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(Received 2 October 2017; accepted 20 November 2017; published online 15 December 2017)

Although recent advances have made it possible to manipulate electromagnetic and acoustic

wavefronts with sub-wavelength metasurface slabs, the design of elastodynamic counterparts

remains challenging. We introduce a novel but simple design approach to control SV-waves in

elastic solids. The proposed metasurface can be fabricated by cutting an array of aligned parallel

cracks in a solid such that the materials between the cracks act as plate-like waveguides in the

background medium. The plate array is capable of modulating the phase change of SV-wave while

keeping the phase of P-wave unchanged. An analytical model for SV-wave incidence is established

to calculate the transmission coefficient and the transmitted phase through the plate-like waveguide

explicitly. A complete 2p range of phase delay is achieved by selecting different thicknesses for

the plates. An elastic metasurface for splitting SV- and P-waves is designed and demonstrated

using full wave finite element simulations. Two metasurfaces for focusing plane and cylindrical

SV-waves are also presented. Published by AIP Publishing. https://doi.org/10.1063/1.5007731

I. INTRODUCTION

Achieving full control of wave propagation with ultra-

thin material slabs is of particular interest in engineering

applications. In the past decade, the emerging area of meta-

surface research has made it possible to manipulate optical

and electromagnetic waves in an almost arbitrary way by

tuning the phase gradient at the sub-wavelength scale.1–5

This concept has also found applications in acoustic designs

such as focal lenses,6–8 anomalous reflection and refrac-

tion,9–14 and generation of acoustic orbital angular momen-

tum.15,16 Elastic metasurfaces17,18 are relatively unexplored;

they present specific challenges due to the mode conversion

at the material interface which makes the phase modulation

more complicated.

Recently, Zhu and Semperlotti17 designed and experi-

mentally demonstrated a few metasurfaces for controlling

mode converted and unconverted lamb waves in plates.

However, their design approach involves mode conversion;

as a result, the transmitted field contains unwanted wave

types. We are interested in controlling different types of bulk

waves individually without introducing others. We propose a

new metasurface design to split SV- and P-waves in elastic

solids into different propagation directions without involving

mode conversion. Achieving full control of these types of

waves may have applications in ultrasonics and nondestruc-

tive evaluations. The metasurfaces are designed by introduc-

ing an array of aligned parallel cracks in a bulk elastic

medium. The materials separated by these cracks act as

plate-like waveguides connecting two elastic half-spaces.

For a normally incident SV-wave, the transverse vibration

couples to the flexural waves in each plate without mode

conversion. Then each of the plate-like waveguide serves as

a phase modulator to achieve certain phase gradient for the

transmitted wavefronts. The main idea is that the phase

speed of the SV-wave in the background material only

depends on the material properties, while the flexural wave

speed in the plate is sensitive to the thickness which makes it

possible to achieve desired phase shift for the metasurface

design. For instance, we can design a metasurface to change

the propagation direction of the transmitted SV-wave by tun-

ing the phase gradient according to the generalized Snell’s

law1

ðsin ht � sin hiÞkT ¼ d/=dy; (1)

where kT denotes the wavenumber of the SV-wave in the

solid, / is the phase of the transmitted wave, and hi and ht

are the incident and transmitted angles, respectively. The

mechanism for normally incident P-wave is different in that

the longitudinal wave speeds in the plate array are the same.

Due to this feature, there is no phase difference in the trans-

mitted wavefronts, and therefore, the P-wave travels along

the incident direction.

In the applications proposed in this paper, the phase gra-

dients are small so that the phase modulation is more critical

than the amplitude modulation. In order to predict the transmit-

ted phase accurately, we first establish an analytic model to

calculate the transmission coefficient of the unit cell. Then we

take advantage of this model to select the thicknesses of the

plates for the metasurface designs. The same transmission

problem has been considered by Su and Norris,19 but the model

was based on a thin plate assumption which is only valid for a

low frequency range, i.e., kh� 1. In this paper, we improve

the analytic model using Mindlin plate theory20 which introdu-

ces two high frequency correction factors and therefore works

for thick plates at higher frequency range. The explicit expres-

sions for the transmission coefficient and the transmitted phase

are obtained. Note that the analytic model for P-wave inci-

dence in the work of Su and Norris19 works very well; we will

use this model in the discussion of the transmission properties

for P-wave incidence. Several metasurface devices for different

purposes, including mode splitting of SV- and P-waves and

focusing of plane and cylindrical SV-waves, are designed usinga)Electronic mail: xiaoshi.su@rutgers.edu
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the analytic model and demonstrated using full wave finite ele-

ment (FEM) simulations.

The paper is organized as follows: The unit cell design

and the transmission properties of the metasurface are intro-

duced and discussed in Sec. II. The phase modulation by

thickness variations of the plates is also proposed in Sec. II.

Several metasurfaces are designed and demonstrated using

full wave FEM simulations in Sec. III. Section IV concludes

the paper.

