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Several integral identities related to acoustic scattering are presented. In each case the identity

involves the integral over frequency of a physical quantity. For instance, the integrated transmission

loss, a measure of the transmitted acoustic energy through an inhomogeneous layer, is shown to

have a simple expression in terms of spatially averaged physical quantities. Known identities for

the extinction cross section and for the acoustic energy loss in a slab with a rigid backing, are

shown to be special cases of a general procedure for finding such integral identities.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5058681
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I. INTRODUCTION

Identities for scattering coefficients that involve inte-

grals over all frequencies, or equivalently over all wave-

lengths, provide a useful means to characterize scattering

independent of frequency using a single parameter.

However, there are very few such identities available. An

important example is the integral of the extinction (which is

the sum of the rate of energy absorption and the scattering

cross-section) over all wavelengths.1 The integrated extinc-
tion (IE) is a natural metric for quantifying scattering reduc-

tion.2,3 The IE has the important property that it is

proportional to a linear combination of the monopole and

dipole amplitudes if the scattering is causal,4,5 that is, the

scattered wavefront in the forward direction arrives after an

equivalent plane wavefront in the background medium.

Causal scattering is the default for electromagnetics,

although there is no such limitation for acoustic or elastic

waves. Many scattering situations of interest in acoustics are

non-causal, such as metal objects in water or air, for which

the causal IE expression1,4 does not apply. However, by con-

sidering the scattering in the time domain, it is possible to

provide an expression applicable to all types of scatterers.

The generalization of Purcell’s result to non-causal scatter-

ing can be found in Ref. 5.

The only other integral identity known to the author

relates the integral over all wavelengths of the acoustic

absorption of a slab with rigid backing to the static effective

bulk modulus of the slab.6,7 This result, based on work by

Rozanov8 and on the Bode-Fano theorem,9 reduces an inte-

gral of the logarithm of the absolute value of the acoustic

reflection coefficient to a form that can be interpreted in

terms of static parameters plus a denumerable set of complex

numbers defined by the zeros of the reflection coefficient as

a function of frequency.

The purpose of the paper is to present several new inte-

gral identities related to acoustic scattering. Some of these

identities are similar to the one found previously,6,7 requiring

knowledge of the infinite set of zeros of a reflection coeffi-

cient. However, new identities are presented which require

only purely static physical parameters, such as the total

mass, or the effective compressibility.

We begin in Sec. II by considering some consequences

of a signal being causal. The acoustic scattering problem is

defined in Sec. III. The main results are given in Sec. IV,

including integral identities for the reflection and transmis-

sion coefficients in one-dimensional configurations.

II. CAUSAL SIGNAL RESULTS

The real-valued signal is called causal if it is zero before

t¼ 0,

sðtÞ ¼ 0; t < 0: (1)

The Fourier transform of the causal signal,

SðxÞ ¼
ð1

0

sðtÞeixtdt; (2)

is analytic in the upper half plane (or causal half plane) of

the complex frequency Imx> 0. It may have zeros at the

discrete set of frequencies {xn} in the upper half plane.

The additional property S(�x*)¼ S*(x), with an asterisk

denoting the complex conjugate, follows from the fact that

s(t) is real. The low frequency expansion of the Fourier

transform is

SðxÞ ¼ S0 þ ixS1 þ ðixÞ2S2 þOðx3Þ; (3)

where Sj, j¼ 0, 1, 2,… are real valued. The coefficients can

be identified from Eq. (2) as

Sn ¼
1

n!

