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A thin infinitely long elastic shell is stiffened by J in number identical lengthwise ribs
distributed uniformly around the circumference and joined to a rod in the center. The 2D
model of the substructure is a rigid central mass supported by J axisymmetrically placed
linear springs. The response of the shell–spring–mass system is quite different from a fluid

couple the displacement of the shell at different locations. Exterior acoustic scattering due
to normal plane wave incidence is solved in closed form for arbitrary J. The scattering
matrix associated with the normal mode solution displays a simple structure, composed
of distinct sub-matrices which decouple the incident and scattered fields into J families.
The presence of a spring–mass substructure causes resonances which are shown to be
related to the subsonic shell flexural waves, and an approximate analytic expression is
derived for the quasi-flexural resonance frequencies. Numerical simulations indicate that
the new solution for JZ3 springs results in a complicated scattering response for plane
wave incidence. As the number of springs becomes large enough, the total scattering
cross-section is asymptotically zero at low frequencies and slightly increased compared to
the empty shell at moderate frequencies due to the added stiffness and mass. It is also
observed that the sensitivity to the angle of incidence diminishes as the number of springs
is increased. This system can be tuned by selecting the shell thickness, spring stiffness and
added mass to yield desired quasi-static effective properties making it a candidate
element for graded index sonic crystals.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The scattering of acoustic waves from an elastic cylindrical shell with internal structure is quite distinct from the
response of a simple shell. Excitation of waves on shells arises from two general mechanisms: (i) phase matching to
supersonic membrane-type waves [1–3], or (ii) excitation at structural discontinuities. The latter can excite both supersonic
longitudinal waves which then re-radiate into the fluid, and subsonic flexural waves which can persist for long times and
over large propagation paths on the structure. Flexural waves are an important source of structural energy transfer, but they
are not usually excited on a smooth metallic shell in contact with an exterior acoustic medium such as water because of
.S. Titovich), norris@rutgers.edu (A.N. Norris).
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their subsonic phase speed. The effect of structural discontinuities or constraints can be modeled as effective forces on an
otherwise smooth shell, analyzed in the original work of Bleich and Baron [4].

Structural constraints can be separated into three fundamental types: concentrated, linear circumferential, and linear
lengthwise. Attachment of a spring–mass system or a beam to the interior surface of the shell constitutes a concentrated
constraint. The constraint inhibits or enhances the vibration of the shell through reflection/conversion of structural waves as
well as through the resonant behavior of the substructure itself. Undersea vehicles are sometimes modeled as a shell with
many spring–mass oscillators attached to the interior. Analysis of such “fuzzy structures” indicates possible wave
localization due to structural irregularity, which in turn suggests methods for controlling vibration/scattering [5–10].

The other type of constraint, circumferential discontinuities, includes examples such as rigid discs [11], plates, rings [12],
ribs, bulkheads [13–21], and any other frames thin in the axial direction. Bloch–Floquet waves and Bragg scattering effects
appear for oblique incidence if the internals are placed periodically along the axis of the shell [20,21]. Analysis of oblique
incidence onto shells with several bulkheads shows that constructive interference between the scattered pressure due to
each bulkhead produces a dipole-like radiation pattern and scattered pressure associated with bending moments yields a
quadrupole-like radiation pattern [17,18].

This paper is concerned with the two dimensional (2D) modeling of lengthwise sheet springs supporting an internal
mass as explored in [22–24], which can be viewed as lengthwise discontinuities. More sophisticated and certainly more
realistic models such as deck-type plates [25–29] and lengthwise elastic ribs [26,30] also fall into the category of lengthwise
discontinuities. These internal structures provide more mechanisms for coupling to and mixing of the structure-borne
waves producing a very complex response. With normal wave incidence and a sufficiently long shell, lengthwise constraints
can be analyzed in two dimensions as will be done herein.

Understanding of cause and effect can be obtained through detailed analysis of simple models for internal structure. The
simplest model for internal structure is a single mass attached by a single spring to the shell. The structural analogue of this
system is a long internal rod attached to the shell by a lengthwise rib. Although springs cannot support the passage of
waves, this is a rich and relatively complex system as compared to the bare shell, and it displays many of the dynamic
properties of much more complex substructures. The first such analysis by Achenbach et al. [22] considered the 2D problem
of a shell with an internal mass supported by a single spring and loaded by an external point force. Via an energy
formulation the interaction force between the spring–mass system and the shell was determined and its affect on the
acoustic scattering studied, especially in the vicinity of the spring–mass resonance. The presence of the substructure
generates acoustic radiation which can be greater or lesser than that of the standalone shell based on the frequency of the
harmonic excitation relative to the resonance of the oscillator (spring–mass system).

The problem becomes more complicated when the mass is supported by more than one spring. Guo [23] formulated the
scattering solution for a shell with an internal mass attached by a diametrical pair of springs (structural analogue being a rod
supported by a diametric pair of lengthwise ribs). He demonstrated that there are two distinct solutions, for even and odd
azimuthal modes, which superimpose to produce the overall response of the shell–spring–mass system. This simple model
clearly reveals the rich and complex set of resonances resulting from flexural waves excited by the spring attachments. This
stiffener-borne wave generation mechanism was investigated earlier by Klauson and Metsaveer [26]. Guo showed that the
addition of a dissipative mechanism into the spring–mass system did little to the scattered field. Later, Gaunaurd [31]
expanded the analysis by considering a neutrally buoyant spherical shell with a double spring–mass system. Spectral theory
was used by Ho [24] to obtain the acoustic response for a shell with the mass supported by a non-diametrical pair of springs.

The current work reconsiders acoustic scattering at low to mid-frequencies, kar20, from a shell with simpler internal
structural models, focusing on a distribution of an arbitrary number of J springs supporting a central internal mass. This is an
approximate 2D model of a central rod supported by an equally spaced distribution of J lengthwise ribs. The shell–spring–
mass system is particularly interesting because of how differently it responds to an incident wave when compared to fluid
filled shells or solid cylinders. Primary reasons for studying such systems include understanding: (1) the acoustic scattering
from a shell with a finite number of coupled point forces along the circumference, (2) the propagation of flexural-borne
waves into the far field for different number of springs, (3) the shift in resonant frequencies of the flexural waves due to the
added stiffness, (4) low-frequency transparency with large number of springs and (5) the effect of the angle of incidence on
scattering. Furthermore, the acoustic response of the shell changes by selecting different spring stiffness and added mass.
This ability to tune the shell expands the range of possible acoustic properties for shells presented in Martin et al. [32] and
thus makes it a perfect element in graded index sonic crystals. Those results will be presented in a forthcoming paper. Here
we concentrate on deriving and quantifying the model for arbitrary number of internal springs.

The model considered expands the existing results [22,23] for masses attached by one or two springs, to the more
general case of J attachment springs, where JZ1 is arbitrary. For an axisymmetric distribution of such springs, we utilize the
symmetry of the problem to simplify the interaction force, which is later used to determine the T-matrix of the combined
system. The results are presented successively for J¼1, J¼2, and finally JZ3 springs. The T-matrix is expressed in terms of
physical quantities: acoustic, shell and spring impedance. These combine in a non-trivial way by virtue of the problem
formulation to give the total impedance of the combined system. This total impedance governs the system's resonant
behavior.

