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A lower bound to the longitudinal and shear attenuation ratio was recently derived for viscoelastic
materials [Norris, J. Acoust. Soc. Am. 141, 475-479 (2017)]. This letter provides proof that a simi-
lar bound is present for low-frequency attenuation constants of polycrystals caused by grain scatter-
ing. An additional upper bound to the attenuation ratio is unveiled. Both bounds are proven to be
combinations of wave speeds. The upper and lower bounds correspond with the vanishing of the
second-order anisotropy of the bulk and shear modulus, respectively. A link to the polycrystalline
Poisson’s ratio is highlighted, which completely bounds the attenuation ratio. An analysis of 2176
crystalline materials was conducted to further verify the bounds.

© 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4979980]
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I. INTRODUCTION

In a recent article, the passivity condition on the absorp-
tive properties of viscoelastic materials was applied to elastic
wave propagation. The condition requires that the total
energy associated with the wave motion decreases by virtue
of the passive absorbing properties of viscoelastic materials.
This condition led to the derivation of the inequality’

Z>=3 (1)

which is valid when the imaginary or dissipative part of the
wavenumber is much smaller than its real part. The right-hand
side of Eq. (1) is the ratio of longitudinal and shear wave
speeds denoted as ¢;, and cg, respectively. In general, the shear
modulus and bulk modulus both contribute to the absorption.
It is those cases in which the absorption is attributable to the
shear modulus only that Eq. (1) yields the lower limit.

The derivation of Eq. (1), based on viscoelastic materials,
led naturally to the question of whether this inequality holds
more generally. In other words, does Eq. (1) hold for attenua-
tions that result from other physical mechanisms like scatter-
ing or other material systems that are not viscoelastic. In this
letter, we partially answer this question by considering the
scattering based attenuation of polycrystalline materials.

Il. THEORY

In polycrystalline materials, the crystallites are often
referred to as grains that consist of the constituent material.
These grains have various morphologies and crystallo-
graphic orientations depending on their crystallization histo-
ries. It is dissimilar orientations and orientation-dependent
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single-crystal elastic behavior that causes the interface or
grain boundary between adjacent grains to scatter wave
energy. For an incident wave in a polycrystal, the scattering
based attenuation is the net energy that is removed (scat-
tered) out of the primary wave by all scattering events. The
resulting wave energy after the scattering occurs is a combi-
nation of the remaining incident wave, which has decreased
in amplitude, and a scattered secondary field. The total atten-
uation of waves in polycrystals consists of contributions of
scattering and absorption. However, the effect of absorption,
due to physical mechanisms such as dislocation damping
and internal friction, are around 2 orders of magnitude less
than that of scattering.” Thus, the study of attenuation in pol-
ycrystals has heavily focused on scattering and will be the
focus of this letter.

Attenuation and scattering of waves in polycrystals,
both theoretical and experimental, has a rich history.” ' The
topic continues to garner interest because of applications
including microstructure characterization, flaw detection,
and seismology.'>”'” The present theory begins from an
extension of Weaver’s model'" to isotropic polycrystals con-
sisting of crystallites having general or triclinic crystallo-
graphic symmetry.'* The treatment is universal because all
crystalline materials contain point group symmetries that are
a subset of the triclinic point group. For a wave of angular
frequency w, the longitudinal and shear wave attenuations
may be written as''

2ot (1 [40)
oy = mjl [ Ci L(0)
_5_’71“920) (M(0) —L(F)))]dcosé) 2
i

and

© 2017 Acoustical Society of America 2633


http://dx.doi.org/10.1121/1.4979980
mailto:christopher.m.kube.ctr@mail.mil
http://crossmark.crossref.org/dialog/?doi=10.1121/1.4979980&domain=pdf&date_stamp=2017-04-01

4p%ci ) 1|
LS
1 Cﬁ‘” (M(0) — L(G))] d cos 0, 3)
L

respectively. The factors 7, #™5, and i*° are spatial Fourier
transforms of the microstructure’s two-point correlation
function, which are found in Eq. (7.3) of Ref. 11. The factors
L(6), M(0), and N(0) are inner products on the eighth-rank
covariance tensor, which is a measure of the mean squared
elastic moduli fluctuations resulting from random grain ori-
entations.'' These inner products were previously defined
for isotropic polycrystals having triclinic crystallites and will
be used in the following.'? The attenuations in Egs. (2) and
(3) assume that the polycrystal is composed of single phase
equiaxed crystallites (on average), which do not display pre-
ferred orientations. These considerations imply statistical
isotropy and homogeneity. Attenuation formulas based on
these assumptions have been shown to agree well with
experimental measurements.”