ð1
0

sðtÞtndt: (4)

These integrals are well defined if the function s(t) decays

fast enough as t!1, which is certainly true if the signal is

of finite duration, as is assumed here.a)Electronic mail: norris@rutgers.edu
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The Fourier transform of a causal function satisfies the

Sokhotski-Plemelj relations for real values of x [Ref. 10,

Eq. (1.6.7)]

SðxÞ ¼ 1

ip
�
ð1
�1

S x0ð Þdx0

x0 � x
; (5)

where �
Ð

denotes principal value integral. Equation (5) is

equivalent to SðxÞ ¼ iHðSÞðxÞ, where HðSÞ is the Hilbert

transform. The real and imaginary parts of S(x) on the real

x–axis are therefore related to one another by the well-

known identities ImSðxÞ ¼ HðReSÞðxÞ and ReSðxÞ
¼ �HðImSÞðxÞ. The following identities result from

expanding (5) about x¼ 0 for a real-valued signal, with

details available in Appendix A,

S0 ¼
2

p

ð1
0

ImSðxÞ dx
x
; (6a)

S1 ¼
2

p

ð1
0

S0 � ReSðxÞð Þ dx
x2

; (6b)

S2 ¼
2

p

ð1
0

xS1 � ImSðxÞð Þ dx
x3

;…: (6c)

In dealing with acoustic transfer functions it is important

to distinguish between minimum phase and non-minimum

phase functions. The canonical decomposition of a non-

minimum phase transfer function is11

SðxÞ ¼ eixDSmpðxÞ
Y

j

Zðx;xjÞ; (7)

where Smp(x) is the unique minimum phase transfer

function,

Z x; uð Þ ¼
x� u

x� u�
; (8)

and the set of complex frequencies {xj} are in the causal half

plane. The delay D is the largest value for which s(t � D) is

causal. The minimum phase transfer function has no zeros in

the upper half plane whereas S(x) has zeros at {xj}. Note

that any zero of the form xj ¼ aj þ ibj; xj � 0, is accompa-

nied by x0j ¼ �aj þ ibj. This ensures that Smpð�x�Þ
¼ S�mpðxÞ, and hence the causal time-domain function smpðtÞ
is real-valued.

Since jSmpðxÞj ¼ jSðxÞj for real x, it follows that the

real parts of the two functions lnSmpðxÞ and lnS(x) coincide.

The imaginary parts of these two functions clearly differ,

and most importantly, the real and imaginary parts of the

minimum phase function lnSmp (x) are related by the Hilbert

transform relations. This property does not extend to the

non-minimum phase function.

Minimum phase identification requires assumptions

about the physical system.12,13 If a transfer function, such as

a reflection coefficient, is minimum phase then its phase as a

function of frequency is uniquely defined by the amplitude.

Conversely, the phase is not uniquely defined by the ampli-

tude if the transfer function is not minimum phase.

We next consider several applications based on the low

frequency behavior of minimum phase functions S(x) with

the common condition S0¼ 0. The results all follow from the

following identity, which is a consequence of Eq. (6b).

Lemma 1. Let S(x) be the Fourier transform of a causal
real-valued signal with S(0)¼ 0. Thenð1

0

ReSðxÞ dx
x2
¼ �p

2
S1; (9)

where

S1 ¼ �i
dS

dx

����
x¼0

: (10)

The results in Sec. II are based upon a causal scattering

process; that is, the forward scattered signal follows the

incoming signal. In the absence of material damping when

the wave speed is real, there is no ambiguity in the meaning

of causal. With absorption present, the strict definition

requires considering how a sharp delta pulse transmits.

III. ACOUSTIC SCATTERING

The acoustic pressure pðxÞ 2 C satisfies the Helmholtz

equation outside of a finite region X, the scatterer,

r2pþ k2p ¼ 0; x 2 Rd=X: (11)

The system may be one, two or three-dimensional, d¼ 1, 2,

or 3. Time harmonic dependence is considered with k¼x/c
and c is the sound speed, c¼ (Cq)�1/2 where the uniform

exterior acoustic medium has mass density q and compress-

ibility C. The factor e�ixt is understood and omitted.

The scatterer, X, may be an inhomogeneous acoustic or

elastic object. The specific results will be limited to acoustic

scatterers of density q0 and compressibility C0. Damping in

the scatterer may be included by considering the material

properties as frequency dependent complex parameters

q0ðx;xÞ; C0ðx;xÞ and derived quantities, the wave speed

c0ðx;xÞ ¼ ðC0q0Þ�1=2
and impedance z0ðx;xÞ ¼ ðq0=C0Þ1=2

.

