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Gradient index (GRIN), refractive, and asymmetric transmission devices for elastic waves are
designed using a solid with aligned parallel gaps. The gaps are assumed to be thin so that they can
be considered as parallel cracks separating elastic plate waveguides. The plates do not interact with
one another directly, only at their ends where they connect to the exterior solid. To formulate the
transmission and reflection coefficients for SV- and P-waves, an analytical model is established
using thin plate theory that couples the waveguide modes with the waves in the exterior body. The
GRIN lens is designed by varying the thickness of the plates to achieve different flexural wave
speeds. The refractive effect of SV-waves is achieved by designing the slope of the edge of the
plate array, and keeping the ratio between plate length and flexural wavelength fixed. The asymmet-
ric transmission of P-waves is achieved by sending an incident P-wave at a critical angle, at which
total conversion to SV-wave occurs. An array of parallel gaps perpendicular to the propagation
direction of the reflected waves stop the SV-wave but let P-waves travel through. Examples of fo-

cusing, steering, and asymmetric transmission devices are discussed.
© 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4950770]
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I. INTRODUCTION

In recent decades acoustic and elastic metamaterials that
exhibit extraordinary wave bearing properties absent in natu-
ral materials have attracted much research interest, such as
negative refractive devices,! gradient index (GRIN) lens,”
and non-reciprocal devices.>* Negative index materials can
be realized based on the localized resonant structures as
proposed by Liu er al.’ An alternative approach uses
phononic crystal (PC) which can be tailored to allow phase
velocity and group velocity point in opposite directions.' %’
To achieve non-reciprocity for acoustic waves, Liang and
coworkers®® used nonlinearity to break the symmetry of
physical laws under time reversal. The energy transmission
efficiency is usually restricted by the conversion efficiency
between the acoustic metamaterial and nonlinear medium,
and can be enhanced by increasing the conversion effi-
ciency.'” Another way to achieve non-reciprocity is by
breaking the spatial symmetry using linear acoustic metama-
terial,"' ™' or by acoustic metasurfaces.'*

This paper focuses on the elastic analogue of GRIN
lens, refractive, and asymmetric transmission devices. The
physics behind elastodynamic waves is more complicated
because of the coupling of different types of waves, but
brings into play more interesting phenomena. Climente
et al."® designed a GRIN lens for flexural waves based on
the local variation of the plate thickness. Morvan et al.'®
experimentally demonstrated negative refraction of trans-
verse waves with a two-dimensional (2D) PC of a square
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lattice with cylindrical cavities. Later, Pierre et al.V’

achieved negative refraction for antisymmetric Lamb waves
with a similar design. The focusing of bending waves in per-
forated thin plates was realized by Farhat er al.'® and Dubois
et al.,"® respectively. Zhu er al*® experimentally demon-
strated the negative refraction of longitudinal waves by an
elastic metamaterial with chiral microstructure fabricated in
a steel plate. Chang et al.*' used a soft hyperelastic material
to split longitudinal and shear waves. Zhu ez al.** proposed a
1D PC with anti-symmetric and symmetric unit cells that
shows one-way Lamb wave transmission for both A and S
modes. Most of these articles are concerned with flexural or
Lamb waves, while only a few of them discuss bulk waves
in elastic bodies, namely, P-, SV-, and SH-waves.

In this paper, we model a solid with aligned parallel
gaps as depicted in Fig. 1(a). The effect of the gaps is to
make the solid material between them act like elastic plate
waveguides. Unlike the PC or the locally resonant metamate-
rial,>>?* our approach to the focusing, refraction and asym-
metric transmission of elastic waves is based on the wave
bearing properties of the plates. Broadband high transmis-
sion for refraction of elastic waves and multi-band high effi-
ciency for asymmetric transmission are achieved. Similar to
the idea of applying pre-compression differentially on granu-
lar chains to achieve phase delay,” we vary the thickness of
the plates but keep the lengths constant to achieve a focusing
effect. The wave bearing properties of the plates also lead to
the idea of splitting P-wave and SV-wave in an elastic body
by using an array of aligned parallel gaps. Our approach to
asymmetric P-wave transmission uses the combination of
the free boundary of a half-space and an array of aligned
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(b)

FIG. 1. (Color online) 2D schematic of aligned parallel gaps.

parallel gaps to achieve high and low energy transmission in
opposite propagation directions. The models are simple and
can be formulated analytically.

