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Although recent advances have made it possible to manipulate electromagnetic and acoustic
wavefronts with sub-wavelength metasurface slabs, the design of elastodynamic counterparts
remains challenging. We introduce a novel but simple design approach to control SV-waves in
elastic solids. The proposed metasurface can be fabricated by cutting an array of aligned parallel
cracks in a solid such that the materials between the cracks act as plate-like waveguides in the
background medium. The plate array is capable of modulating the phase change of SV-wave while
keeping the phase of P-wave unchanged. An analytical model for SV-wave incidence is established
to calculate the transmission coefficient and the transmitted phase through the plate-like waveguide
explicitly. A complete 27 range of phase delay is achieved by selecting different thicknesses for
the plates. An elastic metasurface for splitting SV- and P-waves is designed and demonstrated
using full wave finite element simulations. Two metasurfaces for focusing plane and cylindrical
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SV-waves are also presented. Published by AIP Publishing. https://doi.org/10.1063/1.5007731

I. INTRODUCTION

Achieving full control of wave propagation with ultra-
thin material slabs is of particular interest in engineering
applications. In the past decade, the emerging area of meta-
surface research has made it possible to manipulate optical
and electromagnetic waves in an almost arbitrary way by
tuning the phase gradient at the sub-wavelength scale.'™
This concept has also found applications in acoustic designs
such as focal lenses,(’_8 anomalous reflection and refrac-
tion,”'* and generation of acoustic orbital angular momen-
tum.'>'® Elastic metasurfaces'”"'® are relatively unexplored;
they present specific challenges due to the mode conversion
at the material interface which makes the phase modulation
more complicated.

Recently, Zhu and Semperlotti'’ designed and experi-
mentally demonstrated a few metasurfaces for controlling
mode converted and unconverted lamb waves in plates.
However, their design approach involves mode conversion;
as a result, the transmitted field contains unwanted wave
types. We are interested in controlling different types of bulk
waves individually without introducing others. We propose a
new metasurface design to split SV- and P-waves in elastic
solids into different propagation directions without involving
mode conversion. Achieving full control of these types of
waves may have applications in ultrasonics and nondestruc-
tive evaluations. The metasurfaces are designed by introduc-
ing an array of aligned parallel cracks in a bulk elastic
medium. The materials separated by these cracks act as
plate-like waveguides connecting two elastic half-spaces.
For a normally incident SV-wave, the transverse vibration
couples to the flexural waves in each plate without mode
conversion. Then each of the plate-like waveguide serves as
a phase modulator to achieve certain phase gradient for the
transmitted wavefronts. The main idea is that the phase
speed of the SV-wave in the background material only
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depends on the material properties, while the flexural wave
speed in the plate is sensitive to the thickness which makes it
possible to achieve desired phase shift for the metasurface
design. For instance, we can design a metasurface to change
the propagation direction of the transmitted SV-wave by tun-
ing the phase gradient according to the generalized Snell’s
law'

(sin 0, — sin 0;)kr = d¢/dy, (1)

where kr denotes the wavenumber of the SV-wave in the
solid, ¢ is the phase of the transmitted wave, and 0; and 0,
are the incident and transmitted angles, respectively. The
mechanism for normally incident P-wave is different in that
the longitudinal wave speeds in the plate array are the same.
Due to this feature, there is no phase difference in the trans-
mitted wavefronts, and therefore, the P-wave travels along
the incident direction.

In the applications proposed in this paper, the phase gra-
dients are small so that the phase modulation is more critical
than the amplitude modulation. In order to predict the transmit-
ted phase accurately, we first establish an analytic model to
calculate the transmission coefficient of the unit cell. Then we
take advantage of this model to select the thicknesses of the
plates for the metasurface designs. The same transmission
problem has been considered by Su and Norris,'? but the model
was based on a thin plate assumption which is only valid for a
low frequency range, i.e., kh < 1. In this paper, we improve
the analytic model using Mindlin plate theory®® which introdu-
ces two high frequency correction factors and therefore works
for thick plates at higher frequency range. The explicit expres-
sions for the transmission coefficient and the transmitted phase
are obtained. Note that the analytic model for P-wave inci-
dence in the work of Su and Norris'® works very well; we will
use this model in the discussion of the transmission properties
for P-wave incidence. Several metasurface devices for different
purposes, including mode splitting of SV- and P-waves and
focusing of plane and cylindrical SV-waves, are designed using

Published by AIP Publishing.
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the analytic model and demonstrated using full wave finite ele-
ment (FEM) simulations.

