parameters for Eq. (16).
Thus, all the components in α′ can be determined, and the
original polarizability tensor α follows from the relations
in Eq. (9).

The retrieved parameters should satisfy the constraints im-
posed by reciprocity: α

pv′
x = −α

vp′
x , αpv′

y = −α
vp′
y , and αvv′

xy =
αvv′

yx . These relations are in fact automatically satisfied by the
retrieval method of Eq. (16) by virtue of reciprocity identities
for the scattered pressure. For instance, reciprocity under the
interchange of source and receiver yields +

x p+
sx = −

x p−
sx , which

combined with Eq. (16) implies that α
pv′
x = −α

vp′
x . The iden-

tity α
pv′
y = −α

vp′
y follows in the same way from the relation

+
y p+

sy = −
y p−

sy . Finally, αvv′
xy = αvv′

yx is a consequence of four
reciprocal relations for the scattered pressure: +

y p−
sx = +

x p−
sy ,

−
y p+

sx = −
x p+

sy , +
y p+

sx = −
x p−

sy , and −
y p−

sx = +
x p+

sy . The afore-
mentioned relations between the data points imply that it is
sufficient to probe only 10 data points in the numerical simu-
lations. In addition, Eq. (16) can also be simplified so that each
of the first 4 parameters only involves 4 data points. This could
simplify the numerical retrieval procedure. However, the re-
trieved parameters using less probed data might suffer from
experimental errors in real acoustic measurements. Therefore,
it is beneficial to probe all the 16 suggested data points and
use Eq. (16) to calculate the polarizability components.

The present method works well when ka < 1. In addi-
tion, the retrieved monopole and dipole polarizabilities are
still accurate to a remarkable degree even when ka ∼ 1,
because the quadrupole moment can be filtered out using the
aforementioned method. Due to its simplicity, this method
has certain advantage if one is only interested in the low-
frequency range. However, this method will suffer from the
influence of high order multipoles (higher than quadrupole)
when ka � 1, since only quadrupole can be filtered out using
the filtering technique provided in this paper. In this case, the
method provided by Quan et al. [21] should be used in order
to attribute monopole and dipole accurately. As we mentioned
before, the conditions imposed by reciprocity provide a means
to assess whether the parameters are extracted correctly. It
is also worthwhile to mention that the eigenvalues of the S
matrix must be of magnitude close to unity in the absence
of material loss. Any significant deviation from unity (i.e.,
much less than one in magnitude) would indicate higher order
multipoles are scattering energy or materials are absorbing
energy.

B. 1D waveguide

The retrieval procedure for Willis scatterers in a 1D waveg-
uide is simpler than the previous 2D case since there are only
four polarizability components to be found. Consider a wave
incident along the ±x direction (axial direction) such that the
incident pressure and velocity at the scatterer location are 1
and ±1/ρc, respectively. Hence, taking A1 = ±A2 = 1, the
scattered fields for these two incidences are, with obvious
notation,

±ps (x) = iωc

2S
[αpp′ ± αpv′ + (αvp′ ± αvv′) sgn x]eik|x|.

(17)
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Following the 2D procedure, the polarizabilities can be ex-
pressed in terms of the forward and backward scattered
pressure as⎛

⎜⎝
αpp′
αpv′
αvp′
αvv′

⎞
⎟⎠ = Se−ik|x|

2iωc

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠

⎛
⎜⎝

+p+
s+p−
s−p+
s−p−
s

⎞
⎟⎠.

(18)

Hence, in order to retrieve the polarizabilities we only need
to simulate plane wave incidence from the two opposite
directions and probe on both sides of the scatterer.

The retrieved parameters should satisfy the reciprocity
relation αpv′ = −αvp′. It is clear from Eq. (18) that this is
equivalent to the identity +p+

s =− p−
s , which is guaranteed

by invariance under the interchange of source and receiver.
This implies that the transmission coefficient T is independent
of the direction of incidence, where T is defined such that
+p+

s =− p−
s = (T − 1)eik|x|. The related reflection coeffi-

cients R± are defined by +p−
s = R+eik|x| and −p+

s = R−eik|x|.
Using αpv′ = −αvp′, we have

T = 1 + iωc

2S
(αpp′ + αvv′),

R± = iωc

2S
(αpp′ ± αpv′ − αvv′). (19)

