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Total absorption, defined as the net flux of energy out of a bounded region averaged over one cycle
for time harmonic motion, must be non-negative when there are no sources of energy within the
region. This passivity condition places constraints on the non-dimensional absorption coefficients
of longitudinal and transverse waves, y, and 77, in isotropic linearly viscoelastic materials.
Typically, y,, yr are small, in which case the constraints imply that coefficients of attenuation per
unit length, o, oy, must satisfy the inequality oy /or > 4c% / 3c2 where ¢;, ¢ are the wave speeds.
This inequality, which as far as the author is aware, has not been presented before, provides a rela-
tive bound on wave speed in terms of attenuation, or vice versa. It also serves as a check on the con-
sistency of ultrasonic measurements from the literature, with most but not all of the data considered

passing the positive absorption test. © 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4974152]
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I. INTRODUCTION

When an acoustic wave is incident on a passive obsta-
cle, i.e., one with no active sources of energy present, the
scattering process should not result in more energy than that
of the incident wave itself. If the object is viscoelastic then
the total energy should decrease by virtue of the passive
absorbing properties of viscoelastic solids. The absorption of
wave energy in solids has been considered from many points
of view, ranging from its thermodynamic and molecular ori-
gins (Ref. 1, Chaps. 11-13), to sub-wavelength scattering
effects at the crystalline and granular scale (Ref. 2, Chap. 9),
to physically consistent mathematical models (Ref. 3, Chaps.
3.E, 5.C-E and Ref. 4, Chap. 2). The interest here is in line-
arly viscoelastic materials, and the implications of positive
absorption, also known as passivity.” In particular, we derive
a new and useful relation between the attenuation coeffi-
cients for longitudinal and transverse waves isotropic solids.

We begin in Sec. II with a background review of absorp-
tion and viscoelasticity theory. The main results are pre-
sented in Sec. III, where they are discussed in the context of
published data on ultrasonic attenuation coefficients.

Il. BACKGROUND REVIEW
A. Absorption

The energy lost in a passive target subject to an incident
time harmonic acoustic wave is defined by the time-averaged
outward net flux over the bounding surface of the object,

Paps = —J (pv) - ds
S
> 0. ey
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Here, p denotes acoustic pressure, v the particle velocity, S
is the enclosing surface, ds = ndS is the surface element with
the unit normal n outwards, and (-) indicates the average
over a period. To be specific consider a single solid object of
volume V. Traction continuity across S implies —pn = on
where ¢ is the symmetric stress in the solid. Normal velocity
is also continuous, and the divergence theorem therefore
implies the equivalent definition:

P = J div(ev)dV. (2)
v

B. Viscoelasticity

In order to accommodate a viscoelastic constitutive rela-
tion it is necessary to work with complex-valued quantities.
The real and imaginary parts of material properties, such as
density p and elastic stiffness C, are denoted in standard
fashion using single and double primes:

p=p +ip", C=C +iC". 3)
The density is also considered complex-valued as this repre-
sents a better alternative to using viscoelastic moduli in cer-
tain materials encountered especially in geophysical
acoustics, such as poroelastic continua where the complex p
includes Darcy-like flow effects on the overall inertia.%’

Notwithstanding the danger of confusion, we now let
the field variables ¢ and v (until now assumed to be real
quantities) denote complex-valued amplitudes with the time
dependence e”', w > 0, understood. The real physical
quantities are Re o(x)e " and Re v(x)e '". With * denoting
the complex-conjugate, Eq. (2) becomes

1
Paps = fRe‘[ divev*dV. 4)
2 )y
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Using the equation of motion,
dive + iwpv = 0, (5)
the absorption can be expressed:

(6]

Pabs:2

1
J p"|v[7dV + fReJ tr(e grad v*)dv. (6)
v 2y

Strain is the symmetric part of the displacement gradient
¢=SymU, U=gradu, where u=(—iw) 'v is the
displacement.

