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A lower bound to the longitudinal and shear attenuation ratio was recently derived for viscoelastic

materials [Norris, J. Acoust. Soc. Am. 141, 475–479 (2017)]. This letter provides proof that a simi-

lar bound is present for low-frequency attenuation constants of polycrystals caused by grain scatter-

ing. An additional upper bound to the attenuation ratio is unveiled. Both bounds are proven to be

combinations of wave speeds. The upper and lower bounds correspond with the vanishing of the

second-order anisotropy of the bulk and shear modulus, respectively. A link to the polycrystalline

Poisson’s ratio is highlighted, which completely bounds the attenuation ratio. An analysis of 2176

crystalline materials was conducted to further verify the bounds.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4979980]
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I. INTRODUCTION

In a recent article, the passivity condition on the absorp-

tive properties of viscoelastic materials was applied to elastic

wave propagation.1 The condition requires that the total

energy associated with the wave motion decreases by virtue

of the passive absorbing properties of viscoelastic materials.

This condition led to the derivation of the inequality1

aL

aS
� 4c3

S

3c3
L

; (1)

which is valid when the imaginary or dissipative part of the

wavenumber is much smaller than its real part. The right-hand

side of Eq. (1) is the ratio of longitudinal and shear wave

speeds denoted as cL and cS, respectively. In general, the shear

modulus and bulk modulus both contribute to the absorption.

It is those cases in which the absorption is attributable to the

shear modulus only that Eq. (1) yields the lower limit.

The derivation of Eq. (1), based on viscoelastic materials,

led naturally to the question of whether this inequality holds

more generally. In other words, does Eq. (1) hold for attenua-

tions that result from other physical mechanisms like scatter-

ing or other material systems that are not viscoelastic. In this

letter, we partially answer this question by considering the

scattering based attenuation of polycrystalline materials.

II. THEORY

In polycrystalline materials, the crystallites are often

referred to as grains that consist of the constituent material.

These grains have various morphologies and crystallo-

graphic orientations depending on their crystallization histo-

ries. It is dissimilar orientations and orientation-dependent

single-crystal elastic behavior that causes the interface or

grain boundary between adjacent grains to scatter wave

energy. For an incident wave in a polycrystal, the scattering

based attenuation is the net energy that is removed (scat-

tered) out of the primary wave by all scattering events. The

resulting wave energy after the scattering occurs is a combi-

nation of the remaining incident wave, which has decreased

in amplitude, and a scattered secondary field. The total atten-

uation of waves in polycrystals consists of contributions of

scattering and absorption. However, the effect of absorption,

due to physical mechanisms such as dislocation damping

and internal friction, are around 2 orders of magnitude less

than that of scattering.2 Thus, the study of attenuation in pol-

ycrystals has heavily focused on scattering and will be the

focus of this letter.

Attenuation and scattering of waves in polycrystals,

both theoretical and experimental, has a rich history.3–11 The

topic continues to garner interest because of applications

including microstructure characterization, flaw detection,

and seismology.12–17 The present theory begins from an

extension of Weaver’s model11 to isotropic polycrystals con-

sisting of crystallites having general or triclinic crystallo-

graphic symmetry.12 The treatment is universal because all

crystalline materials contain point group symmetries that are

a subset of the triclinic point group. For a wave of angular

frequency x, the longitudinal and shear wave attenuations

may be written as11

aL ¼
p2x4

2q2c3
L

ðþ1

�1

gLL hð Þ
c5

L

L hð Þ
"

þ gLS hð Þ
c5

S

M hð Þ � L hð Þð Þ
#

d cos h (2)
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aS ¼
p2x4

4q2c3
S

ðþ1

�1

gSS hð Þ
c5

S

N hð Þ � 2M hð Þ þ L hð Þð Þ
"