The layout of the paper is as follows. We begin in Section 2 with a definition of the problem and a summary of the main
results. The governing equations for the shell and the acoustic medium are given in Section 3. The single mass and multiple
spring attachment model is described in Section 4. The main results for scattering from a shell with this internal
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substructure are presented in Section 5. Properties of the general solution are discussed in Section 6. It is shown that the
scattered field decomposes into J distinct parts, and that the additional portion of the T-matrix due to the internal spring–
mass system can be expressed by J products of vectors, convenient for implementation. Numerical examples are given in
Section 7 along with a discussion of the backscatter and total scattering cross-section for plane wave incidence and various
spring distributions. Approximate but useful expressions are derived for the effective resonant frequencies of the shell–
spring–mass system. Conclusions are presented in Section 8.

2. Problem definition and summary of results

2.1. Scattering formulation

Consider in-plane acoustic wave scattering from a thin cylindrical shell immersed in an acoustic medium with
volumetric mass density ρ and sound speed c. A single mass per unit axial length m is attached to the inner surface of
the shell by a set of JZ1 springs each of stiffness κ (with units of force per unit area) oriented at angles θj with respect to the
horizontal, where j¼ 1;…; J. The springs are assumed to be equally distributed, so that θjþ1 ¼ θjþ2π=J. The mass is of finite
size and free to rotate, as shown in the schematic in Fig. 1.

The thin shell has outer radius a, thickness h ð⪡aÞ, volumetric mass density ρs, with elastic properties being characterized
by Young's modulus E and Poisson's ratio ν. We assume time dependence e� iωt , which is henceforth omitted but
understood. The total acoustic pressure on the shell p satisfies the Helmholtz equation:

∇2pþk2p¼ 0; (1)

where k¼ω=c is the acoustic wavenumber. The pressure can be decomposed into two parts, the incident and scattered
fields, pi and ps respectively, each a separate solution of Helmholtz's equation. Here we consider in-plane or 2D motion with
plane wave incidence, requiring only the planar modes. Thus,

p¼ piþps; pi ¼ ∑
1

n ¼ �1
AnJnðkrÞ einθ ; ps ¼ ∑

1

n ¼ �1
BnH

ð1Þ
n ðkrÞ einθ ; rZa (2)

with An being the incident field coefficients, Bn the scattering coefficients, Jn the Bessel function of the first kind of order n
and Hð1Þ

n the Hankel function of the first kind of order n.
The objective is to get a relation between the incident amplitudes An and the scattering amplitudes Bn. The solution is

embodied in the infinite T-matrix defined by

B¼ TA; (3)

where A and B are vectors of infinite length composed of the elements An and Bn at position nAZ, respectively.

2.2. Summary of the main results

As is customary in acoustics, the scattering solution is expressed in terms of various modal impedances, e.g. Zn, Zn
sh
, Zn

sp
,

each of which relates radial stress to radial velocity, see for example Eq. (12). Define the following impedances associated
with azimuthal mode n:

Zn ¼ iρc
Hð1Þ

n ðkaÞ
Hð1Þ0

n ðkaÞ
; bZn ¼ iρc

JnðkaÞ
J0nðkaÞ

; (4a)

Zsh
n ¼ � iρscp

h
a
Ω�β2n4

Ω
� Ω�n2

Ω

� ��1" #
; (4b)

Zsp
n Jð Þ ¼ iJκ

2πaω
�

1

1�HJ
ω2

sp

ω2

; n¼ 71 mod J;

1 otherwise;

; HJ ¼
J; J ¼ 1;2;
J
2
; JZ3:

8<:
8>>><>>>: (4c)

where ωsp is a natural frequency of the spring–mass system and Ω a non-dimensional measure of frequency based on the
shell extensional wavenumber:

ω2
sp ¼

κ
m
; Ω¼ωa

cp
¼ c
cp
ka

� �
; (5)

and the additional shell parameters are c2p ¼ E=½ρsð1�ν2Þ� and β¼ 1ffiffiffiffi
12

p h=a. Different azimuthal modes are affected differently
by the spring–mass system (see Zspn ) where the function n¼ 71 mod J is used in this paper to mean

n¼ 71 mod J ⟺ n¼ 71þmJ where m¼ 0; 71; 72; 73;… (6)

such that J is the modulus of the congruence. The various impedances can be interpreted as follows: Zn is a radial acoustic
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impedance associated with radiating wave functions, as compared with bZn for regular wave functions; Zn
sh

is the shell
impedance; and Zspn is a generalized spring impedance, see Section 4. The expression for Zn

sh
is based on the Donnell–

Mushtari thin shell model, see Section 3.1, which is sufficient for the range of frequencies considered (kar20), although
other expressions could be used, including the exact result from elastodynamics. Regardless of the specific shell model, the
results in Eqs. (7) and (8) retain their analytic structure. The total equivalent impedance Ztot

n is defined by the series/parallel
combination of the above impedances as

1
Ztot
n

¼ 1
Zsp
n
þ ∑

1

p ¼ �1

1

Zsh
nþpJþZnþpJ

: (7)

Our main result is that the T-matrix has the following form (n denotes the complex conjugate):

T¼ Tð0Þ þ ∑
J

j ¼ 1
bjb

T
j where (8a)

Tð0Þ ¼ diag Tnð Þ; Tn ¼ 1
2

ζn

n

ζn
�1

 !
; ζn ¼ Zsh

n þZn

� �
Hð1Þ0

n kað Þ; (8b)

bj;n ¼
i
ζn

2ρcZtot
n

πka

� �1=2

if n¼ j mod J; otherwise 0: (8c)

These results are derived next.

3. Elastic shell in fluid

3.1. Shell and acoustic pressure equations

The equations of motion for a thin cylindrical shell in the r and θ directions, respectively, are [33]

1
a2

∂v
∂θ

þw
a2

þβ2

a2
∂4w

∂θ4 þ
€w
c2p

¼ σðθ; tÞ
ρsc2ph

; (9a)

1
a2

∂2v

∂θ2þ
1
a2

∂w
∂θ

� €v
c2p

¼ 0; (9b)

where w and v are the radial and the azimuthal displacement, respectively, σ is the normal stress acting in the radial
direction. The displacements and the forcing take the form

ðw; v;σÞ ¼ ∑
1

n ¼ �1
ðWn;Vn;σnÞ einθ : (10)

Substituting Eq. (10) into Eqs. (9) gives the modal equations as

�Ω2þ1þβ2n4
� �

Wnþ inVn ¼
a2σn

ρsc2ph
;

inWnþðΩ2�n2ÞVn ¼ 0: (11)

In the presence of forcing σn the radial displacement may be defined in terms of a shell impedance Zn
sh
, see (4b), as

σn ¼ � iωZsh
n Wn: (12)

