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Gradient index (GRIN), refractive, and asymmetric transmission devices for elastic waves are

designed using a solid with aligned parallel gaps. The gaps are assumed to be thin so that they can

be considered as parallel cracks separating elastic plate waveguides. The plates do not interact with

one another directly, only at their ends where they connect to the exterior solid. To formulate the

transmission and reflection coefficients for SV- and P-waves, an analytical model is established

using thin plate theory that couples the waveguide modes with the waves in the exterior body. The

GRIN lens is designed by varying the thickness of the plates to achieve different flexural wave

speeds. The refractive effect of SV-waves is achieved by designing the slope of the edge of the

plate array, and keeping the ratio between plate length and flexural wavelength fixed. The asymmet-

ric transmission of P-waves is achieved by sending an incident P-wave at a critical angle, at which

total conversion to SV-wave occurs. An array of parallel gaps perpendicular to the propagation

direction of the reflected waves stop the SV-wave but let P-waves travel through. Examples of fo-

cusing, steering, and asymmetric transmission devices are discussed.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4950770]
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I. INTRODUCTION

In recent decades acoustic and elastic metamaterials that

exhibit extraordinary wave bearing properties absent in natu-

ral materials have attracted much research interest, such as

negative refractive devices,1 gradient index (GRIN) lens,2

and non-reciprocal devices.3,4 Negative index materials can

be realized based on the localized resonant structures as

proposed by Liu et al.5 An alternative approach uses

phononic crystal (PC) which can be tailored to allow phase

velocity and group velocity point in opposite directions.1,6,7

To achieve non-reciprocity for acoustic waves, Liang and

coworkers8,9 used nonlinearity to break the symmetry of

physical laws under time reversal. The energy transmission

efficiency is usually restricted by the conversion efficiency

between the acoustic metamaterial and nonlinear medium,

and can be enhanced by increasing the conversion effi-

ciency.10 Another way to achieve non-reciprocity is by

breaking the spatial symmetry using linear acoustic metama-

terial,11–13 or by acoustic metasurfaces.14

This paper focuses on the elastic analogue of GRIN

lens, refractive, and asymmetric transmission devices. The

physics behind elastodynamic waves is more complicated

because of the coupling of different types of waves, but

brings into play more interesting phenomena. Climente

et al.15 designed a GRIN lens for flexural waves based on

the local variation of the plate thickness. Morvan et al.16

experimentally demonstrated negative refraction of trans-

verse waves with a two-dimensional (2D) PC of a square

lattice with cylindrical cavities. Later, Pierre et al.17

achieved negative refraction for antisymmetric Lamb waves

with a similar design. The focusing of bending waves in per-

forated thin plates was realized by Farhat et al.18 and Dubois

et al.,19 respectively. Zhu et al.20 experimentally demon-

strated the negative refraction of longitudinal waves by an

elastic metamaterial with chiral microstructure fabricated in

a steel plate. Chang et al.21 used a soft hyperelastic material

to split longitudinal and shear waves. Zhu et al.22 proposed a

1D PC with anti-symmetric and symmetric unit cells that

shows one-way Lamb wave transmission for both A and S

modes. Most of these articles are concerned with flexural or

Lamb waves, while only a few of them discuss bulk waves

in elastic bodies, namely, P-, SV-, and SH-waves.

In this paper, we model a solid with aligned parallel

gaps as depicted in Fig. 1(a). The effect of the gaps is to

make the solid material between them act like elastic plate

waveguides. Unlike the PC or the locally resonant metamate-

rial,23,24 our approach to the focusing, refraction and asym-

metric transmission of elastic waves is based on the wave

bearing properties of the plates. Broadband high transmis-

sion for refraction of elastic waves and multi-band high effi-

ciency for asymmetric transmission are achieved. Similar to

the idea of applying pre-compression differentially on granu-

lar chains to achieve phase delay,25 we vary the thickness of

the plates but keep the lengths constant to achieve a focusing

effect. The wave bearing properties of the plates also lead to

the idea of splitting P-wave and SV-wave in an elastic body

by using an array of aligned parallel gaps. Our approach to

asymmetric P-wave transmission uses the combination of

the free boundary of a half-space and an array of aligneda)Electronic mail: xiaoshi.su@rutgers.edu
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parallel gaps to achieve high and low energy transmission in

opposite propagation directions. The models are simple and

can be formulated analytically.