The zero frequency limits, or static values, will play an

important role in our results, and we therefore denote them

q00 ¼ q0ðx; 0Þ; C00 ¼ C0ðx; 0Þ;
c00 ¼ c0ðx; 0Þ; z00 ¼ z0ðx; 0Þ: (12)

Note that these are necessarily real-valued quantities.

The total acoustic pressure p comprises an incident

plane wave eikx plus the scattered pressure ps,

p ¼ eikx þ psðxÞ: (13)

The scattering amplitude F(h, x) is defined by

ps ¼ F h;xð Þ k

i2pr

� � d�1ð Þ=2

eikr 1þO 1

kr

� �� �
(14)

as r ¼ jxj ! 1, where h is the scattering direction, h¼ 0

corresponding to the direction of incidence k̂. Note that
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Eq. (14) is exact in one dimension, in which case h only

takes the values 0 and p, with

TðxÞ ¼ 1þ Fð0;xÞ; RðxÞ ¼ Fðp;xÞ; (15)

the transmission and reflection coefficients, respectively.

IV. INTEGRAL IDENTITIES

A. Integrated extinction

The extinction cross section is defined as r¼ rsc þ rab

with rab the absorption cross section (zero in the absence of

loss), and rsc is the scattering cross section

rscðxÞ ¼
ð
jpsj2ds; (16)

where the integral is around any surface enclosing the scat-

terer. The optical theorem relates the extinction to the for-

ward scattering amplitude,

r ¼ �2 ReSðxÞ where SðxÞ � Fð0;xÞ: (17)

The integrated extinction (IE),ð1
0

rðxÞ
x2

dx � 0; (18)

defines the total cross section over all frequencies.

It follows from Lemma 1, Eqs. (17), (18) and the fact

that the forward scattering amplitude vanishes at zero fre-

quency (S0¼ 0) thatð1
0

rðxÞ
x2

dx ¼ pS1: (19)

The identity (19) for d¼ 3 was derived by Purcell1 for elec-

tromagnetics and was first used in acoustics by Sohl et al.4

Equation (19) is, however, restricted to scattering for which

the forward scattered impulse function [the time domain ver-

sion of S(x)] is strictly causal. This is always the case if the

wave speed in the scatterer is everywhere less than that of

the exterior medium. However, if the scatterer comprises

faster material such that the forward amplitude precedes the

direct wave in time, then the function S(x) is no longer ana-

lytic in the upper half plane, and Eq. (19) is not valid. The

problem arises from the strict definition of the scattered

amplitude in Eq. (14) which allows use of the optical theorem.

Resolution of this issue can be found in Ref. 5, which describes

the generalization of Eq. (19) to all possible scatterers. Here we

will only consider scattering such that Eq. (19) holds.

The zero frequency limit in Eq. (19) allows us to inter-

pret S1 and hence the IE in terms of quasistatic properties.

For instance, if the scatterer has volume jXj, compressibility

C0ðx;xÞ, and uniform density q0ðxÞ, then4

ð1
0

rðxÞ
x2

dx ¼ p
2c

hC00i
C
� 1

� �
jXj � k̂ � c q

q00

� �
� k̂

 !
;

(20)

where c is the polarizability dyadic14 proportional to jXj and

h�i is the spatial average, e.g.,

hC00i ¼
1

jXj

ð
X

C0
0 xð Þdx: (21)

The compressibility term in Eq. (20) is the monopole

contribution to the scattering, which is independent of the

direction of observation. The polarizability produces a dipole

field with dependence k̂ � c � x̂ where x̂ is the unit vector in

the scattering direction. The identity for the IE is therefore a

special case of the more general integral equality

�2 Re

ð1
0

F h;xð Þ
x2

dx

¼ p
2c

hC00i
C
� 1

� �
jXj � k̂ � c q

q00

� �
� x̂

 !
: (22)

For instance, if the scatterer is a uniform sphere with sound

speed c0 � c (Ref. 15, p. 282)

�2 Re

ð1
0

F h;xð Þ
x2

dx

¼ pjXj
2c

C00
C
� 1þ

3
q00
q
� 1

� �

2
q00
q
þ 1

cos h

0
BBB@

1
CCCA; (23)

where cos h ¼ k̂ � x̂. The integral (23) is positive for h¼ 0

but may be negative for other directions.