The viscoelastic linear constitutive relation between
stress and strain in its most general form (Ref. 4, Chap. 4)
posits stress as a convolution of strain with a time-dependent
stiffness. The relation is then linear in the frequency domain,

c=C¢ <= 0 = Cijklgkl (7)

with complex-valued stiffness C defined by the Fourier trans-
form of the time-dependent moduli. The latter are assumed to
have the symmetries associated with a symmetric strain and a
symmetric stress, implying C;x = Cjjx, Cijiy= Cjiy. Hence,
6 = CU, and Retr(ogradv*) = —oImtr U'CU. In purely
elastic solids the stiffness C is real-valued and satisfies the
usual symmetry in terms of the interchange of the “major
indices” associated with a reversible strain energy function.
This property does not extend to viscoelasticity. However, it
is expected in the quasistatic limit, and it is therefore reason-
able to assume that it holds for the real part of C, at least in
some range of frequencies, but is not valid for the imaginary
part of C. We therefore split the imaginary part into symmet-
ric and anti-symmetric parts,

R " I
Ci = Cuip € =Cg+Cy,

/" " " "
CSijkl = CSklij’ CAijkl - _CAklij' (®)
The absorption can then be written

P = 9J (" — U cyu)av. ©)
1%

2
This is always non-negative if and only if p” is non-negative

and Cj is negative semi-definite in the sense that trA*C{A
< 0 for all A=A”0. In summary,

Pups > 0 < p” > 0and CY is negative semi-definite.
(10)

The absorption is identically zero if the density is purely real
and C{ vanishes. The latter condition is equivalent to the
requirement that C is Hermitian, i.e., Cjj; = C,’;,ij. Hence,

Paps =0 <= pisreal and Cis Hermitian. (11)

Note that the present results do not rely upon the necessary
consequences of causality on the analytic properties of the
complex-valued moduli, a topic that has been addressed well
elsewhere, e.g., Ref. 8.
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1. Isotropic viscoelasticity

The moduli have standard form with two complex-
valued Lamé moduli, A and g,

Cijtr = 2001 + u(0idj + didjr.).- (12)

This stiffness satisfies Eq. (8) with CX =0, i.e., C is not
Hermitian, and it is therefore expected that P, will be non-
zero. The absorption becomes

Paps = %J [p”|v|2 — i |tre|* — ,u"tr(sdsfl)}dv, (13)
%

where x =1+ (2/3)u is the bulk modulus and ¢ =¢
—I(1/3)tre is the deviatoric strain. Hence,

Pus >0 < p" >0, x" <0and y’ <0. (14)

This places constraints on the imaginary parts of the elastic
moduli.

For instance, the Kelvin—Voigt model assumes that the
stress is of the form

6 = (e + 2,0,)(tr &)1 + 2(u, + 1,0)e, (15)

where 4., i, are the elastic moduli, 4,, 1, are generalized vis-
cosities, all real quantities. Hence, 1" = —iwi,, u’ = —iop,,
and the constraints [Eq. (14)] are satisfied if 4, + (2/3)u,
> 0 and u, > 0.

Positive absorption has implications for other elastic
moduli. For any complex-valued elastic modulus M = M’
+iM”, the loss factor (Ref. 9, p. 7) is defined as dy
=-—-M"/M', so that M = (1 —idy)M'. The constraints
[Eq. (14)] imply that d,, > 0, d, > 0. The longitudinal modu-
lus, Poisson’s ratio, Young’s modulus, and area modulus'®
are L=A+42u,v=24/2(A+uw)], E=2(1+wv)u, and
A= (1-v)""(1 4 v)u, respectively. Their loss factors are,
to leading order in d, and d,,

dy = crdy + (1 — ¢1)d,, (16a)
dp = (1= ¢1)d, + c1d,, (16b)
dp = c2dy + (1 — ¢3)d,, (16¢)
d, = (3V) (1 +)(1 —2/)(d, — dy), (16d)

where ¢;=(1/3)(1+0)/(1=v'),c,=(2/3)(1+V/). Positive
definiteness of the elastic strain energy requires that
—1<v/<1/2, and hence 0<c;<c,<1 and the loss factors
d;, dg, and d, are always non-negative with values between
d, and d,. The Poisson’s ratio loss factor may in principle be
of either sign, although reported values, e.g., for rubber,8 are
positive indicating d,,>d,.