The outline of the paper is as follows. In Sec. II, we

derive explicit expressions for transmission and reflection of

normally incident SV- and P-waves, Eqs. (6), (7), (13), and

(14). The properties of the plates and the design of GRIN

lens are discussed in Sec. III. The refractive index for SV-

and P-waves are derived in Sec. IV. Numerical examples

showing zero-refraction of SV-waves and positive refraction

of P-waves are also presented in Sec. IV. Mode conversion

of P-waves in an elastic half-space at a free boundary and

the condition for total conversion are discussed in Sec. V.

The definition and numerical example of the asymmetric

transmission effect using mode conversion is also given in

Sec. V. Conclusions are presented in Sec. VI.

II. TRANSMISSION THROUGH ALIGNED PLATES

A. Governing equations

We consider the configuration of Fig. 1(a), in which an

array of plates is connected to and separates two half-spaces.

The configuration can be viewed as a homogenous solid with

aligned thin gaps or cracks. At each of the junctions, the SV-

wave in the half-space couples with the flexural wave on the

plates, and the P-wave in the half-space couples with the

compressional wave. In other words, an incident SV-wave

(or P-wave) from the left side travels through the plate in the

form of a flexural wave (or longitudinal wave), then trans-

mits into the right side as SV-wave (or P-wave). To model

and calculate the SV-wave (or P-wave) transmission and

reflection coefficients, we only need to consider a single

plate element connected between two half-spaces, as shown

in the boxed region in Fig. 1(b), because of the periodicity in

the vertical direction. We model and formulate the problem

using Kirchhoff plate theory which holds for long-

wavelength flexural waves on thin plates. In this paper we

focus on the frequency range in which the thin plate theory

assumption is valid. Together with the boundary conditions:

displacement (rotation angle) and force continuity at the two

ends, we can establish six (or four) equations with six (or

four) unknowns to solve for the transmission and reflection

coefficients.

The density of the material is denoted by q, the Young’s

modulus by E, the shear modulus by l, and the Poisson’s ra-

tio by �. We also define the Cartesian coordinate system as

shown in Fig. 1(b), where x is along the lateral direction of

the plate, y is into the plane and perpendicular to x, and z is

upward. The displacements in each direction are denoted as

u, v, and w, respectively. The thickness of the plate is

denoted by h, the width of the gap by a (a� h), and the

thickness of the unit structure in the boxed region in Fig.

1(b) is h0 ¼ hþ a. The bending stiffness of the plate is

D ¼ Eh3=12ð1� �2Þ. We assume the incident plane wave is

independent of y-direction, i.e., there is no y-dependent term.

The governing equations for flexural and longitudinal waves

in the thin plate are

D
@4w

@x4
� qhx2w ¼ 0; (1)

E

1� �2

@2u

@x2
þ qx2u ¼ 0; (2)

where x is the radial frequency, with time harmonic depend-

ence e�ixt assumed. The phase speeds of flexural and longi-

tudinal waves (cF, cL) on the plate, and the phase speeds of

SV- and P-waves (cT, cP) in the exterior body are

cF ¼
Eh2x2

12q 1� �2ð Þ

 !1=4

; cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

q 1� �2ð Þ

s
;

cT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

2q 1þ �ð Þ

s
; cP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 1� �ð Þ

q 1þ �ð Þ 1� 2�ð Þ

s
: (3)

B. Transmission and reflection of a normally incident
SV-wave

To solve for the transmission and reflection of SV-

waves, we assume the amplitude of the displacement of the

incident SV-wave as 1, reflected wave as R, transmitted

wave as T, and on the plate as A, B, U, and V, see Fig. 1(b),

so that

w ¼

eikT x þ Re�ikT x; x < 0;

AeikFx þ Be�ikFx

þUekFx þ Ve�kFx; 0 < x < L;

TeikTðx�LÞ; x > L;

8>>>><
>>>>:

(4)

where kF ¼ x=cF and kT ¼ x=cT are the flexural and shear

wavenumbers. Although rxx and ryy exist in the plate, they

FIG. 1. (Color online) 2D schematic of aligned parallel gaps.
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do not contribute to the force on the plate since
Ð h=2

