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Integral identities for reflection, transmission, and scattering
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Several integral identities related to acoustic scattering are presented. In each case the identity
involves the integral over frequency of a physical quantity. For instance, the integrated transmission
loss, a measure of the transmitted acoustic energy through an inhomogeneous layer, is shown to
have a simple expression in terms of spatially averaged physical quantities. Known identities for
the extinction cross section and for the acoustic energy loss in a slab with a rigid backing, are
shown to be special cases of a general procedure for finding such integral identities.
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I. INTRODUCTION

Identities for scattering coefficients that involve inte-
grals over all frequencies, or equivalently over all wave-
lengths, provide a useful means to characterize scattering
independent of frequency using a single parameter.
However, there are very few such identities available. An
important example is the integral of the extinction (which is
the sum of the rate of energy absorption and the scattering
cross-section) over all wavelengths.! The integrated extinc-
tion (IE) is a natural metric for quantifying scattering reduc-
tion.>® The IE has the important property that it is
proportional to a linear combination of the monopole and
dipole amplitudes if the scattering is causal,*> that is, the
scattered wavefront in the forward direction arrives after an
equivalent plane wavefront in the background medium.
Causal scattering is the default for electromagnetics,
although there is no such limitation for acoustic or elastic
waves. Many scattering situations of interest in acoustics are
non-causal, such as metal objects in water or air, for which
the causal IE expression'* does not apply. However, by con-
sidering the scattering in the time domain, it is possible to
provide an expression applicable to all types of scatterers.
The generalization of Purcell’s result to non-causal scatter-
ing can be found in Ref. 5.

The only other integral identity known to the author
relates the integral over all wavelengths of the acoustic
absorption of a slab with rigid backing to the static effective
bulk modulus of the slab.®” This result, based on work by
Rozanov® and on the Bode-Fano theorem,9 reduces an inte-
gral of the logarithm of the absolute value of the acoustic
reflection coefficient to a form that can be interpreted in
terms of static parameters plus a denumerable set of complex
numbers defined by the zeros of the reflection coefficient as
a function of frequency.

The purpose of the paper is to present several new inte-
gral identities related to acoustic scattering. Some of these
identities are similar to the one found previously,® requiring
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knowledge of the infinite set of zeros of a reflection coeffi-
cient. However, new identities are presented which require
only purely static physical parameters, such as the total
mass, or the effective compressibility.

We begin in Sec. II by considering some consequences
of a signal being causal. The acoustic scattering problem is
defined in Sec. III. The main results are given in Sec. IV,
including integral identities for the reflection and transmis-
sion coefficients in one-dimensional configurations.

Il. CAUSAL SIGNAL RESULTS

The real-valued signal is called causal if it is zero before

t<0. ey

The Fourier transform of the causal signal,

S(w) = J s(f)ends, @

0

is analytic in the upper half plane (or causal half plane) of
the complex frequency Imw > 0. It may have zeros at the
discrete set of frequencies {®,} in the upper half plane.
The additional property S(fa)*) :S*(w), with an asterisk
denoting the complex conjugate, follows from the fact that
s(t) is real. The low frequency expansion of the Fourier
transform is

S(w) = So +iwS; + (iw)2S, + O(w?), 3)

where S, j=0, 1, 2,... are real valued. The coefficients can
be identified from Eq. (2) as

1 (™ .
Sy = HL s(r)f"de. 4)

These integrals are well defined if the function s(#) decays
fast enough as + — oo, which is certainly true if the signal is
of finite duration, as is assumed here.
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The Fourier transform of a causal function satisfies the
Sokhotski-Plemelj relations for real values of w [Ref. 10,
Eq. (1.6.7)]

; ®)

S = —
() in o —w

L[ Sl

-0

where + denotes principal value integral. Equation (5) is
equivalent to S(w) = iH(S)(w), where H(S) is the Hilbert
transform. The real and imaginary parts of S(w) on the real
w—axis are therefore related to one another by the well-
known identities ImS(w) = H(ReS)(w) and ReS(w)
= —H(ImS)(w). The following identities result from
expanding (5) about w =0 for a real-valued signal, with
details available in Appendix A,