The paper is organized as follows: The unit cell design
and the transmission properties of the metasurface are intro-
duced and discussed in Sec. II. The phase modulation by
thickness variations of the plates is also proposed in Sec. II.
Several metasurfaces are designed and demonstrated using
full wave FEM simulations in Sec. III. Section IV concludes
the paper.

Il. UNIT CELL DESIGN AND TRANSMISSION
PROPERTIES

A. Description of the transmission problem

We first derive the transmission coefficient for a nor-
mally incident SV-wave propagating through an array of
uniform parallel plate separated by equally spaced rectan-
gular cracks. The Young’s modulus of the solid is denoted
by E, shear modulus by u, Poisson’s ratio by v, and density
by p. The configuration is shown in Fig. 1. Each individual
plate has thickness /2 and length L; the crack has width a
and length L. The transmission problem can be understood
as follows: the normally incident plane SV-wave in a half-
space impinges on an array of aligned parallel plates and
couples with the flexural waves in plates; flexural waves
then transmit through the plate array into another half-space
producing the transmitted SV-wave. The critical physics
underlying the transmission is that the phase speed of the
SV-wave only depends on the material properties, while the
flexural wave speed is sensitive to the thickness of each
plate. This combination of wave properties makes it possi-
ble to achieve specific phase delay through thickness varia-
tions. In order to quantify the metasurface design, it is
useful to derive explicit expressions for the transmission

FIG. 1. 2D schematic view; (a) shows two half-spaces connected by a uni-
form plate array separated by parallel cracks (white slits). The parallel black
arrows indicate the propagation direction of the normally incident SV-wave;
the red arrows indicate the direction of particle motion; (b) shows a unit cell
of the slab.
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coefficient and transmitted phase. Due to the periodicity in
the y-direction, the whole transmission problem is equiva-
lent to that outlined in the dashed box in Fig. 1(b). A
detailed description regarding the notations in this figure
will be given in Sec. ITC.

The derivation procedure of the transmission and reflec-
tion coefficients for SV-wave incidence is similar to that in
the work of Su and Norris'® in which Kirchhoff plate theory
was used under thin plate assumptions. However, the
Kirchhoff theory does not hold at the high frequency range
even for thin plates. In this section, we will develop a more
sophisticated model to better predict the transmission coeffi-
cient at the high frequency range. Mei and Mace®' studied
wave reflection and transmission in beams with discontinu-
ities using Timoshenko beam theory. We are dealing with
transverse wave reflection and transmission at the junction of
bulk material and an array of plates where the governing
equations are different. Here we use the Mindlin plate the-
ory?® with two high frequency correction factors and con-
sider similar boundary conditions to establish the analytic
model and calculate the transmission and reflection coeffi-
cients accurately. More detailed description and derivation
will be given in Secs. II B and II C.

B. Governing equations in the plate-like waveguides

The plate-like waveguides connecting the two half-
spaces act as phase modulators. We assume the plate array is
uniform and due to the periodicity in the y-direction, only
consider the transmission problem in one plate [see Fig.
1(b)]. According to the Mindlin plate theory, the governing
equations of the transverse waves in the absence of external
force are

o O*w Pw
K#(—w——> tPop = 0,

ox  Ox?
0y ow ] @

where w(x, ) is the displacement in the y-direction, (x, 7) is
the bending angle, I = bh®/12 is the area moment of inertia,
A =bh is the cross section area of the plate, and x and A
are the shear and inertia correction factor, respectively. In
the absence of external force, the free wave propagation sol-
utions are w(x, 1) = We'™=) and y(x,1) = Wik,
Plugging the solutions into Eq. (2) leads to

") =0 3)

g | =0

The equation for the wavenumber £ is therefore

—iKuk

pw? — K uk?
Jple? — kuA — EIK?

iKuAk

2
K — </1,2,+%T)k2+

where kr=w+/p/u, kp=w+/p(1—12)/E and krp= (12 p(1

—12)/ER?)"/* are the wavenumbers of transverse, longitudinal,

Ak
— k=0, )
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and flexural waves, respectively. From Eq. (4), the wavenum-
bers in the plate are