The outline of the paper is as follows. In Sec. II, we
derive explicit expressions for transmission and reflection of
normally incident SV- and P-waves, Egs. (6), (7), (13), and
(14). The properties of the plates and the design of GRIN
lens are discussed in Sec. III. The refractive index for SV-
and P-waves are derived in Sec. IV. Numerical examples
showing zero-refraction of SV-waves and positive refraction
of P-waves are also presented in Sec. IV. Mode conversion
of P-waves in an elastic half-space at a free boundary and
the condition for total conversion are discussed in Sec. V.
The definition and numerical example of the asymmetric
transmission effect using mode conversion is also given in
Sec. V. Conclusions are presented in Sec. VI.

Il. TRANSMISSION THROUGH ALIGNED PLATES
A. Governing equations

We consider the configuration of Fig. 1(a), in which an
array of plates is connected to and separates two half-spaces.
The configuration can be viewed as a homogenous solid with
aligned thin gaps or cracks. At each of the junctions, the SV-
wave in the half-space couples with the flexural wave on the
plates, and the P-wave in the half-space couples with the
compressional wave. In other words, an incident SV-wave
(or P-wave) from the left side travels through the plate in the
form of a flexural wave (or longitudinal wave), then trans-
mits into the right side as SV-wave (or P-wave). To model
and calculate the SV-wave (or P-wave) transmission and
reflection coefficients, we only need to consider a single
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plate element connected between two half-spaces, as shown
in the boxed region in Fig. 1(b), because of the periodicity in
the vertical direction. We model and formulate the problem
using Kirchhoff plate theory which holds for long-
wavelength flexural waves on thin plates. In this paper we
focus on the frequency range in which the thin plate theory
assumption is valid. Together with the boundary conditions:
displacement (rotation angle) and force continuity at the two
ends, we can establish six (or four) equations with six (or
four) unknowns to solve for the transmission and reflection
coefficients.

The density of the material is denoted by p, the Young’s
modulus by E, the shear modulus by p, and the Poisson’s ra-
tio by v. We also define the Cartesian coordinate system as
shown in Fig. 1(b), where x is along the lateral direction of
the plate, y is into the plane and perpendicular to x, and z is
upward. The displacements in each direction are denoted as
u, v, and w, respectively. The thickness of the plate is
denoted by 4, the width of the gap by a (a < h), and the
thickness of the unit structure in the boxed region in Fig.
1(b) is ' = h+ a. The bending stiffness of the plate is
D = Eh*/12(1 — v*). We assume the incident plane wave is
independent of y-direction, i.e., there is no y-dependent term.
The governing equations for flexural and longitudinal waves
in the thin plate are

84

D—W — pho*w =0, (D)
E 0%u

1T- 202 +pa) u=>0, 2)

where o is the radial frequency, with time harmonic depend-
ence e’ assumed. The phase speeds of flexural and longi-
tudinal waves (c, ¢;) on the plate, and the phase speeds of

SV- and P-waves (c7, cp) in the exterior body are

1/4
Eh*o)? / E
c —_— , L= |
o\ 1201 = 02) t p(1—12)

E(1-v)

o(1+v)(1-2v) )

1+1/

B. Transmission and reflection of a normally incident
SV-wave

To solve for the transmission and reflection of SV-
waves, we assume the amplitude of the displacement of the
incident SV-wave as 1, reflected wave as R, transmitted
wave as T, and on the plate as A, B, U, and V, see Fig. 1(b),
so that

k¥ 4 Reikrx x <0,
A ikpx B —ikgx
T 4)
+Ue"" + Ve ™ 0 <x <L,
Te”‘T(x_L)7 x> L,

where kp = w/cp and kr = w/cr are the flexural and shear
wavenumbers. Although o, and oy, exist in the plate, they
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do not contribute to the force on the plate since ﬁﬁz Odz
h/2 h/2