�h=2
rxxdz

¼ �
Ð h=2

�h=2
½Ez=ð1� �2Þ�ð@2w=@x2Þdz ¼ 0 and

Ð h=2

�h=2
ryydz

¼ �
Ð h=2

�h=2
½Ez�=ð1� �2Þ�ð@2w=@x2Þdz ¼ 0. Since there is no

y-dependence in the governing equation the shear force

per unit length in y-direction is Q ¼
Ð h=2

�h=2
rxzdz

¼ �Dð@3w=@x3Þ. The shear force in the exterior body is

Q ¼ h0rxz ¼ lh0ð@w=@xÞ. The six z-averaged boundary con-

ditions are continuity of displacement, rotation angle and

shear force at x¼ 0 and x¼L, which imply the following

system of equations:

1þ R ¼ Aþ Bþ U þ V;

1� R ¼ kF

kT
A� B� iU þ iVð Þ;

1� R ¼ hkT

h0kF
A� Bþ iU � iVð Þ;

T ¼ Azi þ Bz�i þ Uzþ Vz�1;

T ¼ kF

kT
Azi � Bz�i � iUzþ iVz�1ð Þ;

T ¼ hkT

h0kF
Azi � Bz�i þ iUz� iVz�1ð Þ

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

; (5)

with z ¼ ekFL so that z6i ¼ e6ikFL.

This system gives the transmission and reflection coeffi-

cients but the explicit expressions are long. We can split the

solutions into symmetric and anti-symmetric modes which

reduces the system to two 3� 3 systems. This leads to

T ¼ 1

2
RS � RAð Þe�ikT L; (6)

R ¼ 1

2
RS þ RAð Þe�ikT L; (7)

where the reflection coefficients RS and RA are

RS ¼

s
a
� 1

s

� �
1

th
þ s

a
þ 1

s

� �
1

t
þ i2

s
a
� 1

s

� �
1

th
þ s

a
þ 1

s

� �
1

t
� i2

; (8)

RA ¼

s
a
� 1

s

� �
th �

s
a
þ 1

s

� �
tþ i2

s
a
� 1

s

� �
th �

s
a
þ 1

s

� �
t� i2

; (9)

with s¼kF=kT ;a¼h=h0; t¼ tanðkFL=2Þ, and th¼ tanhðkFL=2Þ.
Note that RS and RA are both of unit magnitude, which

implies that the transmission and reflection coefficients sat-

isfy jTj2þjRj2¼1. Total transmission therefore occurs

when RSþRA¼0. For small gap width, i.e., a�1; jTj¼1 is

obtained if kF¼kT or if either of the following holds:

tanðkFL=2Þ6tanhðkFL=2Þ ¼ 0: (10)

However, kF¼ kT gives a single high frequency at which

Kirchhoff plate theory does not hold. This single frequency

is not in the frequency range of interest since we only con-

sider long-wavelength flexural waves, i.e., k� h. The

frequencies satisfying Eq. (10) correspond to the symmetric

(þ) and anti-symmetric (–) modal frequencies for a plate of

length L fixed at both ends, i.e., subject to the boundary

conditions w¼ 0 and @w=@x ¼ 0.

In this example, we consider an infinite aluminum

domain (E¼ 70 GPA, � ¼ 0:35, and q¼ 2700 kg/m3) with

an infinite array of aligned equidistant parallel gaps as shown

in Fig. 1(a). The thickness and length of each plate are

h¼ 0.02 m and L¼ 0.2 m, respectively. The geometric pa-

rameter h0 ¼ 0:021 m is shown in Fig. 1(b). Figure 2 shows

that flexural waves are quite dispersive on plates, it is also

clear that the transmission tends to unity at high frequency.

C. Transmission and reflection of a normally incident
P-wave

Similarly, we can calculate the transmission and reflec-

tion coefficients of P-waves. Assuming the amplitude of the

displacement of the incident wave as 1, reflected wave as R,

transmitted wave as T, and the amplitude of displacement on

the plate as A and B, the displacements are expressed as

u ¼
eikPx þ Re�ikPx; x < 0;

AeikLx þ Be�ikLx; 0 < x < L;

TeikPðx�LÞ; x > L;