Note that the shell impedance Zn
sh

is either mass or stiffness-like, depending on the frequency. The natural frequencies of the
shell correspond to the existence of nontrivial solutions in the absence of loading, and hence are defined as the roots of
Zsh
n ðΩÞ ¼ 0.
Continuity between the radial shell velocity and the radial particle velocity in the fluid, combined with the momentum

equation in the fluid implies, using Eq. (2), that €w ¼ �ρ�1 ∂p=∂r on r¼a, hence

ρcωWn ¼ AnJ
0
nðkaÞþBnH

ð1Þ0
n ðkaÞ: (13)

Expanding the surface pressure as

pða;θÞ ¼ ∑
1

n ¼ �1
Pneinθ (14)

yields the coefficients for the scattered pressure and for the total pressure on the shell surface in terms of the radial
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displacement:

Bn ¼
1

Hð1Þ0
n ðkaÞ

ρcωWn� J0n kað ÞAn
� �

; (15a)

Pn ¼ � iωZnWnþ 2i
πka

An

Hð1Þ0
n ðkaÞ

; (15b)

where we have used the Wronskian identity JnðxÞHð1Þ0
n ðxÞ� J0nðxÞHð1Þ

n ðxÞ ¼ 2i=πx. Eqs. (15) are valid whether or not the internal
substructure is present.

3.2. Scattering in the absence of internal substructure

With no substructure inside the shell, the radial forcing on the shell is simply that of the incident and scattered pressure:
σ ¼ �p. Therefore, combining (12), (15b) with σn ¼ �Pn and the definition of ζn in (8b) gives Wn ¼ 2An=ðπωkaζnÞ. Eq. (15a)
then yields Bn ¼ TnAn where the (diagonal) T-matrix elements Tn are defined in Eq. (8b). The associated element of the
diagonal “S-matrix” is

Sn ¼ 1þ2Tn⟹Sn ¼ e� i2ϕn ; Tn ¼ � ie� iϕn sinϕn with ϕn ¼ arg ζn; (16)

implying that jSnj ¼ 1, jTnjr1, in conformity with the fact that no dissipation is assumed.

4. The spring–mass model

Consider now the mass per unit length, m, attached to the shell as shown in Fig. 1 by JZ1 springs each of stiffness per
unit area, κ, oriented at angles θj, where j¼1,…,J. The springs are assumed to be equally distributed, so that θjþ1 ¼ θjþ2π=J.
The horizontal and vertical displacements of the mass are denoted by x and y, respectively. The derivation of the linearized
equations of motion for the internal mass and the resulting radial force on the shell are in Appendix A. In summary, the
displacement of the finite sized mass associated with its rotation is of second order and not retained in the linearized
equations. Moreover, the angular motion of the mass is not excited by the acoustic incidence. Only the translating degrees of
freedom of the mass contribute to the radial force on the shell. Introduce the force distribution per unit area of the shell
surface, f ðθÞ, defined such that f dA is the force acting on an element dA¼ a dθ dz. It follows from the Appendix that in the
case of one, two, and JZ3 springs, respectively,

f θ
	 
¼ �κ

a
τ2

τ2�1

� �
w θ1
	 


δ θ�θ1
	 


one spring; (17a)

f θ
	 
¼ �κ

a
1

τ2�2

� �
ðτ2�1Þwðθ1Þ�wðθ2Þ
	 


δðθ�θ1Þ
�

þððτ2�1Þwðθ2Þ�wðθ1ÞÞδðθ�θ2Þ
�

two springs; ðθ2 ¼ θ1þπÞ (17b)

f θ
	 
¼ �κ

a
1

τ2� J
2

 !
∑
J

j ¼ 1
∑
J

n ¼ 1
w θn
	 


cos θj�θn
	 
þ τ2� J

2

� �
w θj
	 
" #

δ θ�θj
	 


; (17c)

where δðθÞ is the Dirac delta function and (see Eq. (5))

τ2 ¼ ω2

ω2
sp

¼mω2

κ

� �
: (18)

Expanding the radial force distribution of Eq. (17) in azimuthal modes as

f ðθÞ ¼ ∑
1

n ¼ �1
f n e

inθ ; (19)

and using the identity δðθ�θjÞ ¼ ð1=2πÞ∑1
n ¼ �1einðθ�θjÞ give the modal force on the shell for the cases of one, two, and JZ3

springs as

f n ¼ � κ
2πa

τ2

τ2�1

� �
w θ1
	 


e� inθ1 ; J ¼ 1; (20a)

f n ¼ � κ
2πa

τ2�1�e� inπ

τ2�2

� �
w θ1
	 
þw θ1þπ

	 

e� inπ

� �
e� inθ1 ;

¼ � κ
2πa

∑
2

j ¼ 1
w θj
	 


e� inθj �
τ2

τ2�2
for odd n;

1 for even n;
J ¼ 2;

8<: (20b)
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f n ¼ � κ
2πa

1

τ2� J
2

 !
∑
J

j ¼ 1
∑
J

m ¼ 1
w θm
	 


cos θj�θm
	 
þ τ2� J

2

� �
w θj
	 
" #

e� inθj ;

¼ � κ
2πa

∑
J

j ¼ 1
w θj
	 


e� inθj �
τ2

τ2� J
2

; n¼ 71 mod J;

1 otherwise;

JZ3;

8>>><>>>: (20c)

where the results (A20) and (A23) were used for JZ3 axisymmetrically distributed springs with θmþ1 ¼ θmþ2π=J and the
notation n¼ 71 mod J is defined in Eq. (6). The modal force for J springs is of only two types. The solution with the
coefficient τ2=ðτ2� J=2Þ is the same as for the single spring. The dependence on τ2 (i.e. the mass m) implies that the
displacement of the internal mass contributes to the net modal force for modes n¼ 71 mod J. The second solution is
independent of m, suggesting that although the mass does displace as seen in (A.11), there is no net force on the shell due to
this displacement.

Eqs. (20) indicate that the set of force coefficients ff ng depends upon J linearly independent combinations of the radial
displacements fwðθjÞg. Thus, for J¼1 we have wðθ1Þ only; for J¼2 it is wðθ1Þþwðθ2Þ and wðθ1Þ�wðθ2Þ; for J¼3 we have
wðθ1Þþwðθ2Þþwðθ3Þ, wðθ1Þ e� iθ1 þwðθ2Þ eiθ1 þwðθ3Þ, and wðθ1Þ eiθ1 þwðθ2Þ e� iθ1 þwðθ3Þ; etc. These independent combina-
tion of fwðθjÞg can also be represented in terms of the infinite series of Fourier coefficients fWmg, see Eq. (10). Assuming that
the springs are fixed to the shell at θj ¼ j2π=J, j¼1,…,J, it follows from Eqs. (20) and (A.23) that the force coefficients can be
succinctly expressed:

f n ¼ � Jκ
2πa

wðJÞ
n �

τ2

τ2�1
; J ¼ 1;

τ2

τ2�2
; n odd;

1; n even;

8<: J ¼ 2;

τ2

τ2� J
2

; n¼ 71 mod J;

1 otherwise;

JZ3;

8>>><>>>:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

(21)

where

wðJÞ
n � ∑

1

p ¼ �1
Wnþ Jp: (22)

Note that wðJÞ
n ¼wðJÞ

m if m¼ nmod J. Also, note that for a diametrical pair of springs, J¼2, the summation in (20) contains the
term ð1þeiðm�nÞπÞ, which is zero unless n and m are both even or both odd, resulting in 1þeiðm�nÞπ ¼ 2. The representation
(21) for fn will prove to be crucial for relating the internal dynamics with the external scattering.

