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Redirection of acoustic energy by 90� is shown to be possible in an otherwise acoustically transparent

sonic crystal. An unresponsive “deaf” antisymmetric mode is excited by matching Bragg scattering

with a quadrupole scatterer resonance. The dynamic effect causes normal unidirectional wave motion

to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The

Poisson-like effect is demonstrated using the first flexural resonance in cylindrical shells of elastic

solids. Simulations for a finite array of acrylic shells that are impedance and index matched to water

show dramatic acoustic energy redirection in an otherwise acoustically transparent medium.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4950709]
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I. INTRODUCTION AND BACKGROUND

A sonic crystal (SC) is a periodic array of scatterers in

an acoustic medium such as water or air. SCs originated as

the acoustic analog of the early photonic crystals of

Yablonovitch1 and John,2 which exhibited opaqueness at

certain frequencies. Wave motion in SCs is characterized by

Bloch waves, which, by virtue of the structural periodicity,

can be folded in the wave number domain into the smallest

indivisible unit cell, the irreducible Brillouin zone (BZ).3

The resulting band diagrams completely describe the SC fre-

quency response, including bandgaps (BGs) formed by

Bragg scattering when the incident wavelength is close to

the lattice constant. BGs may be interpreted as bands of fre-

quencies associated with a single Bloch wavelength,4 within

which an incident wave decays exponentially through the

SC. A complete BG exists when a plane wave at any angle

of incidence cannot propagate. The bandwidth of the BG

depends on the filling fraction, shape, symmetry, orientation,

and the relative impedance and/or density of individual

scatterers.

The elasticity of the scatterer usually cannot be ignored

in water-based SCs, as compared with air, where most scat-

terers can be considered as rigid. This can be used to advant-

age, for instance, to match the impedance of water. If the

scatterer is a circular metal shell, there exists a unique thick-

ness at which the scatterer impedance matches to water,5

maximizing transmission through an array. The reason6 is

that although the metal has both stiffness and density greater

than water, the effective stiffness and density of the shell are

proportional to the thickness-to-radius ratio h=a < 1 and,

therefore, a unique value of h=a exists at which the product

of stiffness and density equals the square of the acoustic im-

pedance of water. By varying h=a, it is also possible to tune

either the quasi-static bulk modulus of the shell or its effec-

tive density to those of water, but it is rarely possible to

match both simultaneously with some material exceptions.6

However, it is possible to match both the density and bulk

modulus by inserting an axisymmetric elastic substructure

into the shell.6,7 Matching the bulk modulus removes the

monopolar response, while the matched density eliminates

dipole radiation, dramatically reducing the scattering at sub-

wavelength frequencies. Such control of quasi-static shell

properties facilitates the design of refraction-based lenses.5,6

Elastic shells provide rich scattering properties, mainly

due to their ability to support highly dispersive flexural

waves (in-plane bending), which are the topic of this paper.

Waves scattered from flexural resonances in a SC interact

with the propagating Bloch waves forming what are called

quasi-bandgaps in the band diagram,8 which can occur at

sub-wavelength frequencies. If the flexural resonant fre-

quency is tuned to fall inside the first BG, narrow asymmet-

ric transmission peaks (Fano-like9 asymmetry according to

Kosevich et al.8) appear due to coherent scattering. These

narrow regions of transmission were used by Khelif et al.10

to create a narrow passband filter, and later by Pennec

et al.11 for demultiplexing an incident wave. Also, Kosevich

et al.8 concluded that the BG bandwidth increases when a

flexural resonance falls within it.

An important feature of SCs is the existence of antisym-

metric (AS) bands, eigenmodes polarized in the direction

perpendicular to the incident wave, as compared to symmet-

ric (S) modes oriented along the incident direction. S�anchez-

P�erez et al.12 termed AS modes in a symmetrically insonified

square array as deaf since their experiment was carried out

in air at audible frequencies. They demonstrated that an AS

mode is not excited by a normal plane wave onto an array of

effectively rigid scatterers by comparing the experimental

transmission data with the band diagram obtained with the

plane wave expansion method. Later, Hsiao et al.13 com-

pared the band structure of steel circular cylinders in water

obtained using the periodic-boundary finite element method,

to the transmission simulations using the finite difference

time domain method, as a way of separating out the deaf

modes. Also, Laude et al.17 demonstrated how AS modes are

excited when the symmetry of the unit cell is not preserved.