1/2

1 K2 1 2\°
A1 e ) <12—T) 4
1/2
1., & L, B\,
§<,1kp+?)— Z(zk,,—;) + ki

Note that within the frequency range of interest (w
< +/12uic/ Aph?), ky is real and corresponds to a propagating
wave, while k, is imaginary and corresponds to an evanes-
cent wave.

ky
&)

ko

Il
I+

C. Transmission and reflection coefficients

Considering the transmission problem for a normally
incident SV-wave, in Fig. 1(b), we assume the amplitude of
the incident SV-wave as 1, reflected SV-wave as R, transmit-
ted SV-wave as T, and flexural waves in the plate array as A;,
B;,j=1, 2 so that

eier _i_Refik-r)c7 X< —
Aleiklx + Ble—ik]x

w= - i L (6)
+Aze™ 4 Bre ™Y x| < 5

TeikTX, x> 3

with time harmonic dependence e~ understood. The rela-
tions between the shear and inertia correction factors and the
slope in the plate can be obtained from the equations of

motion as?’

k2
¥ =ikpW, p=1-—5, j=1or?2. (7)

2 bl
Kkj

The deflection angles in different parts of the structure based
on Eq. (6) are
iky (% — Re~hr¥), x < —

iklﬂl (Aleiklx — Bleiikl'\")
Y= L ®

+l‘k2ﬁ2(A2€ik2X - Bzeijkzx), |X| < E,
. L
i/(TTelkTX7 X > E

Equations (6) and (8) involve six unknowns where the
transmitted amplitude T and the reflected amplitude R are of
particular interest. To solve for the six unknown parameters,
we need six boundary conditions, i.e., displacement, deflec-
tion angle, and shear force continuity at both ends of the
plate. The displacement and deflection angle continuity can
be easily established using Eqgs. (6) and (8). The average
shear forces along the z-direction in the half-space and
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the plate are Q = uh'(Ow/0x) and Q = kuh(ow/0x — ),
respectively. Using the six boundary conditions, we can
establish a 6 x 6 system with six unknowns to solve for
the transmission and reflection coefficients. This procedure
involves too many undesired long equations, so as an alter-
native we split the solutions into symmetric and antisym-
metric modes, which reduces the problem to two 3 x 3
systems.

For the symmetric mode, the displacements in the half-
spaces and the plate are rewritten as

U ke —ikyx
_ 2 R IKTX < _
5 (™ 4+ Rge™"1Y), X 5
ws = { Csycoskix + Csycoskox, |x] < 3 )
L ke ikyx
_ Rce'™™™* > —
) (e + Rse )7 X 7’
and the deflection angles are
ik_T (eier _ Rse_ika), X< — 57
. . L
Vg = —kip,Csisinkix — kyf,Csp sinkpx, |x| < 5
kr s ik
_ IKTX R IKTX > —
) (6 se )a X 7’
(10)

where Cg; and Cg, denote the amplitude of symmetric modes
in the plate and Rg corresponds to the amplitude of the
reflected wave in the half-spaces. Similarly, considering the
antisymmetric mode, we can write the displacements and
deflection angles as

. i
_ IKTX R IKTX , < —=,
2(6‘ + Rpe™ ™) X 3
L
Wa = ¢ Cyysinkjx 4+ Cypp sinkox, |x\ <§7 (11)
. -
_ IKTX R IKTX , > -,
2(e + Rpe™™) x>
and
ik_T(eika —RAe_ikT"), x < _%7
L
Wa = < kif1Car coskix + kyfCaz coskax, |x| < 5>
ikt ik i
_ 4 IKTX 7R IKTX , > =,
3 (e e x>5
(12)

where C4; and Cy4, denote the amplitude of antisymmetric
modes in the plate and R, corresponds to the amplitude of
the reflected wave in the half-spaces.

The boundary conditions for each problem now reduce
to displacement, deflection angle, and shear force continuity
at one end of the plate. Applying the boundary conditions
leads to
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1 1
kiL/2 kyL/2 —= —z!
cos (kiL/2) cos (koL /2) 122 Co 122
ki, sin (k;L/2) ka B, sin (k,L/2) Sikrz || Cs2 | = Eisz‘l , 13)
1 Rs 1
ichki (1 — B,)sin (kL/2)  whky(1 — B,) sin (koL /2) ?hm Thml
sin (kL/2) sin (koL /2) : L
1 1 in (k 1 22 Co 122
ki, cos (kiL/2) ko35 cos (koL /2) 3 ikrz Car | = 3 ikrz" |, (14)
1 Ry 1
khki (1 — By) cos (kiL/2) hky(1 — B,) cos (kaL/2) Eikrh’z Eikrh’zfl