þ gLS hð Þ
c5

L

M hð Þ � L hð Þð Þ
#

d cos h; (3)

respectively. The factors gLL, gLS, and gSS are spatial Fourier

transforms of the microstructure’s two-point correlation

function, which are found in Eq. (7.3) of Ref. 11. The factors

L(h), M(h), and N(h) are inner products on the eighth-rank

covariance tensor, which is a measure of the mean squared

elastic moduli fluctuations resulting from random grain ori-

entations.11 These inner products were previously defined

for isotropic polycrystals having triclinic crystallites and will

be used in the following.12 The attenuations in Eqs. (2) and

(3) assume that the polycrystal is composed of single phase

equiaxed crystallites (on average), which do not display pre-

ferred orientations. These considerations imply statistical

isotropy and homogeneity. Attenuation formulas based on

these assumptions have been shown to agree well with

experimental measurements.9

In many practical cases, the ultrasonic wavelength is

sufficiently large such that the attenuation is a result of

Rayleigh scattering. Rayleigh attenuations are found from

Eqs. (2) and (3) by evaluating the integrals while making the

low-frequency (Rayleigh) assumption x‘=cL � 1, where ‘
is the correlation length of the microstructure. The correla-

tion length at low frequencies is near the average grain

radius.10,11 As an example, x‘=cL � 0:05 for a 5 MHz wave

in steel with a mean grain diameter of 20 lm. The Rayleigh

attenuations are then found to be

aRayleigh
L ¼ 1

15

‘3x4

q2c8
L

1

36
bþ 672lð Þ þ R5

48
bþ 1344lð Þ

� �
(4)

and

aRayleigh
S ¼ 1

30

‘3x4

q2c8
S

R�5

48
bþ 1344lð Þ þ 42l

� �
; (5)

where the factors of L(h), M(h), and N(h) were taken from

Ref. 12. The factor R is the ratio of the velocities, R¼ cL/cS.

l ¼ hdc55dc55i and b¼120hdc13dc13i�80hdc15dc35iþ480

hdc13dc33iþ135hdc33dc33i are second-order anisotropy con-

stants related to elastic anisotropy of the bulk and shear mod-

uli, respectively. We employ the Voigt index convention in

l and b, which contracts pairs of indices in the manner

dcijkl!dcIJ with 11! 1, 22! 2, 33! 3, 23 or 32! 4, 13

or 31 ! 5, and 12 or 21 ! 6. The first-order elastic moduli

variations (in full index notation) are dcijkl¼ cijkl�hcijkli
with cijkl being the single-crystal elastic modulus tensor and

hi being an unweighted average over all possible crystallite

orientations (often referred to as a Voigt-type average).

The second-order elastic moduli variations are defined as

hdcijkldcabcdi¼h cijkl�hcijkli
� �

cabcd�hcabcdi
� �

i. Their evalu-

ation follows from Eq. (3) of Ref. 12. Evaluating the elastic

moduli variations give

l¼ 1

1575
8c2

11� 16c11c12� 16c11c13þ c11c22þ 14c11c23þ c11c33� 12c11c44� 12c11c55� 12c11c66þ 23c2
12� 14c12c13

�
� 16c12c22� 14c12c23þ 14c12c33þ 12c12c44þ 12c12c55þ 12c12c66þ 23c2

13þ 14c13c22� 14c13c23� 16c13c33

þ 12c13c44þ 12c13c55þ 12c13c66þ 60c2
14� 60c14c24� 60c14c34þ 60c2

15� 60c15c25� 60c15c35þ 60c2
16� 60c16c26

� 60c16c36þ 8c2
22� 16c22c23þ c22c33� 12c22c44� 12c22c55� 12c22c66þ 23c2

23� 16c23c33þ 12c23c44þ 12c23c55

þ 12c23c66þ 60c2
24� 60c24c34þ 60c2

25� 60c25c35þ 60c2
26� 60c26c36þ 8c2

33� 12c33c44� 12c33c55� 12c33c66

þ 60c2
34þ 60c2

35þ 60c2
36þ 72c2

44� 36c44c55� 36c44c66þ 180c2
45þ 180c2

46þ 72c2
55�36c55c66þ 180c2

56þ 72c2
66Þ (6)

and

b ¼ 32

3
c2

11 þ c11c12 þ c11c13 � c11c22 � 2c11c23 � c11c33 þ c2
12 � c12c13 þ c12c22 � c12c23 � 2c12c33 þ c2

13 � 2c13c22

�
� c13c23 þ c13c33 þ 3c2

14 þ 6c14c24 þ 6c14c34 þ 3c2
15 þ 6c15c25 þ 6c15c35 þ 3c2

16 þ 6c16c26 þ 6c16c36 þ c2
22 þ c22c23

� c22c33 þ c2
23 þ c23c33þ 3c2

24 þ 6c24c34 þ 3c2
25 þ 6c25c35 þ 3c2

26 þ 6c26c36 þ c2
33 þ 3c2

34 þ 3c2
35 þ 3c2

36Þ: (7)