112/2 [Ez/(1 —v*)](8*w/0x*)dz =0 and sz/z Oyydz

= — ["[Ezv ) (1 = 1)) (0Pw/0x%)dz =

y-dependence in the governing equation the shear force

o= hﬁz Oy:dz

= —D(0*w/0x*). The shear force in the exterior body is
Q = Way, = uh'(Ow/0x). The six z-averaged boundary con-
ditions are continuity of displacement, rotation angle and
shear force at x=0 and x=L, which imply the following
system of equations:

0. Since there is no

per unit length in y-direction is

1+R=A+B+U+V,
k
1-R=-"(A-B—iU+iV),
kr
hk
1—R= (A= B+il—iV),
Wkr
i —i —1 ) (5)
T=A+Bz"'+Uz+Vz,
k
T ="L(A7 — Bz — iUz +iVz)),
T
Wk, A
T:m;Mf*&“+wr4w4)
with z = ¢/ so that 277 = e rL,

This system gives the transmission and reflection coeffi-
cients but the explicit expressions are long. We can split the
solutions into symmetric and anti-symmetric modes which
reduces the system to two 3 x 3 systems. This leads to

T =~ (Rg — Rp)e *rt, (6)

R =

l\)lv— l\)\*—‘

(Rs + Rp)e ™, @)

where the reflection coefficients Rg and R, are
T 1\1 T 1\1 .
PRI T
Rs = ! , ®)
<r 1) 1 <r 1> 1
——= )=+ =+2) -2
o T/t o T/)t
1 1
(E——>th - (z+—)t+i2
o T o T
Ry = . €))
T 1 T 1 )
—— =ty ===t —i2
o T o T
with t=kp /kr,a=h/NI t=tan(krL/2), and 1, =tanh(krL/2).
Note that Ry and R, are both of unit magnitude, which
implies that the transmission and reflection coefficients sat-
isfy |T|*4|R[*=1. Total transmission therefore occurs

when Rg+ R4 =0. For small gap width, i.e., ax1, |T|=1is
obtained if kr=k7 or if either of the following holds:

tan(kgL/2)*=tanh(kpL/2) = 0. (10)

However, kp=ky gives a single high frequency at which
Kirchhoff plate theory does not hold. This single frequency
is not in the frequency range of interest since we only con-
sider long-wavelength flexural waves, i.e., 4> h. The
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frequencies satisfying Eq. (10) correspond to the symmetric
(+) and anti-symmetric (—) modal frequencies for a plate of
length L fixed at both ends, i.e., subject to the boundary
conditions w=0 and Ow/0x = 0

In this example, we consider an infinite aluminum
domain (E=70 GPA, v = 0.35, and p =2700kg/m’) with
an infinite array of aligned equidistant parallel gaps as shown
in Fig. 1(a). The thickness and length of each plate are
h=0.02m and L=0.2m, respectively. The geometric pa-
rameter /' = 0.021 m is shown in Fig. 1(b). Figure 2 shows
that flexural waves are quite dispersive on plates, it is also
clear that the transmission tends to unity at high frequency.

C. Transmission and reflection of a normally incident
P-wave

Similarly, we can calculate the transmission and reflec-
tion coefficients of P-waves. Assuming the amplitude of the
displacement of the incident wave as 1, reflected wave as R,
transmitted wave as T, and the amplitude of displacement on
the plate as A and B, the displacements are expressed as

ekex 4 Re=tkex  x <0,
u=<{ Ae** 4 Be7h* 0 <x <L, (11)
Telkr(=L), x> L,

where kp = w/cp and k;, = w/c, are the wavenumbers of
P-wave in the exterior body and longitudinal wave in the
plate. The compressional force in the exterior body is F
= Wy = EN(Ou/Ox), and the compressional force in the
plate is Fy = Eh(Ou/0x). The four z-averaged boundary con-
ditions are continuity of displacement and compressional
force at x =0 and x =L, yielding the system of equations,