2 (* d
T Jo @
2 (> dw
S1=7], (S0 —ReS(@)) 5 (6b)
2 (> do
=7 (@S —mS@) 5. ... (6c)

In dealing with acoustic transfer functions it is important
to distinguish between minimum phase and non-minimum
phase functions. The canonical decomposition of a non-
minimum phase transfer function is''

S(w) = ei‘”DSmp(a)) HZ(a), wj), (7
J

where Spp(w) is the unique minimum phase transfer
function,
w—u

Z((U, Lt) = W — u* ’ (8)

and the set of complex frequencies {w;} are in the causal half
plane. The delay D is the largest value for which s(t — D) is
causal. The minimum phase transfer function has no zeros in
the upper half plane whereas S(w) has zeros at {w;}. Note
that any zero of the form w; = o; +if};, w; > 0, is accompa-
nied by ;= —o; +if;,. This ensures that Sp,(—w")
= Syp(@), and hence the causal time-domain function s,, ()
is real-valued.

Since |Smp(w)| = |S(w)| for real w, it follows that the
real parts of the two functions lnSmp(a)) and InS(w) coincide.
The imaginary parts of these two functions clearly differ,
and most importantly, the real and imaginary parts of the
minimum phase function InS,,, () are related by the Hilbert
transform relations. This property does not extend to the
non-minimum phase function.

Minimum phase identification requires assumptions
about the physical system.'?'? If a transfer function, such as
a reflection coefficient, is minimum phase then its phase as a
function of frequency is uniquely defined by the amplitude.
Conversely, the phase is not uniquely defined by the ampli-
tude if the transfer function is not minimum phase.
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We next consider several applications based on the low
frequency behavior of minimum phase functions S(w) with
the common condition Sy = 0. The results all follow from the
following identity, which is a consequence of Eq. (6b).

Lemma 1. Let S(w) be the Fourier transform of a causal
real-valued signal with S(0) = 0. Then

o dow i
ReS(w)—=—=S 9
L ehwwz 551, )
where
ds
5 = i | (10)
dw w=0

The results in Sec. II are based upon a causal scattering
process; that is, the forward scattered signal follows the
incoming signal. In the absence of material damping when
the wave speed is real, there is no ambiguity in the meaning
of causal. With absorption present, the strict definition
requires considering how a sharp delta pulse transmits.

lll. ACOUSTIC SCATTERING

The acoustic pressure p(x) € C satisfies the Helmholtz
equation outside of a finite region Q, the scatterer,

Vp+kp=0, xeRYQ. (11)
The system may be one, two or three-dimensional, d =1, 2,
or 3. Time harmonic dependence is considered with k = w/c
and c is the sound speed, ¢ =(C ,0)_1/2 where the uniform
exterior acoustic medium has mass density p and compress-
ibility C. The factor e " is understood and omitted.

The scatterer, £, may be an inhomogeneous acoustic or
elastic object. The specific results will be limited to acoustic
scatterers of density p’ and compressibility C'. Damping in
the scatterer may be included by considering the material
properties as frequency dependent complex parameters
p'(x,w), C'(x,w) and derived quantities, the wave speed
(x,0) = (C'p')""/* and impedance Z(x,w) = (p'/C")"*.
The zero frequency limits, or static values, will play an
important role in our results, and we therefore denote them

Cy = C'(x,0),
zp = 2'(x,0). (12)

po = p'(x,0),
o = ¢'(x,0),

Note that these are necessarily real-valued quantities.

The total acoustic pressure p comprises an incident
plane wave et plus the scattered pressure py,

p = 4 py(x). (13)

The scattering amplitude F(0, w) is defined by

NI .
p=roo) () e fivo(b)] s

as r = |x| — oo, where 0 is the scattering direction, 0 =10
corresponding to the direction of incidence k. Note that
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Eq. (14) is exact in one dimension, in which case 0 only
takes the values 0 and 7, with

T(w)=1+F(0,w), R(w)=F(n ), (15)

the transmission and reflection coefficients, respectively.