8><
>: (11)

where kP ¼ x=cP and kL ¼ x=cL are the wavenumbers of

P-wave in the exterior body and longitudinal wave in the

plate. The compressional force in the exterior body is Fx

¼ h0rxx ¼ Eh0ð@u=@xÞ, and the compressional force in the

plate is Fx ¼ Ehð@u=@xÞ. The four z-averaged boundary con-

ditions are continuity of displacement and compressional

force at x¼ 0 and x¼L, yielding the system of equations,

1þ R ¼ Aþ B;

1� R ¼ h

h0
kL

kP
A� Bð Þ;

T ¼ AeikLL þ Be�ikLL;

T ¼ h

h0
kL

kP
AeikLL � Be�ikLLð Þ

9>>>>>>>=
>>>>>>>;
: (12)

The transmission and reflection coefficients for the incident

P-wave are then

FIG. 2. (Color online) Transmission and reflection spectrum for a normally

incident SV-wave.
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T ¼ 4akPkLeikLL

kP þ akLð Þ2 � kP � akLð Þ2ei2kLL
; (13)

R ¼ k2
P � a2k2

L

� �
1� e2ikLLð Þ

kP þ akLð Þ2 � kP � akLð Þ2ei2kLL
; (14)

which also satisfy jTj2 þ jRj2 ¼ 1. It is easy to show that

total transmission, i.e., jTj ¼ 1, requires either kP � akL ¼ 0

or ei2kLL ¼ 1. The first occurs over all frequency range

when a ¼ kP=kL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�
p

=ð1� �Þ and the others at xn,

n ¼ 1; 2;…; where

xn ¼
np
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

q 1� �2ð Þ

s
; n ¼ 1; 2; 3;…; (15)

where xn is the radial frequency corresponding to each n.

However, a ¼ kP=kL indicates that total transmission can be

achieved by choosing �, this only works for low Poisson’s

ratio material since we only interested in structures with

small gap width.

We use the same structure and material as the example

of SV-wave transmission. From Fig. 3, we find that the trans-

mission is close to 1 over all frequencies so that P-waves

transmit through these effective plates with high efficiency.

D. Comparison of analytical results with simulation

The transmission spectrum for SV- and P-waves

obtained using our analytical model and full wave FEM sim-

ulations are shown in Fig. 4 for comparison. For a normally

incident SV-wave, the low frequency behavior of the analyti-

cal solution match well with simulation result, this indicates

that our boundary condition assumptions are correct. The

transmission peaks (jTj ¼ 1) shift at higher frequencies, this

can be understood as the neck effect at the junction between

plate and half space changes the effective length of the

plates. However, the analytical model for P-waves is in good

agreement with full FEM simulations, it is obvious that the

transmission peaks match well in frequency.

E. Improved analytical solution for SV-wave incidence

Since the analytically calculated P-wave transmission

coefficient matches well with simulation results and is

always high as long as the gap width a is small, i.e.,

h=h0 � 1, we only consider an improved analytical solution

for SV-wave incidence. We introduce an empirical end-

effect term b to represent the effective length of the plate

L0 ¼ ð1þ bÞL and replace the L in our original model. The

same geometry and the same material properties as the previ-

ous example are used to demonstrate how the modification

works. The full wave FEM simulation is done using plate

with h¼ 0.02 m and L¼ 0.2 m. Practically, L0 is the length of

the plate in the analytical model when we design a metama-

terial, but L is the length which will be used in FEM simula-

tion. By iterating the value of b, the analytical solution can

be matched better to the full FEM solution at higher fre-

quency range. Figure 5 shows good agreement by taking

b ¼ 0:07. This value of b only works for the parameters

used in this example, new FEM simulations are required to

find b for other parameter sets. However, the analytical
FIG. 3. (Color online) Transmission and reflection spectrum for a normally

incident P-wave.

FIG. 4. (Color online) Comparison of the analytical solution (solid line) and

full FEM simulation results (dashed line) for incident (a) SV-wave and (b)

P-wave.
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technique is still important since it helps understand the

physics behind the model and provides an initial parameter

set in our design. Alternatively, we can seek modification in

simulations by changing the length of plates using

L ¼ L0=ð1þ bÞ.

