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Acoustic Poisson-like effect in periodic structures
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Redirection of acoustic energy by 90° is shown to be possible in an otherwise acoustically transparent
sonic crystal. An unresponsive “deaf” antisymmetric mode is excited by matching Bragg scattering
with a quadrupole scatterer resonance. The dynamic effect causes normal unidirectional wave motion
to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The
Poisson-like effect is demonstrated using the first flexural resonance in cylindrical shells of elastic
solids. Simulations for a finite array of acrylic shells that are impedance and index matched to water
show dramatic acoustic energy redirection in an otherwise acoustically transparent medium.
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I. INTRODUCTION AND BACKGROUND

A sonic crystal (SC) is a periodic array of scatterers in
an acoustic medium such as water or air. SCs originated as
the acoustic analog of the early photonic crystals of
Yablonovitch' and John,” which exhibited opaqueness at
certain frequencies. Wave motion in SCs is characterized by
Bloch waves, which, by virtue of the structural periodicity,
can be folded in the wave number domain into the smallest
indivisible unit cell, the irreducible Brillouin zone (BZ).3
The resulting band diagrams completely describe the SC fre-
quency response, including bandgaps (BGs) formed by
Bragg scattering when the incident wavelength is close to
the lattice constant. BGs may be interpreted as bands of fre-
quencies associated with a single Bloch wavelength,* within
which an incident wave decays exponentially through the
SC. A complete BG exists when a plane wave at any angle
of incidence cannot propagate. The bandwidth of the BG
depends on the filling fraction, shape, symmetry, orientation,
and the relative impedance and/or density of individual
scatterers.

The elasticity of the scatterer usually cannot be ignored
in water-based SCs, as compared with air, where most scat-
terers can be considered as rigid. This can be used to advant-
age, for instance, to match the impedance of water. If the
scatterer is a circular metal shell, there exists a unique thick-
ness at which the scatterer impedance matches to water,’
maximizing transmission through an array. The reason® is
that although the metal has both stiffness and density greater
than water, the effective stiffness and density of the shell are
proportional to the thickness-to-radius ratio 4/a < 1 and,
therefore, a unique value of //a exists at which the product
of stiffness and density equals the square of the acoustic im-
pedance of water. By varying /1/a, it is also possible to tune
either the quasi-static bulk modulus of the shell or its effec-
tive density to those of water, but it is rarely possible to
match both simultaneously with some material exceptions.®
However, it is possible to match both the density and bulk
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modulus by inserting an axisymmetric elastic substructure
into the shell.>” Matching the bulk modulus removes the
monopolar response, while the matched density eliminates
dipole radiation, dramatically reducing the scattering at sub-
wavelength frequencies. Such control of quasi-static shell
properties facilitates the design of refraction-based lenses.>°

Elastic shells provide rich scattering properties, mainly
due to their ability to support highly dispersive flexural
waves (in-plane bending), which are the topic of this paper.
Waves scattered from flexural resonances in a SC interact
with the propagating Bloch waves forming what are called
quasi-bandgaps in the band diagram,® which can occur at
sub-wavelength frequencies. If the flexural resonant fre-
quency is tuned to fall inside the first BG, narrow asymmet-
ric transmission peaks (Fano-like’ asymmetry according to
Kosevich et al.®) appear due to coherent scattering. These
narrow regions of transmission were used by Khelif ef al.'’
to create a narrow passband filter, and later by Pennec
et al."" for demultiplexing an incident wave. Also, Kosevich
et al.® concluded that the BG bandwidth increases when a
flexural resonance falls within it.

An important feature of SCs is the existence of antisym-
metric (AS) bands, eigenmodes polarized in the direction
perpendicular to the incident wave, as compared to symmet-
ric (S) modes oriented along the incident direction. Sanchez-
Pérez et al.'” termed AS modes in a symmetrically insonified
square array as deaf since their experiment was carried out
in air at audible frequencies. They demonstrated that an AS
mode is not excited by a normal plane wave onto an array of
effectively rigid scatterers by comparing the experimental
transmission data with the band diagram obtained with the
plane wave expansion method. Later, Hsiao er al."> com-
pared the band structure of steel circular cylinders in water
obtained using the periodic-boundary finite element method,
to the transmission simulations using the finite difference
time domain method, as a way of separating out the deaf
modes. Also, Laude et al 17 demonstrated how AS modes are
excited when the symmetry of the unit cell is not preserved.

Evanescent waves can play an important role in SCs. In
a thorough analysis of the connection between propagating
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and evanescent bands, Romero-Garcia et al 14 point out that
the transfer of symmetry from one band to the other is via an
evanescent mode. Similarly, repelled bands are connected by
an evanescent band. These references emphasize that the
deaf modes are coupled to the propagating mode at the boun-
daries of the BG, either in real or evanescent regions.
However, Botey er al.'” recently showed for photonic crys-
tals that one can “unlock” evanescent modes from the BZ
boundaries resulting in evanescent beams escaping the pho-
tonic crystal. The beam forming is caused by the negative
group velocity of the unlocked mode constituting negative
refraction. The idea of utilizing evanescent modes is here
extended to acoustics where the flexural mode of an elastic
shell is the proposed mechanism for exciting an AS mode
leading to perpendicular wave propagation.