Evanescent waves can play an important role in SCs. In

a thorough analysis of the connection between propagatinga)Electronic mail: titovichalexey@gmail.com
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and evanescent bands, Romero-Garcia et al.14 point out that

the transfer of symmetry from one band to the other is via an

evanescent mode. Similarly, repelled bands are connected by

an evanescent band. These references emphasize that the

deaf modes are coupled to the propagating mode at the boun-

daries of the BG, either in real or evanescent regions.

However, Botey et al.15 recently showed for photonic crys-

tals that one can “unlock” evanescent modes from the BZ

boundaries resulting in evanescent beams escaping the pho-

tonic crystal. The beam forming is caused by the negative

group velocity of the unlocked mode constituting negative

refraction. The idea of utilizing evanescent modes is here

extended to acoustics where the flexural mode of an elastic

shell is the proposed mechanism for exciting an AS mode

leading to perpendicular wave propagation.

The n¼ 2 flexural mode is a constant volume mode

(Fig. 1) that when excited by an incident wave transfers

acoustic energy to a normal direction via the quadrupole

scattering pattern. The displacement of this mode resembles

the Poisson effect in solids, with conceptually similar reper-

cussions, and is referred to as the acoustic Poisson-like
effect. Generally, low order flexural modes are subsonic,

scattering an evanescent wave that does not propagate into

the far-field. However, in SCs where the lattice constant is

on the order of the decay length of the evanescent wave,

there is significant interaction between the incident wave

and the flexural waves on adjacent shells. The orientation of

the scattered quadrupole depends on the direction of inci-

dence. In particular, a perpendicular wave front can emerge

if the shells are spaced so that all scattered quadrupoles are

in phase (i.e., when the spacing is close to the wavelength) at

normal incidence. This is the central idea of this article.

II. ANALYSIS AND DISCUSSION

Consider a SC with square unit cell of side length b,

containing an empty circular elastic shell of outer radius a,

thickness h, density qs, shear modulus ls, Poisson’s ratio �s,

in water (q¼ 1000 kg/m3, K¼ 2.25 GPa), shown in Fig. 1.

The material, radius, and thickness of the shell are selected

such that: (i) the effective bulk modulus of the shell equals

that of water Keff ¼ K, which eliminates the monopolar

response, (ii) the effective density also matches, qeff ¼ q,

removing the sub-wavelength dipolar response and making

the SC neutrally buoyant, and (iii) the n¼ 2 flexural reso-

nance is near 20 kHz, the designated frequency of interest

(see Ref. 6 for tuning of quasi-static parameters). The shell’s

effective density is qeff ¼ qsðh=aÞð2� h=aÞ and the effec-

tive bulk modulus follows from plane strain elasticity as

Keff ¼ lsð2ð1� �sÞqs=qeff � 1Þ�1
. A thick acrylic shell

(a¼ 1 cm, h¼ 0.62a) with density, Young’s modulus and

Poisson’s ratio qs¼ 1190 kg/m3, Es ¼ 2ð1þ �sÞls

¼ 3:2 GPa; �s ¼ 0:35, satisfies these three criteria with

n¼ 2 flexural resonance at 15 678 Hz. The lattice constant

b¼ 4.78 cm is selected so that the n¼ 2 resonance coincides

with the first BG in the CX direction and corresponds to a

low filling fraction of fs¼ 0.14. There is no special reason

for this choice of b other than minimizing the distance in

frequency space from the n¼ 2 resonance to the first CM

BG while also minimizing the spacing between shells. The

coherent scattering postulated in the previous paragraph

is expected to occur near the first CM BG and also in the

second CX BG.

