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Nonlinear scattering of ultrasonic waves by closed cracks subject to contact acoustic non-
linearity (CAN) is determined using a 2D Finite Element (FE) coupled with an analytical
approach. The FE model, which includes unilateral contact with Coulomb friction to ac-
count for contact between crack faces, provides the near-field solution for the interaction
between in-plane elastic waves and a crack of different orientations. The numerical solution
is then analytically extended in the far-field based on a frequency domain near-to-far field
transformation technique, yielding directivity patterns for all linear and nonlinear compo-
nents of the scattered waves. The proposed method is demonstrated by application to two
nonlinear acoustic problems in the case of tone-burst excitations: first, the scattering of
higher harmonics resulting from the interaction with a closed crack of various orientations,
and second, the scattering of the longitudinal wave resulting from the nonlinear interac-
tion between two shear waves and a closed crack. The analysis of the directivity patterns
enables us to identify the characteristics of the nonlinear scattering from a closed crack,
which provides essential understanding in order to optimize and apply nonlinear acoustic
NDT methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The detection of damage at early stage of fracture is of primary importance in many technologies, such as nuclear power
plants or aeronautics. In the case of micro-cracks or closed cracks, the linear ultrasonic methods are less efficient but it has
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been proven in the past decade that nonlinear ultrasonics can bring an answer to this challenge. Many of these methods are
based on the enrichment of the frequency content of the probing waves when interacting with the damage. The nonlinear ef-
fectinvolved in this interaction is related to contact dynamics and is called Contact Acoustic Nonlinearity (CAN) [1]. Sub- and
higher-harmonic generation [ 1], frequency-modulation [2] have been shown to be sensitive to micro-cracks or closed cracks.
For an overview of nonlinear acoustics applications see [3-5].

Numerically, both longitudinal and shear wave propagation through a rough surface were investigated in [6] using an
interface contact model based on Hertz theory, for time harmonic incidence. The partial contact model was subsequently
applied to model scattering from surface breaking cracks [7], and numerical simulations indicated efficient production of
second harmonics. Another approach consists in introducing interface stiffness to account for quantitative transmission
and reflection wave and harmonic generation [6,8,9]. Preisach-Mayergoyz space representation has been used to model
CAN including hysteresis effect [10,11], and has also been implemented in time domain Finite Element (FE) model [12].
CAN has also been modeled by unilateral contact law with Coulomb’s friction in time explicit Boundary Element Method
(BEM)[13-15] or FE model [ 16].In[13], the BEM was used for the study of SH slip motion on an arbitrary interface, which has
later been extended to study of the interaction between a P wave or a SV wave with a pre-open or pre-stressed crack under
normal incidence [14,15]. P waves correspond to longitudinal waves, whereas SH and SV waves correspond respectively to
out-of-plane shear waves and in-plane shear waves. It was shown in [ 14,15] that the amplitudes of the higher harmonics of
the scattered far-fields can be useful in determining both the pre-stress and the frictional coefficient. The same model was
also used to treat the interaction between a crack and a SV wave for a given angle of incidence [15]. In this case, the crack
was initially closed, and free of any pre-stress. The solution for the far field was obtained but the frequency content was not
analyzed. It appears that considerable efforts have been made in previous work in order to model CAN but that the nonlinear
far-field components have been only partially computed and that the nonlinear scattering patterns were not determined.

The purpose of this paper is to propose a generic method to compute the far field solution for the waves scattered by a
closed crack when CAN is activated, including converted modes. In particular, the method is developed to provide a solution
for the new frequency components generated by the contact dynamics triggered at the crack by the incident wave. Actu-
ally, for the development and the application of non-destructive methods based on nonlinear acoustics, it is fundamental to
capture these new frequency components. Thus, the study scattering patterns corresponding to scattered higher harmonics
is a valuable knowledge. Because no analytical solution is available for the contact dynamics problems, the first step of the
method consists in using a 2D FE model to compute the near field solution in the time domain. The crack can be closed by
a pre-stress and is modeled by a unilateral contact law with Coulomb friction. Once the solution for the scattered waves in
the near field is obtained numerically, it is converted to the frequency domain and then extended in the far field domain
using an analytical method. This second step uses Hankel’s functions to compute the far field solution, which allows us to
plot the directivity patterns of the scattered wave for different frequencies. This two step approach is similar to the one used
by Hunt et al. to compute the linear field radiated from elastic structures in a fluid domain [17,18].

The paper is organized as follows. The two step method is described in Section 2, with first a description of the FE model,
and second the analytical model used to propagate the solution in the far field. In Section 3, the method is applied to compute
the directivity patterns for two examples of nonlinear acoustic problems. The first case is the nonlinear scattering of a wave
by a closed crack of different orientations. The directivity patterns of the higher harmonics are obtained. The second case
deals with the scattering of a longitudinal wave resulting from the interaction between two incident shear waves and a
closed crack. This last example corresponds to an application of the non-collinear mixing method [19-22].

2. Computation of the nonlinear far field scattered waves

A two step procedure is proposed for computing the scattered far field resulting from the nonlinear interaction between
one or two waves and a source of nonlinearity such as a closed crack. In this particular case, the contact dynamics generates
the nonlinearity and therefore is the source of the higher harmonics. The proposed methodology allows us to plot the
directivity patterns corresponding to the new generated frequency components. Longitudinal and shear waves can be
scattered by the crack and the two modes are considered here.

The first step consists in using a FE model to treat the nonlinear interaction between an incident acoustic wave and a
closed crack of finite extent, taking into account the contact dynamics. The FE model is solved using the code Plast2 [23].
The size of the FE model being limited in space due to computational cost, the numerical solution regarding scattered waves
is restricted to the near field (a few wavelength away from the crack). To obtain the directivity pattern of the scattered
waves and to gain understanding of the nonlinear scattering, the solution must be computed in the far field. The second step
consists in extending the numerical solution in the far field based on analytical expressions. This is done for both longitudinal
and shear scattered waves.

