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The use of cylindrical elastic shells as elements in acoustic metamaterial devices is demonstrated

through simulations and underwater measurements of a cylindrical-to-plane wave lens. Transformation

acoustics of a circular region to a square dictate that the effective density in the lens remain constant

and equal to that of water. Piecewise approximation to the desired effective compressibility is achieved

using a square array with elements based on the elastic shell metamaterial concept developed by

Titovich and Norris [J. Acoust. Soc. Am. 136(4), 1601–1609 (2014)]. The sizes of the elements are

chosen based on availability of shells, minimizing fabrication difficulties. The tested device is neutrally

buoyant comprising 48 elements of nine different types of commercial shells made from aluminum,

brass, copper, and polymers. Simulations indicate a broadband range in which the device acts as a

cylindrical to plane wave lens. The experimental findings confirm the broadband quadropolar response

from approximately 20 to 40 kHz, with positive gain of the radiation pattern in the four plane wave

directions. VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4948773]

[TRH] Pages: 3357–3364

I. INTRODUCTION

The distortion of sound waves in materials with spatially

varying index of refraction can be controlled using concepts

from rays and high frequency propagation. For instance, all

ray paths can be made to behave according to a prescribed

pattern, e.g., convergence at a point on the other side.

Transformation acoustics (TA) goes further in making the

material replicate an equivalent volume of “virtual” acoustic

fluid which faithfully mimics the wave equation itself rather

than some asymptotic approximation. Such TA-based gradi-

ent index (GRIN) lenses fall under the umbrella of acoustic

metamaterials, a field which has seen tremendous innovation

in recent years. However, to build a TA-GRIN lens in the

laboratory often demands compromise between the fre-

quency range of operation, transmission loss and lensing

effectiveness, particularly in water, the acoustic medium of

interest here.

A successful TA-GRIN lens simultaneously displaying

high transmission and accurate wave steering can be

achieved in water using a sonic crystal (SC) array of elastic

scatterers. Quasi-periodic SCs are capable of filtering, guid-

ing and/or steering an incident wave based on a gradient of

effective properties.1–9 Unlike phononic crystals, SCs cannot

support shear waves in the bulk, hence, energy loss to mode

conversion is minimized. The localized effective acoustic

properties of a SC element are an average of the fluid and

contained elastic scatterer. These depend on the shape, filling

fraction, the effective bulk modulus, and the effective

density of the scatterer. In order to display the inhomogene-

ity required for a GRIN lens, the properties of the elements

have to differ in a quasi-continuous manner. This has been

successfully achieved in air3 and in water7 by fixing the lat-

tice constant and varying the filling fraction of solid cylinder

scatterers in the fluid unit cell. For air-based SCs the cylin-

ders can be modeled as rigid.9–11 For water-based SCs the

elasticity of the scatterer is not only non-negligible, but

essential in the modeling of such structures.

Typical engineering materials, such as metals, are much

denser than water leading to impedance mismatch and unde-

sired scattering. A solution is to use a hollow air-filled elastic

shell which has an effective density and bulk modulus much

closer to that of water as compared to the solid material. The

effective acoustic properties (speed, impedance) depend on

the material of the shell and, in particular, on its thick-

ness.12,13 The sensitivity of the effective compressibility to

shell thickness is a consequence of hoop stress in thin shells,

which combined with the dependence of the effective den-

sity, results in the fact that thin shells have effective sound

speed that is independent of thickness.12 The effective im-

pedance, on the other hand, is a linear function of thickness

in the same thin shell approximation. These two basic facts

together indicate that by choosing the material and the thick-

ness, it is possible to achieve a wide range of effective prop-

erties, as illustrated in the chart in Fig. 1 (motivated by

earlier work in Ref. 14). This is the central idea in the pres-

ent work.