where z = ¢*1/2, Solving Eqs. (13) and (14) yields the
reflection coefficients for the symmetric and antisymmetric

modes as
kL koL —
%cotl—+ﬂcoti+iLl iz}
Ry = ky 2k 2 kr ikt
kL koL — ’
%cotl——l—ﬂcoti—iLl b
ky 2 k> 2 kr (15)
kL koL —
%cotl——ﬂcot2—+iLl 2}
R, = ky 2 2 kr ikl
k] 2 k2 2 kT

where o; = f; — 1 + ;' /(xch) for j= 1, 2. The transmission
and reflection coefficients for the full problem are then
T ==(Rs —Ra),
(16)
R =

N = N =

(RS +RA).

The main result here is the transmission coefficient 7 which
not only shows the amplitude but also contains information
about the transmitted phase.

D. Numerical validation and phase modulation

We now show that the theoretical model accurately pre-
dicts the transmission coefficient using a numerical example.
Consider an array of uniform plates in aluminum as described
in Fig. 1(a). The material properties are Young’s modulus
E =70GPa, Poisson’s ratio v =0.33, and density p=2700
kg/m>. All the plates have length L=5cm and thickness
h=0.5cm and are separated by cracks of constant width
a=1mm. A plane SV-wave is normally incident from the
left side of the metasurface. Figure 2 compares the present
model and the theoretical model developed in the work of Su
and Norris'” to FEM simulation results using COMSOL
Multiphysics. The Bloch-Floquet periodic condition was pre-
scribed on the boundaries of the unit cell to mimic an infinite
metasurface slab. The red curve in Fig. 2 is calculated using
the displacements extracted from the FEM simulation results.
We can clearly see that the transmission curve calculated

using the analytic model agrees well with the FEM results at
higher frequencies. It is also remarkable that the present
model can accurately predict the total transmission frequen-
cies, which correspond to the flexural resonances. This char-
acteristic provides strong evidence that the predicted phase
change is close to the simulation results. Though the analytic
model shows certain mismatch of amplitudes with the simula-
tion results, the present model is still a useful tool since phase
modulation is more crucial in the metasurface design. This
issue could potentially be addressed by using more compli-
cated boundary conditions** but is beyond the scope of this
paper.

The explicit expression for the transmitted phase can be
easily extracted from Eq. (16) as

¢ = tan" ! (imag(T) /real(T)),

According to the generalized Snell’s law, i.e., Eq. (1), the meta-
surface design requires the transmitted wavefronts to cover
the full 27 span. This can be easily satisfied using our design
elements. The objective of this paper is to achieve full control
of SV-wave using metasurface slabs with sub-wavelength

—n<¢p<m (17

1r
0.8
0.6
N
=
0.4
Present model
0.2 FEM simulation results
Analytic model in Ref. 19
0 . . . . . . )
0 1 2 3 4 5 6 7

Frequency [Hz] x10*

FIG. 2. Comparison between analytical models and FEM simulation results.
The blue curve corresponds to the frequency dependence of the transmission
coefficient calculated using the model developed by Su and Norris;'® the
black curve corresponds to the transmission calculated using Eq. (16) in this
paper; the red circles represent the FEM simulation results.
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thickness. In all the designs presented in Sec. III, the length of
each plate is chosen as L = 5 cm; the width of the gaps between
plates is constant ¢ = 1 mm; the operation frequencies for all
the metasurfaces are identical, 60 kHz, at which the wavelength
of the transverse wave in the bulk material is larger than the
slab thickness, i.e., L < A7. Though it is possible to design for a
lower frequency range, 60 kHz is selected to maintain relatively
high transmission as shown in Fig. 2. Consider a metasurface
slab comprised of plates with different thicknesses in an alumi-
num background. The transmitted phases at 60kHz corre-
sponding to different thicknesses of plates are calculated using
Eq. (17) and plotted in Fig. 3. It is clear that the phase shifts
through the internal plates, with thickness varying from 2.4 mm
to 104 mm, cover a range of 2n for SV-wave incidence.
Related to a point made earlier, all the plates are thinner than
11 mm in the metasurface designs presented in this paper such
that the minimum cutoff frequency for the k, mode is above
141.9kHz.