2.1. Finite element model for the near field solution

2.1.1. Problem statement and generic FE model
This section aims to describe the FE models used to treat the interaction between waves and a closed crack, including
nonlinear effects due to the CAN. The description of the model is generic, giving the modeling principles, with some specific
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Fig. 1. Modeling of a wave interacting with a crack orientated by the angle «. The length of the crack is d = 10 mm. The crack is represented by the thick
dashed line and a pre-stress oy is applied on the interface. The numerical output is defined on a circle of radius R = 25 mm.

information such as geometrical dimensions or mesh size omitted here. These information will be given case by case in
Section 3 where different examples are considered.

Anisotropic and homogeneous solid is considered, its mechanical properties are those of aluminum. The Young’s modulus
is E = 69 GPa, the Poisson’s coefficient is v = 0.33 and the density is p = 2700 kg m~>. This solid contains a crack that may
be tilted by an angle «, and whose center defines the origin of the coordinate systems. The corresponding configuration is
shown in Fig. 1 for a generic case. An acoustical wave is generated in the solid by imposing displacement on the top face.
This wave is a sinusoidal tone burst windowed by a Hanning window. The wave propagates and interacts with the crack.
The displacements are recorded at each node on a circle of radius R, as shown in Fig. 1. The contact dynamics triggered at
the crack during the wave propagation is modeled by contact laws. They are described in the next section.

Spatial discretization is essential in the FE method. In order to have an accurate solution for the new higher frequency
components generated by the CAN, the corresponding wavelengths have to be sufficiently discretized. If i is the number of the
highest harmonic considered, then the corresponding wavelength A; has to be divided by at least 10 elements: A;/admax > 10
where ap,,x is the maximal element dimension. That means that the FE mesh has to be defined depending on the highest
frequency of interest. Convergence studies have been carried out in time and space to ensure that convergence was achieved.
For all the considered models, the mesh is refined at the vicinity of the crack tips because of stress singularities (o ~ 1//T
where r is the radial distance from the crack tip). Again, the mesh refinement ensures the convergence as regards the wave
propagation. Having an accurate estimation of the stress concentration at the crack tip is essential in fracture mechanics but
out of the scope of this study. The mesh is made only of fully integrated quadrangle elements of type Q; [24]. The software
Plast2 uses a time explicit integration scheme and therefore the time step is subject to the Courant-Friedrichs-Lewy stability
condition At < amin+/p/E, where ap,;, corresponds to the smallest element dimension.

Finally, the scattered field is defined as the difference between the total field and the incident field (obtained without
the crack). Therefore, two simulations have to be run to compute the scattered wave: with and without the crack. The
displacements recorded at the selected output nodes for each simulation are subtracted to obtain the near field scattered
waves in the time domain:

uR,0,t) =ur(R,0,t) —u(R,0,¢t), (1)

where ur (R, 9, t) is the total field and u; (R, 6, t) is the incident field. At this stage, the scattered displacement field contains
information of both the scattered longitudinal and shear waves. The next section describes the contact laws used to model
the contact dynamics on the crack.

2.1.2. CAN and contact laws

The contact dynamics generated along the crack is modeled by an interface of unilateral contact with Coulomb friction,
which gives the relations between contact stresses and displacements at the interface. Three states can be observed
simultaneously at different nodes of the interface: separation, slipping contact and sticking contact. The dynamic switching
between the different contact states introduce the nonlinearity in the model. These boundary conditions can be referred as
the non-smooth contact dynamics [25]. The crack can be either closed by the weight of the structure or an external load or
aresidual stress due to plasticity. Therefore, it is assumed that a static normal stress oy < 0 closes the crack. This pre-stress
0y is directly considered in the contact laws, as introduced in [ 16], and reviewed here briefly.
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The two faces of the crack are denoted by i = 1, 2 respectively for the top and bottom face. Let be u' the displacement
and n' the outward normal vector of the face i of the crack, the normal jump of displacements is defined by:
l=u'-n'"+v? =@ —uv?) -n'. (2)
The incident wave creates stresses represented by the Cauchy stress tensor o (u'). Denoting o, (u') its normal component
and 7 (u') its tangential component, the unilateral contact law taking into account oy is given by the following equation:

O'n(ui) +0p <0
[un] <0 3)
(oa(u') + 00) - [up] = 0.

The first equation states that only a compression can be transmitted through the interface. The normal stress o, is allowed
to be positive although the crack is closed as long as o, <| gy |. When 0, = —oy the interface opens. The second line
corresponds to the non-penetration condition. Finally, the third line, or complementary equation, indicates that the contact
interface is either open or closed.

Denoting u the friction coefficient and [u, ] the tangential jump of displacements, Coulomb’s law is used for the tangential
behavior. The pre-stress oy is also introduced in the classical law:

| T@) |< | o) + 00 |

If | t() |< p| o) +09| = sticking: [u] =0 @

sliding: 3o > 0; [u;] = —at(u')

If |7 |=plon@) +oo| = {r(u") = £ | on() + o0 | .

The shear stress T has to be equal to it | 0,, + 0 | to generate sliding. When sliding occurs, the value of the shear stress now
depends on the global normal stress o, + 0.

In Plast2, the contact algorithms are based on the forward Lagrange multipliers method [26] which enables the use of
Lagrange multipliers in a time explicit integration. More precisely, the contact equations are respectively satisfied at time ¢
and t + At. To make this possible, the contact equations are solved using a Gauss-Seidel iterative solver. The global method
is thus semi-implicit. This method has been demonstrated to be robust [27]. The advantage of using Lagrange multipliers is
that the above contact laws are strictly verified at each time step, which is essential for the modeling of the contact dynamics
generated by the incident wave propagation.

2.2. Analytical solution for the radiated far field

The second step in computing the scattered far field resulting from the interaction between the incident wave and the
crack consists of extending the numerical solution for the scattered waves in the outer domain using an analytical approach.
Longitudinal and shear waves can be simultaneously scattered by the crack by virtue of mode conversion; the two modes
have to be clearly distinguished. They propagate at different velocities and along different directions, as demonstrated later
in Section 3. Therefore it is possible to select either one of the scattered wave modes by applying a time window based on
the time of flight between the crack and the output nodes. A Hanning window spanning over N cycles is used for the pulse
selection, where N = 5 is the number of cycles of the incident wave if not stated otherwise. After time gating, the scattered
displacement field is denoted u?, with 8 = L, S standing respectively for the longitudinal and the shear wave. Once the
scattered mode is selected, radial and tangential displacements ur’g and ug are computed using projection of displacements

uf and uf . The mode separation will be demonstrated in Section 3.1.1.

