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Total absorption, defined as the net flux of energy out of a bounded region averaged over one cycle

for time harmonic motion, must be non-negative when there are no sources of energy within the

region. This passivity condition places constraints on the non-dimensional absorption coefficients

of longitudinal and transverse waves, cL and cT, in isotropic linearly viscoelastic materials.

Typically, cL, cT are small, in which case the constraints imply that coefficients of attenuation per

unit length, aL, aT, must satisfy the inequality aL=aT � 4c3T=3c
3
L where cL, cT are the wave speeds.

This inequality, which as far as the author is aware, has not been presented before, provides a rela-

tive bound on wave speed in terms of attenuation, or vice versa. It also serves as a check on the con-

sistency of ultrasonic measurements from the literature, with most but not all of the data considered

passing the positive absorption test.VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4974152]

[JFL] Pages: 475–479

I. INTRODUCTION

When an acoustic wave is incident on a passive obsta-

cle, i.e., one with no active sources of energy present, the

scattering process should not result in more energy than that

of the incident wave itself. If the object is viscoelastic then

the total energy should decrease by virtue of the passive

absorbing properties of viscoelastic solids. The absorption of

wave energy in solids has been considered from many points

of view, ranging from its thermodynamic and molecular ori-

gins (Ref. 1, Chaps. 11–13), to sub-wavelength scattering

effects at the crystalline and granular scale (Ref. 2, Chap. 9),

to physically consistent mathematical models (Ref. 3, Chaps.

3.E, 5.C–E and Ref. 4, Chap. 2). The interest here is in line-

arly viscoelastic materials, and the implications of positive

absorption, also known as passivity.5 In particular, we derive

a new and useful relation between the attenuation coeffi-

cients for longitudinal and transverse waves isotropic solids.

We begin in Sec. II with a background review of absorp-

tion and viscoelasticity theory. The main results are pre-

sented in Sec. III, where they are discussed in the context of

published data on ultrasonic attenuation coefficients.

II. BACKGROUND REVIEW

A. Absorption

The energy lost in a passive target subject to an incident

time harmonic acoustic wave is defined by the time-averaged

outward net flux over the bounding surface of the object,

Pabs ¼ �

ð

S

hpvi � ds

� 0: (1)

Here, p denotes acoustic pressure, v the particle velocity, S

is the enclosing surface, ds¼ ndS is the surface element with

the unit normal n outwards, and h�i indicates the average

over a period. To be specific consider a single solid object of

volume V. Traction continuity across S implies �pn ¼ rn

where r is the symmetric stress in the solid. Normal velocity

is also continuous, and the divergence theorem therefore

implies the equivalent definition:

Pabs ¼

ð

V

divhrvidV: (2)

B. Viscoelasticity

In order to accommodate a viscoelastic constitutive rela-

tion it is necessary to work with complex-valued quantities.

The real and imaginary parts of material properties, such as

density q and elastic stiffness C, are denoted in standard

fashion using single and double primes:

q ¼ q0 þ iq00; C ¼ C
0 þ iC00: (3)

The density is also considered complex-valued as this repre-

sents a better alternative to using viscoelastic moduli in cer-

tain materials encountered especially in geophysical

acoustics, such as poroelastic continua where the complex q

includes Darcy-like flow effects on the overall inertia.6,7

Notwithstanding the danger of confusion, we now let

the field variables r and v (until now assumed to be real

quantities) denote complex-valued amplitudes with the time

dependence e�ixt; x > 0, understood. The real physical

quantities are Re rðxÞe�ixt and Re vðxÞe�ixt. With * denoting

the complex-conjugate, Eq. (2) becomes

Pabs ¼
1

2
Re

ð

V

div rv�dV: (4)
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Using the equation of motion,

div rþ ixqv ¼ 0; (5)

the absorption can be expressed:

Pabs ¼
x

2

ð

V

q00jvj2dV þ
1

2
Re

ð

V

tr r grad v�ð ÞdV: (6)

Strain is the symmetric part of the displacement gradient

e ¼ SymU; U ¼ grad u, where u ¼ ð�ixÞ�1
v is the

displacement.

The viscoelastic linear constitutive relation between

stress and strain in its most general form (Ref. 4, Chap. 4)

posits stress as a convolution of strain with a time-dependent

stiffness. The relation is then linear in the frequency domain,

r ¼ Ce () rij ¼ Cijklekl (7)

with complex-valued stiffness C defined by the Fourier trans-

form of the time-dependent moduli. The latter are assumed to

have the symmetries associated with a symmetric strain and a

symmetric stress, implying Cijkl¼Cijlk, Cijkl¼Cjikl. Hence,

r ¼ CU, and Re trðr grad v�Þ ¼ �x Im trU�
CU. In purely

elastic solids the stiffness C is real-valued and satisfies the

usual symmetry in terms of the interchange of the “major

indices” associated with a reversible strain energy function.