The dashed line in Fig. 3 is computed using Eq. (13) in
the work of Su and Norris'® and corresponds to the transmit-
ted phase of a normally incident P-wave. It indicates nearly
identical phase changes for different plate thickness. This
can be understood from the fact that the longitudinal wave
speed in plates and P-wave speed in bulk material

E(1-v)

=\ -2

(18)

Ccp =

p(1—1?)

are both functions of the material properties only. Phase mod-
ulation in metasurface designs is usually done by reducing
the wave speed in each waveguide to achieve the desired
phase delay. Thickness variation of the plate-like waveguides
does not provide such a mechanism to modulate longitudinal
waves in plates. The speeds c; and cp are very close, so that
the effective P-wave impedance of the metasurface is similar
to that of the background material. Therefore the normally
incident P-wave will travel straight through the slab. Based
on these properties, we can now design metasurface devices

¢ (m)

h [mm]

FIG. 3. Transmitted phase at 60 kHz through plates of different thicknesses.
The solid line corresponds to the transmitted phase for a normally incident
SV-wave; the dashed line is computed using the model developed by Su and
Norris'® and corresponds to the transmitted phase for P-wave incidence.
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for various purposes, such as mode splitting of SV- and
P-waves and focusing of plane and cylindrical SV-waves.

lll. APPLICATIONS IN METASURFACE DESIGN
A. Metasurface for splitting SV- and P-waves

The material used in all the metasurface designs is alu-
minum with Young’s modulus E =70 GPa, Poisson’s ratio
v=0.33, and density p=2700kg/m>. In the design for
anomalous refraction of normally incident SV-wave, we
choose a linear phase gradient d¢p/dy = 407/+/3 rad/m. This
phase gradient results in a transmitted angle of 6, = 30°
according to Eq. (1). The schematic view of the metasurface
is illustrated in Fig. 4(a). The width of the metasurface slab,
i.e., length of each plate, is chosen as L =5 cm; the width of
all the gaps is identical, a =1 mm. The thicknesses of the
plates satisfying the constant phase gradient are selected
from Fig. 3. Sixteen plates with thickness covering a com-
plete phase change of 27 at 60kHz form one period of
the metasurface as shown in the dashed box in Fig. 4(a). The
metasurface of infinite extent is formed by repeating the
structure in the dashed box, such that the length of one
period is 8.59 cm. The transmitted phases and amplitudes

(a)

e

(b) 1
0.8+
06 4 {08
\
< 04F x {07 .
= - 4
£ 0.2 0.6 g
o 105 £
b S
;f“ -0.2} 104 <
04+ {03
06+ Y {0.2
0.8 10.1
One period of the metasurface

FIG. 4. Metasurface design: (a) outline of the design; (b) transmission prop-
erties of each plate-like waveguide in one period of the metasurface. The
blue circles and the black triangles represent the phase and amplitude of the
transmitted wave through each plate, respectively.
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TABLE 1. Transmitted phase and amplitude through each L =5cm long
plate-like waveguide at 60 kHz.

Plate h (mm) ¢ (7 rad) T (a.u.)
1 2.483 —0.9599 0.7944
2 2.586 —0.8789 0.6886
3 2.744 —0.7946 0.6169
4 2.953 —0.7058 0.6253
5 3.165 —0.6121 0.7106
6 3.351 —0.5138 0.8268
7 3.516 —0.4113 0.9303
8 3.676 —0.3048 0.9901
9 3.850 —0.1950 0.9937
10 4.069 —0.0807 0.9410
11 4.384 0.0398 0.8605
12 4.864 0.1698 0.8103
13 5.527 0.3129 0.8372
14 6.345 0.4730 0.9154
15 7.393 0.6547 0.9828
16 9.000 0.8672 0.9988

through all these plates are listed in Table I, while the trans-
mitted amplitudes and phases in one period of the metasur-
face are plotted in Fig. 4(b). Note that the plate array here is
rotated 90° counterclockwise, and this figure does not show
the full length of each plate. It is clear that the transmitted
phase strictly follows the constant spatial gradient. The
amplitudes are not modulated in our design, but this does not
affect the performance of the metasurface.