The knowledge of the scattered field on the circle of radius R = 25 mm is used to obtain the solution in the far field,
assuming that the material has a linear behavior. The crack is considered like a secondary source located at the origin of the
coordinate system. The considered scattered field u? (R, 0, t) obtained numerically in the time domain is converted into the
frequency domain using the Fourier transform. Then, it is possible to derive the radiated field solution for r > R from an
integral equation at r = R. This kind of approach has already been used in fluid mechanics [17,18].

The solution is assumed to be time harmonic, with the time convention e, In the frequency domain, the displacements
are written as follows in polar coordinates:

i’ (r.0,0) =ile, + e, =V +VAye, r=R 5)

where ¢ and y are the velocity potentials respectively for the longitudinal wave and the shear wave. In the following, the
mode identification 8 and the frequency dependence w are omitted to lighten the notations. Then,

ﬁ(r,@):(ad)—l—:w)erﬁ-(lw—w)ee- (6)



136 P. Blanloeuil et al. | Wave Motion 66 (2016) 132-146

The velocity potentials have to satisfy the Helmholtz equation. Since we consider the waves scattered by a source located
at the origin of the coordinate system, the potentials can be expressed as sum of Hankel’s functions:

A o, G ‘
p= o H Gar)e™ + -ZH (e
KL L

B o D . (7)
w — Z F:H£1)(kTr)ezn9 + ki:HzSZ)(kTr)eme
n

where the notation Zn = Z:ﬁiw is used. The terms k; = w/c; and kr = w/cr are respectively the wave numbers for
the longitudinal wave and the shear wave. The scattered waves have to satisfy the Sommerfeld condition, which states that
the radiated energy should be outgoing at infinity. With the time dependence e~*! and for a two dimensional space, this
condition is given by:

lim /1 (aar — ik) i(r,0) =0. (8)

The Sommerfeld condition is obtained when C, = 0, D,, = 0, Vn. Replacing the potential expressions in Eq. (6), the radial
and the tangential displacements are given by:

N ’ ; 1 in :
e (r.0) = > AH" (ker)e™ + - > FBnH,?)(kTr)e’”‘)
n n T
. (9)
n 1 in . , )
fip(r,0) = - Z k—AnH,(I”(kLr)e'”" — ZBnHél) (krr)e™.
n L n

The coefficients A, and B, have now to be computed from an integral at r = R where the displacements are known. To
do that, each term of Eq. (9) is multiplied by e=™ and integrated over the circular domain. Using the orthogonality of the

functions e™ for the scalar product {f, g) = 02” f(0)g(0)do, we obtain:

2 : ’ im
/ (R, 0)e”™do = 27 (Amen” (kR) + ,RBer(,})(kTR)>
0 K¢

) . , VYm. (10)
T ; im ,
f (R, 0)e ™ do = 27 [ —ARHY (kR) — BH (krR)
0 kLR
Defining the matrix
a in_
H,"” (kyr) k—Hn (krr)
r
M, (r) = ! . (11)

in /
—H (kgr)  —H (krr)
kir

the coefficients A, and B, are the solution of a linear system, and are given by:

1 2 R )
— / i, (R, 0)e~™ do
An -1 2 0
B )= M; (R | g ' (12)
— / flo (R, 0)e~ M do
2w 0
Finally, the displacement field is obtained for any point of the outside domain from Egs. (9) and (12):
oind  p2m .
i, 0) = ZMn(r)Mgl(R)—/ iR, 0)e M dy’, 1 >R,V6. (13)
m 2 0

This solution is valid for a given frequency, which can be chosen as the fundamental frequency or one of the higher
harmonics. Moreover, this solution corresponds either to the longitudinal or the shear wave depending on which mode has
been selected initially from the numerical scattered field. The directivity patterns are obtained by plotting the amplitude
of the displacements over 6 € [0; 2xr] for any radial distance r > R. In the following, r denotes the distance used for the
analytical computation whereas R is the radial distance where numerical output has been recorded.
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Fig. 2. Modeling of a wave interacting with a horizontal crack. The length of the crack is d = 10 mm. The numerical output is defined on two circles of
radius R = 15 mm and R = 25 mm.

3. Directivity patterns for nonlinear scattering

3.1. Nonlinear scattering by a closed crack of various orientations

In this section, the interaction between a plane wave and a closed crack of different orientations is considered. The higher
harmonics generated in the nonlinear scattering can be used for detection purposes. Directivity patterns corresponding to
the higher harmonic components of the scattered waves are computed to provide some insight regarding their generation
in the solid.

The modeling principles introduced in Section 2 are used here. The particular configuration of this example is shown in
Fig. 2. The square aluminum solid contains a crack of 10 mm length tilted by an angle «. A Perfectly Matched Layer (PML)
of 10 mm thickness is set around the solid to model an infinite medium. A 5-cycle tone burst plane wave windowed by a
Hanning window is generated on the top face of the solid with an amplitude of 10 nm. The central frequency of this pulse
is either 0.5 MHz or 1 MHz respectively for the generation of a shear wave or a longitudinal wave. The wavelength of the
incident waves is thus A ~ 6 mm.

The maximal size of the elements is a;,.,x = 0.2 mm which means that the wavelength of the third harmonic is divided
into ten elements (A3/amax =~ 10). The minimal size of the elements at the vicinity of the crack tips is anj, = 0.07 mm.
The time step is At = 3 ns, which satisfies the stability condition. Convergence in both time and space has been confirmed
numerically. Finally, the numerical output is recorded on two circles of radius R = 15 mm and R = 25 mm, two circles
being used for validation purposes.

3.1.1. Separation of the scattered modes

As mentioned in Section 2.2, the scattered field contains potentially both longitudinal and shear waves. The analytical
method enables separate propagation of the scattered mode in the outer domain, based on the knowledge of the near field
displacements expressed in polar coordinates. As explained before, it supposes that the longitudinal and the shear scattered
waves can be separated in the time domain. This assumption is demonstrated here.