Equivalent expressions for the Rayleigh attenuations have

been well-known for many years, even for crystal symmetry

as low as orthorhombic.3–8 However, to the best of the

authors’ knowledge, the Rayleigh attenuations have not been

written explicitly in terms of the bulk and shear moduli ani-

sotropies, which is important for defining the ratio seen in

Eq. (1). The Rayleigh attenuation ratio aRayleigh
L =aRayleigh

S can

then be written in the form

aRayleigh
L

aRayleigh
S

¼ 4

3
R�3 1þ 2þ 3R5ð Þb

2bþ 26 � 3 � 7 2þ 3R5ð Þl

" #
: (8)

Note that Eq. (8) is independent of the correlation length

‘, a result that was first obtained by Merkulov.6

Equation (8) enables the primary result of this letter,

which is an expression for the bounds on the attenuation

ratio.
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Next, consider a polycrystal containing crystallites of

cubic crystallographic symmetry. The bulk modulus of a sin-

gle crystallite of cubic symmetry is equal to the bulk modu-

lus of a polycrystal containing the crystallites. Thus, the

anisotropy in the bulk modulus vanishes, i.e., b¼ 0. The

second-order anisotropy in the shear modulus is obtained by

applying the symmetry relations for cubic symmetry on Eq.

(7), which gives l ¼ 3 c11 � c12 � 2c44ð Þ2=175. Simplifying

the resulting Rayleigh attenuations gives

aRayleigh
L ¼ 4

375

‘3x4 c11 � c12 � 2c44ð Þ2

q2c8
L

2þ 3R5ð Þ (9)

and

aRayleigh
S ¼ 3

375

‘3x4 c11� c12� 2c44ð Þ2

q2c8
S

3þ 2R�5ð Þ: (10)

For this case with b¼ 0, it is easily seen from Eq. (8) that the

ratio of longitudinal to shear wave attenuations simplifies to

aRayleigh
L

aRayleigh
S

¼ 4c3
S

3c3
L

; (11)

which is exactly the lower-bound derived by Norris.1 Thus,

Eq. (11) is reached when the attenuation results from only

the anisotropy in the shear modulus.

Now, consider a polycrystal containing crystallites of

symmetry lower than cubic. Elastic stability requires a posi-

tive bulk modulus for both the crystallites and the polycrystal.

Thus, the second-order anisotropy of the bulk modulus must

be positive. Applying b� 0 and evaluating Eq. (8) gives

aRayleigh
L

aRayleigh
S

� 4c3
S

3c3
L

; (12)

which is the sought after inequality given in Eq. (1). Thus, the

inequality in Eq. (1) derived for viscoelastic materials by

Norris1 is, in fact, more general. It should be noted that

Bhatia7 was the first to establish the equality in Eq. (11).

More recently, Turner17 arrived at a similar conclusion when

considering the diffusion of ultrasound. However, to the best

of the authors’ knowledge, Eq. (11) has never been designated

as a lower bound for the polycrystalline problem until now.

Last, we consider the case when b> 0 and l¼ 0. For this

case, it is easily seen that Eq. (8) delivers an upper limit, namely,

aRayleigh
L

aRayleigh
S

� 2c3
S

3c3
L

4þ 3
c5

L

c5
S

 !
: (13)

In summary, the results of Eqs. (12) and (13) provides the

following bounds on aRayleigh
L =aRayleigh

S ;

4c3
S

3c3
L

� aRayleigh
L

aRayleigh
S

� 2c3
S

3c3
L

4þ 3
c5

L

c5
S

 !
; (14)

which is the primary result of this letter. These bounds apply

universally to low frequency attenuation in polycrystals

resulting from grain scattering.

III. RESULTS AND DISCUSSION

To illustrate the validity of Eq. (11), the single-crystal

elastic constants and densities of 2176 crystalline materials

were used to calculate Rayleigh attenuations. The dataset of

single-crystal elastic constants were obtained elsewhere18

using Density Functional Theory. The dataset contains exam-

ple materials that span all of the seven crystallite symmetry

point groups. The two ratios involved in Eq. (11) were calcu-

lated for each material and were then aggregated into a scatter

plot, which is given in Fig. 1. The marker color indicates the

corresponding point symmetry group for that specific material.