IV. INTEGRAL IDENTITIES
A. Integrated extinction

The extinction cross section is defined as 6 =06y, + g,
with o, the absorption cross section (zero in the absence of
loss), and o is the scattering cross section

o (0) = J|ps|2ds, (16)

where the integral is around any surface enclosing the scat-
terer. The optical theorem relates the extinction to the for-
ward scattering amplitude,

0 = —2ReS(w) where S(w) = F(0,w). (17)
The integrated extinction (IE),
J G(“;) dw >0, (18)
0 (0)]

defines the total cross section over all frequencies.

It follows from Lemma 1, Egs. (17), (18) and the fact
that the forward scattering amplitude vanishes at zero fre-
quency (So=0) that

ro G(‘;) dw = 78, (19)
0 )

The identity (19) for d =3 was derived by Purcell® for elec-
tromagnetics and was first used in acoustics by Sohl er al.*
Equation (19) is, however, restricted to scattering for which
the forward scattered impulse function [the time domain ver-
sion of S(w)] is strictly causal. This is always the case if the
wave speed in the scatterer is everywhere less than that of
the exterior medium. However, if the scatterer comprises
faster material such that the forward amplitude precedes the
direct wave in time, then the function S(w) is no longer ana-
lytic in the upper half plane, and Eq. (19) is not valid. The
problem arises from the strict definition of the scattered
amplitude in Eq. (14) which allows use of the optical theorem.
Resolution of this issue can be found in Ref. 5, which describes
the generalization of Eq. (19) to all possible scatterers. Here we
will only consider scattering such that Eq. (19) holds.

The zero frequency limit in Eq. (19) allows us to inter-
pret S; and hence the IE in terms of quasistatic properties.
For instance, if the scatterer has volume |Q|, compressibility
C'(x, ), and uniform density p'(w), then®

f"gj) dw=%<(<C—C'0>— 1)|Q| K
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where 7y is the polarizability dyadic'*
(-) is the spatial average, e.g.,

proportional to |Q| and

o
(€)= 7], G ax e

The compressibility term in Eq. (20) is the monopole
contribution to the scattering, which is independent of the
direction of observation. The polarizability produces a dipole
field with dependence K -y - X where X is the unit vector in
the scattering direction. The identity for the IE is therefore a
special case of the more general integral equality

—2ReJ F0.0) 4,

o
1>|Q—12

:2_”C<<<C_C<’>>_ y(p%))x) (22)

For instance, if the scatterer is a uniform sphere with sound
speed ¢! < ¢ (Ref. 15, p. 282)

—2ReJ M dw
0 (0)]

Po
_ Q) C’ (?_ )
»P0 P,

cos 0
2c 1

; (23)

where cos 0 = k - x. The integral (23) is positive for =0
but may be negative for other directions.

B. Transmission and reflection from a slab

Consider a 1D system with non-uniform density and
compressibility p’(x, w), C'(x,w) restricted to Q=[0, al.
The reflection and transmission coefficients are given by Eq.
(B6a). Lemma 1 with S(w)=R(w) from Eq. (B6a) implies
the identity

EO ReR() i—‘;’ - % (%ﬁ - @) . 24)

The choice S(w) =T(w) is not useful since T(0) is non-
zero. An alternative is to consider S(w)=T(w) — 1, which
reproduces Eq. (20) for 1D wave propagation. In this case,
the IE reduces to”

J"Oa(a}) dw:%(@Jr@—z). 25)

0o @ c p

Again we note that this formula is only valid if the travel
time across the slab is less than that in a slab of the same
width of the external fluid; i.e., the forward scattering is
causal. The extension of Eq. (25) to the non-causal situation
is discussed in Ref. 5.

Another option is to consider S(w) = InT(w) which has
So =0, and we can therefore use Lemma 1, with careful con-
sideration for the fact that the parameter S; is that for the
minimum phase function In7Ty, (). The transmission ()
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does not have zeros in the upper half plane, as can be seen
from Eq. (B4a), and hence {w;} =@, see Eq. (7). Therefore,
the minimum phase transmission coefficient is defined by
the earliest time at which the transmitted impulse response
becomes non-zero. This depends upon the difference in
travel time through the slab and through the same fluid dis-
tance. Thus,

Top(@) = T()e™), (26)

where T = a/c is the travel time across an equivalent slab of
fluid, and 7’ is the travel time across the slab, defined below.
Note that the real part of the logarithm of T(w) and Typ(w)
are the same for real valued w.