Fig. 3(a) shows a snapshot of the total displacement field after the interaction of an incident longitudinal wave with a
crack tilted by o = 25°. Although the baseline field has not been removed, one can clearly notice the reflected longitudinal
wave followed by the mode converted shear wave. The two scattered pulses propagate with different velocities and along
different directions. The output nodes are marked by the dotted circle, and the output node marked by the thick red disk is
selected to plot time history displacements. As shown in Fig. 3(a), this node undergoes displacements from the two scattered
modes. The corresponding displacements are plotted in Fig. 3(b). More precisely, the Cartesian displacement components i,
and uy, as well as the corresponding polar displacement components u, and uy are shown for this output node. As expected,
the two waves generate both u, and u, displacements. However, it can be seen that the two pulses are clearly separated. By
contrast, the radial component corresponds only to the longitudinal wave whereas the tangential component corresponds
mainly to the shear wave. The tangential displacement associated with longitudinal wave is negligible, and is due to
miss-matching of the longitudinal wave front with the curvature of the sensor array and potential Poisson’s effect for a
non-purely cylindrical bulk wave. These results demonstrate that it is possible to separate the scattered modes in our case,
and that the radial component provides a good representation of the longitudinal wave whereas the tangential component
corresponds mainly to the shear wave.
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Fig. 3. (a) Total displacement field after interaction of the longitudinal wave with the crack, tilted by « = 25° at t = 13.6 ws. The contact parameters

are op = —0.15 MPa and p = 0.8. (b) Time history signals extracted from the red node shown in (a). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 4. (a) Total displacement field after interaction of the shear wave with the crack, tilted by « = 25° att = 21.6 ps. The contact parameters are
o9 = —0.25 MPa and ¢ = 0.3.(b) Time history signals extracted from the red node shown in (a). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

The same effects can be seen in the case of an incident shear wave. Again, the separation of the scattered modes can be
achieved for the same reasons, with waves propagating along different directions and at different velocities. The displace-
ment field is shown in Fig. 4(a) straight after the interaction with crack. The reflected shear wave is clearly identified and the
converted longitudinal wave is negligible with the contact parameters considered here. Thus, the mode separation is not a
concern for this configuration. The same output node is selected to plot the time history signals in Fig. 4(b). The scattered
shear wave is mainly described by the tangential component.

This validates the assumption of the mode separation. Thus, the analytical method can be applied to propagate either
one of scattered mode after proper time selection. In the next section, the analytical propagation is validated.

3.1.2. Validation of the analytical propagation

The analytical propagation is validated by comparison with the FE solution at a same given distance of propagation. The
numerical solution is extracted at nodes belonging to circles of radius R = 15 mm and R = 25 mm. The solution obtained at
R = 15 mm is propagated analytically to a distance r = 25 mm which is then compared to the numerical solution obtained
at the same distance. The case of a horizontal crack is considered here.

Fig. 5 shows the directivity patterns of the radial displacement uﬁ of the scattered longitudinal wave, in the case of an
incident longitudinal wave. The directivity patterns are plotted for the fundamental, second and third harmonics, directly
from numerical output at R = 15 mm and R = 25 mm as well as the one obtained after analytical propagation at a distance
of 25 mm. All directivity patterns are normalized by their respective maximal amplitude for the sake of clarity. The incident
wave propagates along —y which corresponds to the direction 270° and the contact parameters are og = —0.15 MPa and
n =0.8.

The scattered field computed analytically at r = 25 mm from the numerical output obtained at R = 15 mm matches the
numerical result extracted at R = 25 mm, which confirms the proposed method. Also, by comparing the data obtained for
two propagation distances, it can be seen that the amplitude of the scattered wave decreases with the propagation distance
as expected.



P. Blanloeuil et al. | Wave Motion 66 (2016) 132-146 139

f2 =2 MHz

Uy

“Incident. wave

— — — — Numerical, R = 15 mm ——— Analytical, » = 25 mm 0 0 Numerical, R = 25 mm

Fig. 5. Directivity patterns of the longitudinal wave scattered by a horizontal crack for the first three harmonics, obtained numerically at R = 15 mm and
R = 25 mm as well as the one obtained analytically at r = 25 mm from numerical data at R = 15 mm. op = —0.15 MPa and x = 0.8.
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Fig. 6. Directivity patterns of the shear waves scattered by a horizontal crack for the first and the third harmonic, obtained numerically at R = 15 mm and
R = 25 mm as well as the one obtained analytically at r = 25 mm from numerical data at R = 15 mm. op = —0.25 MPa and = 0.3.

An incident shear wave is now considered, still with a horizontal crack, and with a pre-stress o = —0.25 MPa and a
coefficient of friction u = 0.3. Fig. 6 shows the directivity patterns of the tangential displacement ug of the scattered shear
wave, for the fundamental and the third harmonic only. The directivity pattern of the second harmonic is not relevant since
the generation of second harmonic is negligible in the case of a shear wave interacting with a contact interface under normal
incidence, as demonstrated in [28,29] and later on in Fig. 8(e). All directivity patterns are normalized by their respective
maximal amplitude.

The analytically propagated solution matches the numerical results, for the first and the third harmonic. This validates
the method for the analytical propagation of shear waves.
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3.1.3. Various crack orientations and in-plane longitudinal wave

When the crack is not horizontal, it is expected that the interaction with the incident wave leads to mode conversions.
The directivity patterns are used to identify the directions of propagation of those converted modes. In the following, only
the main displacement component generated by each of these modes is considered: u* and uf,. They correspond respectively
to radial displacements created by the longitudinal scattered wave and tangential displacements created by the scattered
shear waves. The directivity patterns are normalized by the maximal displacement measured at r = R in the case of a linear
simulation, i.e. with free boundary conditions applied to the crack faces. The numerical data obtained at R = 25 mm is used
for the analytical propagation at a distance of r = 100 mm.