1+R=A+B,
hk
1-R=—"L(A-B),
W kp
T = Ael 4 Be= ikl (12)
h kL ik L —iky L
T—WbMeL — Be it)

The transmission and reflection coefficients for the incident
P-wave are then
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FIG. 2. (Color online) Transmission and reflection spectrum for a normally
incident SV-wave.
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T— 4O£kpkL€ikLL (13)
(kp + ak.)* — (kp — ak,) ekt

p_ (= akg) (1 —ehl) (14
(kp + akp ) — (kp — akg ) el ’

which also satisfy |T|* 4 |R|* = 1. It is easy to show that
total transmission, i.e., |T| = 1, requires either kp — ok, = 0
or ekl = 1. The first occurs over all frequency range
when o = kp/kp = V1 —2v/(1 —v) and the others at w,,
n=1,2,..., where

15)

where m, is the radial frequency corresponding to each n.
However, o = kp/k; indicates that total transmission can be
achieved by choosing v, this only works for low Poisson’s
ratio material since we only interested in structures with
small gap width.

We use the same structure and material as the example
of SV-wave transmission. From Fig. 3, we find that the trans-
mission is close to 1 over all frequencies so that P-waves
transmit through these effective plates with high efficiency.

D. Comparison of analytical results with simulation

The transmission spectrum for SV- and P-waves
obtained using our analytical model and full wave FEM sim-
ulations are shown in Fig. 4 for comparison. For a normally
incident SV-wave, the low frequency behavior of the analyti-
cal solution match well with simulation result, this indicates
that our boundary condition assumptions are correct. The
transmission peaks (|T| = 1) shift at higher frequencies, this
can be understood as the neck effect at the junction between
plate and half space changes the effective length of the
plates. However, the analytical model for P-waves is in good
agreement with full FEM simulations, it is obvious that the
transmission peaks match well in frequency.

081
T

0.6

04+t |R|2

0.2¢

0
0 0.5 1 1.5 2 2:5
f [HZ] x10%

FIG. 3. (Color online) Transmission and reflection spectrum for a normally
incident P-wave.
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FIG. 4. (Color online) Comparison of the analytical solution (solid line) and
full FEM simulation results (dashed line) for incident (a) SV-wave and (b)
P-wave.

E. Improved analytical solution for SV-wave incidence

Since the analytically calculated P-wave transmission
coefficient matches well with simulation results and is
always high as long as the gap width a is small, i.e.,
h/h = 1, we only consider an improved analytical solution
for SV-wave incidence. We introduce an empirical end-
effect term f to represent the effective length of the plate
L' = (1 + B)L and replace the L in our original model. The
same geometry and the same material properties as the previ-
ous example are used to demonstrate how the modification
works. The full wave FEM simulation is done using plate
with #=0.02m and L = 0.2 m. Practically, L’ is the length of
the plate in the analytical model when we design a metama-
terial, but L is the length which will be used in FEM simula-
tion. By iterating the value of f3, the analytical solution can
be matched better to the full FEM solution at higher fre-
quency range. Figure 5 shows good agreement by taking
f =0.07. This value of  only works for the parameters
used in this example, new FEM simulations are required to
find f for other parameter sets. However, the analytical
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FIG. 5. (Color online) Comparison of the improved analytical solution
(solid line) and simulation results (dashed line).

technique is still important since it helps understand the
physics behind the model and provides an initial parameter
set in our design. Alternatively, we can seek modification in
simulations by changing the length of plates using
L=L/(1+p).