The purpose of the present paper is to demonstrate the

potential for TA-based GRIN lens design in water using the

wide variety of shells available. The TA example considereda)Electronic mail: norris@rutgers.edu
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in detail here is the cylindrical-to-plane wave lens discussed

by Layman et al.15 It works by steering waves from a

monopole source at the center away from the corners to the

faces of the lens. The SC of Ref. 15 is based on constructive

multiple scattering from finite embedded elastic materials in

a fluid matrix, something previously investigated by Torrent

and Sanchez-Dehesa.16 The GRIN lens device considered

here expands the possibilities in Ref. 16 by increasing the

range of achievable properties over those presented by

Martin et al.14

The cylindrical-to-plane wave lens is designed to

increase radiation in specific directions. Enhanced direction-

ality has also been experimentally observed17 for an acoustic

source placed inside a two-dimensional (2D) square lattice

phononic crystal operating at the band-edge frequency.18

Highly directional acoustic wave radiation is also possible in

2D PCs at pass band frequencies far away from the band

edge states, as shown in simulations of a square lattice of

steel cylinders in water.19 The use of the band structure of a

periodic square array to produce directional water wave radi-

ation was proposed in Ref. 20, and subsequently demon-

strated in experimental measurements on a 6� 6 array of

surface-breaking cylinders21 with a monopolar source at the

array center. Directional radiation has been demonstrated in

air using a non-periodic array of cylinders to produce scatter-

ing enhancement in the forward direction.22 Martin and

coworkers23,24 produced acoustic GRIN focusing by chang-

ing the lattice constant in a PC with elastic shell elements.

Parallel zigzag rigid screens have also been proposed as

potential focusing and directional beaming devices.25 While

the spatial filtering device described in this paper uses a fluid

matrix, Morval et al.26 show directional enhancement of a

monochromatic acoustic source into a surrounding water me-

dium using a square array of cylinders in a solid matrix; the

2D quadropolar collimation effect is based on square-shaped

equifrequency contours of the phononic crystal.27 Although

the solid matrix has obvious practical advantage, the narrow

frequency device of Ref. 26 yields decreased amplitude in

the preferential directions as compared with the free field

radiation. The TA-based device described here does not

have these limitations, and shows for the first time as far as

we are aware, broadband positive gain in a neutrally buoyant

square GRIN lens, with obvious implications for low loss

underwater application.

The outline of the paper is as follows. TA and the map-

ping for the cylinder-to-square lens are described in Sec. II.

Acoustical properties of cylindrical shells are discussed in

Sec. III and the proposed design using available cylindrical

tubes is presented. The experimental setup is described and

acoustical measurements are discussed in Sec. IV, with con-

cluding remarks in Sec. V.

II. CONFORMAL TA

The transformation of a circular region to a square one

can be achieved using a conformal change of coordinates.

Conformal mapping is a special case of the general theory of

TA. Usually, in TA one can expect the material properties

associated with a spatial transformation to display anisot-

ropy. This could be in the density28 or the bulk modulus,29

or in both simultaneously,30 but usually something has to

become anisotropic. Conformal maps are unique in TA in

that they do not require anisotropy. In this case both the iner-

tial28 and the pentamodal29 forms of TA converge, and there

is no ambiguity or degrees of freedom, a feature that distin-

guishes TA from its electromagnetic counterpart. At the

same time, there is some confusion in the application of TA

for conformal mappings, e.g., Ref. 31, so we briefly review

the correct procedure.32

We are concerned with a background fluid (water) of

density q and bulk modulus K in which the acoustic pressure

pðxÞ satisfies

r2pþ x2

c2
p ¼ 0; (1)