The n=2 flexural mode is a constant volume mode
(Fig. 1) that when excited by an incident wave transfers
acoustic energy to a normal direction via the quadrupole
scattering pattern. The displacement of this mode resembles
the Poisson effect in solids, with conceptually similar reper-
cussions, and is referred to as the acoustic Poisson-like
effect. Generally, low order flexural modes are subsonic,
scattering an evanescent wave that does not propagate into
the far-field. However, in SCs where the lattice constant is
on the order of the decay length of the evanescent wave,
there is significant interaction between the incident wave
and the flexural waves on adjacent shells. The orientation of
the scattered quadrupole depends on the direction of inci-
dence. In particular, a perpendicular wave front can emerge
if the shells are spaced so that all scattered quadrupoles are
in phase (i.e., when the spacing is close to the wavelength) at
normal incidence. This is the central idea of this article.

Il. ANALYSIS AND DISCUSSION

Consider a SC with square unit cell of side length b,
containing an empty circular elastic shell of outer radius a,
thickness £, density py, shear modulus g, Poisson’s ratio vy,
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FIG. 1. (Color online) Square unit cells (dashed) consist of an empty shell
in water. Overlaid on top are the first six irreducible BZs in reciprocal space,
which have perimeters I'’XM. The n =2 flexural mode of an elastic shell is
illustrated in the top left.

3354  J. Acoust. Soc. Am. 139 (6), June 2016

in water (p=1000kg/m’, K =2.25GPa), shown in Fig. 1.
The material, radius, and thickness of the shell are selected
such that: (i) the effective bulk modulus of the shell equals
that of water K. = K, which eliminates the monopolar
response, (ii) the effective density also matches, p.; = p,
removing the sub-wavelength dipolar response and making
the SC neutrally buoyant, and (iii) the n=2 flexural reso-
nance is near 20kHz, the designated frequency of interest
(see Ref. 6 for tuning of quasi-static parameters). The shell’s
effective density is p.g = p,(h/a)(2 — h/a) and the effec-
tive bulk modulus follows from plane strain elasticity as
Keit = u,(2(1 — v)p,/pess — 1) ', A thick acrylic shell
(a=1cm, h=0.62a) with density, Young’s modulus and
Poisson’s  ratio  p,=1190kg/m>,  E; =2(1+ v)u,
= 3.2 GPa, vy = 0.35, satisfies these three criteria with
n="2 flexural resonance at 15678 Hz. The lattice constant
b=4.78 cm is selected so that the n =2 resonance coincides
with the first BG in the I'X direction and corresponds to a
low filling fraction of f;=0.14. There is no special reason
for this choice of b other than minimizing the distance in
frequency space from the n=2 resonance to the first ['M
BG while also minimizing the spacing between shells. The
coherent scattering postulated in the previous paragraph
is expected to occur near the first 'M BG and also in the
second I'X BG.

Modes characterized by wave propagation in a perpen-
dicular direction exist in any SC as AS modes. It is sufficient
to look at a homogeneous square unit cell of water with arti-
ficial periodic boundary conditions to understand the origin
and structure of AS modes. Figure 1 shows three adjacent
unit cells, as well as the first six irreducible BZs of the
square array. The first three symmetric BZ boundaries
(labeled S1, S2, S3) correspond to propagation in the (1,1)
direction and the first two AS BZ boundaries (labeled AS1,
AS2) correspond to projected wave vectors in the (1,—1)
direction.

Figure 2(a) shows the band diagram for the unit cell with
the thick acrylic shell obtained using COMSOL (Burlington,
MA). Plotted over the shell-water bands (shown with dots)
are the bands for the water-only unit cell (dashed lines).
These can be thought of as the fundamental or “starting”
bands for any SC. They are obtained by equating the free
space wave number kb = 27bf /¢ to the wave number shown
in Fig. 1, and plotted as a function of the wave vector projec-
tion onto the BZ boundary. Defining the reduced wave vector

as k = kb € [0,/27], the AS1 band can be expressed as
(2nbf /) = (v/21)* + (k)?, but because the bands are folded
into [0,v/27n], the expression becomes f = (c/2nb)(2n>
+(\/§n—l€)2)1/2. Bands S1 and S2 are linear following
f = (c/2nb)k, whereas the AS2 band is f = (c/2mb) (87
62, and the S3 band is f = (c/21b)(2n* + (V2r
—|—l€)2) /2 The remarkable proximity of the water-only bands
with the shell-water bands is a consequence of tuning of the
shell to the quasi-static properties of water, making the SC
acoustically transparent and decreasing the BG width. It is

important to note that the curvature of some bands is due
to the artificial discretization of space by the triangular
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FIG. 2. (a) (Color online) Band diagram for unit cell with an acrylic shell along I'M direction; the dashed lines are the bands for a water-only unit cell. (b)
Magnified view of the first BG. The thick curve is the AS mode, which locks to the n =2 band. The three adjacent curves on the right show the fraction of the
incident energy that goes out of the sides of a finite array T;q., the back of the array T and the reflected energy R. The array is 8 shells deep in the direction of
incidence and 41 shells wide. (c)—(h) First six modes along the line M in (a), corresponding to k =+2nin the (1,1) direction. The total pressure and displace-
ment of the shell are shown, emphasizing the mode shapes. The frequencies in plots (c)—(h) are 15123, 16046, 21 656, 22275, 22275, and 22917 Hz, respec-
tively. The thick band in (b) at point M is mode (g), which locks to flexural mode (d).

irreducible BZ and the projection of the wave vector onto
the boundary of an opposing BZ (see the k vector in Fig. 1).