lll. GRIN LENS FOR SV-WAVE
A. Wave speeds and diffraction

We next design a GRIN lens, as depicted in Fig. 6(a), to
focus SV-waves. The white strips are thin gaps, both of the
ends are aligned vertically so that the effective plates have the
same length. However, the thicknesses of the plates are
allowed to vary based on the fact that flexural waves travel
faster in thicker plates so that diffraction occurs earlier in
thicker plates. Assuming circular wavefront radiating from the
right end of each plate, the transmitted SV-wave intersect at
the focal point according to Huygens’ principle. The physics
behind the focusing effect is based on diffraction effect similar
to that in the generation of sound bullets.”® The GRIN lens is
designed by first selecting the thickness /; and length L for the
center plate, and choosing the distance d from the focal point
to the end of the center plate at a particular frequency f. The
gap width a is fixed. The total time for a flexural wave travel-
ing from one end of a plate to the other end is tr = L/cp. As
shown in Fig. 6(b), rays of the incident SV-wave from the left
side travel along different paths but arrive at the focal point
simultaneously. We formulate the relations between the thick-
ness of the center plate and other plates as

htzolal_kdz_dzi_i7 (16)

cr CF, CF;

where cp, is the flexural wave speed in the center plate and
depends on £y, cF, is the flexural speed in the ith plate and
depends on the thickness /;, hyy is the distance from the
neutral line of the center plate to the neutral line of the ith
plate which is accumulated by adding the thickness of each
plate and width of gaps. Note that this type of lens is
designed at a certain frequency for a chosen focal point, the
focal distance will change if the frequency is changed.
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(b)

FIG. 6. (Color online) GRIN lens of a solid with parallel gaps.

B. Example of GRIN lens for SV-waves

Aluminum (E =70 GPA, v = 0.35, and p = 2700 kg/m®)
is used as the background material in our example. The width
of each gap is @ =0.001 m, the length of each effective plate
between gaps is chosen as L; =0.2m, the thickness of the
center plate is #; =0.01 m. The focal point is designed to be
d=0.2m away from the end of the center plate at 40kHz.
The thicknesses of other plates are calculated using Eq. (16).
Since the plate thicknesses are varying, the end-effect correc-
tion for the effective plate lengths are also different. We take
the same value of the modification term f for every plate for
convenience, and iterate its value to achieve optimal focusing
effect. The focal point in Fig. 7(c) is roughly 0.25m away
from the edge of plate array. Figure 7 shows that the focal
point moves away from the plate array when the frequency
increases, this is due to the phase speed of the flexural wave
changing with frequency so that the phase gradient of the
transmitted SV-waves also changes.

IV. REFRACTIVE DEVICE FOR ELASTIC WAVES
A. Wave speeds and refractive index

In this section, we design refractive devices that steer
SV- and P-waves in different directions to split them from
each other. The refractive devices are based upon a solid
with aligned parallel gaps as shown in Fig. 8, in which the
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FIG. 7. (Color online) Focusing of SV-wave by GRIN lens with = —0.048
at (a) 20kHz, (b) 30kHz, (c) 40kHz, and (d) 50kHz.

(a)

FIG. 8. (Color online) Refraction of elastic waves.
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thin white strips are thin gaps with left end aligned vertically
and the right end aligned with a slope. The effective plates
have different lengths and thicknesses. Figure 8(a) illustrates
the idea of steering SV- and P-waves in different directions.
The long arrows indicate the propagation directions, the
short arrows indicate the direction of particle motion, i.e.,
they are perpendicular to the propagation direction of SV-
waves and parallel to the propagation direction of P-waves.
Zero-refraction of SV-wave and positive refraction of
P-wave are achieved based on the different wave speeds of
the two wave and by selecting plate members that have high
transmission for both SV- and P-waves.

The ratio of the length of the plate to the flexural wave-
length is

L 1 E /4

Jp 21 <12p(1 — 1/2)602) N/ 17
Equation (17) and 7 = L/cr imply that the flexural waves
travel through plates of the same L/+/ in the same amount
of time, and reach the other end with the same phase. Note
that total transmission for an incident SV-wave occurs at
® = w,. Using tr = L/cr and Eq. (17), we have tr = n/w,
and L/Ar = n/2, where n =1,2,3,.... With these proper-
ties, we can select desired plate members for the solid struc-
ture, as shown in Fig 8(a), and achieve zero-refractive index
for SV-waves, , ngy=0. As shown in Fig. 9(a), this