III. GRIN LENS FOR SV-WAVE

A. Wave speeds and diffraction

We next design a GRIN lens, as depicted in Fig. 6(a), to

focus SV-waves. The white strips are thin gaps, both of the

ends are aligned vertically so that the effective plates have the

same length. However, the thicknesses of the plates are

allowed to vary based on the fact that flexural waves travel

faster in thicker plates so that diffraction occurs earlier in

thicker plates. Assuming circular wavefront radiating from the

right end of each plate, the transmitted SV-wave intersect at

the focal point according to Huygens’ principle. The physics

behind the focusing effect is based on diffraction effect similar

to that in the generation of sound bullets.25 The GRIN lens is

designed by first selecting the thickness h1 and length L for the

center plate, and choosing the distance d from the focal point

to the end of the center plate at a particular frequency f. The

gap width a is fixed. The total time for a flexural wave travel-

ing from one end of a plate to the other end is tF ¼ L=cF. As

shown in Fig. 6(b), rays of the incident SV-wave from the left

side travel along different paths but arrive at the focal point

simultaneously. We formulate the relations between the thick-

ness of the center plate and other plates asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

total þ d2
p

� d

cT
¼ L

cF1

� L

cFi

; (16)

where cF1
is the flexural wave speed in the center plate and

depends on h1, cFi
is the flexural speed in the ith plate and

depends on the thickness hi, htotal is the distance from the

neutral line of the center plate to the neutral line of the ith
plate which is accumulated by adding the thickness of each

plate and width of gaps. Note that this type of lens is

designed at a certain frequency for a chosen focal point, the

focal distance will change if the frequency is changed.

B. Example of GRIN lens for SV-waves

Aluminum (E¼ 70 GPA, � ¼ 0:35, and q¼ 2700 kg/m3)

is used as the background material in our example. The width

of each gap is a¼ 0.001 m, the length of each effective plate

between gaps is chosen as L1¼ 0.2 m, the thickness of the

center plate is h1¼ 0.01 m. The focal point is designed to be

d¼ 0.2 m away from the end of the center plate at 40 kHz.

The thicknesses of other plates are calculated using Eq. (16).

Since the plate thicknesses are varying, the end-effect correc-

tion for the effective plate lengths are also different. We take

the same value of the modification term b for every plate for

convenience, and iterate its value to achieve optimal focusing

effect. The focal point in Fig. 7(c) is roughly 0.25 m away

from the edge of plate array. Figure 7 shows that the focal

point moves away from the plate array when the frequency

increases, this is due to the phase speed of the flexural wave

changing with frequency so that the phase gradient of the

transmitted SV-waves also changes.

IV. REFRACTIVE DEVICE FOR ELASTIC WAVES

A. Wave speeds and refractive index

In this section, we design refractive devices that steer

SV- and P-waves in different directions to split them from

each other. The refractive devices are based upon a solid

with aligned parallel gaps as shown in Fig. 8, in which the

FIG. 5. (Color online) Comparison of the improved analytical solution

(solid line) and simulation results (dashed line).

FIG. 6. (Color online) GRIN lens of a solid with parallel gaps.
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thin white strips are thin gaps with left end aligned vertically

and the right end aligned with a slope. The effective plates

have different lengths and thicknesses. Figure 8(a) illustrates

the idea of steering SV- and P-waves in different directions.

The long arrows indicate the propagation directions, the

short arrows indicate the direction of particle motion, i.e.,

they are perpendicular to the propagation direction of SV-

waves and parallel to the propagation direction of P-waves.

Zero-refraction of SV-wave and positive refraction of

P-wave are achieved based on the different wave speeds of

the two wave and by selecting plate members that have high

transmission for both SV- and P-waves.

The ratio of the length of the plate to the flexural wave-

length is

L

kF
¼ 1

2p
E

12q 1� �2ð Þx2

� ��1=4 Lffiffiffi
h
p : (17)

Equation (17) and tF ¼ L=cF imply that the flexural waves

travel through plates of the same L=
ffiffiffi
h
p

in the same amount

of time, and reach the other end with the same phase. Note

that total transmission for an incident SV-wave occurs at

x ¼ xn. Using tF ¼ L=cF and Eq. (17), we have tF ¼ np=xn

and L=kF ¼ n=2, where n ¼ 1; 2; 3;… . With these proper-

ties, we can select desired plate members for the solid struc-

ture, as shown in Fig. 8(a), and achieve zero-refractive index

for SV-waves, i.e., nSV¼ 0. As shown in Fig. 9(a), this
FIG. 7. (Color online) Focusing of SV-wave by GRIN lens with b¼�0.048

at (a) 20 kHz, (b) 30 kHz, (c) 40 kHz, and (d) 50 kHz.