This property does not extend to viscoelasticity. However, it

is expected in the quasistatic limit, and it is therefore reason-

able to assume that it holds for the real part of C, at least in

some range of frequencies, but is not valid for the imaginary

part of C. We therefore split the imaginary part into symmet-

ric and anti-symmetric parts,

C0
ijkl ¼ C0

klij; C
00 ¼ C

00
S þ C

00
A;

C
00
Sijkl ¼ C

00
Sklij; C

00
Aijkl ¼ �C

00
Aklij: (8)

The absorption can then be written

Pabs ¼
x

2

ð

V

q00jvj2 � trU�
C

00
SU

� �

dV: (9)

This is always non-negative if and only if q00 is non-negative

and C
00
S is negative semi-definite in the sense that trA�

C
00
SA

� 0 for all A¼A
T 6¼ 0. In summary,

Pabs � 0 () q00 � 0 andC00
S is negative semi-definite:

(10)

The absorption is identically zero if the density is purely real

and C
00
S vanishes. The latter condition is equivalent to the

requirement that C is Hermitian, i.e., Cijkl ¼ C�
klij. Hence,

Pabs ¼ 0 () q is real andC is Hermitian: (11)

Note that the present results do not rely upon the necessary

consequences of causality on the analytic properties of the

complex-valued moduli, a topic that has been addressed well

elsewhere, e.g., Ref. 8.

1. Isotropic viscoelasticity

The moduli have standard form with two complex-

valued Lam�e moduli, k and l,

Cijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ: (12)

This stiffness satisfies Eq. (8) with C
00
A ¼ 0, i.e., C is not

Hermitian, and it is therefore expected that Pabs will be non-

zero. The absorption becomes

Pabs ¼
x

2

ð

V

q00jvj2 � j00jtr ej2 � l00tr ede
�
d

� �

h i

dV; (13)

where j ¼ kþ ð2=3Þl is the bulk modulus and ed ¼ e

�Ið1=3Þtr e is the deviatoric strain. Hence,

Pabs � 0 () q00 � 0; j00 � 0 and l00 � 0: (14)

This places constraints on the imaginary parts of the elastic

moduli.

For instance, the Kelvin–Voigt model assumes that the

stress is of the form

r ¼ ðke þ kv@tÞðtr eÞIþ 2ðle þ l
v
@tÞe; (15)

where ke, le are the elastic moduli, k
v
, l

v
are generalized vis-

cosities, all real quantities. Hence, k00 ¼ �ixkv; l
00 ¼ �ixl

v
,

and the constraints [Eq. (14)] are satisfied if kv þ ð2=3Þl
v

> 0 and l
v
> 0.

Positive absorption has implications for other elastic

moduli. For any complex-valued elastic modulus M ¼ M0

þ iM00, the loss factor (Ref. 9, p. 7) is defined as dM
¼ �M00=M0, so that M ¼ ð1� idMÞM

0. The constraints

[Eq. (14)] imply that dl� 0, dj� 0. The longitudinal modu-

lus, Poisson’s ratio, Young’s modulus, and area modulus10

are L ¼ kþ 2l; � ¼ k=½2ðkþ lÞ�, E¼ 2(1þ �)l, and

A ¼ ð1� �Þ�1ð1þ �Þl, respectively. Their loss factors are,
to leading order in dl and dj,

dA ¼ c1dl þ ð1� c1Þdj; (16a)

dL ¼ ð1� c1Þdl þ c1dj; (16b)

dE ¼ c2dl þ ð1� c2Þdj; (16c)

d� ¼ ð3�0Þ�1ð1þ �0Þð1� 2�0Þðdl � djÞ; (16d)

where c1¼ð1=3Þð1þ�0Þ=ð1��0Þ;c2¼ð2=3Þð1þ�0Þ. Positive
definiteness of the elastic strain energy requires that

�1<�0<1=2, and hence 0<c1<c2<1 and the loss factors

dL, dE, and dA are always non-negative with values between

dl and dj. The Poisson’s ratio loss factor may in principle be

of either sign, although reported values, e.g., for rubber,8 are

positive indicating dl>dj.