a

FIG. 9. (Color online) Diffraction of (a) SV- and (b) P-waves.
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zero-refractive effect is independent of frequency since dif-
fraction occurs simultaneously at the right ends of all the
plates and forms a new wavefront which is parallel to the
inclined edge of plate array, therefore the new SV-wave will
propagate in the direction perpendicular to the edge.
Notably, a normally incident SV-wave from the left side
transmits to the right side keeping its original type, the trans-
mitted P-wave is weak because the coupling mainly comes
from the mode in the waveguide/plate. However, in the case
of P-wave incidence, the physics of the longitudinal waves
on the plate is different since the phase speed does not
depend on the thickness of the plate. We consider the plate
array as an effective medium in which the longitudinal wave
speed in the lateral direction is constant, so that we have the
refractive index np =cp/c, = (1 —v)/V/1 —2v, which
only depends on the Poisson’s ratio of the material. The
refraction of P-wave can also be understood in terms of
Huygens’ principle as shown in Fig. 9(b). In summary, the
refractive index for SV- and P-waves are

in0,
ngy =T =0, (18)
sin 0;
sin 0, 1—v
sinf; /1 —2v’ (19
respectively.

The refractive device for SV- and P-waves is designed
by choosing the thickness /; and length L; for the plate on
the top, the thickness and length of the next plate can be cal-
culated using the relations

a+ l’ll'

hi = Clea Li+1 - Li - s ) (20)

where the fixed value ( is chosen for a particular slope, L; is
the length of the plate, and L, is the length of the next plate
based on the chosen slope s.

We can also design negative-index metamaterial, i.e.,
ngy <0, by varying the flexural wave travel time in the
plates. If the thickness of the plates are the same and we use
a similar structure as Fig. 8(a), then the refractive index is
nsy = RE(1 —v)/p(1 + v)h2e?])"*, which varies with
frequency.

B. Example of refractive device

Using aluminum as the material, we choose the first
plate with the dimensions #; =0.005m, L; =0.1 m, and gap
width a=0.001 m. We also choose the parameters s= —3
and {=0.5, then the length and thickness of other plates are
calculated using Eq. (20). In this example, we take the same
modification term f§ for each plate for convenience, the opti-
mal results are obtained when f=0.15. Figure 10 shows
SV-waves steered into the direction along the normal of the
edge of plate array, i.e., ngy=0. Figure 11 shows positive
refraction of P-waves. In the case of P-wave incidence, f§
does not play a role but we keep using the same value for
better comparison. The simulation results clearly show that
the angles of transmitted waves are independent of
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FIG. 10. (Color online) Zero SV-wave refraction at (a) 10kHz and (b)
20 kHz.

frequency, because the plate array is designed so that the re-
fractive index for both flexural wave and longitudinal wave
are independent of frequency.

V. ASYMMETRIC TRANSMISSION DEVICE
FOR ELASTIC WAVES

A. Mode conversion of P-wave and critical angle

The asymmetric transmission effect of P-waves is inves-
tigated in a solid with a flat free surface. As shown in Fig.
12(a) the energy carried by the incident P-wave from the left
side at a specific angle 0p cannot transmit through the paral-
lel gaps, and therefore will not be detected beyond them.
However, if the P-wave is incident from the right side of the
white slits at the angle 0, as shown in Fig. 12(b), the energy
will transmit to the left side efficiently. This transmission
asymmetry can be achieved when the P-wave is incident
from the left side at a critical incident angle, at which total
conversion to SV-waves occurs. An array of parallel gaps
perpendicular to the propagation direction of the reflected
SV-wave can stop the SV-wave but will let P-waves incident
from the right side travel through. In this section, we show
the equations for mode conversion, and find the critical angle
for total conversion from P- to SV-wave, which will be
used in the design of the asymmetric transmission device in
Sec. VB.