Fig. 7 shows the directivity patterns plotted in the far field for the fundamental frequency and the two first higher
harmonics, for three orientations of the crack: « = 0°, 25°, 45°. The contact parameters are oo = —0.15 MPa and
u = 0.8. The directions of propagation predicted by the classical Snell’s law (reflection and transmission at a perfect
infinite interface) are marked by the arrows. Mode conversion to shear wave occurs only for oblique incidence, since no
tangential displacement is created at the contact interface for a normal incidence. Considering the fundamental frequency,
the scattered waves propagate closely to directions given by the transmission-reflection laws, with deviation of a few
degrees for the longitudinal component. The second and the third harmonics are generated by the CAN occurring at the
crack interface. These harmonics propagate exactly along directions predicted by the transmission-reflection laws and no
deviation is observed. The directivity is enhanced in the case of higher harmonics because of the shorter wavelength. If one
wants to move on experimental application, it means that the placement of the transducers for nonlinear experiment should
be checked precisely, as demonstrated in [30]. The amplitude of the harmonics contained in the shear waves increases with
the angle of incidence whereas it decreases for the reflected longitudinal waves. The mode conversion is stronger for high
angle of incidence and this is observed for the fundamental and the higher harmonics.

The differences in the agreement of the directions of propagation with those obtained by considering Snell’s law are
related to the product between the wavenumber k and the crack length d. It has been shown in [31] that the directions of
propagation of the reflected and transmitted waves increasingly deviate from the Snell’s law predictions as the value of kd
decreases, with good agreement above kd =~ 20 for incident longitudinal waves and kd =~ 40 for incident shear waves.
Considering the current parameters, the product kd is above 20 for the higher harmonics as well as for the shear wave at
the fundamental frequency, whereas the value is around 10 for the longitudinal component at the fundamental harmonic.
Thus, directions of propagation slightly deviate from the reflection-transmission law for the longitudinal scattered wave at
the fundamental frequency.

3.1.4. Various crack orientations and incident in-plane shear wave

An incident shear wave is now considered. The directivity patterns computed analytically in the far field at r = 100 mm
from data recorded at R = 25 mm are plotted in Fig. 8 for three crack orientations: « = 0°, 25°, 45°. The directivity
patterns are normalized by the maximal displacement measured at r = R in the case of a linear simulation, i.e. with free
boundary conditions applied to the crack faces. The contact parameters are 0y = —0.25 MPa and i = 0.3. In this case,
the incident normal stress is too low to activate the clapping and only sliding is activated at the interface whatever the
angle of incidence [ 16]. The directions of propagation corresponding to the transmission through a perfect interface and the
reflection at a free surface are marked by the arrows.

Similarly to the longitudinal wave, there is no mode conversion under normal incidence. For an oblique incidence
(o« = 25°) the mode conversion occurs but the amplitude of the longitudinal waves is weak compared to those of the shear
waves. This result holds for the current contact parameters and a different pre-stress may change the amplitude of the
converted mode. For the fundamental frequency, a deviation from the direction obtained with the transmission-reflection
laws is again observed with a maximal difference of 10° for the forward scattered shear wave. As explained before, this is
accounted for by relatively large wavelength compared with the crack length, where the value of kd is around 10 for this
incident shear wave of 0.5 MHz. Those deviations die out as the frequency increases and the higher harmonics, when they
are generated, follow the directions of propagation given by the Snell’s law.

One can see that under normal incidence, the third harmonic is preferentially generated for the tangential displacements
as already demonstrated in [28,29]. For « = 25°, mode conversions occur and the second harmonic amplitude is now at
the same order as the third harmonic. For « = 45° the values of all harmonics are negligible because there are actually
no scattered waves. The reason can be understood under the consideration of contact stresses. The in-plane shear wave
generates a shear stress oy, (t) in the solid whose maximal amplitude is 0.23 MPa for the considered incident shear wave.
The normal and tangential stress generated by the incident wave at the interface are given by:

ol (t) = (a(t).n).n = —0y(t) sin 2a

! (14)
T(t) = (a(t).n) .t = oy (t) cos2a

where ¢ is the stress tensor and n and t are respectively the normal and tangent vector at the interface. For « = 45°, the
shear stress 7" (t) becomes zero and consequently it cannot trigger sliding at the interface. The normal stress being too
small to open the crack where a static compression of 0y = —0.25 MPa is considered, there is no nonlinear effect and the
wave propagation is not affected by the crack.
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Fig. 7. Directivity patterns of the scattered longitudinal and shear waves for an incident longitudinal wave, for « = 0°, 25°, 45°. (a), (b) and (c) give
the radial displacements uﬁ for the fundamental and the two first higher harmonics. (d), (e) and (f) give the tangential displacements uf, for the same
frequencies. oy = —0.15 MPa and u = 0.8.

This example shows how the proposed method enables the study of the higher harmonics generated by the CAN for a
crack of arbitrary orientation. The new nonlinear frequency components of the scattered waves provide information that
can be useful for closed crack detection purposes.

3.2. Nonlinear interaction of two shear waves under oblique incidence

In this section the interaction between two incident shear waves and a closed crack is investigated. Because of nonlin-
earity, the principle of superposition is no longer satisfied and acoustic waves can interact with each other [32]. If some
conditions regarding the ratio of input frequencies, the angles of incidence and the wave polarization are found in combi-
nation, this interaction can lead to the generation of a third wave. This wave has a frequency and a wave-vector equal to the
sum of the incident frequencies and wave-vectors respectively [32]. Also, the polarization of the generated wave is different
from those of the incident waves. This arrangement is referred to as the non-collinear mixing technique.

The method offers some advantages over the more conventional nonlinear harmonic generation technique or nonlinear
wave modulation techniques. It provides modal selectivity (the wave resulting of the nonlinear mixing is a different
mode to the incident waves), frequency selectivity (the frequency of the scattered wave is equal to the sum of the input
frequencies) and directional selectivity (the scattered signal propagates in a different direction from the incident waves).
The phenomenon was first demonstrated experimentally by Rollins [33]. More recently, the scattered wave has been used
to evaluate plastic deformation in an aluminum solid [ 19]. The method has also been successfully applied to the evaluation
of physical aging of PVC [20], the evaluation of a diffusion welding interface in titanium [21], and more recently to imperfect
interfaces [34] and closed cracks [22].
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Fig. 8. Directivity patterns of the scattered longitudinal and shear waves for an incident shear wave, for @ = 0°, 25°, 45°. (a), (b) and (c) give the radial
displacements uﬁ for the fundamental and the two first higher harmonics. (d), (e) and (f) give the tangential displacements ug for the same frequencies.
o9 = —0.25MPaand u = 0.3.

