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a b s t r a c t

Flexural wave propagation in an Euler–Bernoulli beam coupled to a set of spring–mass resonators is
investigated in the presence of a pump wave in the form of a space–time modulation of the beam-
resonators coupling stiffness. A phase matching condition implies then that waves incident along or
against the pump wave behave differently and gives rise in select frequency bands to one-way blocking
and conversion of waves. In particular, one-way optical–acoustic transitions are proven possible and are
quantified. Various orders ofmagnitude of relevant physical quantities, such as gapwidths and interaction
lengths, are estimated so as to guide future experimental implementations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamicmaterials or spatio-temporal composites arematerials
whose properties change not only in space but also with time.
Unlike smart structures that can adapt to slowly changing en-
vironments and loadings, the constitutive properties of dynamic
materials vary at a rate comparable to the frequency of waves
traveling through. In doing so, dynamic materials become a play-
ground for completely new wave phenomena [1–3]. Recently, in
the context of breaking time-reversal symmetry and reciprocity
in linear non-lossy elastic media, a particular class of dynamic
materials with properties modulated in space and in time in a
periodic wave-like fashion have allowed to achieve new function-
alities in selective and directional wave control including reversed
Doppler effect [4,5], one-way mode conversion [6–8], unidirec-
tional bandgaps [9,10] and broadband quasistatic unidirectional
wave acceleration [1,11].

There is a variety of ways in which space–time wave-like mod-
ulations, so-called ‘‘pump waves’’, can be generated. Most require
the mechanical system to be active or to be coupled to some active
components. For instance, the elastic stiffness can be wave-like
modulated by shedding a moving train of laser beams on a photo-
elastic medium [9,12] or by controlling the electric input of a stack
of piezoelectric components [13–15]. Further, both mass density
and bulk modulus can be controlled by appropriately distributing
a magnetic field over a magnetorheological elastomer [16]. The
pump wave can also be of a mechanical origin by following a
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‘‘small-on-large’’ approach. In this scheme, a large-amplitude dis-
turbance playing the role of a pump wave will effectively change
the properties of the host medium by a non-linear mechanism
(e.g., shockwaves [4,5], or contact [17,18]) for any small-amplitude
disturbance playing the role of the traveling wave.

In this letter, we investigate flexural wave propagation in a
modulatedmetabeam (Fig. 1). In particular, we demonstrate, using
asymptotic and numerical methods, a number of non-reciprocal
effects including one-way conversion and blocking of waves. The
use of a metabeam as a benchmark for these phenomena has a
threefold motivation. First, a metabeam has a dispersive behavior
accentuatedby the resonancephenomenon. The resulting enriched
dispersion diagram allows, under the influence of a pumpwave, to
observe several non-reciprocal effects simultaneously, a possibility
that is precluded in the absence of dispersion and/or of optical
branches [9,10]. Second, in the suggested benchmark, the beam-
resonators coupling stiffness is more accessible for modulation
in an experimental setting than what has been suggested else-
where [7] as evidenced by the work of Casadei et al. [13] and
Chen et al. [14,15]. Third, the use of resonators allows to bring to
low frequencies scattering phenomena otherwise only observable
at phononic frequencies and further permits to control the onset
frequency of these phenomena in a way that is unaffected by
geometrical parameters.

2. Theory

We begin by coupling the motion u(x, t) of an Euler–Bernoulli
beamwith themotion v(x, t) of a set of resonators as illustrated on
Fig. 1 so that the governing equations read

G∂4
x u + ρ∂2

t u =
1
d
h̃(v − u), m∂2

t v = h̃(u − v), (1)
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Fig. 1. Schematic of wave propagation in a modulated metabeam.

where G and ρ respectively are bending stiffness and mass density
per unit length of the beam, m is the mass of a resonator, h̃ is the
modulated spring constant coupling the resonators to the beam
and d is the spacing between two consecutive resonators. Although
originally defined over a discrete set of locations where resonators
are attached, h̃ is assumed to be a function of the continuous vari-
able x, which is a valid hypothesis in the long wavelength regime
of interest in this letter. For later use, we introduce mass density
per unit length of the resonators ρ ′

= m/d and the normalized
spring constant k̃ = h̃/d. The modulation is wave like and has the
form h̃(x, t) = h + 2δh cos(qmx − ωmt) where qm and ωm are the
wavenumber and frequency of the modulation, respectively.