where c ¼
ffiffiffiffiffiffiffiffiffi
K=q

p
is the speed of sound and time harmonic

dependence e�ixt is understood. Under a conformal transfor-

mation z � xþ iy! z1ðzÞ � x1 þ iy1 the Laplacian r2 in

the original variables becomes jdz=dz1j2jr2
1. If we define the

pressure as p1ðx1Þ ¼ pðxÞ, then p1 satisfies the Helmholtz

equation in the mapped coordinates with transformed acous-

tic speed c1 ¼ jz01jc, where z01ðzÞ ¼ dz1=dz. This means that

the transformed parameters are indeed isotropic, but it does

not provide unique expressions for the individual parameters

K1 and q1, only the combination K1=q1 ¼ c2
1. The necessary

second relation comes from the requirement that the pressure

in the transformed fluid arises from a particle displacement

field u1ðx1Þ, which satisfies the momentum equation

�x2q1u1 ¼ �r1p1 and the pressure constitutive relation

p1 ¼ �K1r1 � u1. Eliminating u1 gives the transformed

Helmholtz equation for p1ðx1Þ if and only if q1 is constant,

FIG. 1. (Color online) The effective density qeff and bulk modulus Keff of

hollow cylindrical shells for ten commonly available materials normalized

relative to water, from Eq. (4). Each curve shows the properties as a function

of the relative thickness to radius ratio h=a, from small to large as indicated

by the arrow. Circles indicate the values for h=a ¼ 0:5. Diagonal dashed

lines indicate where the effective acoustic speed and impedance coincide

with those of water.
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which can be assumed equal to the original density. In sum-

mary, the transformed parameters are

q1 ¼ q; K1 ¼ jz01ðzÞj
2K: (2)

The lens is based the transformation of a circle of diam-

eter 2b into a square of side 2b, with the precise form of the

circle-to-square mapping given in the Appendix. In particu-

lar, we note from Eqs. (2) and (A3) that the mapped value of

the bulk modulus associated with the original point ðr; hÞ in

the circle is

K1 ¼
1:1636 Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

b

� �8

þ 2
r

b

� �4

cos 4hþ 1

s : (3)

Along the principal directions ðcos 4h ¼ 1Þ the bulk modulus

decreases from the center of the square to a global minimum

at the center of the sides. Along the diagonals ðcos 4h ¼ �1Þ
it increases from its value at the center as it becomes

unbounded at the four corners of the square. The overall

trend is illustrated in Fig. 2.

III. REALIZATION WITH SOLID SHELLS AS
METAMATERIAL ELEMENTS

A. Acoustical properties of cylindrical shells

Consider a cylindrical shell of thickness h and outer

radius a made of uniform solid with density qs, shear modu-

lus ls, and Poisson’s ratio �s. The interior is air filled, which

in the context of water as the ambient medium in the exterior

means that we can safely ignore the inertia and stiffness of

the interior. The shell’s effective density is the average value

taken over the circular region of radius a. The effective bulk

modulus is the value for which the radial compression of a

uniform circular region of fluid under external pressure is

the same as that of the shell under the same pressure, which

follows from plane strain elasticity (see Ref. 33, p. 6). In

summary,

qeff ¼ ð2h=a� ðh=aÞ2Þqs;

Keff ¼ ls=ð2ð1� �sÞqs=qeff � 1Þ: (4)

The unit cell of the square array, shown in Fig. 3, consists of

a solid cylindrical shell surrounded by a complementary

region of water. The equivalent density and bulk modulus,

qeq; Keq, of the unit cell depend on the properties of the sur-

rounding fluid as well as the effective shell properties,

according to

qeq ¼ ð1� f Þqþ f qeff ; (5a)

Keq ¼ ðð1� f ÞK�1 þ fK�1
eff Þ
�1: (5b)

Here f ¼ pa2=d2 is the shell volume fraction in the unit cell,

where d is the cylinder spacing as well as the side length of

the unit cell. Since the required density from TA is qeq ¼ q,

it follows that the shell effective density is also constant,

qeff ¼ q. The effective bulk modulus of the shell necessary

to achieve the equivalent value from TA is

Keff ¼ ðK�1 þ ðK�1
eq � K�1Þf�1Þ�1: (6)

The equivalent bulk modulus of the unit cell is signifi-

cantly affected by the surrounding fluid. With the exception

of n¼ 0, all in-plane modes produce no volume change and

hence do not change the effective bulk modulus of the unit

cell. No significant volume altering modes were observed in

the frequency range considered. Shells of radius a¼ 1 cm

with a relatively tight packing of d ¼ 2:2a yields a filling

fraction of f¼ 0.65. In this case, in order to have the effec-

tive quasi-static bulk modulus of the unit cell Keq ¼ 2K, the

effective bulk modulus of the shell-springs-mass system

must be Keff ¼ 4:33K, see Fig. 4.