Taking S(w) = InTyp(@) and noting (i) S(0) =0, (ii)
ReS(w) = In|T(w)|, and (iii) that the low frequency expan-

sion of S is S(w) = iwTyp,; + - - -, we may use Lemma 1 in
the form
o do =
- L In|T(w)—5 = 5 Tmp.1- @7)

The coefficient T,,,, in turn follows from Egs. (26) and
(B6a), to give

[ pdo_ma ((G) | {eo) o7
L In|T(w) wz_Zc( C + ) 2T . (29

This quantity represents the total transmitted energy loss
over all frequency, and we therefore call it the integrated
transmission loss (ITL).

In order to further simplify Eq. (28) we first consider the
slab with no absorption. The wave speed ¢’ and impedance 7’
are then independent of frequency, yielding

p [ dx
T _L ek 29)

The integrated transmission loss can then be expressed in a
form that is clearly non-negative

2
> 2do ma /1 z z
_L In|T ()| E_7<? (ﬁ—ﬁ) > (30)

The presence of absorption implies a wave speed in the
slab that is frequency dependent: ¢’(x, w). The travel time 7’
should then be understood as the time taken for the first
arrival of a sharp pulse, which is defined by the infinite fre-
quency limit

¢ (x) = lim ¢ (x, w). (31)
This is real-valued satisfying ¢/, > c{. The travel time 7’ is
therefore

p_ [ dx
T _Joc’oo(X)' (32)

The general version of the identity (30) that includes absorp-
tion is
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2
> dw 1 z! Z 1 1
—| mrw|)== _\ﬁ__ L
J, mir@PG: <2< : \m i m>
(33)

where, as usual, ¢j(x) = ¢’(x,0) and zj(x) = Z/(x,0). The
property ¢/ > ¢, guarantees a non-negative ITL.

1. Numerical example of attenuated transmission

We consider a standard linear solid model, also known as
Zener’s model,16 for the slab bulk modulus. The stress, ¢
(=—p), and dilatational strain ¢, are related by ¢+ 50,
o = Ko(e + n,0,¢), with ;> > 0. The effective bulk modu-
lus is then K'(w)=K(1—a/(1 —iwn)), where K.
= Kom/m, =1 —n/n;. The acoustic speed is ¢’ = \/K'/p’, or

1/2
c'(w):cfx(l . ) , (34)

- ion
where ¢, = /K /p'. Hence, ¢, = ¢/ (1 — ot)l/z.

In the numerical example the background medium prop-
erties are ¢ = p = 1. The slab properties are a=1, p’ = 4.3,
¢, =137, and n = a/(10nc. ). We consider values of «
from zero (no damping) to a=0.4. Figure 1 shows three
curves: (i) the integral — [° In|T()*02dw evaluated
numerically, (ii) the expression on the right side of Eq. (33),
and (iii) the expression on the right side of Eq. (30). The
curves (i) and (ii) are coincident within the accuracy of the
(crude) numerical integration scheme. Curve (iii), which is
only valid for the lossless case, agrees with the others in that
limit but diverges from them as the damping grows.

C. Reflection from a slab with rigid or free backing

A reflected delta pulse signal s(f) = d(¢) has zero delay
because of the instantaneous wavefront interaction at the
interface. The associated minimum phase function therefore
has no phase delay but it does involve an all-pass filter asso-
ciated with the zeros w; of R(w) in the upper half plane,

4.8

461

4.4r

427

4

0 0.1 0.2 Q 0.3 0.4

FIG. 1. (Color online) The integral — [;* In|T(w)?w~2dw for the attenua-
tion model of Eq. (34). The upper (black) curve is actually two curves close
to one another, one determined using numerical integration, the other from
the expression in Eq. (33). The lower (blue) curve uses the expression in Eq.
(30) which does not account for damping.
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Rup(©) = R(®)/ [[ 2(0, ). (35)

Let R(w) = Ro + iwRy + - - -, then

Runp(®) = Rinpo + i0Rmp1 + - - -, (36)

where

J

1
Runpo =ZoRo, Rump1 =Zo <R1 +2R021m5> (37)
J

and Zy = [[,(w}/w,). The constraints on {c,} imply that
Zo=1 or Zo=—1. In the next examples we consider the lim-
iting cases for which Ry ==*1.