In many practical cases, the ultrasonic wavelength is
sufficiently large such that the attenuation is a result of
Rayleigh scattering. Rayleigh attenuations are found from
Egs. (2) and (3) by evaluating the integrals while making the
low-frequency (Rayleigh) assumption wf/c; < 1, where ¢
is the correlation length of the microstructure. The correla-
tion length at low frequencies is near the average grain
radius.'®'! As an example, wl/c; ~ 0.05 for a 5 MHz wave

1
k=175

in steel with a mean grain diameter of 20 um. The Rayleigh
attenuations are then found to be

w1 B0t R
oRaveigh _ 1 @ {% (B+672u) + 72 (B + 1344,1)}

L 15 p2c
“)
and
; 1 Pt {RS
Saylelgh _ — - 13440) + 42 5
O(S 30,02€§ 48 (ﬁ+ ﬂ)+ )u I ( )

where the factors of L(0), M(0), and N(0) were taken from
Ref. 12. The factor R is the ratio of the velocities, R = ¢;/cs.
n= <5C555€55> and ﬂ: 120<5C135C13> — 80<5Cl55€35> +480
(6c130¢33) 4+ 135(dc330¢33) are second-order anisotropy con-
stants related to elastic anisotropy of the bulk and shear mod-
uli, respectively. We employ the Voigt index convention in
w and f, which contracts pairs of indices in the manner
Ocju— ocyy with 11 — 1,22 — 2,33 — 3,23 0or 32 — 4,13
or 31 — 5, and 12 or 21 — 6. The first-order elastic moduli
variations (in full index notation) are dcijy = cijr — (Cijur)
with ¢;;; being the single-crystal elastic modulus tensor and
() being an unweighted average over all possible crystallite
orientations (often referred to as a Voigt-type average).
The second-order elastic moduli variations are defined as
(OcijuiOCypys) = <(Cijkl - <C,'jk/>) (C“/gy(s - <ca/;~,5>)>. Their evalu-
ation follows from Eq. (3) of Ref. 12. Evaluating the elastic
moduli variations give

(86%1 —16c1c12 — 16¢11¢13 + ¢11¢22 + 14cy1c03 + 11033 — 12¢11€44 — 12¢11¢55 — 12¢11C66 +23C%2 — 1dcpacr3

— 16c12020 — 14c12¢003 4+ 14cia033 + 12¢12¢44 + 12¢12¢55 + 12010066 + 236‘%3 + 14c13¢00 — 1413023 — 16C13C33
4+ 12¢13¢44 + 12¢13¢55 + 12¢13¢66 + 600%4 — 60c14C04 — 60C14C34 + 606‘%5 — 60c15¢25 — 60c5¢35 + 606%6 — 60c16C26

—60c16C36 + 8C%2 — 16¢003 + 22033 — 12000044 — 1290055 — 1202066 + 23653 — 16¢23¢33 + 12¢23¢44 + 12¢23¢55
+ 12¢23¢66 + 60654 — 60cp4C34 + 606‘%5 — 60cp5¢35 + 606‘%6 — 60c6C36 + 8C§3 — 12¢33¢44 — 12¢33¢55 — 12¢33C66

+ 602, + 60c3s + 60c3, + 72¢2, — 36¢44¢55 — 36¢aac66 + 180¢%5 + 180¢% + 722 —36¢55¢66 + 1802 +72¢25) ()

and

32

2 2 2
p=— (C” + c11c12 + 11613 — €11022 — 2€11C23 — €11€33 + €] — C12€13 + €122 — €12€23 — 2€12€33 + €73 — 2C13¢