B. Transmission and reflection from a slab

Consider a 1D system with non-uniform density and

compressibility q0ðx;xÞ; C0ðx;xÞ restricted to X¼ [0, a].

The reflection and transmission coefficients are given by Eq.

(B6a). Lemma 1 with S(x)¼R(x) from Eq. (B6a) implies

the identityð1
0

ReRðxÞ dx
x2
¼ pa

4c

hq00i
q
� hC

0
0i

C

� �
: (24)

The choice S(x)¼T(x) is not useful since T(0) is non-

zero. An alternative is to consider S(x)¼T(x) – 1, which

reproduces Eq. (20) for 1D wave propagation. In this case,

the IE reduces to5

ð1
0

rðxÞ
x2

dx ¼ pa

2c

hC00i
C
þ hq

0
0i

q
� 2

� �
: (25)

Again we note that this formula is only valid if the travel

time across the slab is less than that in a slab of the same

width of the external fluid; i.e., the forward scattering is

causal. The extension of Eq. (25) to the non-causal situation

is discussed in Ref. 5.

Another option is to consider SðxÞ ¼ lnTðxÞ which has

S0¼ 0, and we can therefore use Lemma 1, with careful con-

sideration for the fact that the parameter S1 is that for the

minimum phase function lnTmpðxÞ. The transmission T(x)
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does not have zeros in the upper half plane, as can be seen

from Eq. (B4a), and hence {xj}¼Ø, see Eq. (7). Therefore,

the minimum phase transmission coefficient is defined by

the earliest time at which the transmitted impulse response

becomes non-zero. This depends upon the difference in

travel time through the slab and through the same fluid dis-

tance. Thus,

TmpðxÞ ¼ TðxÞeixðs�s0Þ; (26)

where s ¼ a=c is the travel time across an equivalent slab of

fluid, and s0 is the travel time across the slab, defined below.

Note that the real part of the logarithm of T(x) and Tmp(x)

are the same for real valued x.

Taking SðxÞ ¼ lnTmpðxÞ and noting (i) S(0)¼ 0, (ii)

ReSðxÞ ¼ lnjTðxÞj, and (iii) that the low frequency expan-

sion of S is SðxÞ ¼ ixTmp;1 þ � � �, we may use Lemma 1 in

the form

�
ð1

0

lnjTðxÞj dx
x2
¼ p

2
Tmp;1: (27)

The coefficient Tmp,1 in turn follows from Eqs. (26) and

(B6a), to give

�
ð1

0

lnjTðxÞj2 dx
x2
¼ pa

2c

hC00i
C
þ hq

0
0i

q
� 2

s0

s

� �
: (28)

This quantity represents the total transmitted energy loss

over all frequency, and we therefore call it the integrated
transmission loss (ITL).

In order to further simplify Eq. (28) we first consider the

slab with no absorption. The wave speed c0 and impedance z0

are then independent of frequency, yielding

s0 ¼
ða

0

dx

c0 xð Þ : (29)

The integrated transmission loss can then be expressed in a

form that is clearly non-negative

�
ð1

0

lnjTðxÞj2 dx
x2
¼ pa

2

1

c0

ffiffiffi
z0

z

r
�

ffiffiffi
z

z0

r !2* +
: (30)

The presence of absorption implies a wave speed in the

slab that is frequency dependent: c0ðx;xÞ. The travel time s0

should then be understood as the time taken for the first

arrival of a sharp pulse, which is defined by the infinite fre-

quency limit

c01ðxÞ ¼ lim
x!1

c0ðx;xÞ: (31)

This is real-valued satisfying c01 � c00. The travel time s0 is

therefore

s0 ¼
ða

0

dx

c01 xð Þ : (32)

The general version of the identity (30) that includes absorp-

tion is

�
ð1

0

lnjTðxÞj2dx
x2
¼pa

1

2c00

ffiffiffiffi
z00
z

r
�

ffiffiffiffi
z

z00

r !2

þ 1

c00
� 1

c01

* +
;

(33)

where, as usual, c00ðxÞ ¼ c0ðx; 0Þ and z00ðxÞ ¼ z0ðx; 0Þ. The

property c01 � c00, guarantees a non-negative ITL.

