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We revisit Mindlin’s theory for flexural dynamics of plates using
two correction factors, one for shear and one for rotary inertia.
Mindlin himself derived and considered his equations with both
correction factors, but never with the two simultaneously. Here,
we derive optimal values of both factors by matching the Mindlin
frequency–wavenumber branches with the exact Rayleigh–Lamb
dispersion relations. The thickness shear resonance frequency is
obtained if the factors are proportional but otherwise arbitrary.
This degree-of-freedom allows matching of the main flexural
mode dispersion with the exact Lamb wave at either low or high
frequency by choosing the shear correction factor as a function of
Poisson’s ratio. At high frequency, the shear factor takes the value
found by Mindlin, while at low frequency, it assumes a new
explicit form, which is recommended for flexural wave modeling.
[DOI: 10.1115/1.4038956]

1 Introduction

The equations for flexural wave motion in thin plates first pro-
posed by Uflyand [1] were subsequently shown by Mindlin [2] to
follow from Hamilton’s principle with kinetic and energy densities
derived from the full elastodynamic equations of motion. Mindlin
later generalized his procedure for reduced order Lagrangian den-
sity to obtain higher-order theories [3,4] that more accurately
reflect plate dynamics at shorter wavelength. Here, we focus on the
simplest and most succinct form of this hierarchy of equations
[1,2], which we refer to as Mindlin plate theory. Mindlin’s theory
incorporates shear deformation and rotary inertia; it predicts finite
wave speed for the primary flexural branch as frequency tends to
infinity, and it also displays a second quasi-flexural branch that
approximates the analogous Rayleigh–Lamb branch, all features
absent from the classical Kirchhoff theory. Application of the
Mindlin equations has enabled accurate modeling of flexural wave
effects not possible with Kirchhoff theory, such as plate edge
waves [5] and scattering of flexural waves from defects [6].

In his original paper [2] on flexural wave motion, Mindlin con-
sidered two possible values for an adjustable parameter in his
theory, the shear correction factor or coefficient. He showed that
the flexural wave matches the Rayleigh wave speed at high fre-
quency with a shear correction factor that depends on Poisson’s
ratio, while the lowest shear resonance frequency is matched
using a factor independent of Poisson’s ratio. Hutchinson [7]
proposed a third shear correction factor, which is a function of
Poisson’s ratio that matches the flexural wave with the
Rayleigh–Lamb mode to second-order in frequency. Stephen [8]
investigated the accuracy of Hutchinson’s factor in predicting the
long-wavelength Rayleigh–Lamb mode and judged it the “best”
correction factor. The choice of which value to choose depends
upon the application in mind, with no unique shear correction fac-
tor optimal for every problem. Thus, Hull [9] noted that in order

to properly match the dispersion of the Rayleigh–Lamb solution,
the shear correction factor must be a fully frequency-dependent
parameter, which is not of much use in practice when one wants a
theory with as few adjustable parameters as possible. Recently,
Lakawicz and Bottega [10] showed that two distinct shear correc-
tion factors can replicate the three lowest antisymmetric
Rayleigh–Lamb branches. While this is a novel approach, it suf-
fers from the fact that the displacement solution comprises
selected parts of the total solution using Mindlin’s equations with
different parameters. That is, the two types of solutions used are
not the consequence of a unique Lagrangian.

Mindlin’s theory [4] actually includes two adjustable parame-
ters in the equations of motion. The first is the shear correction
factor which was originally motivated by the need to model shear
stress more accurately. The second is the rotary inertia correction
factor, which is perhaps not as well known as the shear factor.
The inertia factor arises from the angular acceleration terms of the
reduced order equations of motion, which allows for the density
in the angular acceleration to differ from the actual density of the
plate. Mindlin proposed a modified density to account for the error
in the prediction of the model1 [4]: “Thus we can correct the limit-
ing frequencies of the upper modes by replacing q1 in the kinetic

energy-density by q/j2 where j ¼ p=
ffiffiffiffiffi
12
p

, or by replacing the S
ð0Þ
2j

in the strain-energy by jS
ð0Þ
2j .” Mindlin apparently viewed the

modified density on an equal footing with the shear coefficient, in
that either one provides the necessary correction. Considering the
success of his theory using a single correction factor, it is not sur-
prising that he did not investigate the consequences of using two
independent correction factors for shear and rotary inertia. How-
ever, it is remarkable that there does not seem to be any subse-
quent examination in the literature of the potential of using two
independent correction factors. As far as the author can ascertain,
the sole exception is a passing suggestion in favor of such an
approach by Benscoter [11] in a review of a paper by Mindlin and
Deresiewicz [12] on the shear correction term in the Timoshenko
beam theory. Mindlin was certainly not the first to incorporate
rotary inertia in flexural vibration; it had been considered as early
as 1859 by Bresse [13]. But he was the first to consider a modified
rotary inertia, which we take advantage of.