5. Scattering from a shell with an internal substructure

5.1. The forcing coefficients

Now that we have an expression for the modal force on the shell in terms of the modal displacement we can substitute it
into the equation of motion (9a) with the replacement σ ¼ f �p, and hence σn-f n�Pn. The definition of the shell
impedance (12) gives f n�Pn ¼ � iωZsh

n Wn. Combined with the continuity equation in the form (15b), this yields (see (8b) for
ζn)

Wn ¼
2An

πωkaζn
� f n
iωðZsh

n þZnÞ
: (23)

The scattered field is again given by Eqs. (15a) which involves the displacement coefficients Wn. It remains to find Wn as a
function of the incident wave amplitudes An.

As shown in the previous section, there are J distinct forms of the modal force fn, each dependent upon the J-cyclic
parameters wðJÞ

n of (22). These may be determined by taking appropriate summations of (23). Define the J-cyclic parameters

1

ZðJÞ
n

¼ ∑
1

p ¼ �1

1

Zsh
nþpJþZnþpJ

; pðJÞn ¼ i2ZðJÞ
n

πka
∑
1

p ¼ �1

AnþpJ

ζnþpJ
; (24)

then (23) implies

wðJÞ
n ¼ f n�pðJÞn

� iωZðJÞ
n

: (25)
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Eqs. (21) and (25) now provide a pair of equations for wðJÞ
n and fn. We next consider the solutions for J¼1, J¼2 and JZ3

separately.

5.1.1. A single spring ðJ ¼ 1Þ
In this case there is only one modal displacement coefficient wð1Þ ¼wð1Þ

n independent of n, as are the force coefficients:

f n ¼ iωZspwð1Þ with wð1Þ ¼ ∑
1

n ¼ �1
Wn ¼ ðiωÞ�1pð1Þ

Zð1Þ þZsp (26)

where pð1Þ ¼ pð1Þn , Zð1Þ ¼ Zð1Þ
n and Zsp are

pð1Þ ¼ i2Zð1Þ

πka
∑
1

n ¼ �1

An

ζn
;

1

Zð1Þ ¼ ∑
1

n ¼ �1

1

Zsh
n þZn

; Zsp ¼ iκ
2πaω

τ2

τ2�1
: (27)

See Eq. (4b) for Zn
sh

and Eq. (4a) for Zn. The effective spring impedance is denoted by Zsp with a resonant frequency ω2 ¼ω2
sp,

see (18).

5.1.2. Diametrical pair of springs ðJ ¼ 2Þ
Now consider the internal mass being supported by a diametrical pair of springs. The modal force is given by Eq. (21).

Unlike the single spring scenario, here, due to symmetry of the spring positions, odd and even modes engage the internal
mass differently. This gives rise to the two solutions, for even and odd n, as

f n ¼ iωZsp

o
e wð2Þ

o
e with wð2Þ

o
e ¼ ∑

n even=odd
Wn ¼

ðiωÞ�1pð2Þ
o
e

Zð2Þ
o
e þZsp

o
e

(28)

where

pð2Þ
o
e ¼

i2Zð2Þ
o
e

πka
∑

n even=odd

An

ζn
;

1

Zð2Þ
o
e

¼ ∑
n even=odd

1

Zsh
n þZn

; Zsp

o
e ¼ iκ

πaω
�

τ2

τ2�2
; n odd;

1; n even:

8<: (29)

Similar expressions were derived by Guo in [23]. Note, for a diametrical pair of springs, the resonant frequency is ω2 ¼ 2ω2
sp,

see (18)1.

5.1.3. Axisymmetric distribution of three or more springs ðJZ3Þ
The solution for JZ3 axisymmetrically distributed springs is essentially the same as for two springs, namely

f n ¼ iωZsp
n wðJÞ

n where wðJÞ
n ¼ ∑

1

p ¼ �1
WnþpJ ¼

ðiωÞ�1pðJÞn
ZðJÞ
n þZsp

n

; (30)

with

pðJÞn ¼ i2ZðJÞ
n

πka
∑
1

p ¼ �1

AnþpJ

ζnþpJ
;

1

ZðJÞ
n

¼ ∑
1

p ¼ �1

1

Zsh
nþpJþZnþpJ

; (31)

and

Zsp
n ¼ iJκ

2πaω
�

τ2

τ2� J
2

; n¼ 71 mod J;

1 otherwise:

8>><>>: (32)

The summation in (30) is J-cyclic, wðJÞ
n ¼wðJÞ

n mod J . Thus, there are J unique solutions that need to be determined
fwðJÞ

0 ;wðJÞ
1 ;wðJÞ

2 ;…;wðJÞ
J�1g, where the spring impedance for wðJÞ

1 and wðJÞ
J�1 differs from other solutions as seen in Eq. (32).

5.2. Scattering solution

Write the scattering coefficients from Eq. (15a) as

Bn ¼ Bð0Þ
n þBð1Þ

n ; (33)

where Bð0Þ
n are the values for system with no internal spring–mass system. Thus, using Eqs. (8b) and (23),

Bð0Þ
n ¼ 1

2
ζn

n

ζn
�1

 !
An; Bð1Þ

n ¼ iρc
f n
ζn

: (34)
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Substituting the forcing coefficient of Eq. (30) into Eq. (34)2, the contribution of the internal spring–mass system to the
scattering coefficient is

Bð1Þ
n ¼ iρc

Ztot
n pðJÞn
ZðJÞ
n ζn

;
1
Ztot
n

¼ 1

ZðJÞ
n

þ 1
Zsp
n
; (35)

where Ztot
n is the equivalent total impedance of the shell–spring–mass system. In the following subsections, the scattering

coefficients and the T-matrices are determined separately for J¼1, J¼2, and JZ3 springs.
5.2.1. Scattering coefficients, J¼1
For a single spring, the scattering coefficient is

Bð1Þ
n ¼ �2ρcZtot

πkaζn
∑
1

m ¼ �1

Am

ζm
: (36)

Eq. (36) can be rewritten compactly by defining the infinite vector b with elements bn as

Bð1Þ ¼ bbTA with bn ¼
i
ζn

2ρcZtot

πka

� �1=2

: (37)

Hence, referring to Eq. (3) where, after truncating the series at N, the vectors B and A are

Bð2Nþ1Þ�1 ¼

B�N

B�Nþ1

…
BN

0BBBB@
1CCCCA; Að2Nþ1Þ�1 ¼

A�N

A�Nþ1

…
AN

0BBBB@
1CCCCA (38)

and the T-matrix is

T¼ Tð0Þ þbbT ; (39)

where Tð0Þ is the diagonal matrix with elements Tn on the diagonal, see (8b). The additional non-diagonal matrix in (39) is
caused by the spring–mass system.
5.2.2. Scattering coefficients, J¼2
Recall that for a diametrical pair of springs there are two solutions for even and odd modes, see (28). The scattering

coefficient for even and odd modes, respectively, is (see (29))