1. Rigid backing

For the rigid backing, Lemma 1 and Egs. (37), (B6b)
imply using S(w) = In(ZoRmp(w)) that

o do 2na(Cy) 1
—| InR(w)*—= = 2221207 4 9 Im— 38
L n[R(e) ? ¢ C * n; mwf %)
in agreement with Refs. 6 [Eq. (A9)] and 7 [Eq. (S9)].
Alternatively, taking S(w)=R(w) — 1, Lemma 1 and
Eq. (B6b) yield

ro Re(l — R(w)) 32 =G

— = 39
0 w2 c C ( )

2. Soft backing

For the soft backing, Lemma 1 and Egs. (37), (B6c)
imply using S(w) = In[—ZoRmp ()] that

* do  2mapy) 1
—| mR)P=S =T 4 0n S m . @o
Jo n|R(w)| = p— +2n j mwi (40)

Alternatively, taking S(w)=R(w) + 1, Lemma 1 and Eq.
(B6c) yield
J > do _ ma (pp)

Re(1 4 R(w)) Gy =T @1

V. DISCUSSION: CONNECTION WITH THE MASS LAW

The main results are new integral identities (24) and
(30) for the reflection and transmission coefficients of a slab
in an infinite medium, and Eqgs. (39)—(41) for reflection from
a slab with a rigid or soft backing. The general methodology
has also been used to derive two previously known identi-
ties: Eq. (20) for the integrated extinction and Eq. (38) for
the slab with rigid backing.

It is important to point out that all of these results
include the possibility of energy loss through material damp-
ing. However, many of the integral identities depend only on
the limiting static values of the density and bulk modulus,
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e.g., Eq. (20) for the IE, and Eqgs. (24), (39), (41) for reflec-
tion coefficients. These identities are therefore independent
of the particular damping mechanisms present, an unex-
pected and surprising result. The identity (33) for the inte-
grated transmission loss depends not only on the static
values of the slab parameters but also on the infinite fre-
quency value of the wave speed, which cannot be less than
the zero frequency speed.

The identities (38) and (40) involve the complex-valued
zeros {w;} which do depend on the material damping. In the
absence of absorption, since the slab is backed by a perfect
reflector it follows that |[R(w)| =1 in both cases. The inte-
grals (38) and (40) are therefore zero, with the right-hand
sides implying two identities for the quantities X;Im(1/w;).
When damping is present the integrals represent the loss of
acoustic energy into the slab over all frequencies. This was
the motivation for the original derivation®’ of Eq. (38).

Finally we note an interesting connection between the
exact identity (30) for the integrated transmission loss of a
uniform slab with no damping,

00 / 2
_J In|T ()2 32 = T4 (1 —5,> (42)

0 @ 2cp z

and the same integral using a well known and useful approx-
imation for T(w). The transmission coefficient using the
“mass law” (Ref. 17, Sec. 6.7) is

1

Tmass - - 43

(o) o wap (43)
—1i
2cp
This yields an integrated transmission loss

o0 do  map’

- In|Tass == ; 44
|, i) 57 =52 @)

clearly a good approximation to the exact ITL (42) if 2/ > z,
which is implicitly assumed in the mass law approximation.
It is interesting to note that the simple mass law approxima-
tion captures the full frequency content of the integrated
transmission loss.

This all suggests a slight modification of the mass law,

1

e ()
2cp 4

The proposed transmission coefficient has several benefits
including that it is unity if the impedances are equal, as it
should. It also reproduces the integrated loss (42) exactly.
However, the mass law in its simple or modified form cannot
be expected to accurately reproduce the ITL for a slab with
absorption, Eq. (33), since the approximations (43) and (45)
for the transmission coefficient use static quantities only.