II. UNIT CELL DESIGN AND TRANSMISSION
PROPERTIES

A. Description of the transmission problem

We first derive the transmission coefficient for a nor-

mally incident SV-wave propagating through an array of

uniform parallel plate separated by equally spaced rectan-

gular cracks. The Young’s modulus of the solid is denoted

by E, shear modulus by l, Poisson’s ratio by �, and density

by q. The configuration is shown in Fig. 1. Each individual

plate has thickness h and length L; the crack has width a
and length L. The transmission problem can be understood

as follows: the normally incident plane SV-wave in a half-

space impinges on an array of aligned parallel plates and

couples with the flexural waves in plates; flexural waves

then transmit through the plate array into another half-space

producing the transmitted SV-wave. The critical physics

underlying the transmission is that the phase speed of the

SV-wave only depends on the material properties, while the

flexural wave speed is sensitive to the thickness of each

plate. This combination of wave properties makes it possi-

ble to achieve specific phase delay through thickness varia-

tions. In order to quantify the metasurface design, it is

useful to derive explicit expressions for the transmission

coefficient and transmitted phase. Due to the periodicity in

the y-direction, the whole transmission problem is equiva-

lent to that outlined in the dashed box in Fig. 1(b). A

detailed description regarding the notations in this figure

will be given in Sec. II C.

The derivation procedure of the transmission and reflec-

tion coefficients for SV-wave incidence is similar to that in

the work of Su and Norris19 in which Kirchhoff plate theory

was used under thin plate assumptions. However, the

Kirchhoff theory does not hold at the high frequency range

even for thin plates. In this section, we will develop a more

sophisticated model to better predict the transmission coeffi-

cient at the high frequency range. Mei and Mace21 studied

wave reflection and transmission in beams with discontinu-

ities using Timoshenko beam theory. We are dealing with

transverse wave reflection and transmission at the junction of

bulk material and an array of plates where the governing

equations are different. Here we use the Mindlin plate the-

ory20 with two high frequency correction factors and con-

sider similar boundary conditions to establish the analytic

model and calculate the transmission and reflection coeffi-

cients accurately. More detailed description and derivation

will be given in Secs. II B and II C.

B. Governing equations in the plate-like waveguides

The plate-like waveguides connecting the two half-

spaces act as phase modulators. We assume the plate array is

uniform and due to the periodicity in the y-direction, only

consider the transmission problem in one plate [see Fig.

1(b)]. According to the Mindlin plate theory, the governing

equations of the transverse waves in the absence of external

force are

jl
@w
@x
� @

2w

@x2

� �
þ q

@2w

@t2
¼ 0;

EI
@2w
@x2
þ jlA

@w

@x
� w

� �
� kqI

@2w
@t2
¼ 0;

(2)

where w(x, t) is the displacement in the y-direction, wðx; tÞ is

the bending angle, I ¼ bh3=12 is the area moment of inertia,

A¼ bh is the cross section area of the plate, and j and k
are the shear and inertia correction factor, respectively. In

the absence of external force, the free wave propagation sol-

utions are wðx; tÞ ¼ Weiðkx�xtÞ and wðx; tÞ ¼ Weiðkx�xtÞ.
Plugging the solutions into Eq. (2) leads to

qx2 � jlk2 �ijlk

ijlAk kqIx2 � jlA� EIk2

" #
W

W

 !
¼ 0: (3)

The equation for the wavenumber k is therefore

k4 � k2
P þ

k2
T

j

� �
k2 þ kk2

Tk2
P

j
� k4

F ¼ 0; (4)

where kT¼x
ffiffiffiffiffiffiffiffi
q=l

p
; kP¼x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1��2Þ=E

p
and kF¼ð12x2qð1

��2Þ=Eh2Þ1=4
are the wavenumbers of transverse, longitudinal,

FIG. 1. 2D schematic view; (a) shows two half-spaces connected by a uni-

form plate array separated by parallel cracks (white slits). The parallel black

arrows indicate the propagation direction of the normally incident SV-wave;

the red arrows indicate the direction of particle motion; (b) shows a unit cell

of the slab.
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and flexural waves, respectively. From Eq. (4), the wavenum-

bers in the plate are

k1 ¼6
1

2
kk2

Pþ
k2

T

j

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
kk2

P�
k2

T

j

� �2

þ k4
F

s8<
:

9=
;

1=2

;

k2 ¼6
1

2
kk2

Pþ
k2

T

j

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
kk2

P�
k2

T

j

� �2

þ k4
F

s8<
:

9=
;

1=2

:

(5)

Note that within the frequency range of interest (x
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12lj=kqh2

p
), k1 is real and corresponds to a propagating

wave, while k2 is imaginary and corresponds to an evanes-

cent wave.