ðBð1Þ
n Þ

o
e ¼ �

2ρcZtot
o
e

πkaζn
∑

m even=odd

Am

ζm
;

1
Ztot
o
e

¼ 1

ZðJÞ
o
e

þ 1
Zsp

o
e

: (40)

In order to express the scattering coefficient vector in the succinct form

Bð1Þ ¼ beb
T
eAþbob

T
oA (41)

define the (infinite) vectors be and bo

be ¼

⋮
b�2

0
b0
0
b2
⋮

0BBBBBBBBBBB@

1CCCCCCCCCCCA
; bo ¼

⋮
0

b�1

0
b1
0
⋮

0BBBBBBBBBBB@

1CCCCCCCCCCCA
; ðbnÞoe ¼

i
ζn

2ρcZtot
o
e

πka

 !1=2

: (42)

Thus the T-matrix becomes

T¼ Tð0Þ þbeb
T
e þbob

T
o : (43)

The structure of the T-matrix in (43) is very interesting. It means that the additional scattering above and beyond that of the
shell without the spring–mass is of only two types, proportional to be or bo. The amplitude of each type of scattered field
depends on how the incident wave couples to it, and this is given by the inner products bT

eA and bT
oA.

We note that the influence of the spring–mass enters through the two frequency dependent impedances Zspe and Zspo .
They couple to the shell and the radiating wave impedances, Zshn and Zn in series via the expressions in (29).
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5.2.3. Scattering coefficients, JZ3
In the general case of JZ3 springs, the scattering coefficient is (see (31) and (32))

Bð1Þ
n ¼ �2ρcZtot

n

πkaζn
∑
1

p ¼ �1

AnþpJ

ζnþpJ
;

1
Ztot
n

¼ 1

ZðJÞ
n

þ 1
Zsp
n
: (44)

Conveniently, the vector of scattering coefficients can be written as

Bð1Þ ¼ b1b
T
1Aþb2b

T
2Aþ…þbJb

T
J A; (45)

where

bj ¼

…
bj;j� J

0ðJ�1Þ�1

bj;j
0ðJ�1Þ�1

bj;jþ J

0ðJ�1Þ�1

…

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
; bj;n ¼

i
ζn

2ρcZtot
n

πka

� �1=2

; n¼ j mod J;

0 otherwise:

8><>: (46)

The full T-matrix then takes the form

T¼ Tð0Þ þ ∑
J

j ¼ 1
bjb

T
j : (47)

6. Discussion of the general solution

The structure of the derived results is well suited for numerical implementation. The contribution of the spring–mass
system to the to the T-matrix of the empty shell is expressed via vectors, thereby removing the need for matrix
multiplication. Also, the J sub-solutions only need to be added to produce the final response.

6.1. Spectral properties of T

Let λ be an eigenvalue of the T-matrix with associated eigenvector u, i.e.

Tu¼ λu: (48)

We note that the equation for λ, detðT�λIÞ ¼ 0, can be expressed as

bT
j ðλI�Tð0ÞÞ�1bj ¼ 1; j¼ 1;…; J: (49)

In order to see this, first use (47) to rewrite (48) as

u¼ ∑
J

j ¼ 1
ðbT

j uÞðλI�Tð0ÞÞ�1bj: (50)

Taking the inner product with bi yields

∑
J

j ¼ 1
bT
i ðλI�Tð0ÞÞ�1bjðbT

j uÞ ¼ bT
i u: (51)

This simplifies by virtue of the facts that λI�Tð0Þ is diagonal, and that, for any diagonal matrix D, bT
i Dbj ¼ δijb

T
j Dbj, where δij

is the Kronecker delta and from which (49) follows.
Eq. (49) implies that the eigenvalues of the T-matrix form J distinct sets, and that the eigenvectors, which follow form

(50), are likewise separated into J families. Hence, T can be partitioned into J distinct T-matrices:

T¼ ∑
J

j ¼ 1
TðjÞ where TðjÞ ¼ Tð0ÞIðjÞ þbjb

T
j ;

I¼ ∑
J

j ¼ 1
IðjÞ; IðjÞ ¼ diagð…1;0ðJ�1Þ�1;1;0ðJ�1Þ�1…Þ: (52)

Conservation of energy is ensured in each subset of modes according to

SðjÞ
þ
SðjÞ ¼ SðjÞSðjÞ

þ ¼ IðjÞ where SðjÞ ¼ IðjÞ þ2TðjÞ; j¼ 1;…; J: (53)
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The structure of these matrices is illustrated in Fig. 2. For instance, when J¼2, Fig. 2(a) shows that one half of the
elements of the infinite matrix are zero. The matrix is full for the case J¼1, and the number of zero elements increases as J
becomes larger. The examples in Fig. 2 show schematically how the fraction of non-zero elements decreases as J increases:
there are always elements on the main diagonal, with the other non-zero elements becoming further separated from the
main diagonal as J increases.
6.2. Far-field response

The far-field scattered pressure field is

ps ¼
ffiffiffiffiffi
a
2r

r
eikrg θ

	 
þO ðkrÞ�3=2
� �

; kr⪢1; (54)

where the form function g follows from Eq. (2) and the large argument approximation for Hankel functions:

g θ
	 
¼ gð0Þ θ

	 
þgð1Þ θ
	 
¼ ∑

1

n ¼ �1
gne

inθ ; gn ¼
2e� iπ=4ffiffiffiffiffiffiffiffiffi

πka
p ð� iÞnBn: (55)

The gð0Þ is for the shell without the spring system. For a plane wave incident on the shell at an angle θ0, the scattering coefficient
is Bn ¼∑1

m ¼ �1TnmAm where Am ¼ ð� iÞm e� imθ0 . This allows us to write the far-field form function as (see (8b) for Tn)

gn ¼
2e� iπ=4ffiffiffiffiffiffiffiffiffi

πka
p ∑

1

m ¼ �1
ð� iÞnþm e� imθ0 �

ðδnmTmþbnbmÞ; J ¼ 1;

ðδnmTmþbðeÞn bðeÞm þbðoÞn bðoÞm Þ; J ¼ 2;

δnmTmþ ∑
J

j ¼ 1
bj;nbj;m

 !
; JZ3;

8>>>>><>>>>>:
(56)

where δnm is the Kronecker delta.
A measure of the net radiated power from the shell is the total scattering cross-section (TSCS) σtot, and the TSCS for the

empty shell σð0Þ
tot, defined as

σtot ¼
1
2

Z 2π

0
jg θ
	 
j2 dθ¼ 4

ka
∑
1

n ¼ �1
jBnj2 and σð0Þ

tot ¼
4
ka

∑
1

n ¼ �1
jBð0Þ

n j2: (57)
7. Numerical examples

Consider a steel shell (ρs ¼ 7810 kg=m3, cp¼5505 m/s) immersed in water (ρ¼1000 kg/m3, c¼1484 m/s). Shell thickness
to radius ratio is h=a¼ 1

100. We define the internal mass to shell mass ratio as m=2πρsha¼ 3. The spring stiffness is assumed
to be such that the resonant frequency of the oscillator satisfies (see (4) for HJ)

κ
m
a2

c2
¼ 1
HJ

⟹ κ ¼ m
a2

c2

HJ
; (58)

which gives ðkaÞsp �
ffiffiffiffiffi
HJ

p
ωspa=c¼ 1 8 J.