Tapprox (60) = (45)
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APPENDIX A: INTEGRAL IDENTITIES FOR REAL
CAUSAL SIGNALS

The w—functions S(w), 1/(w — ) are both transforms of
causal signals, and therefore so are S(w)/(w — ) and the sub-
traction function [Ref. 10, Eq. (1.7.4)]

S(w) —S()

sV (w,0) = p— (AD)

In this way we may form a chain of causal transforms: S,
n=1,2,...,

S (w, ) — d"S(w)/do

e (0, 0) = -

, n>1.

(A2)

Being causal transforms, the Sokhotski-Plemelj relation (5)
applies to each of the functions S,

O do
st0.0 = S0 (A3)
in)_o o —o
The limiting values of the S functions as { — @ are
1 d"S(w)
NG, =— A4
©0) = " qor (a9

from which it follows that the nth derivative of S(w) can be
expressed as an integral of lower order derivatives,

S (0, w) —

d'S(w nl [ do’
()——f o) . (A5)

dow” in )

Specializing the Sokhotski-Plemelj relation (5) and the iden-
tities (A5) to the case w =0 yields

5(0) = % {O S(w) %”, (A6a)

§'(0) = % {o (S(w) — 5(0)) i—‘é’, (A6b)
7 _ 2 (™ , dw

5"(0) 75][700 (S(w) —S(0) — wS'(0)) = (A6c)

Finally, we restrict Eq. (A6) to real causal signals for
which we have the additional property S(—w) :S*(a)).
Using this and Eq. (3) the integrals (A6) reduce to Eq. (6).

APPENDIX B: LAYERED ONE DIMENSIONAL MEDIUM

The slab occupies Q: x € [0, a] with non-uniform den-
sity and compressibility p’(x, w), C'(x,w). The 2-vector of
particle velocity and acoustic pressure U= (v, p)” is propa-
gated from one end to the other by the 2 x 2 matrix M(x, »),
detM = 1, such that U(a) =M(a, ) U(0). The propagator
satisfies (Ref. 18, Sec. 7)
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%(x, ) = ioQM, M(0,0) =1, (B1)

with I the identity and

0 C'(x,m)

oo = (
The solution follows using well known methods for uni-
dimensional systems, e.g., Chap. 7 of Pease.'® The medium
in x<0 (x>a) is assumed to have properties z, ¢ (z;, ¢),
where the impedance z; is introduced to allow for different
boundary conditions at x = a, specifically the cases of inter-
estz; =z, 00, 0.

The reflected and transmitted fields are

ilex —ikx
p(x) = {;ei’;, fe ™ ii Z (B3)
where k= w/c. Hence,
—ika
=+ ZZIIMZZ:— My — 2, My, (B4a)
_M” —ZZI’IM22—|—ZM12 —Zflel (B4b)

= - 1 )
M + 2z} My —zMyp — 7 M>,

where M;; are the elements of M(a, ).

For our purposes, we note that at low frequency M(a, o)
=1+ iwa(Q,) + --- where (-) denotes the average value in
Q. Hence,

2z ika2z? ((cg)
Z1+z (21+z)2

. ika2z? <<C’o>_22<p6>> +0(0?).

a4z (n4272\ C 2p

/
+Z<p0> . 1> +0(w?),
C zp oz

Z1—Z
R =

(BS)

The three cases of interest are (i) the slab sandwiched by the
same material on either side, (ii) the slab with a rigid back-
ing, and (iii) the slab with a soft boundary on one side or,
respectively,

T:1+ik—“<@+@—z) + 0(w?),

2\ C —
R=1 (W) 4 o), |
(B6a)
R=1+ ika2<c—6§)>+ Ole?), z; = oo, (B6b)
R=—-1- ikaZ% +0(w?), z=0. (B6¢)

Finally, note that damping may be included by consider-
ing the material properties as frequency dependent complex
parameters. In that case (-) is the spatial average of the real
valued static quantity (o = 0).
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