The proposed array contains 7� 7 unit cells of size

d ¼ 2:2a with a¼ 1 cm giving a lens side length of

L¼ 15.4 cm. The central square element is left empty,

requiring 48 cylinders. This was considered the minimal

number necessary to provide both a reliable and an accurate

gradient index effect. The spacing was chosen to reduce the

overall dimension of the lens as much as possible, without

FIG. 2. (Color online) The bulk modulus distribution K1=K for the cylindri-

cal-to-square mapping. FIG. 3. (Color online) A square unit cell of a fluid saturated array of shells.
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making the filling fraction unduly large. Inter-cylinder spac-

ing in the fabricated lens was controlled from the two ends

using preformed holders, see Fig. 8 below.

Figure 5 shows the discretized values for the equivalent

stiffness of each unit cell Keq as determined from Fig. 2 by

spatial averaging. The effective properties of the shells are

obtained from Eq. (6) with f¼ 0.65, using the required

equivalent stiffness of each unit cell Keq in Fig. 2. As noted

above, this means that effective properties of the shells must

be more extreme than those implied by the mapping alone.

The effective density of each shell is tuned to water.

B. Design using available cylindrical tubes

The three primary design criteria were: (1) that the

shells are readily available, (2) the effective density of each

shell approximately matches water, and (3) the effect is

apparent in the designated frequency range of interest: near

20 to 25 kHz. The shells must be sub-wavelength in dimen-

sion. Furthermore, all shells are required to have nearly the

same outer diameter; therefore, the common outer diameter

of 0.5 inches is selected as practical. Fixing this outer dimen-

sion leaves two parameters: the shell material and its relative

thickness h/a. The range of effective properties as a function

of both the shell material and thickness are succinctly sum-

marized in Fig. 1.

Several features are apparent from the chart in Fig. 1.

First, it is clear that the ten materials considered provide a

comprehensive range of effective properties. For each mate-

rial, the effective properties are approximately linear func-

tions of the shell thickness for thin shells ðh=a� 1Þ, with

some curvature at larger values of h=a. The present design

requires shells with effective density equal to that of water,

which restricts values of h=a to those near the vertical dotted

line. Table I summarizes the properties of available shells

which have nearly the same density as water, but varying

effective bulk moduli.

For the final design we considered only commercially

available tubes made from a variety of materials with stand-

ard values of radius and thickness. As Fig. 1 illustrates, this

provides a surprisingly wide range of possible properties,

with the added advantage of allowing us to fabricate the lens

with minimal effort and cost. Based on the available candi-

dates from Table I, we selected nine different shells as

shown in Fig. 6 for the fabricated lens.

C. Simulations

The total pressure field of the cylindrical-to-square lens

made of elastic shells was obtained by numerical computa-

tion using COMSOL. Figure 7 shows a simulation for a monop-

ole source of frequency 22 kHz in the center of the lens.

Also shown for comparison are the pressure fields for the

lens with the unit cells replaced by the effective acoustic

medium and the free field radiation of the monopole source.

The simulations indicate that the cylindrical-to-plane

wave lens made from the distribution of nine distinct empty

shells performs very well as compared the optimal case of

each unit cell having the prescribed effective acoustic prop-

erties directly from the conformal mapping. It is also evident

that the transmission is enhanced in the four principal

directions.

FIG. 4. (Color online) Equivalent bulk modulus of the unit cell Keq as a

function of the effective bulk modulus of the tuned shell Keff for several fill-

ing fractions.

FIG. 5. The spatial distribution of the equivalent bulk modulus Keq in the 7� 7

array. The central element is absent (i.e., water) in the constructed design.

TABLE I. Readily available shells (i.e., tubes and pipes) with different

effective bulk moduli that have effective density close to that of water. All

properties are normalized to water.