The purpose here is to propose a refinement of Mindlin’s equa-
tions that incorporates independent correction factors for shear
and for angular acceleration. We start with the fact that the upper
mode cut-on frequencies are corrected by either the use of a shear
correction factor j or a density correction factor k. Thus, Mindlin
and Yang [4] noted that either j¼ p2/12 with k¼ 1 or j¼ 1
and k¼ 12/p2 yields the correction. However, it has apparently
not been noted that the identity j/k¼p2/12 suffices, which allows
flexibility in choosing one or the other of j or k. We use this flexi-
bility to show that both the shear resonance and the low frequency
matching can be obtained with a unique choice of j, which we
propose as a new best choice for the shear correction factor.

The paper proceeds with a review of the Mindlin theory in
Sec. 2. The various shear correction factors mentioned above are
introduced in Sec. 3. The improved accuracy using two correction
factors is explored in Sec. 4, where the optimal shear and rotary
inertia correction factors are defined and justified by comparison
with previous models. Section 5 concludes the paper.

2 Mindlin Equations

The plate has thickness h, density q, and the isotropic elastic
parameters are shear modulus l, Poisson’s ratio �, and Young’s
modulus E¼ 2(1þ �)l. The moment of inertia and bending stiff-
ness are I¼ h3/12 and D¼EI/(1� �2), respectively. The remain-
ing parameter in Mindlin’s theory is the shear correction factor j,
which is introduced to better approximate the shear forces. It may
be chosen according to different criteria, but normally j< 1 [14].Contributed by the Technical Committee on Vibration and Sound of ASME for
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The two-dimensional (2D) Mindlin equations are formulated in
terms of x¼ (x1, x2) the position on the central plane of the plate.
The kinematic variables are [14] the vertical plate deflection
w(x, t) and the in-plane two-vector of rotations wðx; tÞ. Define
the tensor e, or 2� 2 matrix of elements eij, i, j,¼ 1, 2,
e ¼ 1

2
ðrwþ ðrwÞTÞ. The strain energy density per unit area of

the plate is, see e.g., Ref. [15]

U ¼ D

2
� tr eð Þ2 þ 1� �ð Þtr e2ð Þ
� �

þ j
2

lhjrwþ wj2 (1)

The kinetic energy density is taken in the form

T ¼ 1

2
qh _w2 þ 1

2
q1Ij _wj2 (2)

where the dot over a quantity indicates the time derivative. The
modified density q1 is related to but different from q, in accord-
ance with Mindlin’s first-order approximation [4]. Application of
Hamilton’s principle leads to the equations of motion [1,2]

div Q ¼ qh €w (3)

div M�Q ¼ q1I €w (4)

where M and Q are, respectively, the bending moment tensor (or
2� 2 matrix) and the shear force (two-vector)

M ¼ Dð�ðtr eÞIþ ð1� �ÞeÞ (5)

Q ¼ jlhðrwþ wÞ (6)

and I is the identity (Iij¼ dij).
Motivation for the modified density q1 comes from the fact that

displacement at any point (x, y, z) in the plate according to Mind-
lin’s theory is u ¼ z wðx; tÞ þ wðx; tÞ ez ; where x¼ (x, y) is the
two-dimensional position on the central plane of the plate, z is the
transverse coordinate through the plate with z¼ 0 the center plane.
The actual displacement for the elastodynamic solution differs
from this, and just as one might expect the shear to be better mod-
eled with the shear correction factor, by analogy the rotational
inertia requires its own distinct correction factor. We introduce it
as k, according to the definition

q1 ¼ kq (7)

We consider time harmonic motion of frequency x, for which
the most general solution of the homogeneous equations of motion
is of the form

w ¼ Refðv1 þ v2Þe�ixtÞg
w ¼ Refðb1rv1 þ b2rv2 � ez �rv3Þe�ixtg

(8)

where v1(x), v2(x), and v3(x) (see Ref. [2]) each satisfies its own
(two-dimensional) Helmholtz equation

r2vj þ k2
j vj ¼ 0; j ¼ 1; 2; 3 ðno summationÞ (9)

The three bulk wavenumbers k1, k2, and k3 and the numbers b1

and b2 depend upon x. They are followed by direct substitution
and are given by

k2
1

k2
2

�
¼ 1

2

k2
T

j
þ kk2

P

� �
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

k2
T

j
� kk2

P

� �2

þ k4
F

s
(10a)

k2
3 ¼ kk2

T � jh=I (10b)

where kT and kP are, respectively, the wavenumbers for transverse
and extensional waves [16], and kF is the wavenumber according
to Kirchhoff plate theory

kT ¼ x
ffiffiffi
q
l

r
; kP ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2ð Þq

E

s
; k2

F ¼ x

ffiffiffiffiffiffi
qh

D

r
(11)

Finally, the nondimensional parameters appearing in Eq. (8) are
bj ¼ �1þ k2

T=ðjk2
j Þ, j¼ 1, 2.