1. Numerical example of attenuated transmission

We consider a standard linear solid model, also known as

Zener’s model,16 for the slab bulk modulus. The stress, r
(¼�p), and dilatational strain e, are related by rþ g@t

r ¼ K0ðeþ g1@teÞ, with g1> g> 0. The effective bulk modu-

lus is then K0ðxÞ ¼ K1ð1� a=ð1� ixgÞÞ, where K1
¼K0g1/g, a¼ 1 – g/g1. The acoustic speed is c0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
K0=q0

p
, or

c0ðxÞ ¼ c01 1� a
1� ixg

� �1=2

; (34)

where c01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K1=q0

p
. Hence, c00 ¼ c01ð1� aÞ1=2

.

In the numerical example the background medium prop-

erties are c¼q¼ 1. The slab properties are a¼ 1, q0 ¼ 4:3;
c01 ¼ 1:37, and g ¼ a=ð10pc01Þ. We consider values of a
from zero (no damping) to a¼ 0.4. Figure 1 shows three

curves: (i) the integral �
Ð1

0
lnjTðxÞj2x�2dx evaluated

numerically, (ii) the expression on the right side of Eq. (33),

and (iii) the expression on the right side of Eq. (30). The

curves (i) and (ii) are coincident within the accuracy of the

(crude) numerical integration scheme. Curve (iii), which is

only valid for the lossless case, agrees with the others in that

limit but diverges from them as the damping grows.

C. Reflection from a slab with rigid or free backing

A reflected delta pulse signal s(t)¼ d(t) has zero delay

because of the instantaneous wavefront interaction at the

interface. The associated minimum phase function therefore

has no phase delay but it does involve an all-pass filter asso-

ciated with the zeros xj of R(x) in the upper half plane,

FIG. 1. (Color online) The integral �
Ð1

0
lnjTðxÞj2x�2dx for the attenua-

tion model of Eq. (34). The upper (black) curve is actually two curves close

to one another, one determined using numerical integration, the other from

the expression in Eq. (33). The lower (blue) curve uses the expression in Eq.

(30) which does not account for damping.
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RmpðxÞ ¼ RðxÞ=
Y

j

Zðx;xjÞ: (35)

Let RðxÞ ¼ R0 þ ixR1 þ � � �, then

RmpðxÞ ¼ Rmp;0 þ ixRmp;1 þ � � � ; (36)

where

Rmp;0 ¼ Z0R0; Rmp;1 ¼ Z0 R1 þ 2R0

X
j

Im
1

xj

 !
(37)

and Z0 ¼
Q

nðx�n=xnÞ. The constraints on {xn} imply that

Z0¼ 1 or Z0¼�1. In the next examples we consider the lim-

iting cases for which R0¼61.

1. Rigid backing

For the rigid backing, Lemma 1 and Eqs. (37), (B6b)

imply using SðxÞ ¼ lnðZ0RmpðxÞÞ that

�
ð1

0

lnjRðxÞj2 dx
x2
¼ 2pa

c

hC00i
C
þ 2p

X
j

Im
1

xj
; (38)

in agreement with Refs. 6 [Eq. (A9)] and 7 [Eq. (S9)].

Alternatively, taking S(x)¼R(x) � 1, Lemma 1 and

Eq. (B6b) yieldð1
0

Re 1� RðxÞð Þ dx
x2
¼ pa

c

hC00i
C

: (39)

2. Soft backing

For the soft backing, Lemma 1 and Eqs. (37), (B6c)

imply using SðxÞ ¼ ln½�Z0RmpðxÞ� that

�
ð1

0

lnjRðxÞj2 dx
x2
¼ 2pa

c

hq00i
q
þ 2p

X
j

Im
1

xj
: (40)

Alternatively, taking S(x)¼R(x) þ 1, Lemma 1 and Eq.