Modes characterized by wave propagation in a perpen-

dicular direction exist in any SC as AS modes. It is sufficient

to look at a homogeneous square unit cell of water with arti-

ficial periodic boundary conditions to understand the origin

and structure of AS modes. Figure 1 shows three adjacent

unit cells, as well as the first six irreducible BZs of the

square array. The first three symmetric BZ boundaries

(labeled S1, S2, S3) correspond to propagation in the (1,1)

direction and the first two AS BZ boundaries (labeled AS1,

AS2) correspond to projected wave vectors in the (1,�1)

direction.

Figure 2(a) shows the band diagram for the unit cell with

the thick acrylic shell obtained using COMSOL (Burlington,

MA). Plotted over the shell-water bands (shown with dots)

are the bands for the water-only unit cell (dashed lines).

These can be thought of as the fundamental or “starting”

bands for any SC. They are obtained by equating the free

space wave number kb ¼ 2pbf=c to the wave number shown

in Fig. 1, and plotted as a function of the wave vector projec-

tion onto the BZ boundary. Defining the reduced wave vector

as k̂ ¼ kb 2 ½0;
ffiffiffi
2
p

p�, the AS1 band can be expressed as

ð2pbf=cÞ2 ¼ ð
ffiffiffi
2
p

pÞ2 þ ðk̂Þ2, but because the bands are folded

into ½0;
ffiffiffi
2
p

p�, the expression becomes f ¼ ðc=2pbÞð2p2

þð
ffiffiffi
2
p

p� k̂Þ2Þ1=2
. Bands S1 and S2 are linear following

f ¼ ðc=2pbÞk̂, whereas the AS2 band is f ¼ ðc=2pbÞð8p2

þk̂
2Þ1=2

, and the S3 band is f ¼ ðc=2pbÞð2p2 þ ð
ffiffiffi
2
p

p

þk̂Þ2Þ1=2
. The remarkable proximity of the water-only bands

with the shell-water bands is a consequence of tuning of the

shell to the quasi-static properties of water, making the SC

acoustically transparent and decreasing the BG width. It is

important to note that the curvature of some bands is due

to the artificial discretization of space by the triangular

FIG. 1. (Color online) Square unit cells (dashed) consist of an empty shell

in water. Overlaid on top are the first six irreducible BZs in reciprocal space,

which have perimeters CXM. The n¼ 2 flexural mode of an elastic shell is

illustrated in the top left.
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irreducible BZ and the projection of the wave vector onto

the boundary of an opposing BZ (see the k vector in Fig. 1).

Also shown are the evanescent bands, plotted by fixing

the real value of k̂ ¼
ffiffiffi
2
p

p. In order to excite the AS mode,

the scatterer has to be non-axisymmetric,17 breaking the geo-

metrical symmetry of the unit cell. Another way to break the

cell symmetry is with a non-axisymmetrically vibrating scat-

terer such as the n¼ 2 flexural mode of a shell.

The band structure in Fig. 2(a) for the shell-water cell

exhibits two pairs of flat bands caused by n¼ 2 and n¼ 3

flexural modes of the shell. The two n¼ 2 flexural modes

near 16 kHz differ in their orientation, one is oriented with

the corners and the other with the faces of the square unit

cell [modes (c) and (d) in Fig. 2]. The former interferes with

the S1 symmetric mode resulting in the veering of the bands.

The flexural mode oriented with the faces is not directly

excited, but rather couples to one of the AS1 modes via an

evanescent band [pointed out with a pair of arrows in Fig.

2(a)]. The flexural mode represents a local resonance and is

thus independent of the array periodicity. The coupling of a

flexural mode to the AS1 band is what allows transfer of the

incident wave energy to a perpendicular direction. A magni-

fied view of the BG is shown in Fig. 2(b), where the excited

AS1 band is displayed with a thick line and the other AS1

band locks to the lower BG boundary by an evanescent

band. This effect differs from a near-zero-index material16

that depends on the accidental degeneracy of modes at the

center of the BZ (C point) where linear dispersion is key.