The method described in Section 2 is used to predict the direction of propagation of the longitudinal scattered wave
generated by the interaction of two incident shear waves with a closed crack. The configuration of the system is shown in
Fig. 9. The crack is 20 mm long and is located at the center of the solid and two in-plane shear waves (A and B) are excited
at the top face with an angle of incidence 6; with respect to the y axis. Different time delays are applied to the top nodes to
generate the incident waves with the chosen angle of incidence. The distance between the source and the angle of incidence
is chosen so that the waves intersect at the crack. The distance between the source is set to 120 mm which gives an angle
of incidence 6; = 55°.

The incident shear waves are pulses of 5 cycles with a frequency of 1 MHz and amplitude of 10 nm. Note that the same
input frequencies are chosen for the sake of simplicity regarding the following analysis, whereas in practical application
the frequency selectivity would be enhanced by choosing different input frequencies. A pre-stress o = —0.1 MPa and
friction coefficient &+ = 0.5 are considered at the crack interface. It is expected that this combination of waves leads to the
generation of a longitudinal wave with the frequency of 2 MHz when clapping is activated [22]. To model accurately the
wave propagation, the maximal element size of the FE model is set to 0.15 mm thus ensuring that the minimal wavelength
considered in this study is discretized by at least 10 elements. Displacements recorded on the circle of radius R = 25 mm are
used to compute the directivity patterns of the scattered waves in the far field at r = 100 mm, using the method presented
previously. As previously done in Section 3.1.1, the separation of the scattered longitudinal and shear waves in the time
domain has been verified to ensure the applicability of the method.

The directivity patterns for two incident shear waves and three crack orientations « = 0° 10° and 20° are plotted
respectively in Figs. 10-12. Radial displacements u£ of the longitudinal scattered waves and tangential displacements ug
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Fig. 9. Modeling of two shear waves interacting with a closed crack orientated by the angle «. The length of the crack is d = 20 mm. The two shear waves
are generated from the top face with an oblique incidence 6; = 55° such that they intersect at the crack.
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Fig. 10. Directivity patterns for two incident shear waves for « = 0°. Radial displacements u! and tangential displacements u;, are plotted for the
fundamental frequency and twice the fundamental. Directions of propagation of the reflected (k/;’ef and kf”/ ) and transmitted (k?rr and kf" ) shear waves

. o . S . A B
predicted by Snell’s law are represented by arrows (c). Longitudinal waves are scattered for 2f; in two directions collinear to kT""f + kT”’/ and k;‘" + kf”

(b). The orientation of the crack is represented by the dashed line.

of the scattered shear waves are normalized by the maximal displacement obtained for the linear simulation, i.e. with free
boundary conditions applied to the crack faces and for a crack orientation of « = 0°. The main directions of propagation
are marked by arrows. The directivity patterns are plotted for the fundamental frequency (f; = 1 MHz) and the double
frequency (2f; = 2 MHz).

The directivity patterns obtained for @ = 0° are shown in Fig. 10. At the fundamental frequency f;, there is no longitudinal

waves (Fig. 10(a)) and only reflected and transmitted shear waves are propagating (Fig. 10(c)). Directions of propagation of

Ar By, . . .
the reflected shear waves (k; 4 and k; 9 and transmitted shear waves (k;“r and kf” ) conform with the reflection from a free

surface and a transmission through a perfect interface. This agrees with the previous observation regarding the value of the
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Fig. 11. Directivity patterns for two incident shear waves for « = 10°. Radial displacements ut and tangential displacements u; are plotted for the

fundamental frequency and twice the fundamental. Directions of propagation of the reflected (k?"f and kf”f ) and transmitted (k?" and k?” ) shear waves

. - . L . A
predicted by Snell’s law are represented by arrows (c). Longitudinal waves are scattered for 2f; in two directions collinear to kT“’f + kﬁ’ef and k;‘" + k?”

(b). Orientation of the crack is represented by the dashed line.

kd value, with kd >~ 40. There is no converted longitudinal wave at the fundamental frequency because the angle of incidence
is greater than the critical angle. Due to the CAN at the crack, the second harmonic (2f;) is generated in both reflected and
transmitted shear waves as shown in Fig. 10(d). Finally, at the double frequency 2f;, two longitudinal waves propagate
respectively along directions 90° and 270°. These waves result from the nonlinear interaction between the incident shear
waves and are the ones targeted in the non-collinear mixing method.

Because the crack partially opens during the acoustic excitation, the incident waves are partially reflected as shown
in Fig. 10. Locally, the shear waves constructively interact at the contact interface when the clapping is activated, which

generates two longitudinal waves. The first one propagates along a direction collinear with k?" + kf”. The second one

propagates in a direction collinear with the sum of the reflected wave vectors k/;ref + kf”f .

The directivity patterns obtained in the case of a crack tilted by an angle « = 10° are given in Fig. 11. Because of the
crack orientation, the angles of incidence with respect to the normal direction to the contact interface are different for the
two incident waves. For the fundamental frequency, the transmitted shear waves have the same directions of propagation
as the incident waves, as obtained previously for « = 0°. The reflected waves still propagate along directions predicted
by Snell’s laws (Fig. 11(c)). There is still no longitudinal wave at this frequency (Fig. 11(a)). For the double frequency, two

longitudinal waves are again generated (Fig. 11(b)) and propagate along directions given by the sum of the transmitted wave

Are Bre H H M M
vectors k" + k" and reflected wave vectors k;' 4k, which is no longer collinear with the normal vector to the contact

interface.