(B6c) yieldð1
0

Re 1þ RðxÞð Þ dx
x2
¼ pa

c

hq00i
q

: (41)

V. DISCUSSION: CONNECTION WITH THE MASS LAW

The main results are new integral identities (24) and

(30) for the reflection and transmission coefficients of a slab

in an infinite medium, and Eqs. (39)–(41) for reflection from

a slab with a rigid or soft backing. The general methodology

has also been used to derive two previously known identi-

ties: Eq. (20) for the integrated extinction and Eq. (38) for

the slab with rigid backing.

It is important to point out that all of these results

include the possibility of energy loss through material damp-

ing. However, many of the integral identities depend only on

the limiting static values of the density and bulk modulus,

e.g., Eq. (20) for the IE, and Eqs. (24), (39), (41) for reflec-

tion coefficients. These identities are therefore independent

of the particular damping mechanisms present, an unex-

pected and surprising result. The identity (33) for the inte-

grated transmission loss depends not only on the static

values of the slab parameters but also on the infinite fre-

quency value of the wave speed, which cannot be less than

the zero frequency speed.

The identities (38) and (40) involve the complex-valued

zeros {xj} which do depend on the material damping. In the

absence of absorption, since the slab is backed by a perfect

reflector it follows that jRðxÞj ¼ 1 in both cases. The inte-

grals (38) and (40) are therefore zero, with the right-hand

sides implying two identities for the quantities RjImð1=xjÞ.
When damping is present the integrals represent the loss of

acoustic energy into the slab over all frequencies. This was

the motivation for the original derivation6,7 of Eq. (38).

Finally we note an interesting connection between the

exact identity (30) for the integrated transmission loss of a

uniform slab with no damping,

�
ð1

0

lnjTðxÞj2 dx
x2
¼ paq0

2cq
1� z

z0

� �2

(42)

and the same integral using a well known and useful approx-

imation for T(x). The transmission coefficient using the

“mass law” (Ref. 17, Sec. 6.7) is

TmassðxÞ ¼
1

1� i
xaq0

2cq

: (43)

This yields an integrated transmission loss

�
ð1

0

lnjTmassðxÞj2
dx
x2
¼ paq0

2cq
; (44)

clearly a good approximation to the exact ITL (42) if z0 	 z,

which is implicitly assumed in the mass law approximation.

It is interesting to note that the simple mass law approxima-

tion captures the full frequency content of the integrated

transmission loss.

This all suggests a slight modification of the mass law,

TapproxðxÞ ¼
1

1� i
xaq0

2cq
1� z

z0

� �2
: (45)

The proposed transmission coefficient has several benefits

including that it is unity if the impedances are equal, as it

should. It also reproduces the integrated loss (42) exactly.

However, the mass law in its simple or modified form cannot

be expected to accurately reproduce the ITL for a slab with

absorption, Eq. (33), since the approximations (43) and (45)

for the transmission coefficient use static quantities only.
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APPENDIX A: INTEGRAL IDENTITIES FOR REAL
CAUSAL SIGNALS

The x–functions S(x), 1/(x – f) are both transforms of

causal signals, and therefore so are S(x)/(x – f) and the sub-
traction function [Ref. 10, Eq. (1.7.4)]

S 1ð Þ x; fð Þ ¼ SðxÞ � S fð Þ
x� f

: (A1)

In this way we may form a chain of causal transforms: S(n),

n¼ 1, 2,…,

S nþ1ð Þ x; fð Þ ¼ S nð Þ x; fð Þ � dnSðxÞ=dxn

x� f
; n > 1:

(A2)

Being causal transforms, the Sokhotski-Plemelj relation (5)

applies to each of the functions S(n),

S nð Þ x; fð Þ ¼ 1

ip
�
ð1
�1

S nð Þ x0; fð Þ dx0

x0 � x
: (A3)

The limiting values of the S(n) functions as f! x are

S nð Þ x;xð Þ ¼
1

n!