3 Single Correction Factors

3.1 Low Frequency Correction Factor. Expansion of the
expression (10a) about x¼ 0 yields as the leading term the classi-

cal Kirchhoff wavenumber k2
1 ¼ k2

F, which is of order x. The

next term in the expansion of k2
1 is of order x2 with coefficient

proportional to 1/jþ k(1� �)/2. Previous authors have noted
that Mindlin’s theory with the shear correction factor only (k¼ 1)
can reproduce the low frequency expansion of the A0 Lamb
wave (denoted the F1 mode here) with a suitable choice, viz.
j¼ 5/(6� �) [8]. It is clear from the term of order x2 that the
same correction is obtained using an inertia correction factor only,
and equal to 7/5. In summary, the low frequency condition is sat-
isfied by a either a shear or an inertial correction factor alone, i.e.,
(j, k)¼ (j1, 1) or (j, k)¼ (1, k1), respectively, where

j1 ¼
5

6� � ; k1 ¼
7

5
(12)

Figure 1 plots the three Mindlin dispersion curves along with the
exact Rayleigh–Lamb branches. The accuracy of the approxima-
tion with the F1 wave is evident from the relative error shown in
Fig. 2. The dispersion equation for antisymmetric Rayleigh–Lamb
modes is [14]

tan
cLh

2
cot

cTh

2
þ 4cLcTk2 c2

T � k2
� 	�2 ¼ 0 (13)

with cT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

T � k2
p

; cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

L � k2
p

where kL is the longitudinal

wavenumber, k2
T=k2

L ¼ 1þ 1=ð1� 2�Þ.

3.2 Shear Wave Correction Factor. The exact shear branch
(S) wavenumber kS is given by

k2
S ¼ k2

T � p2=h2 (14)

The cut-on frequency kT¼ p/h where kS¼ 0 is also a zero for the
exact elastodynamic mode corresponding to F2. Noting the iden-

tity k2
1k2

2 ¼ k2
3k2

P=j, it follows that both k2 and k3 are zero at the

cut-on frequency k2
T ¼ jh=ðkIÞ, analogous to the double zero for

the two exact modes. As noted by Mindlin and Yang [4], this

Fig. 1 The wavenumbers of the three exact branches, F1, F2, S,
and the Mindlin wavenumbers k1, k2, k3 from Eq. (10) for (j, k)
5 (j1, 1), with m 5 0.35 The abscissa shows the real and
imaginary parts of the nondimensional wavenumber kh for the
separate branches. The ordinate is nondimensional frequency
defined by kT of Eq. (11).
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condition is satisfied by a either a shear or an inertial correction
factor alone, i.e., (j, k)¼ (j0, 1) or (j, k)¼ (1, 1/j0), respectively,
where

j0 � p2=12 (15)

Figure 3 shows that the S-branch dispersion curve is exactly repli-
cated by k3. However, the agreement of k1 and k2 with the F1 and
F2 branches is not so good at higher frequencies.

3.3 High Frequency Correction Factor. At high frequency,
Eq. (10) gives

k1; k2; k3ð Þ ¼ kTffiffiffi
j
p ;

ffiffiffi
k
p

kP;
ffiffiffi
k
p

kT

� �
þ � � � (16)

where only the leading order terms are indicated. Mindlin [2]
pointed out that the F1 branch has the correct asymptote at high
frequency, k1 ! kR¼x/cR where cR is the Rayleigh wave speed,
using the shear correction factor j ¼ jR � c2

R=c2
T : Note that jR is

the positive root less than unity of the cubic polynomial [17]
s3 � 8s2 þ 8½ð2� �Þs� 1�=ð1� �Þ:

Unlike the case with the low frequency response, it is not
possible to obtain the F1 high frequency asymptote using only an
inertial correction factor. However, the latter does provide the
possibility of simultaneously correcting both the shear and quasi-
shear branches, as we will see below.