Full wave simulations were performed in COMSOL to
demonstrate the functionality of the metasurface at 60 kHz.
Displacements in the y-direction were applied along the ver-
tical line at the left side of the simulation domain to generate
an in-plane shear wave. Simulation result for SV-wave inci-
dence is shown in Fig. 5. The curl of the displacement field
is plotted to show the distortional field of the wave, i.e., SV-
wave. The black arrow indicates the propagation direction of
the SV-wave, and the red arrow indicates the direction of
particle motion of the incident wave. As indicated by the
black arrow, a planar SV-wave is normally incident from the
left side of the metasurface and is refracted at 32.5° which is
very close to the designed refraction angle. The metasurface
can maintain this steering angle of the uniform transmitted

1
—
N
©
N
12
2
C
9]
=
9]
O
©
=}
]
©
Y
S
=
=
O
-1

"-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
x position [m]

FIG. 5. Anomalous refraction of a normally incident SV-wave at 60 kHz.
The curl of the displacement field is plotted to show the SV-wave.
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beam over a wide frequency range from 55 to 70 kHz. The
metasurface does not work effectively when the frequency is
decreased or increased since the modulation is based on a
single frequency. It is worthwhile to point out that there is no
mode converted wave, i.e., P-wave, in the far-field of the
transmitted region. This can be explained as the modes in the
transmitted field mainly come from the waveguides, i.e.,
plates. In this design, the SV-wave impinges normally on the
interface so that there is only a flexural wave in the plate
array, which does not induce any mode converted wave in
the transmitted field. It is noted that there are some longitudi-
nal components in the interface wave at the right boundary
of the metasurface, but they do not affect the far-field and
hence do not influence the functionality of the metasurface.
Near-field wave motion at the interface of the metasurface
and the bulk material are not well studied and remain to be
further investigated.

Another feature of the metasurface is that it does not
alter the propagation direction of a normally incident P-
wave; it can therefore be used as a mode splitter to separate
SV- and P-waves. Simulation results for normal incidence of
P-wave are shown in Fig. 6. In this case, displacements in
the x-direction were applied along the vertical line at the left
side of the simulation domain to generate a longitudinal
wave, and the trace of the strain tensor is plotted to show the
dilatational field. The black arrow indicates the propagation
direction of the P-wave, and the red arrow indicates the
direction of particle motion of the incident wave. It is clear
that the transmitted P-wave still travels along the normal
direction. Similar to the SV-wave incidence case, there is no
mode converted wave in the transmitted region. Since there
are no mode conversions for both SV- and P-wave incidence,
this metasurface is capable of steering these two types of
waves into different directions without introducing unwanted
wave types.

B. Metasurface for focusing plane SV-waves

Other than the metasurface for splitting SV- and P-
waves, this approach can also be adopted in the design of a
focal metasurface. The physics behind the focal metasurface
is different from the gradient index lenses®>2® which are
designed using ray theory and by varying the refractive

0.3
0.25
0.2
0.15
0.1
0.05
0
-0.05

-0.15
-0.2
-0.25

Trace of strain tensor (a.u.)

.04 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 -1
X position [m]

FIG. 6. Unaffected normally incident P-wave at 60kHz. The trace of the
strain tensor is plotted to show the P-wave.
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indices of bulk materials. Here the focal metasurface is based
on the constructive and destructive interferences of the dif-
fracted waves through all the waveguides. The required
phase profile along the metasurface can be written as

o (y) =kr< (v —y0)* +d? —d> + ¢, —n < P < m,
(19)

where y, denotes the location where the metasurface is sym-
metric about and ¢ is the transmitted phase through the
plate at yj.

We choose yo=0 and set ¢o=0 for convenience. The
metasurface is chosen to have slab thickness, i.e., plate
length, L =5cm; the constant gap width is a=1mm. The
focal distance is selected to be d =5 L =25 cm from the lens.
The required phase profile at 60 kHz is calculated using Eq.
(19) and plotted in Fig. 7. A total number of 97 plates are
selected from Fig. 3 to form a metasurface.

Full wave FEM simulations using COMSOL demon-
strate the focusing effect of the metasurface. Displacements
in the y-direction were applied along the vertical line at the
left side of the simulation domain to generate an in-plane
shear wave. Figure 8 shows the simulated field at 60 kHz.
The curl of the displacement field is plotted to represent
the distortional wave. The focusing effect can be clearly
observed at the right side of the metasurface. It is interesting
that a focal spot can be observed over a wide range of fre-
quency from 40 to 75kHz; however, the focal distance is
varying with frequency due to the dispersive nature of the
design elements. By comparing the energy density along the
x-direction across the center of the metasurface, the focal
point at 60 kHz was found to be approximately 25.7 cm away
from the interface, which agrees with the designed distance
to a remarkable degree.