Material OD (in.) h (in.) h/a qeff Keff Label

PVC 0.54 0.088 0.33 0.71 0.36 1

ABS 0.5 0.125 0.5 0.98 0.52 2

Acrylic 0.5 0.125 0.5 0.89 0.68 3

Polycarbonate 0.5 0.125 0.5 0.90 0.77 4

Brass 0.5 0.14 0.056 0.93 1.63 5

Brass 0.5 0.02 0.08 1.31 2.38 6

Copper 0.625 0.028 0.09 1.50 2.74 7

Aluminum 0.5 0.035 0.14 0.71 2.78 8

Aluminum 0.5 0.049 0.20 0.97 4.13 9

Aluminum 0.5 0.065 0.26 1.24 5.88 10
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The use of empty shells in water acoustics opens up the

likelihood of exciting flexural resonances. This is not nor-

mally a concern when dealing with isolated shells because

the flexural waves are subsonic in speed and hence do not

radiate. The present design places the shells in close proxim-

ity, leading to the possibility of coherent flexural wave inter-

action, which can lead to strong scattering. This effect can

have positive or negative consequences, depending on one’s

immediate goal. In the present situation the shells are of

varying thickness and comprised of different materials, with

the result that the flexural resonances are spread over many

frequencies, which decreases the possibility for coherent

interaction. In particular, we note that no such coherent

effects were observed in the experiments (see Sec. IV).

Related and surprising constructive interference effects

resulting from coherent interaction of flexural waves in

closely packed arrays of shells in water are described

elsewhere.33

IV. EXPERIMENTAL RESULTS

The device pictured in Fig. 8 was fabricated to validate

the cylindrical-to-plane wave lens design. The device tested

has the cylinder positions, radii, and material properties pro-

vided in Fig. 6 and Table I. Although the model presented in

Sec. III is strictly 2D, which would suggest experimental

validation using a 2D water waveguide, the test facilities

available to the authors required a 3D test configuration.

Details of the configuration and rationale for their selection

are provided here.

The as-tested lens is constructed from cylindrical rods

1 m in height and sealed at either end with urethane end-caps

to prevent water intrusion. The cylinders are clamped

between 2 cm thick acrylonitrile-butadiene-styrene (ABS)

plates using tensioned monofilament. The plates were

machined to precisely locate the top and bottom of the cylin-

ders in the positions dictated by the design. Note that an

added benefit of the urethane end-caps is that they provide

some level of vibration isolation between the end plates and

the cylinders. One key challenge to accurately measure the

performance predicted in Sec. III was to minimize the effects

of the finite height of the lens and thus observe its 2D

response. The associated practical difficulty encountered

was in the selection and placement of the appropriate acous-

tic source. Validation of the lens design implies the need for

an axis-symmetric source pressure along the vertical axis in

the 3D lens, but no such source was available to the authors

FIG. 6. (Color online) The 7� 7 array of various empty shells. The numbers

correspond to the index of each shell shown in Table I. The actual thick-

nesses of the individual shells are indicated.

FIG. 7. (Color online) The left, middle,

and right columns show the simulated

results for the lens of Fig. 6, the same

square region with the effective acous-

tic medium from the exact mapping in

each unit cell, and the source without

the lens, respectively. The top row is

the total pressure and the bottom row

shows the absolute pressure field for a

monopole source at 22 kHz.
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nor could one be easily constructed. Acoustic reciprocity,

described below, was invoked to resolve this difficulty.

Reciprocity is a fundamental principal of quiescent

acoustic media, first fully described for acoustics by

Rayleigh;34 it states that the interchange of source and re-

ceiver will lead to the same measured acoustic field if the

environment is un-perturbed. Specifically, if one excites

acoustic waves at some point, A, then “the resulting velocity

potential at a second point, B, is the same both in magnitude

and in phase, as it would have been at A had B been the

source of sound.”34 Applying this principal to the problem at

hand, it is possible to replace the axis-symmetric source at

the center of the cylindrical-to-plane wave lens with a point

receiver and then measure the acoustic field at the center of

the lens due to a plane wave incident from a specified radial

angle. By varying the angle incidence of the plane wave, it is

thus possible to construct the far-field radiation pattern

expected from an axis-symmetric source placed at the center

of the lens. The only remaining problem is the generation of

plane waves at a specified angle of incidence. This is

achieved using a spherical wave source located sufficiently

far away from the lens such that the phase of the pressure

field impinging on the lens aperture has variations less than

1� across the entire frequency band of interest. For the lens

geometry and frequencies considered, this can be achieved

by at least 10 m separation between the spherical source and

the lens.