The modulation is assumed weak in the sense that the per-
turbation δk is small compared to the uniform offset k. Weak
modulations are of interest as they offer control over unidirec-
tional scattering and conversion phenomena in a way that is un-
matched in strongly modulated media. The fact that the consid-
ered modulation is sinusoidal is of lesser importance and will
not play a significant role in what follows. Weak sine-wave-like
modulations of non-dispersive media have been studied in earlier
works in the context of parametric amplification by many authors
[19–23]. Here, we build on their work and extend their results
to this case study where strong dispersion effects and multiple
dispersion branches are at play.

In the absence of the modulation, a harmonic plane wave
u0(x, t) = U0ei(q0x−ω0t) will propagate through the beam if it
satisfies the dispersion relation D(q0, ω0) = 0 with

D(q, ω) = Gq4 − ρeff(ω)ω2, ρeff(ω) = ρ +
m/d

1 − ω2/Ω2 , (2)

where Ω =
√
h/m is the resonance frequency of the resonators.

In the presence of the modulation, the incident wave u0 will be
scattered thus generating a second wave uj(x, t) = Ujei(qjx−ωjt)

whose wavenumber and frequency satisfy D(qj, ωj) = 0 and are
given thanks to Floquet–Bloch theorem by the phase matching
condition

qj = q0 + jqm, ωj = ω0 + jωm, (3)

where j is a non-zero integer. Waves u0 and uj are thus seen as
twomodes traveling in the non-modulatedmetabeam but coupled
by the modulation: when one is incident, the other is scattered.
Consequently, scattered modes are solutions to the equations
D(q0, ω0) = D(qj, ωj) = 0, or thanks to the phase matching
condition, D(q0, ω0) = D(q0 + jqm, ω0 + jωm) = 0. These solu-
tion modes can be determined graphically; see Fig. 2. Other non-
solutionmodes are not coupled: when one is incident, no scattered
wave is generated, at least in the context of the present leading
order theory [24].

At this stage, the directional behavior of the metabeam can be
anticipated. As a matter of fact, from Fig. 2, it is seen that when
two modes (q0, ω0) and (qj, ωj) are coupled, modes (−q0, ω0) and
(−qj, ωj) are not. Thus, a wave form scattered if incident to the left
will not be scattered if incident to the right and vice versa.

Fig. 2. The dispersion curve of the non-modulatedmetabeam (solid line) translated
by ±(qm, ωm) (dashed lines). The parameters of the modulation are qm = 1.25Q
and ωm = 0.25 �. Pairs of intersection points labeled A, B and C correspond to
pairs of coupled modes: when one is incident, the other is scattered. Here, the first
legs of pairs A, B and C are given by ωA

0 = 1.41Ω , qA0 = −0.2Q , ωB
0 = 0.73 �,

qB0 = 1.14Q ,ωC
0 = 0.15� and qC0 = −0.48Q whereas the second ones are obtained

by translation: ω
A,B,C
1 = ω

A,B,C
0 + ωm and qA,B,C

1 = qA,B,C
0 + qm .

When it occurs, scattering will modify the wavenumbers and
frequencies of the traveling waves so that the state of the modu-
lated beam to leading order becomes

u(x, t) =
(
U0ei(q0x−ω0t) + Ujei(qjx−ωjt)

)
ei(δqx−δωt) (4)

where δq and δω are first order corrections to q0,j andω0,j. Their in-
verses 1/δq and 1/δω will define the characteristic space and time
scales of the interaction between incident and scattered waves. In
particular, 1/δq will be interpreted as the penetration depth of a
blocked wave or the conversion distance of a transmitted wave
(see Eqs. (7) and (9) below). Inserting this ansatz into the governing
equations, we recover a couple of compatibility equations reading[
4q30GΠ (δq − δω/c0) ρ ′2ω2

0ω
2
j δjk

ρ ′2ω2
0ω

2
j δjk 4q3j GΠ (δq − δω/cj)

][
U0
Uj

]
=

[
0
0

]
(5)

where δjk is the jth Fourier component of the modulation,
Π = (k − ρ ′ω2

0)(k − ρ ′ω2
j ) and c0,j is group velocity

−∂D/∂q
/
∂D/∂ω(q0,j, ω0,j).