dnSðxÞ
dxn

(A4)

from which it follows that the nth derivative of S(x) can be

expressed as an integral of lower order derivatives,

dnSðxÞ
dxn

¼ n!

ip
�
ð1
�1

S nð Þ x0;xð Þ dx0

x0 � x
: (A5)

Specializing the Sokhotski-Plemelj relation (5) and the iden-

tities (A5) to the case x¼ 0 yields

S 0ð Þ ¼ 1

ip
�
ð1
�1

SðxÞ dx
x
; (A6a)

S0 0ð Þ ¼ 1

ip
�
ð1
�1

SðxÞ � S 0ð Þ
� 	 dx

x2
; (A6b)

S00 0ð Þ¼ 2

ip
�
ð1
�1

SðxÞ�S 0ð Þ�xS0 0ð Þ
� 	dx

x3
� � � : (A6c)

Finally, we restrict Eq. (A6) to real causal signals for

which we have the additional property S(�x)¼ S*(x).

Using this and Eq. (3) the integrals (A6) reduce to Eq. (6).

APPENDIX B: LAYERED ONE DIMENSIONAL MEDIUM

The slab occupies X: x 2 [0, a] with non-uniform den-

sity and compressibility q0ðx;xÞ; C0ðx;xÞ. The 2-vector of

particle velocity and acoustic pressure U¼ (v, p)T is propa-

gated from one end to the other by the 2
 2 matrix Mðx;xÞ;
detM ¼ 1, such that U(a)¼M(a, x) U(0). The propagator

satisfies (Ref. 18, Sec. 7)

dM

dx
x;xð Þ ¼ ixQM; M 0;xð Þ ¼ I; (B1)

with I the identity and

Qðx;xÞ ¼ 0 C0ðx;xÞ
q0ðx;xÞ 0

� �
: (B2)

The solution follows using well known methods for uni-

dimensional systems, e.g., Chap. 7 of Pease.18 The medium

in x< 0 (x> a) is assumed to have properties z, c (z1, c),

where the impedance z1 is introduced to allow for different

boundary conditions at x¼ a, specifically the cases of inter-

est z1¼ z,1, 0.

The reflected and transmitted fields are

pðxÞ ¼ eikx þ Re�ikx; x < 0;

Teikx; x > a;

(
(B3)

where k¼x/c. Hence,

T ¼ 2e�ika

M11 þ zz�1
1 M22 � zM12 � z�1

1 M21

; (B4a)

R ¼ M11 � zz�1
1 M22 þ zM12 � z�1

1 M21

M11 þ zz�1
1 M22 � zM12 � z�1

1 M21

; (B4b)

where Mij are the elements of M(a, x).

For our purposes, we note that at low frequency Mða;xÞ
¼ Iþ ixahQ0i þ � � � where h�i denotes the average value in

X. Hence,

T¼ 2z1

z1þ z
þ ika2z2

1

z1þ zð Þ2
hC00i

C
þ zhq00i

z1q
� z

z1

�1

� �
þO x2ð Þ;

R¼ z1� z

z1þ z
þ ika2z2

1

z1þ zð Þ2
hC00i

C
� z2hq00i

z2
1q

 !
þO x2ð Þ:

(B5)

The three cases of interest are (i) the slab sandwiched by the

same material on either side, (ii) the slab with a rigid back-

ing, and (iii) the slab with a soft boundary on one side or,

respectively,

T ¼ 1þ ika

2

hC00i
C
þ hq

0
0i

q
� 2

� �
þO x2ð Þ;

R ¼ ika

2

hC00i
C
� hq

0
0i

q

� �
þO x2ð Þ;

9>>>=
>>>;

z1 ¼ z;

(B6a)

R ¼ 1þ ika2
hC00i

C
þO x2ð Þ; z1 ¼ 1; (B6b)

R ¼ �1� ika2
hq00i
q
þO x2ð Þ; z1 ¼ 0: (B6c)

Finally, note that damping may be included by consider-

ing the material properties as frequency dependent complex

parameters. In that case h�i is the spatial average of the real

valued static quantity (x¼ 0).
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