The experiment was conducted at the Lake Travis Test

Station of the Applied Research Laboratories at The

University of Texas at Austin. An A48 hydrophone and

associated pre-amplification electronics, which was fabri-

cated and calibrated by the Underwater Sound Reference

Division of the Naval Undersea Warfare Center, was located

at the center of the lens. This hydrophone has less than 1 dB

of variation across the entire frequency range of interest for

this experiment, which was 15–40 kHz. The acoustic source

was an omni-directional ITC-1032 fabricated by Channel

Technologies Group. The source and lens with internal

hydrophone were submerged to a depth of 5.5 m with a sepa-

ration distance of 10 m. The lens was attached to a column

capable of angular rotation through 360�. The source is then

driven with 2 ms tone bursts from 15 to 40 kHz at 2.5 kHz

FIG. 8. (Color online) Constructed device that was tested at Lake Travis

Test Station of the Applied Research Laboratories at The University of

Texas at Austin. The A48 hydrophone is within the lens and the preamplify-

ing electronics are visible. Those electronics are located approximately 1

meter above the lens during the test. The ABS clamping plates and monofil-

ament tensioning elements are visible as are the differing materials of the

lens, indicated by changes in cylinder color.

FIG. 9. (Color online) Angle-dependent gain within the cylindrical-to-plane

wave lens at frequencies 15, 22.5, 25, and 40 kHz. The left column presents

experimentally obtained angle-dependent gain for a hydrophone within the

lens and a plane wave incident from the indicated angle. The right column

shows FEM (COMSOL) calculation of far-field radiation beam pattern for a

source in the interior of the lens. All plots show gain (radial coordinate) on

the same scale and angle range from 0� to 360�.
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intervals and the time-series voltage output from the hydro-

phone was collected from 0� to 360� at approximately 0.5�

intervals using a sampling frequency of 512 kHz. This pro-

cess was then repeated for the hydrophone without the lens

as a reference and referred to as the bare hydrophone case.

Representative results from the series of experiments

conducted on the cylindrical-to-plane wave lens are summar-

ized in Figs. 9 and 10. The results were obtained by perform-

ing post-processing of the time-series data output from the

hydrophone, described next. For each angle and frequency,

the steady-state portion of the tone-burst is identified through

inspection of the time-domain voltage signal and a time gate

is set so that only the steady state portion is considered. The

magnitude of the signal at each frequency and angle combi-

nation is then found by averaging the magnitude of the

complex envelope of the received voltage signal during

its steady-state response. This process is carried out for the

both measurement configurations (hydrophone in the lens

and bare hydrophone). The frequency- and angle-dependent

gain is then calculated as Gðf ; hÞ ¼ 20 log10½jVlensðf ; hÞj
=jVnolensðf ; hÞj�. Representative polar plots for f¼ 15, 22.5,

25, and 40 kHz from experimental data and 2D finite element

models are shown in Fig. 9. Agreement between model and

measurement for the both gain and angular dependence

(beam pattern) match very well, with the location of the

main lobes observed at 4�, 91�, 176�, and 268� on average

across all frequencies inspected (with the exception of the

20 kHz case as described below). Unexpected variations in

beam pattern between predicted and measured performance

are likely owing to imperfections in the constructed device.

One very important observation of this data is the broadband

performance of this metamaterial lens. The broadband nature

of the response is clearly demonstrated by the results

provided in Fig. 10, which shows the measured half-power

beam width (�3 dB points) and on-axis gain averaged at

across all four main lobes. The data clearly show that the as-

tested lens provides broadband on-axis gain and beam-

widths ranging from approximately 15� to 30� for frequen-

cies from 22.5 to 40 kHz, respectively. Finally, it is impor-

tant to note that the red shaded region in Fig. 10 indicates a

regime of flexural tube resonances33 where the lens behavior

was significantly degraded. This experiment provides clear

validation of the broadband impedance matched lensing

effect provided by hollow cylinder metamaterial elements.

V. CONCLUSION

The results of this paper have shown the practical poten-

tial of using cylindrical elastic shells as elements in acoustic

metamaterial devices. The demonstration test device consid-

ered is a cylindrical-to-plane wave structure for which the

required element properties are determined from TA. The

size and material composition of the elements in the square

array are chosen based on availability of shells, minimizing

fabrication difficulties. The device has the added advantage

that is neutrally buoyant by virtue of the TA design.