C. Transmission and reflection coefficients

Considering the transmission problem for a normally

incident SV-wave, in Fig. 1(b), we assume the amplitude of

the incident SV-wave as 1, reflected SV-wave as R, transmit-

ted SV-wave as T, and flexural waves in the plate array as Aj,

Bj, j¼ 1, 2 so that

w ¼

eikT x þ Re�ikT x; x < � L

2
;

A1eik1x þ B1e�ik1x

þA2eik2x þ B2e�ik2x; jxj < L

2
;

TeikT x; x >
L

2
;

8>>>>>>>>>><
>>>>>>>>>>:

(6)

with time harmonic dependence e�ixt understood. The rela-

tions between the shear and inertia correction factors and the

slope in the plate can be obtained from the equations of

motion as20

W ¼ ikjbjW; bj ¼ 1� k2
T

jk2
j

; j ¼ 1 or 2: (7)

The deflection angles in different parts of the structure based

on Eq. (6) are

w ¼

ikTðeikT x � Re�ikT xÞ; x < � L

2
;

ik1b1ðA1eik1x � B1e�ik1xÞ

þik2b2ðA2eik2x � B2e�ik2xÞ; jxj < L

2
;

ikTTeikT x; x >
L

2
:

8>>>>>>>>>><
>>>>>>>>>>:

(8)

Equations (6) and (8) involve six unknowns where the

transmitted amplitude T and the reflected amplitude R are of

particular interest. To solve for the six unknown parameters,

we need six boundary conditions, i.e., displacement, deflec-

tion angle, and shear force continuity at both ends of the

plate. The displacement and deflection angle continuity can

be easily established using Eqs. (6) and (8). The average

shear forces along the z-direction in the half-space and

the plate are Q ¼ lh0ð@w=@xÞ and Q ¼ jlhð@w=@x� wÞ,
respectively. Using the six boundary conditions, we can

establish a 6� 6 system with six unknowns to solve for

the transmission and reflection coefficients. This procedure

involves too many undesired long equations, so as an alter-

native we split the solutions into symmetric and antisym-

metric modes, which reduces the problem to two 3� 3

systems.

For the symmetric mode, the displacements in the half-

spaces and the plate are rewritten as

wS ¼

1

2
ðeikT x þ RSe�ikT xÞ; x < � L

2
;

CS1 cos k1xþ CS2 cos k2x; jxj < L

2
;

1

2
ðe�ikT x þ RSeikT xÞ; x >

L

2
;

8>>>>>>><
>>>>>>>:

(9)

and the deflection angles are

wS ¼

ikT

2
ðeikT x � RSe�ikT xÞ; x < � L

2
;

�k1b1CS1 sin k1x� k2b2CS2 sin k2x; jxj < L

2
;

� ikT

2
ðe�ikT x � RSeikT xÞ; x >

L

2
;

8>>>>>>><
>>>>>>>:

(10)

where CS1 and CS2 denote the amplitude of symmetric modes

in the plate and RS corresponds to the amplitude of the

reflected wave in the half-spaces. Similarly, considering the

antisymmetric mode, we can write the displacements and

deflection angles as

wA ¼

1

2
ðeikT x þ RAe�ikT xÞ; x < �L

2
;

CA1 sin k1xþ CA2 sin k2x; jxj < L

2
;

� 1

2
ðe�ikT x þ RAeikT xÞ; x >

L

2
;

8>>>>>>><
>>>>>>>:

(11)

and

wA ¼

ikT

2
ðeikT x � RAe�ikT xÞ; x < �L

2
;

k1b1CA1 cos k1xþ k2b2CA2 cos k2x; jxj < L

2
;

ikT

2
ðe�ikT x � RAeikT xÞ; x >

L

2
;

8>>>>>>><
>>>>>>>:

(12)

where CA1 and CA2 denote the amplitude of antisymmetric

modes in the plate and RA corresponds to the amplitude of

the reflected wave in the half-spaces.

The boundary conditions for each problem now reduce

to displacement, deflection angle, and shear force continuity

at one end of the plate. Applying the boundary conditions

leads to
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cos ðk1L=2Þ cos ðk2L=2Þ � 1

2
z

k1b1 sin ðk1L=2Þ k2b2 sin ðk2L=2Þ 1

2
ikTz

jhk1ð1� b1Þ sin ðk1L=2Þ jhk2ð1� b2Þ sin ðk2L=2Þ 1

2
ikTh0z

2
6666664

3
7777775

CS1

CS2

RS

0
B@

1
CA ¼

1

2
z�1

1

2
ikTz�1

1

2
ikTh0z�1

0
BBBBBB@

1
CCCCCCA
; (13)

�sin ðk1L=2Þ �sin ðk2L=2Þ � 1

2
z

k1b1 cos ðk1L=2Þ k2b2 cos ðk2L=2Þ 1

2
ikTz

jhk1ð1� b1Þ cos ðk1L=2Þ jhk2ð1� b2Þ cos ðk2L=2Þ 1

2
ikTh0z

2
6666664

3
7777775

CA1

CA2

RA

0
B@

1
CA ¼

1

2
z�1

1

2
ikTz�1

1

2
ikTh0z�1

0
BBBBBB@

1
CCCCCCA
; (14)

where z ¼ eikT L=2. Solving Eqs. (13) and (14) yields the

reflection coefficients for the symmetric and antisymmetric

modes as

RS ¼

a2

k1

cot
k1L

2
þ a1

k2

cot
k2L

2
þ i
ðb1 � b2Þ

kT

a2

k1

cot
k1L

2
þ a1

k2

cot
k2L

2
� i
ðb1 � b2Þ

kT

e�ikT L;