This form is similar to the transmission and reflection co-
efficients for two-dimensional bianisotropic materials un-
der normal incidence in electromagnetics [35]. Clearly, as
an alternative to Eq. (18) one may write the polariz-
ability tensor in terms of the transmission and reflection
coefficients,⎛

⎝αpp′
αvv′
αpv′

⎞
⎠ = S

2iωc

⎛
⎝2 1 1

2 −1 −1
0 2 −2

⎞
⎠

⎛
⎝T − 1

R+
R−

⎞
⎠ (20)

with αvp′ = −αpv′.
The asymmetric reflection for waves incident from op-

posite directions is a characteristic property of Willis ele-
ments, which is not observed for similarly subwavelength
monopole or dipole scatterers. The difference in the reflec-
tion coefficients is induced by the pressure-velocity cross-
coupling term αvp′ (= −αpv′). More specifically, the pressure
excited dipole and the velocity excited monopole interfere
destructively in the forward direction but constructively for
the backward scattered wave. In the absence of material
loss, the two reflected waves have the same magnitude but
different phases. For lossy Willis scatterers, the magnitudes
are unequal because the momentum exchange processes
and hence the absorption depends on the direction of inci-
dence. This feature can potentially be used to design uni-
directional perfect absorbers or unidirectional reflectionless
materials.

IV. NUMERICAL EXAMPLES

Two examples are presented to demonstrate how our re-
trieval method works in 2D free field and 1D waveguide
situations. The common procedure is to simulate plane wave

excitation and probe the scattered pressure according to the
algorithms presented in Sec. III, then use Eq. (16) or Eq. (18)
to calculate the components of the modified polarizability
tensor.

A. 2D free field

We consider a Willis element with a radius on the order of
λ/10, where λ is the wavelength in the background medium,
see Fig. 1(a). The wall of the scatterer is acoustically rigid.
The scatterer consists of two separate cavities with openings
in separate directions and of different volume so that the
scatterer does not display any symmetry. In this way, the
cross-coupling induced scattering is nonzero. Our objective
here is not to maximize the cross coupling but rather to
demonstrate that the retrieval method works when the off-
diagonal terms are on the same order of magnitude as the
diagonal terms.

The background medium is air with bulk modulus B =
1.42 × 105 Pa and mass density ρ = 1.225 kg/m3. The acous-
tically rigid and small Willis scatterer was placed at the
origin of the Cartesian coordinate system. Four plane wave
excitations along the ±x and ±y directions were simulated.
Then four probes of the scattered pressure were taken at
a fixed distance r from the origin along the ±x and ±y

directions for each excitation, thus providing the sixteen
scattered pressure data needed for the parameter retrieval.
Plugging the probed pressure into Eq. (16) yields the nine
components of the modified polarizability tensor. The full
wave FEM simulations were performed using COMSOL
Multiphysics.

Figure 1 shows the frequency dependence of the polariz-
ability components from ka = 0.1 to ka = 1, where a is the
scatterer radius. The results in panels (a), (b), and (c) are cal-
culated using the retrieval method developed in this paper; the
curves in panels (d), (e), and (f) are obtained using the method
presented by Quan et al. [21], which requires an infinite set
of data as compared with the small data set used here. It is
clear that the results obtained by these two methods match to
a remarkable degree. Figures 1(a) and 1(d) show all nine com-
ponents of the polarizability tensor. It can be seen that the αpp′
component responsible for the pressure excited monopole is
on the same order of magnitude as the cross-coupling terms
α

pv′
x , α

vp′
x , α

pv′
y , and α

vp′
y . The off-diagonal terms satisfy

the constraints imposed by reciprocity, i.e., α
pv′
x = −α

vp′
x ,

α
pv′
y = −α

vp′
y , and αvv′

xy = −αvv′
yx , indicating that the numerical

simulation is physically consistent. The plots in this section
only show the components of the modified polarization tensor
α′; one may also calculate α using Eq. (9). The retrieval
procedure can be used to analyze more complicated scatterers
including loss effects. The T-matrix formalism has a special
implication on the S matrix, S = I + 2T , that its eigenvalue
magnitudes must be less than or equal to unity due to energy
conservation. In the absence of absorption, the retrieved po-
larizability components lead to three unitary eigenvalues for
the S matrix as shown in Fig. 2. It is clear that the magnitudes
are close to unity at the low frequency range and start to de-
crease when ka ∼ 1 since higher order multipoles come into
play.
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FIG. 1. Retrieved polarizability components for the 2D Willis scatterer. The nine polarizabilities are shown in (a) and (d); the cross-
coupling terms are shown in (b), (c), (e), and (f). The curves in (a), (b), and (c) are obtained using the present retrieval method; the curves in
(d), (e), and (f) are calculated using the method of Quan et al. [21].