3

. 2 2 2 . 2
— €13023 + €13033 + 3¢7y + 6C14024 + 614034 + 375 + 6C15C25 + 6C15C35 + 3076 + 6C16C26 + 6C16C36 + €5y + €22023

— 22033 + €33 + €23033 + 33, + 6¢24C34 + 3¢35 + 6025035 + 3¢5 + 6C26C36 + €33 + 3¢5, + 335 + 3¢3). 7

Equivalent expressions for the Rayleigh attenuations have
been well-known for many years, even for crystal symmetry
as low as orthorhombic.>™® However, to the best of the
authors’ knowledge, the Rayleigh attenuations have not been
written explicitly in terms of the bulk and shear moduli ani-
sotropies, which is important for defining the ratio seen in
Eq. (1). The Rayleigh attenuation ratio o ~'*'¢" / ocSRayleigh can
then be written in the form
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o M 4 (2 +3R°)p ®)
Ko = 3 2+20-3-7(243R%)u|’

Note that Eq. (8) is independent of the correlation length
¢, a result that was first obtained by Merkulov.®
Equation (8) enables the primary result of this letter,
which is an expression for the bounds on the attenuation
ratio.
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Next, consider a polycrystal containing crystallites of
cubic crystallographic symmetry. The bulk modulus of a sin-
gle crystallite of cubic symmetry is equal to the bulk modu-
lus of a polycrystal containing the crystallites. Thus, the
anisotropy in the bulk modulus vanishes, i.e., f=0. The
second-order anisotropy in the shear modulus is obtained by
applying the symmetry relations for cubic symmetry on Eq.
(7), which gives u = 3(c1y — c12 — 2c44)*/175. Simplifying
the resulting Rayleigh attenuations gives

i 4 Bo*(cyy —crp — 2cu)?
Rayleigh _ " 11 12 44 2 3RS 9
. s px 2+3R) 9
and
aylei 3 Bo*(cn —cn—2c4)’
Rayleigh _ > 11 12 44 3 2R75 ) 10
g 75 e (3+2R7). (10)

For this case with =0, it is easily seen from Eq. (8) that the
ratio of longitudinal to shear wave attenuations simplifies to

Rayleigh
T

L —
O(?aylelgh 362 ’

1D

which is exactly the lower-bound derived by Norris." Thus,
Eq. (11) is reached when the attenuation results from only
the anisotropy in the shear modulus.

Now, consider a polycrystal containing crystallites of
symmetry lower than cubic. Elastic stability requires a posi-
tive bulk modulus for both the crystallites and the polycrystal.
Thus, the second-order anisotropy of the bulk modulus must
be positive. Applying f# > 0 and evaluating Eq. (8) gives

Rayleigh 3
oy 4cg

> X 12
O(?e\ylelgh - SCZ ( )

which is the sought after inequality given in Eq. (1). Thus, the
inequality in Eq. (1) derived for viscoelastic materials by
Norris' is, in fact, more general. It should be noted that
Bhatia’ was the first to establish the equality in Eq. (11).
More recently, Turner!” arrived at a similar conclusion when
considering the diffusion of ultrasound. However, to the best
of the authors’ knowledge, Eq. (11) has never been designated
as a lower bound for the polycrystalline problem until now.
Last, we consider the case when f§ >0 and u= 0. For this
case, it is easily seen that Eq. (8) delivers an upper limit, namely,
O(Rayleigh 26‘3 c 5
{@E@L_3§<4+3;>. (13)
U S

In summary, the results of Eqgs. (12) and (13) provides the
following bounds on o3 ®'¢'8" /o8 Ieieh

Rayleigh
4ed o ME 2 3 (

)

3 — Raylelgh =23
3¢; 7 og 3c 3

4+3Q> (14)

which is the primary result of this letter. These bounds apply
universally to low frequency attenuation in polycrystals
resulting from grain scattering.
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lll. RESULTS AND DISCUSSION