RA ¼

a2

k1

cot
k1L

2
� a1

k2

cot
k2L

2
þ i
ðb1 � b2Þ

kT

a2

k1

cot
k1L

2
� a1

k2

cot
k2L

2
� i
ðb1 � b2Þ

kT

e�ikT L;

(15)

where aj ¼ bj � 1þ bjh
0=ðjhÞ for j¼ 1, 2. The transmission

and reflection coefficients for the full problem are then

T ¼ 1

2
ðRS � RAÞ;

R ¼ 1

2
ðRS þ RAÞ:

(16)

The main result here is the transmission coefficient T which

not only shows the amplitude but also contains information

about the transmitted phase.

D. Numerical validation and phase modulation

We now show that the theoretical model accurately pre-

dicts the transmission coefficient using a numerical example.

Consider an array of uniform plates in aluminum as described

in Fig. 1(a). The material properties are Young’s modulus

E¼ 70 GPa, Poisson’s ratio �¼ 0.33, and density q¼ 2700

kg/m3. All the plates have length L¼ 5 cm and thickness

h¼ 0.5 cm and are separated by cracks of constant width

a¼ 1 mm. A plane SV-wave is normally incident from the

left side of the metasurface. Figure 2 compares the present

model and the theoretical model developed in the work of Su

and Norris19 to FEM simulation results using COMSOL

Multiphysics. The Bloch-Floquet periodic condition was pre-

scribed on the boundaries of the unit cell to mimic an infinite

metasurface slab. The red curve in Fig. 2 is calculated using

the displacements extracted from the FEM simulation results.

We can clearly see that the transmission curve calculated

using the analytic model agrees well with the FEM results at

higher frequencies. It is also remarkable that the present

model can accurately predict the total transmission frequen-

cies, which correspond to the flexural resonances. This char-

acteristic provides strong evidence that the predicted phase

change is close to the simulation results. Though the analytic

model shows certain mismatch of amplitudes with the simula-

tion results, the present model is still a useful tool since phase

modulation is more crucial in the metasurface design. This

issue could potentially be addressed by using more compli-

cated boundary conditions22 but is beyond the scope of this

paper.

The explicit expression for the transmitted phase can be

easily extracted from Eq. (16) as

/ ¼ tan�1ðimagðTÞ=realðTÞÞ; �p < / < p: (17)

According to the generalized Snell’s law, i.e., Eq. (1), the meta-

surface design requires the transmitted wavefronts to cover

the full 2p span. This can be easily satisfied using our design

elements. The objective of this paper is to achieve full control

of SV-wave using metasurface slabs with sub-wavelength

FIG. 2. Comparison between analytical models and FEM simulation results.

The blue curve corresponds to the frequency dependence of the transmission

coefficient calculated using the model developed by Su and Norris;19 the

black curve corresponds to the transmission calculated using Eq. (16) in this

paper; the red circles represent the FEM simulation results.
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thickness. In all the designs presented in Sec. III, the length of

each plate is chosen as L¼ 5 cm; the width of the gaps between

plates is constant a¼ 1 mm; the operation frequencies for all

the metasurfaces are identical, 60 kHz, at which the wavelength

of the transverse wave in the bulk material is larger than the

slab thickness, i.e., L< kT. Though it is possible to design for a

lower frequency range, 60 kHz is selected to maintain relatively

high transmission as shown in Fig. 2. Consider a metasurface

slab comprised of plates with different thicknesses in an alumi-

num background. The transmitted phases at 60 kHz corre-

sponding to different thicknesses of plates are calculated using

Eq. (17) and plotted in Fig. 3. It is clear that the phase shifts

through the internal plates, with thickness varying from 2.4 mm

to 10.4 mm, cover a range of 2p for SV-wave incidence.

Related to a point made earlier, all the plates are thinner than

11 mm in the metasurface designs presented in this paper such

that the minimum cutoff frequency for the k2 mode is above

141.9 kHz.

The dashed line in Fig. 3 is computed using Eq. (13) in

the work of Su and Norris19 and corresponds to the transmit-

ted phase of a normally incident P-wave. It indicates nearly

identical phase changes for different plate thickness. This

can be understood from the fact that the longitudinal wave

speed in plates and P-wave speed in bulk material

cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

qð1� �2Þ

s
and cP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1� �Þ

qð1þ �Þð1� 2�Þ

s
(18)

are both functions of the material properties only. Phase mod-

ulation in metasurface designs is usually done by reducing

the wave speed in each waveguide to achieve the desired

phase delay. Thickness variation of the plate-like waveguides

does not provide such a mechanism to modulate longitudinal

waves in plates. The speeds cL and cP are very close, so that

the effective P-wave impedance of the metasurface is similar

to that of the background material. Therefore the normally

incident P-wave will travel straight through the slab. Based

on these properties, we can now design metasurface devices

for various purposes, such as mode splitting of SV- and

P-waves and focusing of plane and cylindrical SV-waves.