III. ELASTIC WAVE DAMPING

A. Constraints on absorption coefficients

The complex-valued longitudinal and transverse wave-

numbers, ~kL and ~kT , are

476 J. Acoust. Soc. Am. 141 (1), January 2017 Andrew N. Norris



~kL ¼
x

~cL
; ~kT ¼

x

~cT
; ~cL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ 2l

q

s

; ~cT ¼

ffiffiffi

l

q

r

:

(17)

A common method for characterizing viscoelasticity is via

ultrasonic measurement of the complex-valued wavenum-

bers. Specifically, we assume that the viscoelastic moduli are

defined in terms of two real-valued wave speeds cL, cT, and

two non-dimensional absorption coefficients cL, cT:

~kM ¼ kM 1þ icMð Þ with kM ¼
x

cM
; M ¼ L; T: (18)

According to this definition, cM ¼ ðRe ~c�1
M Þ�1; M ¼ L; T. It

follows from the imaginary parts of the identities ~c2M ¼ c2M=
ð1þ icMÞ

2; M ¼ L; T that

Im
l

q
¼ �

2c2TcT

1þ c2T
� �2

; (19a)

Im
j

q
¼ �

2c2LcL

1þ c2L
� �2

þ
8c2TcT

3 1þ c2T
� �2

: (19b)

The three constraints of Eq. (14) imply that the left members

in Eq. (19) are non-positive, and hence, we obtain the main

result of the paper:

cT � 0; c � 0; c �
cL

1þ c2L
� �2

�
4cT

2

3c2L

cT

1þ c2T
� �2

:

(20)

The first is usually satisfied because both cT and cL are spe-

cifically taken as non-negative. The condition for c places a

constraint on cT and cL that depends upon the ratio of the

undamped wave speeds. The value of c for measurements on

Polymethylmethacrylate (PMMA) and other polymers are

given in Table I, all satisfying the condition c> 0.

In practice the values of cL and cT are small, so that Eq.

(20)2 (c� 0) can be safely replaced by

cL
cT

�
4cT

2

3c2L
for cL; cT 	 1: (21)

Thus, the ratio of the wave absorption factors must satisfy a

strict but simple inequality when the attenuation is small.

Note that the parameter depends upon the real part of the

Poisson’s ratio,

4cT
2

3c2L
¼

2 1� 2�0ð Þ

3 1� �0ð Þ
: (22)

B. Constraints on attenuation coefficients

The amplitude of either wave type decays as e�kMcMx,

M¼L or T. Attenuation as measured in dB/cm, for instance,

defines the logarithm of the amplitude, and is therefore

equivalent to measurement of aM � kMcM, M¼L or T, since

a¼ kc20/ln 10, where k is wavenumber in cm–1. The multi-

plicative factor is irrelevant if we are only concerned with

the ratio of the two attenuations. In the small attenuation

regime Eq. (21) then implies

aL

aT
�

4c3T
3c3L

: (23)

We consider the passivity constraint Eq. (23) in light of

some reported ultrasonic data14,15 in Table II. The values of

absorption indicates loss moduli of 1% or less than the real

parts, i.e., small attenuation for which the criterion Eq. (23)

applies, and is met for the data in Table II. Velocity and

attenuation data for styrene-butadiene rubber16 at 1MHz

over a temperature range from 0
 to 20
 is consistent with

Eq. (23).

Layman et al.17 provide curve-fitted equations, Eqs.

(15)–(18) in Ref. 17, for all four of the parameters in Eq.

(23) based on ultrasonic measurements on a particulate com-

posite sample over a broad frequency range (2–10 MHz). It

may be easily verified that these wave speeds and attenua-

tions satisfy the condition (23) over the entire range of fre-

quencies considered. Measurements of high frequency

(25–65 MHz) velocities and attenuation in passive materials

for ultrasonic transducers at room temperature are given in

Ref. 18. The materials include alumina/EPO-TEK 301 com-

posites and tungsten/EPOTEK 301 composites. We have

checked that all of the parameters reported satisfy Eq. (23).

Pinton et al.19 measured attenuation and absorption of ultra-

sound in skull bone. They reported longitudinal absorption

of 2.7 dB/cm and shear absorption of 5.4 dB/cm at the

assumed longitudinal and shear wave speeds of 3000m/s

and 1500ms, respectively, which clearly satisfies the posi-

tive absorption condition (23).

TABLE I. An example of some absorption coefficients and the associated

value of c from Eq. (20). The numerical values from Ref. 11 are for meas-

urements at room temperature of ak¼ 2pc, the attenuation per wavelength

in dB, and uses the relation (Ref. 13) ak (dB)¼ 40pc/ln 10. Those of Ref. 12

are based on measurements of the attenuation coefficients aL and aL (dB/

cm) at 25 
C and frequency 1.8 MHz. Speeds are in m/s.