4 The Two Correction Factors

As a first criterion, we choose the correction factors such that
the Mindlin shear cut-on coincides with the exact cut-on fre-
quency. Based on Eqs. (10b) and (14), this is achieved with

j
k
¼ p2

12
(17)

which is assumed hereafter. Only one parameter remains to be
fixed, say j, in terms of which

k ¼ j
j0

(18)

The three wavenumbers are now

k2
1

k2
2

)
¼ 1

2

k2
T

j
þ j

k2
P

j0

� �
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

k2
T

j
� j

k2
P

j0

� �2

þ k4
F

s
(19a)

k2
3 ¼

j
j0

k2
S (19b)

Note that the wavenumbers k2 and k3 are pure imaginary below
the shear cut-on at kT¼ p/h and real above that frequency.

4.1 Low Frequency Correction Factor. The present model
emulates the low frequency behavior of the F1 branch if the fol-
lowing holds:

1

j
þ k

1� �ð Þ
2

¼ 6� �
5
þ 1� �

2
(20)

Eliminating k using Eq. (18) yields a quadratic equation for the
shear correction factor with two real roots: one always less than
unity, the other greater than two. Of the two roots for j, we find
that the larger is not realistic for reasons explained further below,
and therefore focus on the smaller one, j¼j2, where

j2 �
20

17� 7�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 200 1� �ð Þ

j0 17� 7�ð Þ2

s0
@

1
A
�1

(21)

The shear correction factor j2 is shown in Fig. 4 for positive Pois-
son’s ratio. Over this range of �, the factor j2 is always greater
than the standard low frequency shear correction factor j1, and
the associated values of k are always less than unity since j � j0.
Note that j0, j1, and j2 all coincide at �¼ 6� 60/p2¼�0.079.
Figure 4 also shows the high frequency correction factor jR. The
associated density correction factor kR¼ jR/j0 is larger than unity
for Poisson’s ratio values less than approximately 0.175, but oth-
erwise kR< 1.

Fig. 2 The relative error in the F1 flexural wavenumber k1 com-
pared with the exact Rayleigh–Lamb wavenumber k, as a func-
tion of nondimensional frequency kTh for five combinations of
j, k. The curves represent k1 calculated from Eq. (10a) with
shear correction factors only and with both correction factors
j, k satisfying the constraint (17).

Fig. 3 Exact and Mindlin wavenumbers for (j, k) 5 (j0, 1),
m 5 0.35 The abscissa and ordinate are the same as in Fig. 1

Fig. 4 The shear correction factors j0, j1, j2 from Eqs. (12),
(15), and (21), respectively, and the high frequency F1 correc-
tion factor jR, as functions of Poisson’s ratio m
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Figure 5 shows the Mindlin dispersion curves calculated using
shear correction factor j2 with inertial correction factor satisfying
the shear resonance criterion (18). The agreement between the k1

and F1 curves is much more accurate than that of Fig. 3 and is in
fact as good as that obtained using the low frequency shear correc-
tion factor j1, as the close-up in Fig. 2 indicates. However, it is
important to emphasize that the dispersion curves of Fig. 5 also
have the correct shear resonance (cut-on) at the exact value, i.e.,
kTh¼ p. Furthermore, the agreement between the k2 and F2 curves
is decidedly better in Fig. 5 than in either of Figs. 1 or 3. Finally,
we note that the alternative root of the quadratic equation for j,
from Eqs. (18) to (20), viz.

j ¼ 20

17� 7�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 200 1� �ð Þ

j0 17� 7�ð Þ2

s0
@

1
A
�1

(22)

produces exactly the same k1 and k2 curves as shown in Fig. 5.
However, the predicted k3 branch is highly inaccurate. As men-
tioned above, the alternative value (22) is always larger than two,
which is clearly unrealistic, apart from the wave dispersion
implications.

5 Conclusions

Mindlin himself considered both shear and rotary inertial
correction factors, but never the two simultaneously. The main
contribution of this paper is to show that a consistent low fre-
quency theory that emulates the flexural wave and reproduces the

exact shear thickness resonance can be obtained with unique val-
ues of the two correction factors. Our first result is that the thick-
ness shear resonance frequency is obtained if the shear and rotary
inertial correction factors in Mindlin’s equations are proportional:
j¼ kp2/12. The remaining degree-of-freedom allows matching of
the flexural mode dispersion with the exact Lamb wave at either
low or high frequency by choosing j as a function of Poisson’s
ratio. At high frequency, the shear correction factor takes the
value found by Mindlin [2], while at low frequency, it has a new
explicit form, j2 of Eq. (21). The results of the paper suggest that
Mindlin’s equations are optimal in the long wavelength regime
with j¼j2 and k¼ 12j2/p2. It is recommended to use these spe-
cific values for the two correction factors when using Mindlin’s
theory for modeling plate dynamics.
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