C. Metasurface for focusing a cylindrical SV-wave

We now design a metasurface for focusing a cylindrical
SV-wave. Due to the cylindrical spreading of the wavefront,
the phases of the incident wave along the metasurface is
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FIG. 7. Phase profile of the metasurface for focusing a plane SV-wave at
60kHz.
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FIG. 8. Focusing a normally incident plane SV-wave at 60 kHz. The curl of
the displacement field is plotted to show the SV-wave.

different; therefore, Eq. (19) needs to be revised. The profile
requires a more rapid phase change as compared to the phase
change for focusing a plane SV-wave. The modified phase
profile can be written as'*

60) =t (Vo nr v —a) + 0,00 < g <

(20)

where ¢.(y) is a phase correction term which compensates
the phase difference of the incident wave.

In this design, the y, location, the slab thickness,
and the gap width are set the same as for the plane wave
incidence design. The focal distance is selected to be
d=5L=25cm. The only difference is that the cylindrical
wave source location, distance dg from the metasurface,
needs to be taken into account. For instance, if we choose
ds=d in this design, then the phase correction term is sim-

ply ¢.(y) = kT( (v —yo)> +d? — d). The required phase

profile at 60 kHz is calculated using Eq. (20) and plotted in
Fig. 9. Then a total number of 93 plates are selected from
Fig. 3 to form a metasurface.
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FIG. 9. Phase profile of the metasurface for focusing a cylindrical SV-wave
at 60 kHz.
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FIG. 10. Focusing a cylindrical SV-wave source at 60 kHz. The curl of the
displacement field is plotted to show the SV-wave.

The COMSOL-generated simulated SV-wave field at
60kHz is plotted in Fig. 10. The curl field is shown to repre-
sent the distortional wave. The focal spot is evident at the
right side of the metasurface. This suggests that our design
elements are suitable for rapidly changing phase profiles.
Similar to the previous focal metasurface for a line source,
this design also works over a broadband frequency range
from 45 to 65kHz with focal distances varying with fre-
quency. It is also interesting to see the percentage of energy
carried by the mode converted P-wave in the transmitted
waves. Integration of the curl field and the strain was per-
formed along the y-direction near the metasurface to estimate
time-average of the power flux of the transmitted waves.
Nearly 38.7% of the transmitted energy is converted to P-
waves. The focal distance evaluated from the simulation
results at 60 kHz is 28.3 cm, which is 3.3 cm longer than the
design distance. Given that the focal distance in the previous
design is only 0.7 cm longer than the designed distance, our
model does not predict the transmitted phase accurately for
oblique incidence. The main reason is that the current model
does not consider the mode conversion which occurs for
oblique incidence. Improvement of the model to include
such effects will be considered later.

As a comparison, the COMSOL-generated simulated P-
wave field at 60kHz is plotted in Fig. 11. The trace of the
strain tensor is plotted to show the dilatational wave. It is

[y

Trace of strain tensor (a.u.)

-0.1 0.1 0.2
X position [m]

FIG. 11. Cylindrical P-wave incidence at 60 kHz. The trace of the strain ten-
sor is plotted to show the P-wave.
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clear that the phase change of the transmitted P-wave is
almost negligible, and the wavefront is still cylindrical on
the transmitted side. This is not surprising since the imped-
ance of the slab is close to that of the background medium.
Moreover, the slab width is sub-wavelength so that the phase
shifts are small when the waves transmit through the plate
array.

IV. CONCLUSION

In conclusion, we have presented a novel metasurface
design approach for controlling SV-wave motion in elastic
solids using plate-like waveguides of varying thickness. A
theoretical model based on the Mindlin plate theory is devel-
oped and compared with the FEM simulation results. The
model works well for thick plates in the high frequency
range and is therefore well suited to the metasurface design.
It is also found that the transmission properties for normally
incident P- and SV-waves are distinct. The transmitted phase
of a normally incident SV-wave can cover a full span of 2.
However, the transmitted phase of a normally incident P-
wave is nearly constant. By taking advantage of these prop-
erties, we designed and numerically demonstrated several
metasurfaces that are capable of steering SV-waves while
remaining transparent to P-wave. The fundamental mode of
this type of wave in a thick plate is nondispersive and can
travel in a planar manner over long distances; thus, it is of
particular interest in nondestructive evaluations.?’ >
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