lll. ELASTIC WAVE DAMPING
A. Constraints on absorption coefficients

The complex-valued longitudinal and transverse wave-
numbers, k;, and kr, are
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A common method for characterizing viscoelasticity is via
ultrasonic measurement of the complex-valued wavenum-
bers. Specifically, we assume that the viscoelastic moduli are
defined in terms of two real-valued wave speeds c;, ¢y, and
two non-dimensional absorption coefficients y;, y7:

fn = kag(1+ iyy) with kyy ==, M =L, T. (18)
cm

According to this definition, ¢y = (Re E,’Wl)_l, M=L,T. It
follows from the imaginary parts of the identities Ei,l =c3,/
(14iyy,)*, M =L, T that

22
Im% - % (192)
(1+9%)

P (1492)” 3(1+93)°

The three constraints of Eq. (14) imply that the left members
in Eq. (19) are non-positive, and hence, we obtain the main
result of the paper:

YL der*  yr

(1+22)° 34 (1+3)

~
Vv

2

-
If

(20)

The first is usually satisfied because both yr and y; are spe-
cifically taken as non-negative. The condition for y places a
constraint on y7 and 7y, that depends upon the ratio of the
undamped wave speeds. The value of y for measurements on
Polymethylmethacrylate (PMMA) and other polymers are
given in Table I, all satisfying the condition y > 0.

In practice the values of y; and y; are small, so that Eq.
(20), (y > 0) can be safely replaced by

YL 4cp?
=>— fory,yr < 1. 21
7 - 35% YLy VT ( )

Thus, the ratio of the wave absorption factors must satisfy a
strict but simple inequality when the attenuation is small.
Note that the parameter depends upon the real part of the
Poisson’s ratio,

TABLE I. An example of some absorption coefficients and the associated
value of y from Eq. (20). The numerical values from Ref. 11 are for meas-
urements at room temperature of ol =27y, the attenuation per wavelength
in dB, and uses the relation (Ref. 13) a4 (dB) =40xy/In 10. Those of Ref. 12
are based on measurements of the attenuation coefficients o; and oy (dB/
cm) at 25 °C and frequency 1.8 MHz. Speeds are in m/s.

Material Source cr cr VL T y

PMMA Ref. 11 2690 1340 0.0035 0.0053 0.0017
Polyethylene Ref. 11 2430 950  0.0073  0.0220  0.0028
Phenolic polymer ~ Ref. 12 2840 1320 0.0119 0.0255  0.0045

.2 _ !
4672 :2(1 21/)_ 22
3¢t 3(1 —v)

B. Constraints on attenuation coefficients

The amplitude of either wave type decays as e *v7n*,
M =L or T. Attenuation as measured in dB/cm, for instance,
defines the logarithm of the amplitude, and is therefore
equivalent to measurement of o, = kysyp, M =L or T, since
o =ky20/In 10, where k is wavenumber in cm . The multi-
plicative factor is irrelevant if we are only concerned with
the ratio of the two attenuations. In the small attenuation
regime Eq. (21) then implies

4 3
P (23)
or — 3cj

We consider the passivity constraint Eq. (23) in light of
some reported ultrasonic data'*'® in Table II. The values of
absorption indicates loss moduli of 1% or less than the real
parts, i.e., small attenuation for which the criterion Eq. (23)
applies, and is met for the data in Table II. Velocity and
attenuation data for styrene-butadiene rubber'® at 1 MHz
over a temperature range from 0° to 20° is consistent with
Eq. (23).

Layman er al.'’ provide curve-fitted equations, Egs.
(15)—(18) in Ref. 17, for all four of the parameters in Eq.
(23) based on ultrasonic measurements on a particulate com-
posite sample over a broad frequency range (2—10 MHz). It
may be easily verified that these wave speeds and attenua-
tions satisfy the condition (23) over the entire range of fre-
quencies considered. Measurements of high frequency
(25-65 MHz) velocities and attenuation in passive materials
for ultrasonic transducers at room temperature are given in
Ref. 18. The materials include alumina/EPO-TEK 301 com-
posites and tungsten/EPOTEK 301 composites. We have
checked that all of the parameters reported satisfy Eq. (23).
Pinton er al."® measured attenuation and absorption of ultra-
sound in skull bone. They reported longitudinal absorption
of 2.7dB/cm and shear absorption of 5.4dB/cm at the
assumed longitudinal and shear wave speeds of 3000 m/s
and 1500 ms, respectively, which clearly satisfies the posi-
tive absorption condition (23).