3. Results

In our context, that of a modulation with a unique Fourier
component, it is enough to consider j = ±1 since otherwise δjk
vanishes but the results generalize immediately to modulations
with multiple Fourier components. By setting the determinant of
the above system to zero, the corrections (δq, δω) can be deter-
mined for each pair of coupled modes (q0,j, ω0,j); see Fig. 3(I-a,b).
The resulting dispersion curve is shown on Fig. 3(II). Finite differ-
ence techniques were used to simulate a few broadband transient
responses of the modulated metabeam Appendix C. The spectral
content of these responses was obtained using discrete Fourier
transform in space and in time and then used to numerically
approximate the dispersion curve. Both numerical and asymptotic
approximations match closely as shown on Fig. 3(II). Unless other-
wise specified, illustrated results are obtainedwith the parameters
ρ/ρ ′

= 1, qm = 1.25Q , ωm = 0.25 � and δk/k = 0.1 with
Q =

4
√
k/G.

The dispersion curve reveals the existence of a couple of di-
rectional bandgaps whereby waves are blocked over a frequency
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Fig. 3. First order corrections to the dispersion curve of a modulated metabeam
in the vicinity of pair A (I-a) and B (I-b). Corrections in the vicinity of pair C are
negligible and omitted. The overall resulting dispersion curve (red solid lines) is
depicted on (II) and appears to match its numerically obtained counterpart (level
set). A couple of narrow directional bandgaps is highlighted. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

range if incident in a given direction but are transmitted if inci-
dent in the opposite direction. More generally, as a result to the
asymmetric nature of the phase matching condition, parity of the
dispersion curve is lost, a symptomof the breaking of time-reversal
symmetry and reciprocity. Quantitatively, pairs of coupled modes
will open a pair of directional gaps whenever q0qj < 0 in which
case the gaps will extend over the band ω0 + δω on one side of the
dispersion diagram, and over the bandωj+δω on the opposite side,
with (see Appendix A)

0 ≤ |δω| <
ρ ′2ω2

0ω
2
j

⏐⏐δjk⏐⏐
2G

⏐⏐(q0qj)3/2Π⏐⏐ 1⏐⏐1/c0 − 1/cj
⏐⏐ ≡ δωmax. (6)

The penetration depth of an incident wave of frequency ω0 + δω
falling within the gap is of the order of the inverse of the imaginary
part of δq ≡ δq(δω), namely,

ℑ(δq) =

⏐⏐1/c0 − 1/cj
⏐⏐

2

√
δω2

max − δω2. (7)

Beyond this depth, the incident wave is completely reflected and
transformed into a wave of frequency ωj + δω.

Having a fixed geometry, themodulation parameters qm andωm
can be tuned in order to maximize the width of the bandgap δωmax
aswell as the associated decay speedℑ(δq). Fig. 4 shows how these
two objective functions vary with respect to the output frequency
ωj for a given input mode (q0, ω0). Various observations on how
these quantities compete can be made. For instance, maximum
decay speed is achieved at the boundaries of the main gap (shaded
area) but then the newly opened gap would be of infinitesimal

width as δωmax approaches zero. Further, maximum gap width is
obtained for ωj = ω0; however, in that case, ωm = 0 and the
gap is bidirectional. Therefore, the best compromise appears to
be realized at the non-global local maximum of 2ωmax/Ω , around
ωj/Ω ≈ 0.8. Note that in this case, the reflected mode is an
acoustic mode (ωj < Ω) whereas the incident mode is an optical
one (ω0 > Ω). This is one example of one-way optical–acoustic
conversion by reflection, another example of one-way optical–
acoustic conversion but in transmission is detailed later on. Fig. 4
also clarifies why pair C features negligible scattering effects com-
pared to pairs A and B (Fig. 3). Pair C lies in fact in a low frequency
band away from the resonance where both the directional gap
width and decay speed approach zero.