B. 1D waveguide

We consider an acoustically small Willis scatterer centered
in a circular rigid waveguide. The radius of the waveguide
is much larger than the radius of the scatterer, and only
the fundamental mode is allowed to propagate within the
frequency range of interest. The scatterer has rotational sym-
metry about the waveguide axis, with a cross-sectional view
shown in Fig. 3. As we can see, the Willis element is simply a
spherical Helmholtz resonator which is usually considered as
a monopole scatterer. However, the scattered field from such a
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FIG. 2. Eigenvalues of the S matrix. The solid lines represent
the absolute values of the eigenvalues; the dashed lines are the
corresponding phases.

resonator, even though deeply subwavelength, does depend on
the direction of incidence. This type of directional scattering
is more evident if the resonator is asymmetrically positioned
in a waveguide, as in Fig. 3. As we will see, the directional
scattering dependence can be attributed to the cross coupling
between the monopole and dipole modes.

Full wave FEM simulations (2D axisymmetric) were per-
formed to retrieve the polarizability tensor. The background
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FIG. 3. Retrieved polarizability components for the 1D Willis
scatterer in a circular waveguide (side view; the size of the scatterer
is exaggerated).
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FIG. 4. Phases of the transmitted and reflected waves for the two
incident directions calculated using Eq. (19).

material properties are the same as in the previous example,
and the scatterer and the waveguide are both acoustically
rigid. In the 1D case, we only need to simulate plane wave
incidence from each side of the scatterer. Then we probe the
scattered pressure on both sides of the scatterer. Plugging the
measured pressures into Eq. (18) yields the four modified
polarizability components as shown in Fig. 3. Here the off-
diagonal terms also satisfy the reciprocity constraint αpv′ =
−αvp′. It is obvious that the cross-coupling terms are on the
same order of magnitude compared with the pressure excited
monopole and velocity excited dipole. Due to the directional
dependence of the cross-coupling terms, the forward scattered
fields are identical for the two incidences but the backward
scattered fields are different. In the absence of material loss,
the cross coupling only contributes to different phase changes
in the reflected waves. As shown in Fig. 4, the transmitted
phases are the same for two incident directions but the re-
flected phases are evidently different.

As mentioned earlier, the monopole and dipole moment
are extremely dominant in the waveguide at low frequencies.
Hence the retrieved polarizabilities should lead to two unitary
eigenvalues for the S matrix S = I + 2T , which is verified
in Fig. 5. This indicates that most of the energy is contained
in the monopole and dipole scattering, and that higher order
multipoles are negligible in such a system. Finally, it is worth
mentioning that the method developed here also works for
lossy scatterers which displays more interesting phenomena
such as asymmetric absorption [35].
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FIG. 5. Eigenvalues of the S matrix. The black and dashed red
lines correspond to the absolute value of the eigenvalues; the blue
and dashed green lines represent the phases of the eigenvalues.

V. CONCLUSION

We have presented a simple retrieval method for extracting
the polarizability tensors for 2D and 1D Willis elements
using a finite set of scattering amplitudes. Two examples
have been presented to show the implementation procedure.
The retrieval method is based on the assumption that only
monopole and dipole moment contribute to the far field; this
reduces the T matrix to a closed (d + 1) × (d + 1) matrix
where d is the dimension. It can be seen from the 2D example
that the retrieved parameters agree well with those obtained
using full monopole and dipole integration. In addition, the
eigenvalues of the S matrix in both examples are close to unity
satisfying the energy conservation requirement. Therefore,
our method can be used to evaluate acoustically small Willis
scatterers effectively. Although the retrieval method for 3D
scattering is not presented, the derivation is straightforward
following the procedure for the 2D case. The retrieval method
presented in this paper is also suitable for experimental
realizations. In conclusion, the retrieval method developed
in this paper can be used to design and optimize Willis
inclusions for advanced wave-steering and sound absorption
applications.
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