TABLE II. f=w/2n. Velocity and attenuation data for PMMA at 22.2°C
and atmospheric pressure (Ref. 14). The data for the other polymers are
from Ref. 15, where polymer #1 is poly(4-methyl pentene-1) and polymer
#2 is poly(acrylonitrile-butadiene-styrene).

f CL cr oy or
Material MHz m/s m/s dB/cm dB/cm Eq. (23)
PMMA 6 2756.4 1401.5 4.97 13.64 v
PMMA 10 2760.5 1404.8 7.69 23.99 v
PMMA 18 2764.2 1405.1 12.68 37.21 v
PMMA 20 2765.1 1405.7 12.64 44.28 v
PMMA 30 2765.5 1406.1 19.64 63.94 v
polymer #1 1.8 2180 1080 1.4 6.7 v
polymer #2 1.8 2040 830 1.8 15 4
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FIG. 1. (Color online) Phase velocity and attenuation as functions of frequency for a high-density polyethylene sample: longitudinal (left) and transverse

(right). Data from Ref. 20, Fig. 4.

As a final example we consider the velocity and attenua-
tion data shown in Fig. 1, which reproduces as accurately as
possible the measurements reported in Ref. 20 for a high-
density polyethylene sample. The calculated values of the
two terms in Eq. (23) are plotted in Fig. 2. The smooth curve
for oy /o uses a fitted power law model for attenuation pro-
posed by Szabo and Wu?' and applied to the data of Wu.?"
The model assumes the attenuation has frequency depen-
dence of the form

oy = ooy + oum [fPM, M =L, T, (24)
where the coefficients for the high-density polyethylene sam-
ple are in Table III. Note that the formula corresponding to
Eq. (24) in Szabo and Wu®' has |w| instead of |f], but we
find that the numbers reported there are for Eq. (24).

It is evident from the relative positions of the curves in
Fig. 2 that the passivity inequality (23) is not satisfied at any
of the frequencies considered. We note that Eq. (23) is an

3
40?; Mﬂ"”"
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FIG. 2. (Color online) The two terms in the passivity inequality Eq. (23) cal-
culated from the data of Fig. 1. The continuous curve for oy /o7 is based on
Eq. (24) and Table III.
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approximation valid for small values of attenuation. The pre-
cise condition y > 0 may be written in similar form as

2
L+
1+ 9%

op _ 43
L > —g I where I =
or 3CL

(25)

Generally, the factor / is close to but slightly less than unity,
with 0.9964 <1 <0.9970 for the data of Fig. 1. The effect of
including this term in Fig. 2 is almost imperceptible, i.e., the
data is in violation of the passivity condition for the bulk
modulus. We can only conclude that the attenuation data for
high-density polyethylene is not consistent with a passive
linear viscoelastic model with frequency dependent
complex-valued density and elastic moduli.

We note, however, that for the other data sets reported
in Ref. 20, for samples of low-density polyethylene and
Lexan Plexiglas, we find the passivity condition (23) is
satisfied.

IV. CONCLUSION

The main finding is the constraint on the non-
dimensional absorption parameter y in Eq. (20). For given
values of wave speeds and shear absorption yr this sets a
lower bound on the longitudinal absorption 7;. The inequal-
ity 7 >0 has direct interpretation when absorption is small
(v, yr < 1), implying that the ratio of the attenuations per
unit length, o; /o7, has a lower bound that depends on the

TABLE III. Absorption coefficients oy, (dB/cm), o1y [dB/(MHz)™ — cm],
and exponential powers y,, for high density polyethylene. Speeds, in m/s, are
for the reference frequency 4.8 MHz. Data from Ref. 21 except for o7 which
is not given there but is found here by least square fitting, and yr which is
found to provide better accuracy for o7 than the value 0.95 in Ref. 21.

L cr oL 2372 yL dor xir yr

2380 987 0 1.522 1.171 —0.517 22.80 1.00
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ratio of the wave speeds, Eq. (23). The lower bound tends to
zero as the Poisson’s ratio of the material tends to
1/2(= cr/c. — 0). For instance, measurements of ultra-
sonic properties of soft tissues and tissue-like materials*
shows shear wave attenuation coefficients on the order of
10* times the longitudinal wave attenuation coefficients.
Equation (23) then implies, under the small absorption
assumption, that the transverse wave speed must be less than
4.2% the value of the longitudinal speed.
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