FIG. 8. (Color online) Refraction of elastic waves. FIG. 9. (Color online) Diffraction of (a) SV- and (b) P-waves.
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zero-refractive effect is independent of frequency since dif-

fraction occurs simultaneously at the right ends of all the

plates and forms a new wavefront which is parallel to the

inclined edge of plate array, therefore the new SV-wave will

propagate in the direction perpendicular to the edge.

Notably, a normally incident SV-wave from the left side

transmits to the right side keeping its original type, the trans-

mitted P-wave is weak because the coupling mainly comes

from the mode in the waveguide/plate. However, in the case

of P-wave incidence, the physics of the longitudinal waves

on the plate is different since the phase speed does not

depend on the thickness of the plate. We consider the plate

array as an effective medium in which the longitudinal wave

speed in the lateral direction is constant, so that we have the

refractive index nP ¼ cP=cL ¼ ð1� �Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�
p

, which

only depends on the Poisson’s ratio of the material. The

refraction of P-wave can also be understood in terms of

Huygens’ principle as shown in Fig. 9(b). In summary, the

refractive index for SV- and P-waves are

nSV ¼
sin hr

sin hi
¼ 0; (18)

nP ¼
sin hr

sin hi
¼ 1� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�
p ; (19)

respectively.

The refractive device for SV- and P-waves is designed

by choosing the thickness h1 and length L1 for the plate on

the top, the thickness and length of the next plate can be cal-

culated using the relations

hi ¼ fL2
i ; Liþ1 ¼ Li �

aþ hi

s
; (20)

where the fixed value f is chosen for a particular slope, Li is

the length of the plate, and Liþ1 is the length of the next plate

based on the chosen slope s.

We can also design negative-index metamaterial, i.e.,

nSV< 0, by varying the flexural wave travel time in the

plates. If the thickness of the plates are the same and we use

a similar structure as Fig. 8(a), then the refractive index is

nSV ¼ ½2Eð1� �Þ=qð1þ �Þh2x2�1=4
, which varies with

frequency.

B. Example of refractive device

Using aluminum as the material, we choose the first

plate with the dimensions h1¼ 0.005 m, L1¼ 0.1 m, and gap

width a¼ 0.001 m. We also choose the parameters s¼�3

and f¼ 0.5, then the length and thickness of other plates are

calculated using Eq. (20). In this example, we take the same

modification term b for each plate for convenience, the opti-

mal results are obtained when b¼ 0.15. Figure 10 shows

SV-waves steered into the direction along the normal of the

edge of plate array, i.e., nSV¼ 0. Figure 11 shows positive

refraction of P-waves. In the case of P-wave incidence, b
does not play a role but we keep using the same value for

better comparison. The simulation results clearly show that

the angles of transmitted waves are independent of

frequency, because the plate array is designed so that the re-

fractive index for both flexural wave and longitudinal wave

are independent of frequency.

V. ASYMMETRIC TRANSMISSION DEVICE
FOR ELASTIC WAVES

A. Mode conversion of P-wave and critical angle

The asymmetric transmission effect of P-waves is inves-

tigated in a solid with a flat free surface. As shown in Fig.

12(a) the energy carried by the incident P-wave from the left

side at a specific angle hP cannot transmit through the paral-

lel gaps, and therefore will not be detected beyond them.

However, if the P-wave is incident from the right side of the

white slits at the angle h0P as shown in Fig. 12(b), the energy

will transmit to the left side efficiently. This transmission

asymmetry can be achieved when the P-wave is incident

from the left side at a critical incident angle, at which total

conversion to SV-waves occurs. An array of parallel gaps

perpendicular to the propagation direction of the reflected

SV-wave can stop the SV-wave but will let P-waves incident

from the right side travel through. In this section, we show

the equations for mode conversion, and find the critical angle

for total conversion from P- to SV-wave, which will be

used in the design of the asymmetric transmission device in

Sec. V B.

Assuming an incident P-wave at angle h0 with respect to

the surface normal and amplitude A0, the amplitudes of the

FIG. 10. (Color online) Zero SV-wave refraction at (a) 10 kHz and (b)

20 kHz.