Figs. 3-5 show the backscatter gðθ0Þ, total impedance jZtotj and its phase for J ¼ 1;2;3, respectively. The angle of incidence
is taken to be θ0 ¼ 0 and the truncation limit is N¼100.

With a single spring attaching the internal mass to the shell (Fig. 3) the backscatter is close to that of the empty shell but
with many resonances. We show in Section 7.1 that the resonance peaks are associated with flexural modes on the shell
excited by the structural discontinuity caused by the spring attachments. The backscatter becomes more complex as the
number of springs increases. For J¼2 springs, the sub-solutions of the form function are plotted below the total response in
Fig. 4. It is evident that half of the resonant peaks come from the even solution and the other half from the odd. At each
resonance, the magnitude of the total impedance jZtot

o
e j is at a maximum and its phase is zero. This implies that the position

and spacing of the resonances can be determined from the total impedance Ztot, which is explored further below in Section
7.1. The backscatter from the shell with J¼2 springs in Fig. 4(a), which was obtained using the general solution (Eqs. (20)
and (56)), is identical to Fig. 3(a) in Ref. [23].

The case of J¼3 springs in Fig. 5 displays a new feature not previously evident for J¼1 and J¼2, viz. the 1 mod 3 solution
and the 2 mod 3 solution are identical. The repetition is a consequence of (i) the symmetries of the four impedances of
Eq. (4) under the interchange n-�n, and (ii) the fact that the integer sets 1 mod 3 and 2 mod 3 are identical under a change
of sign, i.e. f…�5; �2;1;4;…g2f…�4; �1;2;5;…g. These properties together ensure that the impedance Zn

tot
is also

unchanged under n-�n, and hence cause the repetition seen in Fig. 5. It follows that for any JZ1 the J parts of the
T-matrix actually reduce to 1þ⌊J=2c distinct parts, where ⌊�c is the floor function.
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7.1. Resonant behavior of the shell–spring–mass system

As noted above for the cases with J¼1, J¼2 and J¼3 springs, the resonant behavior of shell–spring–mass system in
Figs. 3–5 arise from singularities of Ztot lying close to the real ka-axis. Thus, at resonance, from Eq. (7),

1
Zsp
n
þ ∑

1

p ¼ �1

1

Zsh
nþpJþZnþpJ

¼ ϵ; ϵ ⪡1:jj (59)

We consider the spring–mass systems of the above numerical examples, for which the resonances are in the range ka⪢1,
and in particular, above the spring resonance frequency. The spring impedance is then (see (32))

Zsp
n � i

ðkaÞ
Jκ
2πc

; ka⪢1: (60)

This is independent of n, and its inverse is large, O ðkaÞ. We therefore assume that the condition (59) is satisfied by one of the
terms in the infinite series becoming large relative to all others, in which case the condition reduces to

Zsp
n þZsh

n þZn � 0; (61)

for some n and a related frequency ka. The resonances of the combined system are determined by approximating the
individual impedances in (61). To get an expression for the effective resonant frequencies of the combined system, the
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acoustic impedance is approximated as

Zn � � iρc
ka
n
; n⪢ka; na0: (62)

The roots of the shell impedance Zn
sh

of (4b), which correspond to the natural frequencies of the shell, are

Ω2
c;f ¼ ðð1þn2þβ2n4Þ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þn2þβ2n4Þ2�4β2n6

q
Þ=2 associated with compressional and flexural modes, respectively. The

thin shell approximation implies β⪡1, consequently the resonant frequencies are ðΩc;Ωf Þ � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ1

p
;βn3=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ1

p
Þ while

βno1. Since Ωc � n, the shell impedance behaves as

Zsh
n � � iρscp

h
a

Ω�Ω2
f

Ω

 !
where Ωf � βn2 (63)

is the flexural natural frequency.
The condition of resonance given by (61), combined with Eqs. (60), (62) and (63), now results in a quadratic equation for

the resonant frequencies ðkaÞres ¼ ðcp=cÞΩres. Solving the equation yields

Ω2
res ¼

β2n4þ Jκ
2πρsc2p

a
h

1þ1
n
ρ
ρs

a
h

; ðkaÞspo ðkaÞres⪡n: (64)
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The resonance can therefore be interpreted as, to leading order, the flexural resonance at Ω¼Ωf (see (63)) modified by an
added mass term in the denominator which accounts for the fluid mass-loading (the same factor is present in Eq. (9.4) in p.
282 of the text by Junger and Feit [33] for a fluid-loaded spherical shell), and by an additional stiffness term in the
numerator associated with the stiffness of the springs. Note that the flexural resonances are not excited by the smooth shell
(see Fig. 3) because they are sub-sonic and hence do not couple with the incident field. The coupling to the quasi-flexural
waves occurs directly because of the introduction of structural discontinuities at the spring–shell attachment points. These
act as sources for the flexural waves which, in turn, radiate to the exterior fluid via the same discontinuities.

The various approximations leading to the expression for the resonance frequency are verified in Fig. 6 which shows the
approximate impedances plotted along with the exact impedances. The curves are very close as long as n⪢ka. At larger
frequencies this condition is violated and the expression for the effective frequencies, Eq. (64), is no longer accurate.
However, the spring impedance Zsp

n �Oð1=ðkaÞÞ and hence its effect at larger frequencies is negligible. The effective
resonances are plotted on the horizontal axis for the J¼3 case in Fig. 5. Although, the values are close to the resonances of
the combined system they are not exact. This is primarily because we only take a single term from the summation of Zn

tot

when formulating the condition of resonance (see Eqs. (59) and (61)).
7.2. Large J limit

As the number of springs J increases, the loading on the shell transitions from discrete point forces to an effective
pressure at the frequencies of interest kar20. However, unlike a fluid filled shell where there is also a pressure distribution
over the inner surface, in this idealized model the internal structure has an infinite wave velocity since the transfer of energy
from one contact point on the shell to the other is instantaneous. Fig. 7 plots the total scattering cross section for the same
shell but with increasing number of springs J ¼ 2;4;8;16;32 at the angle of incidence θ0 ¼ 0. Since the resonant frequency of
the oscillator is kept constant (see Eq. (58)), the stiffness of each spring has to decrease with increasing J. This allows us to
investigate solely the affect of increasing the number of contact points.

In general, Fig. 7 shows that increasing the number of contact points results in a decrease in the number of flexural
resonances propagating into the far field. This is due to the presence of forces at anti-nodes of flexural modes which inhibit
their vibration. Only the response for even numbers of springs is plotted and hence the odd modes are prominent as J
increases. For J¼16 and J¼32, large intervals appear without flexural resonances, however, the TSCS is slightly increased
over the empty shell (shown by the dashed line) due to the added stiffness and mass. The low frequency TSCS is
asymptotically zero for these two cases because the effective quasi-static properties of the shell–spring–mass system are
water-like. For the case with J¼32 springs there are only a few large resonances near the resonant frequency of the oscillator
kspa¼ 1, the n¼9 and n¼11 flexural modes.