Besides one-way blocking of waves, the modulated metabeam
features one-way conversion/transmission phenomena when
q0qj > 0. Suppose that awave of frequencyω0+δω traveling inside
a non-modulated metabeam penetrates at x = 0 into a modulated
region. Call δq± = δqs ± δqd the two roots of the dispersion
relation δq = δq(δω) and C± = Uj/U0 the corresponding coupling
strengths, then the real total field reads

u(x ≥ 0, t) = ℜ
{
Aei(δqsx−δωt) {(C− − C+) cos(δqdx)u0(x, t)

+ i sin(δqdx)[(C+ + C−)u0(x, t) + 2uj(x, t)]
}}

, (8)

where A is an arbitrary complex amplitude and u0 and u1 are
taken to be of unitary amplitudes (see Appendix B). Therefore,
mode u0 has a decreasing amplitude and reaches its minimum
at x = π/(2δqd) while, simultaneously, the mixed mode (C+ +

C−)u0/2 + uj reaches a maximum. Total conversion is achieved
when C+ + C− = 0 which implies δω = 0, that is only for an
incident wave of exact frequencyω0. Otherwise, conversion is only
partial. Either way however, conversion is directional due to the
loss of time-reversal symmetry. Finally, it is desirable to maximize
the conversion speed

δqd =

⏐⏐1/c0 − 1/cj
⏐⏐

2

√
δω2

max + δω2. (9)

Variations of δqd as a function of ωj are identical to those of ℑ(δq)
plotted on Fig. 4 for a given input mode (q0, ω0) and for δω = 0
up to exchanging qj with −qj since admissible output modes now
satisfy q0qj > 0. The conversion distance then turns out to be of
the order of 5π/Q .

Numerically simulated transient responses confirm the de-
scribed non-reciprocal behavior of the modulated metabeam. Let
ωA

0 andωA
1 be, respectively, the lower and higher frequencies of the

pair of eigenmodes A and similarly defineωB
0,1. Awave of frequency

ωA
1 incident to the left is transmitted unaltered (Fig. 5(a), (b)) but

is reflected into a wave of frequency ωA
0 if incident to the right

(Fig. 5(c), (d)). As for pair B, a wave of frequency ωB
0 incident to

the left is transmitted unaltered (Fig. 6(a), (b)) but is converted
into a wave of frequency ωB

1 if incident to the right (Fig. 6(c), (d)).
Thus, at ωB

0 , both signals are transmitted but only one experiences
a frequency shift. Also on Figs. 5(d) and 6(d), one can observe that
in addition to the input and output frequencies ω

A,B
0,1 , there are

other frequencies ω = ω
A,B
0,1 ± ωm present in the spectrum. These

secondary harmonic generation effects are not predicted by the
present leading order theory and theirmodeling requires including
higher-order terms in our ansatz.

Mode conversion in the modulated metabeam is not restricted
to acoustic–acoustic or optical–optical conversion and the modu-
lation parameters (qm, ωm) can be chosen to shift an optical mode
(q0, ω0) into an acoustic one (qj, ωj) as illustrated on Fig. 7. Note
that the incident optical mode is such that u and v are completely
out of phase whereas the output acoustic mode has u and v in
phase. Further, the output frequency being relatively close to the
resonance frequency, the signal undergoes a significant amplifica-
tion.
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Fig. 4. Variations of 2δωmax/Ω and ℑ(δq)/Q as functions of the output frequency ωj for a given input mode (q0 = 1.046Q , w0 = 1.664 �); δω = 0.