III. APPLICATIONS IN METASURFACE DESIGN

A. Metasurface for splitting SV- and P-waves

The material used in all the metasurface designs is alu-

minum with Young’s modulus E¼ 70 GPa, Poisson’s ratio

�¼ 0.33, and density q¼ 2700 kg/m3. In the design for

anomalous refraction of normally incident SV-wave, we

choose a linear phase gradient d/=dy ¼ 40p=
ffiffiffi
3
p

rad/m. This

phase gradient results in a transmitted angle of ht ¼ 30�

according to Eq. (1). The schematic view of the metasurface

is illustrated in Fig. 4(a). The width of the metasurface slab,

i.e., length of each plate, is chosen as L¼ 5 cm; the width of

all the gaps is identical, a¼ 1 mm. The thicknesses of the

plates satisfying the constant phase gradient are selected

from Fig. 3. Sixteen plates with thickness covering a com-

plete phase change of 2p at 60 kHz form one period of

the metasurface as shown in the dashed box in Fig. 4(a). The

metasurface of infinite extent is formed by repeating the

structure in the dashed box, such that the length of one

period is 8.59 cm. The transmitted phases and amplitudes

FIG. 3. Transmitted phase at 60 kHz through plates of different thicknesses.

The solid line corresponds to the transmitted phase for a normally incident

SV-wave; the dashed line is computed using the model developed by Su and

Norris19 and corresponds to the transmitted phase for P-wave incidence.

FIG. 4. Metasurface design: (a) outline of the design; (b) transmission prop-

erties of each plate-like waveguide in one period of the metasurface. The

blue circles and the black triangles represent the phase and amplitude of the

transmitted wave through each plate, respectively.
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through all these plates are listed in Table I, while the trans-

mitted amplitudes and phases in one period of the metasur-

face are plotted in Fig. 4(b). Note that the plate array here is

rotated 90� counterclockwise, and this figure does not show

the full length of each plate. It is clear that the transmitted

phase strictly follows the constant spatial gradient. The

amplitudes are not modulated in our design, but this does not

affect the performance of the metasurface.

Full wave simulations were performed in COMSOL to

demonstrate the functionality of the metasurface at 60 kHz.

Displacements in the y-direction were applied along the ver-

tical line at the left side of the simulation domain to generate

an in-plane shear wave. Simulation result for SV-wave inci-

dence is shown in Fig. 5. The curl of the displacement field

is plotted to show the distortional field of the wave, i.e., SV-

wave. The black arrow indicates the propagation direction of

the SV-wave, and the red arrow indicates the direction of

particle motion of the incident wave. As indicated by the

black arrow, a planar SV-wave is normally incident from the

left side of the metasurface and is refracted at 32:5� which is

very close to the designed refraction angle. The metasurface

can maintain this steering angle of the uniform transmitted

beam over a wide frequency range from 55 to 70 kHz. The

metasurface does not work effectively when the frequency is

decreased or increased since the modulation is based on a

single frequency. It is worthwhile to point out that there is no

mode converted wave, i.e., P-wave, in the far-field of the

transmitted region. This can be explained as the modes in the

transmitted field mainly come from the waveguides, i.e.,

plates. In this design, the SV-wave impinges normally on the

interface so that there is only a flexural wave in the plate

array, which does not induce any mode converted wave in

the transmitted field. It is noted that there are some longitudi-

nal components in the interface wave at the right boundary

of the metasurface, but they do not affect the far-field and

hence do not influence the functionality of the metasurface.

Near-field wave motion at the interface of the metasurface

and the bulk material are not well studied and remain to be

further investigated.

Another feature of the metasurface is that it does not

alter the propagation direction of a normally incident P-

wave; it can therefore be used as a mode splitter to separate

SV- and P-waves. Simulation results for normal incidence of

P-wave are shown in Fig. 6. In this case, displacements in

the x-direction were applied along the vertical line at the left

side of the simulation domain to generate a longitudinal

wave, and the trace of the strain tensor is plotted to show the

dilatational field. The black arrow indicates the propagation

direction of the P-wave, and the red arrow indicates the

direction of particle motion of the incident wave. It is clear

that the transmitted P-wave still travels along the normal

direction. Similar to the SV-wave incidence case, there is no

mode converted wave in the transmitted region. Since there

are no mode conversions for both SV- and P-wave incidence,

this metasurface is capable of steering these two types of

waves into different directions without introducing unwanted

wave types.

B. Metasurface for focusing plane SV-waves

Other than the metasurface for splitting SV- and P-

waves, this approach can also be adopted in the design of a

focal metasurface. The physics behind the focal metasurface

is different from the gradient index lenses23–26 which are

designed using ray theory and by varying the refractive

TABLE I. Transmitted phase and amplitude through each L¼ 5 cm long

plate-like waveguide at 60 kHz.

Plate h (mm) / (p rad) jTj (a.u.)