Fig. 12 shows the directivity patterns for the case of a crack tilted by an angle « = 20°. For the fundamental frequency,
a longitudinal wave is observed along 20° direction due to conversion of shear wave A (Fig. 12(a)). Snell’s law indicates a
critical incident angle of 30° (incident shear wave A has an incident angle of 35°, thus conversion is possible due to finite
aperture of the incident wave beam). Shear waves A and B are reflected and transmitted with direction predicted by the
reflection-transmission laws. However, because of the high angle of incidence, the directions of transmission and reflection
of the incident shear wave B are close and not easily distinguished for the fundamental harmonic. This leads to a single lobe
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Fig. 12. Directivity patterns for two incident shear waves for « = 20°. Radial displacements u£ and tangential displacements uf, are plotted for the
. S . A B . )
fundamental frequency and twice the fundamental. Directions of propagation of the reflected (kT”’f and kT”f ) and transmitted (k?" and k';“ ) shear waves

predicted by Snell’s law are represented by arrows (c). Longitudinal waves are scattered for 2f; in two directions collinear to k;'ef + k?”f and k’;" + kf"
(b). Orientation of the crack is represented by the dashed line.

in the directivity pattern at an intermediate angle around 205°. By contrast, the two directions are clearly separated for the
second harmonic, as shown in Fig. 12(d). For the double frequency, two longitudinal waves are again generated (Fig. 12(b))

and propagate along directions given by the sum of the transmitted wave vectors k?” + k?” and reflected wave vectors

k?ref + kfref. In Fig. 12(d), it can be seen that two additional shear waves are propagating along 120° and 280° directions
although their amplitude is relatively small. These shear waves correspond of the mode conversion from the longitudinal
waves nonlinearly generated at the crack interface. The magnitude of these last shear waves also depends on the value of
the pre-stress oy at the interface.

These examples demonstrate that the use of the FE method coupled to analytical propagation provides understanding
of the wave scattering for complex wave propagation problems involving CAN and multiple wave interactions. It very
effectively shows the directions of propagation of scattered waves in the case of the non-collinear mixing method. The
CAN is a non-classical nonlinearity and involves specific scattering of longitudinal and shear waves, especially in the case of
tilted cracks. This method can be used with may help to define and optimize the non-collinear mixing method in the case
of different input frequencies.

4. Conclusion

In this paper a method is proposed to derive the directivity patterns for waves scattered after nonlinear interaction with
a closed crack, thus giving information about the expected wave fields both in the near and far-field of cracks with contact
nonlinearity. The method includes two steps to compute the far field solution. Since the CAN generated from the interaction
between the incident wave and the defect cannot be described analytically, the first step of the method consists in computing
the near field solution with a FE model. The CAN is modeled using unilateral contact law with Coulomb friction. In the second
step, the numerical solution for the scattered waves is propagated analytically in order to obtain the far field solution. This is
achieved using a Green’s function formalism in the frequency domain, thus giving the solution for any considered frequency
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of interest. This makes the method particularly interesting for the study of nonlinear problems involving a closed crack
where new frequency components are generated.

In the second part of this paper, the method was first applied to the nonlinear scattering of a plane wave by a closed
crack of different orientations. The propagation direction of the higher harmonics has been obtained for the incident mode
as well as the converted mode, both for an incident longitudinal and an incident shear wave. Then, the method was applied
to predict the direction of propagation of the longitudinal wave scattered by the interaction of two incident shear waves,
such as proposed for the non-collinear mixing method. The method can be used to determine when the longitudinal wave
is generated in case of CAN, as well as its directions of propagation for complex configuration where the crack is tilted.

The application of the method can be extended to other problems. Knowledge of the scattering by a closed crack in
case nonlinearity can be used to derive an imaging algorithm based on the higher harmonics. For the non-collinear mixing,
the method enables one to predict the solution in the case of different incident waves (frequency and angle of incidence).
The method could also be used to work with the side-band frequency components generated during the nonlinear wave
modulation between a high frequency probing wave and a low frequency pumping wave. Finally, other types of nonlinearity
may be considered in the FE model, thus extending the possible applications of the method.

References

[1] LY. Solodov, N. Krohn, G. Busse, CAN: an example of nonclassical acoustic nonlinearity in solids, Ultrasonics 40 (2002) 621-625.

[2] K. Van Den Abeele, P.A. Johnson, A. Sutin, Nonlinear Elastic Wave Spectroscopy (NEWS) techniques to Discern Material Damage, Part I: Nonlinear
Wave Modulation Spectroscopy (NWMS), J. Nondestruct. Eval. 12 (2000) 17-30.

[3] D. Donskoy, A. Sutin, A. Ekimov, Nonlinear acoustic interaction on contact surfaces and its use for nondestructive testing, NDT & E Int. 34 (2001)
231-238.

[4] Y. Zheng, R.G. Maev, LY. Solodov, Nonlinear acoustic applications for material characterization: a review, Can. J. Phys. 77 (1999) 927-967.

[5] K.-Y.]Jhang, Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review, Int. J. Precis. Eng. Manuf. 10 (1)
(2009) 123-135.

[6] C. Pecorari, Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact, J. Acoust. Soc. Am. 113 (6) (2003)
3065-3072.

[7] C.Pecorari, M. Poznic, Nonlinear acoustic scattering by a partially closed surface-breaking crack, J. Acoust. Soc. Am. 117 (2) (2005) 592-600.

[8] S.Biwa, S. Hiraiwa, E. Matsumoto, Pressure-dependent stiffnesses and nonlinear ultrasonic response of contacting surfaces, J. Solid Mech. Mater. Eng.
3(1)(2009) 10-21.

[9] J.-Y. Kim, A. Baltazar, ].W. Hu, S.I. Rokhlin, Hysteretic linear and nonlinear acoustic responses from pressed interfaces, Int. J. Solids Struct. 43 (2006)

6436-6452.

[10] R.A. Guyer, K.R. McCall, G.N. Boitnott, Hysteresis, discrete memory, and nonlinear wave propagation in rock: A new paradigm, Phys. Rev. Lett. 74
(1995) 3491-3494.

[11] M. Scalerandi, V. Agostini, P.P. Delsanto, K.E.-A. Van Den Abeele, P.A. Johnson, Local interaction simulation approach to modeling nonclassical,
nonlinear behavoir in solids, J. Acoust. Soc. Am. 113 (2003).

[12] F. Ciampa, E. Barbieri, M. Meo, Modelling of multiscale nonlinear interaction of elastic waves with three-dimensional cracks, J. Acoust. Soc. Am. 135
(6) (2014) 3209-3220. http://www.ncbi.nlm.nih.gov/pubmed/24907786.

[13] D.A. Mendelsohn, J.M. Doong, Transient dynamic elastic frictional contact: a general 2D boundary element formulation with examples of SH motion,
Wave Motion 11 (1989) 1-21.

[14] S.Hirose, ].D. Achenbach, Higher harmonics in the far field due to dynamic crack-face contacting, J. Acoust. Soc. Am. 93 (1) (1993) 142-147.