Assuming an incident P-wave at angle 0, with respect to
the surface normal and amplitude A, the amplitudes of the

g Qe

(a) (b)

FIG. 11. (Color online) Positive P-wave refraction at (a) 20kHz and (b)
40kHz.
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FIG. 12. (Color online) Asymmetric transmission. The horizontal black line
represents the free boundary of a half-space, the rectangular white slits rep-
resent gaps, lines with arrow indicate the propagation direction.

reflected P- and SV-waves, A; and A,, are given by Egs.
(5.52) and (5.53) in Ref. 26 as

Ay sin20sin 260, — K2 cos?26, 21
Ao sin20sin 20, + k2 cos?20,’

Ay 2k sin 20, cos 20, 22)
Ao sin20ysin 260, + k2 cos220,’

where k = cp/cr = /2(1 —v)/(1 —2v) from Egq. (3), and
0, is the SV-reflection angle: sin 0, = x~'sin 0. Figure 13
shows the P-wave reflection coefficient. Setting A;/Ag =0
defines the critical incident angle 0y = 0p for total conver-
sion from P-wave to SV-wave.

For example, in a half-space made of material with the
properties of brick (E=24GPa, v = 0.12, and p=2300kg/
m3), the critical angle for total P-to-SV conversion is
0p = 43.5°, with SV reflection angle 65 = 26.9°. The energy
plot from full FEM simulation is shown in Fig. 14(b) and
matches well with the theoretical prediction.

B. Example of asymmetric transmission device
for P-wave

Figure 14 shows that brick-like material is very promis-
ing for the application of asymmetric elastic transmission.
The critical angle for total conversion is large, providing
enough space to place an array of rectangular gaps as shown
in Fig. 12. Using brick as the material, we design an array of
plates/gaps to stop SV-waves but let P-waves transmit

v=2_0
\

Brick v = 0.12
0.5 Concrete v = 0.2

& Glass v = 0.23

Aluminum v = 0.35

/Rubbcr v =0.499

0 20 40 60 80
Incident angle (°)

FIG. 13. (Color online) Amplitude ratio between incident and reflected
P-wave of different materials, from Eq. (21).
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FIG. 14. (Color online) Mode conversion of P-wave at free boundary (bot-
tom of the simulation domain) in brick without slits/gaps. (a) P-wave inci-
dence from left side at non-critical angle 6, = 70°. (b) P-wave incidence
from left side at critical angle 0y = 0p (=43.5°).

through. The dimensions of each gap is 0.001 m wide and
0.5m long, and the thickness of the plate between gaps is
0.005 m. The gaps are aligned so that the angle between the
normal of the gap array and the normal of the free boundary
is 0g = 26.9°. The horizontal line at the bottom of the simu-
lation domain is the free boundary of the half-space. Figure
15(a) shows high energy reflection (\T|2 < 9%) for P-wave
incidence from the left side, Fig. 15(b) shows high energy
transmission (|T|2 > 94%) for P-waves incident from the
right side.

VI. CONCLUSION

We have considered a novel configuration in solids
made by parallel gaps that produce arrays of aligned
“effective plates.” The effects reported here arise from the
coupling between SV-waves in the exterior elastic solid and
flexural waves in the effective plates, and the coupling
between P-waves in the bulk and longitudinal waves in the
plates. The transmission and reflection coefficients for nor-
mally incident SV- and P-waves are calculated using thin
plate theory. The overall agreement of the transmission spec-
trum of SV- and P-waves calculated using the analytical
result and the full FEM simulation provides the basis for
designing GRIN structures. The GRIN lens is designed by
varying the thickness of the plates and demonstrated by full
FEM simulation showing focusing effects over a wide range
of frequency. The refractive device for SV- and P-waves is
designed by fixing the ratio between L and v/A and choosing
the slope of the edge of the plate array. It is also calculated
that the refractive index for flexural waves is 0 and is

boundary

FIG. 15. (Color online) Asymmetric transmission effect at f=21.6 kHz. (a)
P-wave incident from the left side with 0y = 6p (=43.5%). (b) SV-wave inci-
dent from the right side with 0y = 05 (=26.9°).
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independent of frequency and material properties, while the
refractive index for longitudinal waves depends on the
Poisson’s ratio of the material. The one-way effect for
P-waves is sensitive to frequency and is, therefore, a multi-
band effect. In summary, our analytical model of elastic
waves through aligned parallel gaps provides a new
approach to focus, steer, split, and stop elastic waves.
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