Simulations indicated the operating frequency response of

the final design would display a surprisingly broadband

effect, which is verified in the experimental findings. The

underwater measurements show effective conversion of the

monopolar source to quadropolar radiation over an octave

band (20 to 40 kHz) with positive gain in the desired direc-

tions, all despite the minimal number of elements used.

These features have been demonstrated for the first time in a

water-based acoustic lens device. Future research will con-

sider other device designs using cylindrical shell passive

AMM elements.
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APPENDIX: CIRCLE TO SQUARE MAPPING

The Schwartz–Christoffel conformal transformation of

the unit disk to a square has been used previously for lens

design via transformation optics35 and TA.15 Here we pro-

vide a simpler form of the transformation than that given in

Refs. 15 and 35.

Our objective is a transformation from the plane of the

unit circle, defined by the complex variable c, to the plane

containing the mapped square, defined by the complex vari-

able s (for “square”).

We first map the interior of the unit circle to the upper

half plane of the variable z through a bilinear transformation

as z ¼ ið1� wÞ=ð1þ wÞ with w ¼ ceip=4. The mapping

that takes the upper half of the z-plane to the s-plane con-

taining the square is a special case of the more general map-

ping known for mapping to polygons. Thus, consider

f ðzÞ ¼ Aþ BgðzÞ, where

FIG. 10. (Color online) Half-power beam width (solid line) and average on-

axis gain (dot-dash line) of all four lobes of the cylindrical-to-plane wave

lens. No beam pattern variations greater than 3 dB were observed for fre-

quencies below 22.5 kHz, and thus no information is provided for

hHP < 22:5�. The shaded region (17.5–22.5 kHz) denotes a flexural tube res-

onance regime predicted in Ref. 33. Broadband gain and narrow beamwidth

is apparent over the entire range of frequencies inspected.
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gðzÞ ¼
ðz

0

Y3

i¼1

ðf� fiÞ�1=2
df: (A1)

Taking f1 ¼ 0; f2 ¼ 1; f3 ¼ �1, we find gðzÞ ¼
ffiffiffi
2
p

F
ð
ffiffiffiffiffiffiffiffiffiffiffi
zþ 1
p

; 1=
ffiffiffi
2
p
Þ, where F is the incomplete elliptic integral

of the first kind. The parameters A and B are found by setting

f ð0Þ ! 1� i; f ð�1Þ ! �1� i, and using F 0; 1=
ffiffiffi
2
p� �

¼ 0;
F 1; 1=

ffiffiffi
2
p� �

¼ K 1=
ffiffiffi
2
p� �

¼ 1=4
ffiffiffi
p
p� �

C2 1
4

� �
, where K(k) is

the complete elliptic integral of the first kind and CðnÞ is the

gamma function. Hence, in terms of the original c-plane con-

taining the unit circle

s cð Þ ¼
2

K
1ffiffiffi
2
p
� �F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i

1� ceip=4

1þ ceip=4

s
;

1ffiffiffi
2
p

0
@

1
A� 1� i:

(A2)

Equation (A2) and its inverse map the boundary points in the

N, S, E, W, NE, NW, SE, and SW directions in the circle

and square plane to one another.

The density and bulk modulus are functions of the

derivative of the mapping function. The derivative of

Eq. (A2) is found from f 0ðzÞ ¼
ffiffiffi
2
p

=ðKð1=
ffiffiffi
2
p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðz2 � 1Þ

p
Þ

and z0ðwÞ ¼ �2i=ð1þ wÞ2, which gives s0ðcÞ. Hence, for

c ¼ reih; 0 	 h < 2p and 0 	 r 	 1,

js0 reihð Þj ¼ 2

K
1ffiffiffi
2
p
� � r8 þ 1þ 2r4 cos 4hð Þ�1=4

: (A3)

The inverse mapping from the square, s coordinate, to the

circle, c coordinate is given by Eq. (27) of Titovich and

Norris.12
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