On the right of Fig. 2(b) is the energy balance for an

array 8 cells deep by 41 cell wide insonified by a plane wave

from the bottom (see array in Fig. 3). The transmission and

reflection coefficients are obtained by integrating the inten-

sity I over the four sides of the array yielding energy

E ¼
Ð

I � n dL, and leading to definitions of the transmission

from the side Tside ¼ Eleft=Einc, transmission from the back

T ¼ Etop=Einc, and reflection from the front R ¼ 1� T
�2Tside. The sideways transmission Tside is centered about

the BG since it depends on the coherent scattering of shell-

borne flexural waves, which occurs when the wavelength is

on the order of the lattice constant. Therefore, this acoustic

Poisson-like effect is evident even for a mono-layer of shells,

but strengthens with multiple layers. The peak sideways

transmission for this array is 46% at 22 350 Hz. A simulation

of a Gaussian beam incident onto the bottom of the array

with a frequency of 22 350 Hz is shown in Fig. 3(a). The

absolute pressure field shows very strong beams projecting

symmetrically from the sides of the array. There is a pressure

magnification at the sides of the array as compared to the

incident wave, but this can be attributed to the aspect ratio of

the array. Also shown in Fig. 3(b) is the same simulation,

but at a higher frequency of 27 000 Hz, where the beam

passes unabated through the array due to the tuning

described earlier.

In comparison, Fig. 4 shows the band diagram for a rigid

cylinder of the same radius and lattice constant along the

CM direction. The AS1 bands are deaf and have the typical

form for a SC of rigid scatterers. There is little agreement

with the water-only bands (shown with the dashed lines) due

to the effective impedance/index mismatch. However, the

FIG. 2. (a) (Color online) Band diagram for unit cell with an acrylic shell along CM direction; the dashed lines are the bands for a water-only unit cell. (b)

Magnified view of the first BG. The thick curve is the AS mode, which locks to the n¼ 2 band. The three adjacent curves on the right show the fraction of the

incident energy that goes out of the sides of a finite array Tside, the back of the array T and the reflected energy R. The array is 8 shells deep in the direction of

incidence and 41 shells wide. (c)–(h) First six modes along the line M in (a), corresponding to k̂ ¼
ffiffiffi
2
p

p in the (1,1) direction. The total pressure and displace-

ment of the shell are shown, emphasizing the mode shapes. The frequencies in plots (c)–(h) are 15 123, 16 046, 21 656, 22 275, 22 275, and 22 917 Hz, respec-

tively. The thick band in (b) at point M is mode (g), which locks to flexural mode (d).

FIG. 3. (Color online) Absolute pressure field for a Gaussian beam incident

upon an 8� 41 array of acrylic shells in water. Plots (a) and (b) are at

22 350 Hz and 27 000 Hz, respectively.

J. Acoust. Soc. Am. 139 (6), June 2016 Alexey S. Titovich and Andrew N. Norris 3355

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  165.230.224.142 On: Thu, 30 Jun 2016 15:13:27



BG bandwidth does increase dramatically by the same

argument.

III. CONCLUSIONS

In conclusion, we present an effect in SCs, whereby a

normally incident wave is passively and non-refractively

transferred to a perpendicular direction. This acoustic
Poisson-like effect is possible due to a non-axisymmetric

local resonance in the form of the n¼ 2 flexural mode of an

elastic shell and an AS mode of the SC unit cell. We

describe how this typically deaf mode is excited when it cou-

ples to the n¼ 2 flexural mode. Simulations of a Gaussian

beam onto a finite array of shells show that 46% of the inci-

dent energy is ejected from the sides of the array. It is con-

ceivable that improved transmission from the sides of the

array can be achieved by increasing the filling fraction and

further decreasing the spacing between the first CM BG and

the flexural mode. This Poisson-like effect is expected to

occur in other crystals that can support similar n¼ 2 vibra-

tions such as hollow/solid cylinders/spheres embedded in

fluid or elastic materials, or even non-axisymmetric scatterers

on plates for flexural waves. One could even envision this

effect for electromagnetic waves in carbon nanotube (CNT)

forests, since CNTs exhibit n¼ 2 vibrational modes.18
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