1 2.483 �0.9599 0.7944

2 2.586 �0.8789 0.6886

3 2.744 �0.7946 0.6169

4 2.953 �0.7058 0.6253

5 3.165 �0.6121 0.7106

6 3.351 �0.5138 0.8268

7 3.516 �0.4113 0.9303

8 3.676 �0.3048 0.9901

9 3.850 �0.1950 0.9937

10 4.069 �0.0807 0.9410

11 4.384 0.0398 0.8605

12 4.864 0.1698 0.8103

13 5.527 0.3129 0.8372

14 6.345 0.4730 0.9154

15 7.393 0.6547 0.9828

16 9.000 0.8672 0.9988

FIG. 5. Anomalous refraction of a normally incident SV-wave at 60 kHz.

The curl of the displacement field is plotted to show the SV-wave.

FIG. 6. Unaffected normally incident P-wave at 60 kHz. The trace of the

strain tensor is plotted to show the P-wave.
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indices of bulk materials. Here the focal metasurface is based

on the constructive and destructive interferences of the dif-

fracted waves through all the waveguides. The required

phase profile along the metasurface can be written as

/ðyÞ ¼ kT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� y0Þ2 þ d2

q
� d

� �
þ /0;�p < / < p;

(19)

where y0 denotes the location where the metasurface is sym-

metric about and /0 is the transmitted phase through the

plate at y0.

We choose y0¼ 0 and set /0¼ 0 for convenience. The

metasurface is chosen to have slab thickness, i.e., plate

length, L¼ 5 cm; the constant gap width is a¼ 1 mm. The

focal distance is selected to be d¼ 5 L¼ 25 cm from the lens.

The required phase profile at 60 kHz is calculated using Eq.

(19) and plotted in Fig. 7. A total number of 97 plates are

selected from Fig. 3 to form a metasurface.

Full wave FEM simulations using COMSOL demon-

strate the focusing effect of the metasurface. Displacements

in the y-direction were applied along the vertical line at the

left side of the simulation domain to generate an in-plane

shear wave. Figure 8 shows the simulated field at 60 kHz.

The curl of the displacement field is plotted to represent

the distortional wave. The focusing effect can be clearly

observed at the right side of the metasurface. It is interesting

that a focal spot can be observed over a wide range of fre-

quency from 40 to 75 kHz; however, the focal distance is

varying with frequency due to the dispersive nature of the

design elements. By comparing the energy density along the

x-direction across the center of the metasurface, the focal

point at 60 kHz was found to be approximately 25.7 cm away

from the interface, which agrees with the designed distance

to a remarkable degree.

C. Metasurface for focusing a cylindrical SV-wave

We now design a metasurface for focusing a cylindrical

SV-wave. Due to the cylindrical spreading of the wavefront,

the phases of the incident wave along the metasurface is

different; therefore, Eq. (19) needs to be revised. The profile

requires a more rapid phase change as compared to the phase

change for focusing a plane SV-wave. The modified phase

profile can be written as14

/ðyÞ ¼ kT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� y0Þ2 þ d2

q
� d

� �
þ /cðyÞ;�p < / < p;

(20)

where /c(y) is a phase correction term which compensates

the phase difference of the incident wave.

In this design, the y0 location, the slab thickness,

and the gap width are set the same as for the plane wave

incidence design. The focal distance is selected to be

d¼ 5 L¼ 25 cm. The only difference is that the cylindrical

wave source location, distance dS from the metasurface,

needs to be taken into account. For instance, if we choose

dS¼ d in this design, then the phase correction term is sim-

ply /cðyÞ ¼ kT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� y0Þ2 þ d2

q
� d

� �
. The required phase

profile at 60 kHz is calculated using Eq. (20) and plotted in

Fig. 9. Then a total number of 93 plates are selected from

Fig. 3 to form a metasurface.

FIG. 7. Phase profile of the metasurface for focusing a plane SV-wave at

60 kHz.

FIG. 8. Focusing a normally incident plane SV-wave at 60 kHz. The curl of

the displacement field is plotted to show the SV-wave.

FIG. 9. Phase profile of the metasurface for focusing a cylindrical SV-wave

at 60 kHz.
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The COMSOL-generated simulated SV-wave field at

60 kHz is plotted in Fig. 10. The curl field is shown to repre-

sent the distortional wave. The focal spot is evident at the

right side of the metasurface. This suggests that our design

elements are suitable for rapidly changing phase profiles.

Similar to the previous focal metasurface for a line source,

this design also works over a broadband frequency range

from 45 to 65 kHz with focal distances varying with fre-

quency. It is also interesting to see the percentage of energy

carried by the mode converted P-wave in the transmitted

waves. Integration of the curl field and the strain was per-

formed along the y-direction near the metasurface to estimate

time-average of the power flux of the transmitted waves.