[15] S.Hirose, 2-D scattering by a crack with contact-boundary conditions, Wave Motion 19 (1993) 37-49.

[16] P. Blanloeuil, A. Meziane, C. Bacon, Numerical study of nonlinear interaction between a crack and elastic waves under an oblique incidence, Wave
Motion 51 (3) (2014) 425-437.

[17] J.T. Hunt, M.R. Knittel, D. Barach, Finite element approach to acoustic radiation from elastic structures, J. Acoust. Soc. Am. 55 (2) (1974) 269-280.

[18] ]J.T. Hunt, M.R. Knittel, C.S. Nichols, D. Barach, Finite-element approach to acoustic scattering from elastic structures, J. Acoust. Soc. Am. 57 (2) (1975)

287-299.

[19] AJ. Croxford, P.D. Wilcox, B.W. Drinkwater, P.B. Nagy, The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue,
J. Acoust. Soc. Am. 126 (5) (2009) 117-122.

[20] A.Demcenko, R. Akkerman, P.B. Nagy, R. Loendersloot, Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC, NDT
& E Int. 49 (0) (2012) 34-39.

[21] E.Escobar-Ruiz, A. Ruiz, W. Hassan, D.C. Wright, 1.]. Collison, P. Cawley, P.B. Nagy, Non-linear ultrasonic NDE of titanium diffusion bonds, J. Nondestruct.
Eval. (2013) 1-9.

[22] P.Blanloeuil, A. Meziane, C. Bacon, 2D finite element modeling of the non-collinear mixing method for detection and characterization of closed cracks,
NDT & E Int. 76 (2015) 43-51. http://www.sciencedirect.com/science/article/pii/S0963869515000833, http://linkinghub.elsevier.com/retrieve/pii/
S0963869515000833.

[23] L. Baillet, T. Sassi, Mixed finite element methods for the Signorini problem with friction, Numer. Methods Partial Differential Equations 22 (6) (2006)
1489-1508.

[24] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Elsevier, 1978.

[25] M. Jean, The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Engrg. 177 (3-4) (1999) 235-257.

[26] NJ. Carpenter, R.L. Taylor, M.G. Katona, Lagrange constraints for transient finite element surface contact, Internat. J. Numer. Methods Engrg. 32 (1)
(1991) 103-128.

[27] L. Baillet, T. Sassi, Mixed finite element formulation in large deformation frictional contact problem, Rev. Européenne Elém. Finis 14 (2-3) (2005)
287-304.

[28] B. O'Neill, R. Maev, F. Severin, Distortion of shear waves passing through a friction coupled interface, in: Review of Progress in Quantitative
Nondestructive Evaluation, Vol. 557, AIP, 2001, pp. 1264-1267.

[29] P.Blanloeuil, AJ. Croxford, A. Meziane, Numerical and experimental study of the nonlinear interaction between a shear wave and a frictional interface,
J. Acoust. Soc. Am. 135 (4) (2014) 1709-1716. http://scitation.aip.org/content/asa/journal/jasa/135/4/10.1121/1.4868402.

[30] S. Liu, AJ. Croxford, S.A. Neild, Z. Zhou, Effects of experimental variables on the nonlinear harmonic generation technique, IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 58 (2011) 1142-1451.

[31] H. Okada, K. Harumi, S. Watanabe, Reflection of elastic waves by an infinitely long ribbon crack (part II), Japan. J. Appl. Phys. 21 (S3) (1982) 120-122.

[32] G.L.Jones, D.R. Kobett, Interaction of elastic waves in an isotropic solid, J. Acoust. Soc. Am. 35 (1) (1963) 5-10.

[33] F.R.Rollins, Interaction of ultrasonic waves in solid media, Appl. Phys. Lett. 2 (8) (1963) 147-148.

[34] Z.Zhang, P.B. Nagy, W. Hassan, Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface, Ultrasonics 65 (2016)
165-176.


http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref1
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref2
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref3
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref4
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref5
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref6
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref7
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref8
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref9
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref10
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref11
http://www.ncbi.nlm.nih.gov/pubmed/24907786
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref13
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref14
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref15
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref16
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref17
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref18
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref19
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref20
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref21
http://www.sciencedirect.com/science/article/pii/S0963869515000833
http://www.sciencedirect.com/science/article/pii/S0963869515000833
http://www.sciencedirect.com/science/article/pii/S0963869515000833
http://www.sciencedirect.com/science/article/pii/S0963869515000833
http://www.sciencedirect.com/science/article/pii/S0963869515000833
http://www.sciencedirect.com/science/article/pii/S0963869515000833
http://www.sciencedirect.com/science/article/pii/S0963869515000833
http://www.sciencedirect.com/science/article/pii/S0963869515000833
http://linkinghub.elsevier.com/retrieve/pii/S0963869515000833
http://linkinghub.elsevier.com/retrieve/pii/S0963869515000833
http://linkinghub.elsevier.com/retrieve/pii/S0963869515000833
http://linkinghub.elsevier.com/retrieve/pii/S0963869515000833
http://linkinghub.elsevier.com/retrieve/pii/S0963869515000833
http://linkinghub.elsevier.com/retrieve/pii/S0963869515000833
http://linkinghub.elsevier.com/retrieve/pii/S0963869515000833
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref23
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref24
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref25
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref26
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref27
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref28
http://scitation.aip.org/content/asa/journal/jasa/135/4/10.1121/1.4868402
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref30
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref31
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref32
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref33
http://refhub.elsevier.com/S0165-2125(16)30054-3/sbref34

	Analytical extension of Finite Element solution for computing the nonlinear far field of ultrasonic waves scattered by a closed crack
	Introduction
	Computation of the nonlinear far field scattered waves
	Finite element model for the near field solution
	Problem statement and generic FE model
	CAN and contact laws

	Analytical solution for the radiated far field

	Directivity patterns for nonlinear scattering
	Nonlinear scattering by a closed crack of various orientations
	Separation of the scattered modes
	Validation of the analytical propagation
	Various crack orientations and in-plane longitudinal wave
	Various crack orientations and incident in-plane shear wave

	Nonlinear interaction of two shear waves under oblique incidence

	Conclusion
	References