Fig. 5. Transient responses u(t) collected at both ends of a modulated metabeam and their spectral content Uω illustrating the non-reciprocal behavior of the metabeam at
ω = ωA

1 for a left (a, b) and right (c, d) traveling incident wave. The distance between the input and output locations is about 220/Q .

4. Conclusion

Finally, it is worth mentioning that a remarkable consequence
to dispersion is that wave velocity c is no longer uniquely defined.
As a result, the usual stability condition [22,23], under which the
interactions between the pump and the traveling waves are stable,
namely, |ωm/qm| < c , does not hold here. It can be deduced from

our results however that stability can still be ensured in the vicinity
of a given frequency ω0 as long as ω0 is not coupled to any other
frequency ωj such that ω0ωj < 0.

In conclusion, it has been shown that a wide array of non-
reciprocal wave phenomena takes place in a modulated medium
with strong dispersion effects, both bending- and resonance-
generated. These include one-way conversion, transmission and
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Fig. 6. Transient responses u(t) collected at both ends of a modulated metabeam and their spectral content Uω illustrating the non-reciprocal behavior of the metabeam at
ω = ωB

0 for a left (a, b) and right (c, d) traveling incident wave. The distance between the input and output locations is about 66/Q .

reflection of waves. It is our hope that the provided analytical
quantitative and qualitative results serve as a benchmark for future
attempts at designing and carrying experiments to observe the
described phenomena.
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Appendix A. Directional gap width

In order to prove relation (6), start by expanding the determi-
nant in (5) and solve for δq to find

δq =
1/c0 + 1/cj

2
δω

±

√ρ ′4ω4
0ω

4
j

⏐⏐δjk⏐⏐2
16q30q

3
j G2Π2

+
(1/c0 − 1/cj)2

4
δω2 (A.1)

which is imaginary as long as q0qj < 0 and (6) are satisfied.

Appendix B. Expression of the total field

Eq. (A.1) shows that there are two possible corrections δq± =

δqs ± δqd for the wavenumber given δω. Accordingly, assuming
q0qj > 0, the transmitted field has two possible amplitudes U±

j
given by, say the first line of, (5):

U±

j = −
4q30GΠ (δq± − δω/c0)

ρ ′2ω2
0ω

2
j δjk

U±

0 ≡ C±U±

0 . (B.1)

Hence, the total, incident and transmitted, field admits the expres-
sion

u(x, t) = ℜ
{[

U+

0 (u0(x, t) + C+uj(x, t))eiδqdx

+U−

0 (u0(x, t) + C−uj(x, t))e−iδqdx+
]
ei(δqsx−δωt)} . (B.2)

Say now that mode u0 is traveling through a non-modulated
metabeamand that, at x = 0, it enters into amodulated region. This
scenario requires U+

0 C+ = −U−

0 C− so that there exists a complex
number A such that the total field is given by (8).

Appendix C. Finite difference method

Transient responses are simulated using the finite difference
method. The governing equations are discretized in space follow-
ing a centered finite difference scheme with a step of 1 mm; the
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Fig. 7. Variations of u and v as functions of the normalized space variable Qx over twice the conversion distance π/(2δqd) (a); zones where u and v are out-of-phase are
highlighted in the magnified view. Although initially out-of-phase, at the conversion distance Qx ≈ 50, u and v become in-phase completing thus an optico-acoustic
transition illustrated on (b). Here, the input and output modes are (q0 = 0.819Q , ω0 = 1.5 �) and (qj = 1.464Q , ωj = 0.89 �); the modulation is such that
(qm = q0 − qj = −0.645Q , ωm = ω0 − ωj = 0.61 �) and δk/k = 0.1. Dashed lines on (b) correspond to the translated dispersion curve (see Fig. 2).

beam’s total length varied around 1 m. Free boundary conditions
were applied. The resulting ordinary differential equations in time
are solvedwith a Runge–Kuttamethodwith a time step of 0.01ms.
The parameters of the metabeam are chosen to facilitate conver-
gence: Q = 223.6 m−1, Ω = 2.8 kHz.
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