Nearly 38.7% of the transmitted energy is converted to P-

waves. The focal distance evaluated from the simulation

results at 60 kHz is 28.3 cm, which is 3.3 cm longer than the

design distance. Given that the focal distance in the previous

design is only 0.7 cm longer than the designed distance, our

model does not predict the transmitted phase accurately for

oblique incidence. The main reason is that the current model

does not consider the mode conversion which occurs for

oblique incidence. Improvement of the model to include

such effects will be considered later.

As a comparison, the COMSOL-generated simulated P-

wave field at 60 kHz is plotted in Fig. 11. The trace of the

strain tensor is plotted to show the dilatational wave. It is

clear that the phase change of the transmitted P-wave is

almost negligible, and the wavefront is still cylindrical on

the transmitted side. This is not surprising since the imped-

ance of the slab is close to that of the background medium.

Moreover, the slab width is sub-wavelength so that the phase

shifts are small when the waves transmit through the plate

array.

IV. CONCLUSION

In conclusion, we have presented a novel metasurface

design approach for controlling SV-wave motion in elastic

solids using plate-like waveguides of varying thickness. A

theoretical model based on the Mindlin plate theory is devel-

oped and compared with the FEM simulation results. The

model works well for thick plates in the high frequency

range and is therefore well suited to the metasurface design.

It is also found that the transmission properties for normally

incident P- and SV-waves are distinct. The transmitted phase

of a normally incident SV-wave can cover a full span of 2p.

However, the transmitted phase of a normally incident P-

wave is nearly constant. By taking advantage of these prop-

erties, we designed and numerically demonstrated several

metasurfaces that are capable of steering SV-waves while

remaining transparent to P-wave. The fundamental mode of

this type of wave in a thick plate is nondispersive and can

travel in a planar manner over long distances; thus, it is of

particular interest in nondestructive evaluations.27–29

ACKNOWLEDGMENTS

This work was supported by Office of Naval Research

through MURI Grant No. N00014-13-1-0631.

1N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z.

Gaburro, “Light propagation with phase discontinuities: Generalized laws

of reflection and refraction,” Science 334(6054), 333–337 (2011).
2S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-

surfaces as a bridge linking propagating waves and surface waves,” Nat.

Mater. 11(5), 426–431 (2012).
3A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with

metasurfaces,” Science 339(6125), 1232009 (2013).
4C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: Tailoring

wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401

(2013).
5N. M. Estakhri and A. Al�u, “Wave-front transformation with gradient

metasurfaces,” Phys. Rev. X 6(4), 041008 (2016).
6Y. Li, B. Liang, X. Tao, X. Zhu, X. Zou, and J. Cheng, “Acoustic focusing

by coiling up space,” Appl. Phys. Lett. 101(23), 233508 (2012).
7W. Wang, Y. Xie, A. Konneker, B.-I. Popa, and S. A. Cummer, “Design

and demonstration of broadband thin planar diffractive acoustic lenses,”

Appl. Phys. Lett. 105(10), 101904 (2014).
8Y. Li, G. Yu, B. Liang, X. Zou, G. Li, S. Cheng, and J. Cheng, “Three-

dimensional ultrathin planar lenses by acoustic metamaterials,” Sci. Rep.

4, 6830 (2014).
9J. Zhao, B. Li, Z. Chen, and C.-W. Qiu, “Redirection of sound waves using

acoustic metasurface,” Appl. Phys. Lett. 103(15), 151604 (2013).
10J. Zhao, B. Li, Z. Chen, and C.-W. Qiu, “Manipulating acoustic wavefront

by inhomogeneous impedance and steerable extraordinary reflection,” Sci.

Rep. 3, 2537 (2013).
11M. Dubois, C. Shi, Y. Wang, and X. Zhang, “A thin and conformal meta-

surface for illusion acoustics of rapidly changing profiles,” Appl. Phys.

Lett. 110(15), 151902 (2017).
12Y. Xie, W. Wang, H. Chen, A. Konneker, B.-I. Popa, and S. A. Cummer,

“Wavefront modulation and subwavelength diffractive acoustics with an

acoustic metasurface,” Nat. Commun. 5, 5553 (2014).

FIG. 10. Focusing a cylindrical SV-wave source at 60 kHz. The curl of the

displacement field is plotted to show the SV-wave.

FIG. 11. Cylindrical P-wave incidence at 60 kHz. The trace of the strain ten-

sor is plotted to show the P-wave.

091701-8 Su, Lu, and Norris J. Appl. Phys. 123, 091701 (2018)

https://doi.org/10.1126/science.1210713
https://doi.org/10.1038/nmat3292
https://doi.org/10.1038/nmat3292
https://doi.org/10.1126/science.1232009
https://doi.org/10.1103/PhysRevLett.110.197401
https://doi.org/10.1103/PhysRevX.6.041008
https://doi.org/10.1063/1.4769984
https://doi.org/10.1063/1.4895619
https://doi.org/10.1038/srep06830
https://doi.org/10.1063/1.4824758
https://doi.org/10.1038/srep02537
https://doi.org/10.1038/srep02537
https://doi.org/10.1063/1.4979978
https://doi.org/10.1063/1.4979978
https://doi.org/10.1038/ncomms6553