Additionally, the upper and lower limits are included in Fig. 1.

The example materials having cubic symmetry are present

along the lower limit aRayleigh
L =aRayleigh

S ¼ 4c3
S= 3c3

L

� �
. All

example materials having symmetry lower than cubic appear

above the line aRayleigh
L =aRayleigh

S ¼ 4c3
S= 3c3

L

� �
and fall under

the upper limit, which agrees with the primary result of Eq.

(14). The range 0:15 � aRayleigh
L =aRayleigh

S � 0:35 contains the

highest percentage of materials, 68.7%, which is highlighted

in the exploded view in Fig. 1. Experimental data accumulated

by Papadakis9 were shown to fall within this range as well.

The Poisson’s ratio � for isotropic materials can be writ-

ten in terms of the longitudinal and shear wave speeds.1

Here, we note that 4c3
S= 3c3

L

� �
¼

ffiffi
2
p

3
1� 2�ð Þ= 1� �ð Þ

� �3=2
,

which further links the Poisson’s ratio to the ratio of attenua-

tions. For polycrystals having crystallites of cubic symmetry,

aRayleigh
L =aRayleigh

S ¼ ð
ffiffiffi
2
p

=3Þ 1� 2�ð Þ= 1� �ð Þ
� �3=2

, while

lower symmetries are restricted by the bounds given in Eq.

(14). The possible values of Poisson’s ratio span

0.5� ���1. Thus, the attenuation ratio is completely

bounded from above and below by Eq. (14) and from the left

and the right by 0 � 4c3
S= 3c3

L

� �
�

ffiffiffi
3
p

=2. Values of

Poisson’s ratio that are deemed relevant are included in Fig.

1. As expected, most materials are observed near �¼ 0.25.

FIG. 1. (Color online) Scatter plot showing the relation between the

Rayleigh attenuation ratio and the quantity 4c3
S=3c3

L. The lower and upper

limits given in Eq. (14) and lines indicating the corresponding Poisson’s

ratio are included.

J. Acoust. Soc. Am. 141 (4), April 2017 Christopher M. Kube and Andrew N. Norris 2635



The results contained in this letter have considered the

low-frequency Rayleigh attenuations. For intermediate fre-

quencies, in the so-called stochastic scattering regime, the inte-

grations involved in Eqs. (2) and (3) are much more complex,

which makes it difficult to observe bounds (if any) on

aStochastic
L =aStochastic

S . For high frequencies, in the geometrical

scattering regime, it is predicted10 that aGeometric
L ¼ aGeometric

S

� 1=‘, which gives the ratio aGeometric
L =aGeometric

S ¼ 1.

Last, these results are expected to have implications on

the multiple scattering and diffusion of ultrasonic waves.

Turner17 showed that, for low-frequencies, the attenuation

ratio is proportional to the ratio of the diffusion mean free

path aRayleigh
L =aRayleigh

S ¼ ‘S=‘L with ‘L and ‘P being the longi-

tudinal and shear wave mean free paths, respectively. The dif-

fusion mean free path is the average spatial distance between

scattering events in the multiple scattering limit. Thus, Eq.

(14) additionally bounds the ratio of the mean free paths and

places new constraints on the diffusive nature of polycrystals.

IV. CONCLUSION

In this letter, the ratio of low frequency longitudinal and

shear wave attenuation constants was proven to be bounded

from above and below by certain ratios of the corresponding

wave speeds. The lower bound was shown to be equal to the

bound derived for viscoelastic materials.1 In addition, an

upper bound to the attenuation ratio was discovered. The

upper and lower bounds correspond to the situations when the

second-order anisotropy in the shear and bulk modulus goes

to zero, i.e., the shear/bulk modulus of a single crystallite in

the polycrystal is equal to the shear/bulk modulus of the poly-

crystal. This feature parallels the finding for viscoelastic mate-

rials that the lower bound is met when the absorption of a

wave is only caused by the shear modulus. An analysis of the

attenuation ratio for 2176 materials, generated using Density

Functional Theory, was conducted to test the validity of the

bounds. All data points were observed to fall within the

bounds. This analysis highlighted the relation of the ratio of

attenuations to the Poisson’s ratio. The possible values of the

Poisson’s ratio further bounds the ratio of attenuations from

the left and to the right. Further work will be explored that

will involve experimental confirmation and extensions to

other frequencies and attenuation mechanisms.
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