As J approaches infinity no flexural modes will be visible in the far field with the exception of the closest ones to the
spring–mass resonance. The mechanically equivalent system as J-1 is one of a highly anisotropic medium, with zero
azimuthal stiffness and infinite wave speed in the radial direction. The latter is a result of ignoring the spring mass; this
could be included but is beyond the goals of the present analysis which is aimed at the low to moderate frequency regime.
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7.3. Angle of incidence

The discrete number of attachment points on the shell produces symmetries which couple to the angle of incidence. The
J springs are distributed axisymmetrically, therefore only angles of incidence in the range θ0 ¼ ½0;π=J� produce unique
results for even J. Fig. 8 presents the total scattering cross section (TSCS) for several distributions of springs. The dashed line
represents the TSCS of the empty shell.

For the J¼2 case in plot (a) we observe a decrease in the amplitude and the number of peaks as the angle of incidence
goes from 0 to π=2. This is because only the even flexural modes are unconstrained by the springs when the plane wave is
perpendicular to the pair as described by [23]. Analysing larger numbers of springs, it has been determined that such clear
separation of response also occurs for J¼4 springs in plot (c). Furthermore, for J¼2 springs, as the angle of incidence is
changed from 0 to π=4, the asymmetric profile of the flexural resonances flips due to a relative phase between the shell–
spring–mass system and the surrounding water. In the new results with J¼3 springs all flexural modes propagate into the
far field regardless of the angle of incidence. The TSCS for θ0 ¼ 0 is identical to that of θ0 ¼ π=3 because both coincide with
the orientation of exactly one of the springs.
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The TSCS for J¼4 springs is shown in plot (c) of Fig. 8. Again, the total number of peaks is halved as compared to the J¼2
case due to the fact that the 4 springs exactly coincide with the anti-nodes of the even flexural modes. Thus the shell
stiffened with J¼4 springs vibrates mostly with odd modes. Because different modes are affected differently by the
substructure, certain even modes fall near an excited odd mode and are consequently enhanced. The resulting resonance is
no longer sharp, but has a plateau-like form as seen at ka¼7.7 and ka¼8.7 for the n¼28,29 and n¼30,31 mode pairs,
respectively. For J¼8 springs we see that the low frequency flexural modes are unaffected by the angle of incidence, but the
higher modes are affected. For example the n¼26 flexural mode at ka¼6.28 is not exited with θ0 ¼ 0 but is clearly visible at
θ0 ¼ π=16 and π=8.
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8. Conclusions

The acoustic scattering is determined for a thin elastic shell with an internal mass attached by J axisymmetrically
distributed springs. The contribution of the internal system to the T-matrix is composed of J sub-solutions. Each sub-
solution does not represent a single spring, but rather a portion of the combined effect of all springs. The spring attachments
on the shell are shown to excite the shell's flexural modes, which are sub-sonic for an empty shell. Using the total
impedance, an approximate expression was derived for the resonance frequencies of the fluid-loaded shell–spring–mass
system for arbitrary J.

The new result, which might not have been clear in the study of systems with J¼1 and J¼2 springs, is the relationship
between the spring attachment points and nodes/anti-nodes of the flexural modes. We showed that if the spring is attached
at the anti-node of a flexural mode, that mode is constrained and the shell is expected to vibrate with modes in which the
node is closest to the spring attachment points. As J increases the effect of individual springs diminishes. The scattering
cross-section becomes asymptotically zero at low frequencies and slightly increases at moderate frequencies due to the
added stiffness and mass. The variation of the total scattering cross-section with the angle of incidence is small especially for
large J.

The axisymmetry and tunability of the shell–spring-mass system suggests that it would serve well as a unit cell in fluid-
saturated array (sonic crystal) for application in acoustic metamaterials. The low frequency transparency (zero TSCS) at
kao0:6 is particularly interesting since this is a steel shell. The mass and stiffness of each spring were chosen at random, but
can be tuned such that the complete system behaves as an effective medium at low frequencies. It is even possible to
actively tune such systems by changing the stiffness of the springs. A possible outcome would be an active material for
acoustic wave steering. These results will be presented in a separate paper.
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Appendix A. 3DOF model of a finite sized internal mass

A.1. One spring

We use Lagrange's equations for the Lagrangian L¼ Lðx; y;ϕ; _x; _y; _ϕÞ � T�V , where T ¼ 1
2m _x2þ _y2
� �

þ1
2I
_ϕ
2
is the kinetic

energy, and assuming that the spring is linear, V ¼ ðκ=2Þðl� l0Þ2, where l and l0 are the stretched and un-stretched lengths of the
spring, respectively. For a spring oriented at angle θ1 with respect to the positive x-axis (refer to Fig. 1), the spring length is given by

l2 ¼ jað cosθ1; sinθ1Þþðw cosθ1�v sinθ1;w sinθ1þv cosθ1Þ
�ðx; yÞ�bð cos ðθ1þϕÞ; sin ðθ1þϕÞÞj2: (A.1)

The Euler–Lagrange equation for x, ∂L=∂x�ðd=dtÞ∂L=∂ _x ¼ 0, is fully nonlinear and can be cast in the following form:

m €x ¼ �κ l� l0ð Þ∂l
∂x

) m €x ¼ �κ
ðl2� l20Þ
2lðlþ l0Þ

∂l2

∂x
; (A.2)

where ∂l2=∂x follows from (A.1). Similar equations for €y and €ϕ can be found from the respective Euler–Lagrange equations.

A.2. Linearization

Equations for €x, €y and €ϕ such as Eq. (A.3) form a set of coupled nonlinear ordinary differential equations. In order to get
the linear equations we need only the terms linear in x; y;ϕ and w; v, or equivalently, linear in l2� l20. Hence,

m €x � �κ

4l20

∂l2

∂x

�����
0

l2� l20
� �

; m €y � �κ

4l20

∂l2

∂y

�����
0

l2� l20
� �

; I €ϕ � �κ

4l20

∂l2

∂ϕ

�����
0

l2� l20
� �

; (A.3)

where j0 indicates the unstretched value ðx¼ y¼ϕ¼ 0;w¼ v¼ 0Þ. Eq. (A.1) implies

l0 ¼ a�b;
∂l2

∂x

�����
0

¼ �2l0 cosθ1;
∂l2

∂y

�����
0

¼ �2l0 sinθ1;
∂l2

∂ϕ

�����
0

¼ 0 (A.4)

and

l2� l20 �
∂l2

∂x

�����
0

xþ∂l2

∂y

�����
0

yþ∂l2

∂ϕ

�����
0

ϕþ∂l2

∂w

�����
0

wþ∂l2

∂v

�����
0

v

¼ �2l0ðx cosθ1þy sinθ1Þþ2l0w: (A.5)
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The linearized equations are therefore

mð €x; €yÞ ¼ �κðx cosθ1þy sinθ1�wÞð cosθ1; sinθ1Þ;
I €ϕ ¼ 0: (A.6)