13Y. Li, X. Jiang, B. Liang, J. Cheng, and L. Zhang, “Metascreen-based

acoustic passive phased array,” Phys. Rev. Appl. 4(2), 024003 (2015).
14Y. Li, S. Qi, and M. B. Assouar, “Theory of metascreen-based acoustic

passive phased array,” New J. Phys. 18(4), 043024 (2016).
15X. Jiang, Y. Li, B. Liang, J. Cheng, and L. Zhang, “Convert acoustic resonan-

ces to orbital angular momentum,” Phys. Rev. Lett. 117(3), 034301 (2016).
16C. Shi, M. Dubois, Y. Wang, and X. Zhang, “High-speed acoustic commu-

nication by multiplexing orbital angular momentum,” Proc. Natl. Acad.

Sci. U.S.A. 114(28), 7250–7253 (2017).
17H. Zhu and F. Semperlotti, “Anomalous refraction of acoustic guided

waves in solids with geometrically tapered metasurfaces,” Phys. Rev. Lett.

117(3), 034302 (2016).
18Y. Liu, Z. Liang, F. Liu, O. Diba, A. Lamb, and J. Li, “Source illusion

devices for flexural lamb waves using elastic metasurfaces,” Phys. Rev.

Lett. 119(3), 034301 (2017).
19X. Su and A. N. Norris, “Focusing, refraction, and asymmetric transmis-

sion of elastic waves in solid metamaterials with aligned parallel gaps,”

J. Acoust. Soc. Am. 139(6), 3386–3394 (2016).
20R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of

isotropic elastic plates,” J. Appl. Mech. ASME 18, 31–38 (1951).
21C. Mei and B. Mace, “Wave reflection and transmission in timoshenko

beams and wave analysis of timoshenko beam structures,” J. Vib. Acoust.

127(4), 382–394 (2005).

22R. D. Gregory and F. Y. M. Wan, “Boundary conditions at the edge of a

thin or thick plate bonded to an elastic support,” J. Elasticity 36(2),

155–182 (1994).
23A. Climente, D. Torrent, and J. Sanchez-Dehesa, “Gradient index lenses

for flexural waves based on thickness variations,” Appl. Phys. Lett.

105(6), 064101 (2014).
24S. Tol, F. Degertekin, and A. Erturk, “Phononic crystal Luneburg lens for

omnidirectional elastic wave focusing and energy harvesting,” Appl. Phys.

Lett. 111(1), 013503 (2017).
25X. Su, A. N. Norris, C. W. Cushing, M. R. Haberman, and P. S. Wilson,

“Broadband focusing of underwater sound using a transparent pentamode

lens,” J. Acoust. Soc. Am. 141(6), 4408–4417 (2017).
26X. Su and A. N. Norris, “Isotropic transformation acoustics and

applications,” Proc. SPIE 10170, 101700M (2017).
27M. Hirao and H. Ogi, “An SH-wave EMAT technique for gas pipeline

inspection,” NDT&E Int. 32(3), 127–132 (1999).
28J. S. Lee, Y. Y. Kim, and S. H. Cho, “Beam-focused shear-horizontal

wave generation in a plate by a circular magnetostrictive patch transducer

employing a planar solenoid array,” Smart Mater. Struct. 18(1), 015009

(2008).
29P. Petcher, S. E. Burrows, and S. Dixon, “Shear horizontal (SH) ultrasound

wave propagation around smooth corners,” Ultrasonics 54(4), 997–1004

(2014).

091701-9 Su, Lu, and Norris J. Appl. Phys. 123, 091701 (2018)

https://doi.org/10.1103/PhysRevApplied.4.024003
https://doi.org/10.1088/1367-2630/18/4/043024
https://doi.org/10.1103/PhysRevLett.117.034301
https://doi.org/10.1073/pnas.1704450114
https://doi.org/10.1073/pnas.1704450114
https://doi.org/10.1103/PhysRevLett.117.034302
https://doi.org/10.1103/PhysRevLett.119.034301
https://doi.org/10.1103/PhysRevLett.119.034301
https://doi.org/10.1121/1.4950770
https://doi.org/10.1115/1.1924647
https://doi.org/10.1007/BF00040963
https://doi.org/10.1063/1.4893153
https://doi.org/10.1063/1.4991684
https://doi.org/10.1063/1.4991684
https://doi.org/10.1121/1.4985195
https://doi.org/10.1117/12.2259793
https://doi.org/10.1016/S0963-8695(98)00062-0
https://doi.org/10.1016/S0963-8695(98)00062-0
https://doi.org/10.1088/0964-1726/18/1/015009
https://doi.org/10.1016/j.ultras.2013.11.011

	s1
	d1
	l
	n1
	s2
	s2A
	s2B
	d2
	d3
	d4
	f1
	d5
	s2C
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	s2D
	d17
	f2
	d18
	s3
	s3A
	f3
	f4
	s3B
	t1
	f5
	f6
	d19
	s3C
	d20
	f7
	f8
	f9
	s4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	f10
	f11
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29