To illustrate the validity of Eq. (11), the single-crystal
elastic constants and densities of 2176 crystalline materials
were used to calculate Rayleigh attenuations. The dataset of
single-crystal elastic constants were obtained elsewhere'®
using Density Functional Theory. The dataset contains exam-
ple materials that span all of the seven crystallite symmetry
point groups. The two ratios involved in Eq. (11) were calcu-
lated for each material and were then aggregated into a scatter
plot, which is given in Fig. 1. The marker color indicates the
corresponding point symmetry group for that specific material.
Additionally, the upper and lower limits are included in Fig. 1.
The example materials having cubic symmetry are present
along the lower limit of ™" /of™'" — 4¢3/(3¢}). All
example materials having symmetry lower than cubic appear
above the line o' /8" — 4¢3 /(3¢3) and fall under
the upper limit, which agrees with the primary result of Eq.

(14). The range 0.15 < of¥*'E" /o8N < () 35 contains the
highest percentage of materials, 68.7%, which is highlighted
in the exploded view in Fig. 1. Experimental data accumulated
by Papadakis’ were shown to fall within this range as well.
The Poisson’s ratio v for isotropic materials can be writ-
ten in terms of the longitudinal and shear wave speeds.'

Here, we note that 4c§/(3ci) = 4 [(l —2v)/(1 — 1/)]3/2,
which further links the Poisson’s ratio to the ratio of attenua-
tions. For polycrystals having crystallites of cubic symmetry,

aReish g Rateish 53311 —20)/(1 - )], while
lower symmetries are restricted by the bounds given in Eq.
(14). The possible values of Poisson’s ratio span
0.5<v<—1. Thus, the attenuation ratio is completely
bounded from above and below by Eq. (14) and from the left
and the right by 0<4c}/(3c;) <+/3/2. Values of
Poisson’s ratio that are deemed relevant are included in Fig.
1. As expected, most materials are observed near v = 0.25.
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FIG. 1. (Color online) Scatter plot showing the relation between the
Rayleigh attenuation ratio and the quantity 4c§ /3c;. The lower and upper
limits given in Eq. (14) and lines indicating the corresponding Poisson’s
ratio are included.
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The results contained in this letter have considered the
low-frequency Rayleigh attenuations. For intermediate fre-
quencies, in the so-called stochastic scattering regime, the inte-
grations involved in Egs. (2) and (3) are much more complex,
which makes it difficult to observe bounds (if any) on
glochastic /pStochastic ” Bor high frequencies, in the geometrical
scattering regime, it is predicted'” that gfeometric — gJeometric
~ 1/¢, which gives the ratio oJeometric /g Seometric — 1

Last, these results are expected to have implications on
the multiple scattering and diffusion of ultrasonic waves.
Turner'” showed that, for low-frequencies, the attenuation
ratio is proportional to the ratio of the diffusion mean free
path oy ¥eiE" / otSRaylelgh = (5/{; with £, and /p being the longi-
tudinal and shear wave mean free paths, respectively. The dif-
fusion mean free path is the average spatial distance between
scattering events in the multiple scattering limit. Thus, Eq.
(14) additionally bounds the ratio of the mean free paths and
places new constraints on the diffusive nature of polycrystals.

IV. CONCLUSION

In this letter, the ratio of low frequency longitudinal and
shear wave attenuation constants was proven to be bounded
from above and below by certain ratios of the corresponding
wave speeds. The lower bound was shown to be equal to the
bound derived for viscoelastic materials." In addition, an
upper bound to the attenuation ratio was discovered. The
upper and lower bounds correspond to the situations when the
second-order anisotropy in the shear and bulk modulus goes
to zero, i.e., the shear/bulk modulus of a single crystallite in
the polycrystal is equal to the shear/bulk modulus of the poly-
crystal. This feature parallels the finding for viscoelastic mate-
rials that the lower bound is met when the absorption of a
wave is only caused by the shear modulus. An analysis of the
attenuation ratio for 2176 materials, generated using Density
Functional Theory, was conducted to test the validity of the
bounds. All data points were observed to fall within the
bounds. This analysis highlighted the relation of the ratio of
attenuations to the Poisson’s ratio. The possible values of the
Poisson’s ratio further bounds the ratio of attenuations from
the left and to the right. Further work will be explored that
will involve experimental confirmation and extensions to
other frequencies and attenuation mechanisms.
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