FIG. 11. (Color online) Positive P-wave refraction at (a) 20 kHz and (b)

40 kHz.
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reflected P- and SV-waves, A1 and A2, are given by Eqs.

(5.52) and (5.53) in Ref. 26 as

A1

A0

¼ sin 2h0 sin 2h2 � j2 cos22h2

sin 2h0 sin 2h2 þ j2 cos22h2

; (21)

A2

A0

¼ 2j sin 2h0 cos 2h2

sin 2h0 sin 2h2 þ j2 cos22h2

; (22)

where j ¼ cP=cT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� �Þ=ð1� 2�Þ

p
from Eq. (3), and

h2 is the SV-reflection angle: sin h2 ¼ j�1 sin h0. Figure 13

shows the P-wave reflection coefficient. Setting A1=A0 ¼ 0

defines the critical incident angle h0 ¼ hP for total conver-

sion from P-wave to SV-wave.

For example, in a half-space made of material with the

properties of brick (E¼ 24 GPa, � ¼ 0:12, and q¼ 2300 kg/

m3), the critical angle for total P-to-SV conversion is

hP ¼ 43:5�, with SV reflection angle hS ¼ 26:9�. The energy

plot from full FEM simulation is shown in Fig. 14(b) and

matches well with the theoretical prediction.

B. Example of asymmetric transmission device
for P-wave

Figure 14 shows that brick-like material is very promis-

ing for the application of asymmetric elastic transmission.

The critical angle for total conversion is large, providing

enough space to place an array of rectangular gaps as shown

in Fig. 12. Using brick as the material, we design an array of

plates/gaps to stop SV-waves but let P-waves transmit

through. The dimensions of each gap is 0.001 m wide and

0.5 m long, and the thickness of the plate between gaps is

0.005 m. The gaps are aligned so that the angle between the

normal of the gap array and the normal of the free boundary

is hS ¼ 26:9�. The horizontal line at the bottom of the simu-

lation domain is the free boundary of the half-space. Figure

15(a) shows high energy reflection (jTj2 < 9%) for P-wave

incidence from the left side, Fig. 15(b) shows high energy

transmission (jTj2 > 94%) for P-waves incident from the

right side.

VI. CONCLUSION

We have considered a novel configuration in solids

made by parallel gaps that produce arrays of aligned

“effective plates.” The effects reported here arise from the

coupling between SV-waves in the exterior elastic solid and

flexural waves in the effective plates, and the coupling

between P-waves in the bulk and longitudinal waves in the

plates. The transmission and reflection coefficients for nor-

mally incident SV- and P-waves are calculated using thin

plate theory. The overall agreement of the transmission spec-

trum of SV- and P-waves calculated using the analytical

result and the full FEM simulation provides the basis for

designing GRIN structures. The GRIN lens is designed by

varying the thickness of the plates and demonstrated by full

FEM simulation showing focusing effects over a wide range

of frequency. The refractive device for SV- and P-waves is

designed by fixing the ratio between L and
ffiffiffi
h
p

and choosing

the slope of the edge of the plate array. It is also calculated

that the refractive index for flexural waves is 0 and is

FIG. 12. (Color online) Asymmetric transmission. The horizontal black line

represents the free boundary of a half-space, the rectangular white slits rep-

resent gaps, lines with arrow indicate the propagation direction.

FIG. 13. (Color online) Amplitude ratio between incident and reflected

P-wave of different materials, from Eq. (21).

FIG. 14. (Color online) Mode conversion of P-wave at free boundary (bot-

tom of the simulation domain) in brick without slits/gaps. (a) P-wave inci-

dence from left side at non-critical angle h0 ¼ 70�. (b) P-wave incidence

from left side at critical angle h0 ¼ hP ð¼43:5�Þ.

FIG. 15. (Color online) Asymmetric transmission effect at f¼ 21.6 kHz. (a)

P-wave incident from the left side with h0 ¼ hP ð¼43:5�Þ. (b) SV-wave inci-

dent from the right side with h0 ¼ hS ð¼26:9�Þ.
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independent of frequency and material properties, while the

refractive index for longitudinal waves depends on the

Poisson’s ratio of the material. The one-way effect for

P-waves is sensitive to frequency and is, therefore, a multi-

band effect. In summary, our analytical model of elastic

waves through aligned parallel gaps provides a new

approach to focus, steer, split, and stop elastic waves.
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