Material Source cL cT cL cT c

PMMA Ref. 11 2690 1340 0.0035 0.0053 0.0017

Polyethylene Ref. 11 2430 950 0.0073 0.0220 0.0028

Phenolic polymer Ref. 12 2840 1320 0.0119 0.0255 0.0045

TABLE II. f¼x/2p. Velocity and attenuation data for PMMA at 22.2 
C

and atmospheric pressure (Ref. 14). The data for the other polymers are

from Ref. 15, where polymer #1 is poly(4-methyl pentene-1) and polymer

#2 is poly(acrylonitrile-butadiene-styrene).

f cL cT aL aT
Material MHz m/s m/s dB/cm dB/cm Eq. (23)

PMMA 6 2756.4 1401.5 4.97 13.64 ✓

PMMA 10 2760.5 1404.8 7.69 23.99 ✓

PMMA 18 2764.2 1405.1 12.68 37.21 ✓

PMMA 20 2765.1 1405.7 12.64 44.28 ✓

PMMA 30 2765.5 1406.1 19.64 63.94 ✓

polymer #1 1.8 2180 1080 1.4 6.7 ✓

polymer #2 1.8 2040 830 1.8 15 ✓
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As a final example we consider the velocity and attenua-

tion data shown in Fig. 1, which reproduces as accurately as

possible the measurements reported in Ref. 20 for a high-

density polyethylene sample. The calculated values of the

two terms in Eq. (23) are plotted in Fig. 2. The smooth curve

for aL/aT uses a fitted power law model for attenuation pro-

posed by Szabo and Wu21 and applied to the data of Wu.20

The model assumes the attenuation has frequency depen-

dence of the form

aM ¼ a0M þ a1M jf jyM ; M ¼ L; T; (24)

where the coefficients for the high-density polyethylene sam-

ple are in Table III. Note that the formula corresponding to

Eq. (24) in Szabo and Wu21 has jxj instead of jf j, but we
find that the numbers reported there are for Eq. (24).

It is evident from the relative positions of the curves in

Fig. 2 that the passivity inequality (23) is not satisfied at any

of the frequencies considered. We note that Eq. (23) is an

approximation valid for small values of attenuation. The pre-

cise condition c� 0 may be written in similar form as

aL

aT
�

4c3T
3c3L

I where I ¼
1þ c2L
1þ c2T

 !2

: (25)

Generally, the factor I is close to but slightly less than unity,

with 0.9964� I� 0.9970 for the data of Fig. 1. The effect of

including this term in Fig. 2 is almost imperceptible, i.e., the

data is in violation of the passivity condition for the bulk

modulus. We can only conclude that the attenuation data for

high-density polyethylene is not consistent with a passive

linear viscoelastic model with frequency dependent

complex-valued density and elastic moduli.

We note, however, that for the other data sets reported

in Ref. 20, for samples of low-density polyethylene and

Lexan Plexiglas, we find the passivity condition (23) is

satisfied.

IV. CONCLUSION

The main finding is the constraint on the non-

dimensional absorption parameter c in Eq. (20). For given

values of wave speeds and shear absorption cT this sets a

lower bound on the longitudinal absorption cL. The inequal-

ity c� 0 has direct interpretation when absorption is small

(cL, cT 	 1), implying that the ratio of the attenuations per

unit length, aL/aT, has a lower bound that depends on the

FIG. 1. (Color online) Phase velocity and attenuation as functions of frequency for a high-density polyethylene sample: longitudinal (left) and transverse

(right). Data from Ref. 20, Fig. 4.

FIG. 2. (Color online) The two terms in the passivity inequality Eq. (23) cal-

culated from the data of Fig. 1. The continuous curve for aL/aT is based on

Eq. (24) and Table III.

TABLE III. Absorption coefficients a0M (dB/cm), a1M ½dB=ðMHzÞyM � cm�,
and exponential powers yM for high density polyethylene. Speeds, in m/s, are

for the reference frequency 4.8 MHz. Data from Ref. 21 except for a0T which

is not given there but is found here by least square fitting, and yT which is

found to provide better accuracy for aT than the value 0.95 in Ref. 21.

cL cT a0L a1L yL a0T a1T yT

2380 987 0 1.522 1.171 �0.517 22.80 1.00
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ratio of the wave speeds, Eq. (23). The lower bound tends to

zero as the Poisson’s ratio of the material tends to

1=2ð() cT=cL ! 0Þ. For instance, measurements of ultra-

sonic properties of soft tissues and tissue-like materials22

shows shear wave attenuation coefficients on the order of

104 times the longitudinal wave attenuation coefficients.

Equation (23) then implies, under the small absorption

assumption, that the transverse wave speed must be less than

4.2% the value of the longitudinal speed.
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