Also shown are the evanescent bands, plotted by fixing
the real value of k = V27 In order to excite the AS mode,
the scatterer has to be non-axisymmetric,'” breaking the geo-
metrical symmetry of the unit cell. Another way to break the
cell symmetry is with a non-axisymmetrically vibrating scat-
terer such as the n =2 flexural mode of a shell.

The band structure in Fig. 2(a) for the shell-water cell
exhibits two pairs of flat bands caused by n=2 and n=3
flexural modes of the shell. The two n=2 flexural modes
near 16 kHz differ in their orientation, one is oriented with
the corners and the other with the faces of the square unit
cell [modes (c) and (d) in Fig. 2]. The former interferes with
the S1 symmetric mode resulting in the veering of the bands.
The flexural mode oriented with the faces is not directly
excited, but rather couples to one of the AS1 modes via an
evanescent band [pointed out with a pair of arrows in Fig.
2(a)]. The flexural mode represents a local resonance and is
thus independent of the array periodicity. The coupling of a
flexural mode to the AS1 band is what allows transfer of the
incident wave energy to a perpendicular direction. A magni-
fied view of the BG is shown in Fig. 2(b), where the excited
ASI1 band is displayed with a thick line and the other AS1
band locks to the lower BG boundary by an evanescent
band. This effect differs from a near-zero-index material'®
that depends on the accidental degeneracy of modes at the
center of the BZ (I" point) where linear dispersion is key.

On the right of Fig. 2(b) is the energy balance for an
array 8 cells deep by 41 cell wide insonified by a plane wave
from the bottom (see array in Fig. 3). The transmission and
reflection coefficients are obtained by integrating the inten-
sity I over the four sides of the array yielding energy
E = [I-ndL, and leading to definitions of the transmission
from the side Tyige = Eleft/Einc, transmission from the back
T =Eqp /Eine, and reflection from the front R=1-T
—2Tsige. The sideways transmission T;q. iS centered about
the BG since it depends on the coherent scattering of shell-
borne flexural waves, which occurs when the wavelength is
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on the order of the lattice constant. Therefore, this acoustic
Poisson-like effect is evident even for a mono-layer of shells,
but strengthens with multiple layers. The peak sideways
transmission for this array is 46% at 22350 Hz. A simulation
of a Gaussian beam incident onto the bottom of the array
with a frequency of 22350Hz is shown in Fig. 3(a). The
absolute pressure field shows very strong beams projecting
symmetrically from the sides of the array. There is a pressure
magnification at the sides of the array as compared to the
incident wave, but this can be attributed to the aspect ratio of
the array. Also shown in Fig. 3(b) is the same simulation,
but at a higher frequency of 27000Hz, where the beam
passes unabated through the array due to the tuning
described earlier.

In comparison, Fig. 4 shows the band diagram for a rigid
cylinder of the same radius and lattice constant along the
I'M direction. The AS1 bands are deaf and have the typical
form for a SC of rigid scatterers. There is little agreement
with the water-only bands (shown with the dashed lines) due
to the effective impedance/index mismatch. However, the

FIG. 3. (Color online) Absolute pressure field for a Gaussian beam incident
upon an 8 x 41 array of acrylic shells in water. Plots (a) and (b) are at
22350 Hz and 27 000 Hz, respectively.
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FIG. 4. (Color online) Band diagram for a unit cell with a rigid cylinder
along I'M direction.

BG bandwidth does increase dramatically by the same
argument.

lll. CONCLUSIONS

In conclusion, we present an effect in SCs, whereby a
normally incident wave is passively and non-refractively
transferred to a perpendicular direction. This acoustic
Poisson-like effect is possible due to a non-axisymmetric
local resonance in the form of the n =2 flexural mode of an
elastic shell and an AS mode of the SC unit cell. We
describe how this typically deaf mode is excited when it cou-
ples to the n =2 flexural mode. Simulations of a Gaussian
beam onto a finite array of shells show that 46% of the inci-
dent energy is ejected from the sides of the array. It is con-
ceivable that improved transmission from the sides of the
array can be achieved by increasing the filling fraction and
further decreasing the spacing between the first 'M BG and
the flexural mode. This Poisson-like effect is expected to
occur in other crystals that can support similar n =2 vibra-
tions such as hollow/solid cylinders/spheres embedded in
fluid or elastic materials, or even non-axisymmetric scatterers
on plates for flexural waves. One could even envision this
effect for electromagnetic waves in carbon nanotube (CNT)
forests, since CNTs exhibit n = 2 vibrational modes.'®
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