The contribution of the rotation angle ϕ of the internal mass to the spring force is nonlinear and does not appear in this
linear formulation. As an aside, this will be demonstrated by determining the equation of rotational motion of the mass

I €ϕ ¼ r � F with all other displacements constrained: x¼0, y¼0, v¼0 and w¼0. For small displacements ϕ⪡1, the vector r,
which defines the position of the force vector F ¼ κððjlj�jl0jÞ=jljÞl, is r¼ ðb; bϕÞ. The deformed spring length vector is

l¼ ða�b; �bϕÞ yielding a spring extension of jlj�jl0j ¼ ða�bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb2ϕ2

=ða�bÞ2
q

�ða�bÞ. Using the binomial theorem for the

square root, we get l � l0jÞ= l � 1
2b

2ϕ2
=ða�bÞ2

���������������� . Lastly, the cross product is r � l¼ �abϕ giving a moment on the mass

r � F ¼ �1
2κaðbϕÞ3=ða�bÞ2. This demonstrates that due to the geometry of this problem, the contribution of the rotation

angle ϕ to the spring force is proportional to ϕ2 and the contribution to the moment is proportional to ϕ3. Thus, in the

linearized equations (A.6), we obtain ϕ¼0.

A.3. J springs

The equations of motion in the presence of J springs are

mð €x; €yÞ ¼ �κ ∑
J

j ¼ 1
ðx cosθjþy sinθj�wðθjÞÞð cosθj; sinθjÞ;

I €ϕ ¼ 0: (A.7)

Again, ϕ¼0. For time harmonic motion ðx-xe� iωt ;…Þ the equations for x and y follow from (A.7) as

2τ2� J�C �S

�S 2τ2� JþC

 !
x

y

 !
¼ �2 ∑

J

j ¼ 1
wðθjÞ

cos θj

sinθj

 !
; (A.8)

where (see (18)) τ2 ¼mω2=κ and

Cþ iS¼ ∑
J

j ¼ 1
ei2θj : (A.9)

Solving for x and y,

x

y

 !
¼ �2

ð2τ2� JÞ2�C2�S2
∑
J

j ¼ 1
w θj
	 
 2τ2� JþC S

S 2τ2� J�C

 !
cosθj

sinθj

 !
: (A.10)

For J41 we assume that the angles fθjg are uniformly distributed, i.e. θjþ1 ¼ θjþ2π=J. Hence Cþ iS¼ 0 for all values of J
except J¼1,2, in which cases Cþ iS¼ J ei2θ1 . Solving (A.10) for the displacements then yields

x

y

 !
¼ �1
τ2�HJ

∑
J

j ¼ 1
w θj
	 
 cosθj

sinθj

 !
; HJ ¼

J; J ¼ 1;2;
J
2
; JZ3:

8<: (A.11)
A.4. Radial force

The radial component of the force per unit area on the shell is

f θ
	 
¼ κ

a
∑
J

j ¼ 1
x cosθjþy sinθj�w θj

	 
	 

δ θ�θj
	 


; (A.12)

where δðθÞ is the Dirac delta function. The azimuthal component of the force is negligible. Substituting (A.11) into (A.12)
yields

f θ
	 
¼ �κ

a
1

τ2�HJ

� �
∑
J

j ¼ 1
∑
J

m ¼ 1
wðθmÞ cos ðθj�θmÞþ τ2�HJ

	 

wðθjÞ

" #
δ θ�θj
	 


; (A.13)

where HJ is defined in (A.11). The specific form of the radial force per unit length on the shell due to a single spring, a
diametrical pair of springs, and for JZ3 uniformly distributed springs are given in Eq. (17).
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A.5. Net force

Expanding the radial force in Eq. (A.13) in azimuthal modes (see (19)) for a single spring (J¼1) at angle θ1 yields the
modal force

f n ¼ � κ
2πa

τ2

τ2�1

� �
w θ1
	 


e� inθ1 : (A.14)

Similarly, for J¼2 springs oriented at θ1 and θ2 ¼ θ1þπ the modal force has the form

f n ¼ � κ
2πa

∑
2

j ¼ 1
w θj
	 


e� inθj �
τ2

τ2�2
for odd n;

1 for even n;

8<: (A.15a)

f n ¼ � κ
2πa

e� inθ1 �
τ2

τ2�2
wðθ1Þ�wðθ1þπÞ	 


for odd n;

wðθ1Þþwðθ1þπÞ for even n;

8><>: (A.15b)

Now consider the case JZ3, Eq. (A.13) with HJ ¼ J=2. In order to express the radial force as a Fourier series we first
rewrite it as

f θ
	 
¼ � κ

2πa
1

τ2� J
2

0B@
1CA ∑

1

n ¼ �1
∑
J

j ¼ 1
w θj
	 


einðθ�θjÞ τ2� J
2
þ ∑

J

m ¼ 1
cos θj�θm

	 

einðθj �θmÞ

" #
: (A.16)

Hence, referring to (19),

f n ¼ � κ
2πa

1
τ2� J

2

 !
∑
J

j ¼ 1
w θj
	 


e� inθj τ2� J
2
þ ∑

J

m ¼ 1
cos θm�θj

	 

e� inðθm �θjÞ

" #
: (A.17)

Consider first the term

∑
J

j ¼ 1
wðθjÞ einθj ¼ ∑

1

m ¼ �1
Wm ∑

J

j ¼ 1
eiðm�nÞθj ¼ ∑

1

m ¼ �1
WmŜm�n; (A.18)

where

Ŝp ¼ ∑
J

j ¼ 1
eipθj ¼ ∑

J

j ¼ 1
eijθp : (A.19)

For p¼0 mod J, pAZ, we have eiθp ¼ 1 and hence Ŝp ¼ J. Otherwise eiθp a1 and therefore Ŝp ¼ ðeiJθp �1Þ=ð1�e� iθp Þ ¼ 0. In
conclusion,

∑
J

j ¼ 1
wðθjÞ e� inθj ¼ J ∑

1

m ¼ �1
WnþmJ : (A.20)

The modal force in (A.16) contains the summation

2 ∑
J

m ¼ 1
cos ðθm�θjÞ e� inðθm �θjÞ ¼ 2 ∑

J

m ¼ 1
cosθm e� inθm ¼ Ŝ1�nþ Ŝ1þn; (A.21)

see (A.19). Thus

∑
J

m ¼ 1
cos θm�θj

	 

e� inðθm �θjÞ ¼

J
2
; n¼ 71 mod J;

0 otherwise;

8<: (A.22)

where the notation n¼ 71 mod J is defined in Eq. (6).
Substituting results (A.20) and (A.22) into Eq. (A.16) yields the modal force on the shell for JZ3 springs as

f n ¼ � Jκ
2πa

∑
1

m ¼ �1
WnþmJ �

τ2

τ2� J
2

; n¼ 71 mod J;

1 otherwise:

8>><>>: (A.23)
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