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Abstract

It is known that an acoustic wave incident on an infinite array of aligned rectangular blocks of a different
acoustic material exhibits total transmission if certain conditions are met ﬁl] which relate the unique ”intro-
mission” angle of incidence with geometric and material properties of the slab. This extraordinary acoustic
transmission phenomenon holds for any slab thickness, making it analogous to a Brewster effect in optics,
and is independent of frequency as long as the slab microstructure is sub-wavelength in the length-wise
direction. Here we show that the enhanced transmission effect is obtained in a slab with grating elements
oriented obliquely to the slab normal. The dependence of the intromission angle 6; is given explicitly in
terms of the orientation angle. Total transmission is achieved at incidence angles +0,, with a relative phase
shift between the transmitted amplitudes of the +6; and —6; cases. These effects are shown to follow from
explicit formulas for the transmission coefficient. In the case of grating elements that are rigid the results
have direct physical interpretation. The analytical findings are illustrated with full wave simulations.

1. Introduction

Consider a slab comprised of rigid rectangles arranged periodically to form a comb-like grating of infinite
extent as depicted in Figure [l D’Aguanno et al. E] showed that such a ”single layer grating” (SLG) with
rigid filling fraction f exhibits total transmission for an acoustic plane wave incident at intromission angle
0; satisfying cos#; = 1 — f. The angle is defined relative to the slab normal. For instance, the intromission
angle is zero for a grating of vanishingly thin rigid plates, f = 0+ ; this limiting case of §; = 0 is intuitively
obvious because the acoustic wave does not interact with an infinitesimally thin rigid plate aligned with the
acoustic particle motion (even the diffraction effects vanish because the diffraction coefficient for parallel
incidence on a semi-infinite rigid strip is zero E]) Now consider the same thin rigid plates rotated through
angle ¢ as shown in Figure 2(a). This oblique grating again ”obviously” has intromission angle 6; = ¢, just

like the orthogonal grating.

FIGURE 1: A section of an infinite single-layer grating of rigid blocks in a fluid.
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Now consider the same grating but with the orientation of the plates in the grating reversed while the
incident wave remains the same, Figure B(b). Remarkably, the two gratings in Figure 2] are identical in
terms of the magnitudes of the reflection and transmission coefficients for all angles of incidence and for all
frequencies for which the homogenization approximations apply. This equivalence becomes apparent when
one realizes that the two gratings present the same effective acoustic impedance in the homogenization limit.
There is, however, a phase difference between the transmitted waves for the two cases in Figures 2] (a) and
(b). These effects, including the cases in Figure [2] are derived in this paper in the context of a general SLG
composed of rotated elements.

FIGURE 2: Figure (a) shows a grating of thin rigid strips aligned with the incident plane wave, resulting in perfect transmission.
What will happen if we reverse the orientation of the slab elements as in (b) ?

Extraordinary optical transmission (EOT) through metallic gratings can occur when the openings re-
sonate in Fabry-Perot mode, which is well established although very narrow band effect. Broadband EOT,
spanning from DC upwards, has been recently proposed M] and realized ﬂa] based on a Brewster angle effect
that results from the equivalent long-wavelength properties of the grating. Akozbek et al. ﬂa] demonstra-
ted Brewster-like broadband extraordinary optical transmission in a thick metal plate with slits as narrow
as A/750. They showed that an order of magnitude larger transmission is obtained for very narrow slits
compared to the normal-incidence Fabry-Pérot resonance transmission peaks. EOT has also been confirmed
experimentally for TE and TM waves through subwavelength dielectric gratings in the microwave regime

(.
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FIGURE 3: The single-layer grating of Fig. [l rotated through angle ¢ to make a slab that is non-symmetric with respect to the
incident angle.

Brewster angle total transmission is rarely observed for acoustic waves in homogeneous materials. The
successful demonstration of EOT therefore raised the question of whether the same subwavelength effect
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can be achieved in acoustics. D’Aguanno et al. [2] answered the question in the affirmative, demonstrating
theoretically and experimentally an acoustic grating that is completely transparent to sound waves. The
Brewster-like effect was explained via surface impedance matching between the exterior air and the effectively
rigid grating. The gaps presented by the spaces between the grating elements allows the effective impedance
to be designed to produce arbitrary Brewster angle. Subsequent demonstrations of extraordinary acoustic
transmission (EAT) include Qiu et al. |§] who considered a hybrid grating composed of two dissimilar grating
elements different from the exterior air. Higher frequency properties of EAT gratings are discussed by Qi
et al. |9], while Akozbek et al. [10] examine pass and stop-band effects for 1D phononic crystals made from
repeated EAT slabs.

The mechanism behind EAT is, as noted by D’Aguanno et al. |2], impedance matching. The grating dis-
plays effective long-wavelength properties easily estimated for rigid grating elements, which allows tuning the
grating porosity to achieve the desired intromission angle [2]. Maurel et al. [1] also provide a clear explanation
of the phenomenon as impedance matching but in the context of acoustics of fluids with anisotropic inertia.
They considered more complicated gratings comprising fluid elements and geometrical substructure, such as
double layer gratings. They showed that the anisotropic effective properties of the grating can be accurately
predicted using homogenization theory. This opens the door to the design of EAT gratings by varying the
material properties and the geometrical details. No matter how complicated the design, homogenization
theory will predict the EAT properties as long as the horizontal substructure periodicity is subwavelength.
At shorter wavelength the present approach breaks down as dispersive effects come into play. Interesting
nonlocal effects may be expected, as has been demonstrated for electromagnetic metamaterials comprising
slanted inclusions [11]. While the geometries considered here involve waveguides of uniform width, tapered
waveguides could be considered, as in [12], introducing gradients in the effective properties. However, these
possibilities are beyond the scope of this paper and remain as future areas of study.

The purpose of this paper is to demonstrate EAT effects in non-symmetric gratings, of the type depicted
in Fig. Bl We consider the general case in which the grating material is an acoustic fluid, the rigid SLG being
a limiting case. We use homogenization theory to replace the grating by an equivalent effective medium
with anisotropic density. The transmission coefficient of the equivalent uniform slab can then be obtained in
closed form in terms of the original parameters, including the orientation angle of the oblique grating. Prior
to this work EAT has only been considered in the context of symmetric gratings, such as in Fig. [[l While
Qi et al. |13] provide experimental measurements of the effective index and effective impedance of obliquely
oriented SLGs as function of wavelength, they do not report EAT effects nor do they provide analytical
results for the effective properties. Based on the results of this paper it would be straightforward to estimate
the effective index and effective impedance of SLGs as shown in Fig.

The outline of the paper is as follows. We begin in §2] with a homogeneous model of an acoustic slab
with anisotropic density, and derive explicit expressions for plane wave reflection and transmission, egs.
@) and (@). The effective anisotropic properties are then derived in §3] using standard long-wavelength
homogenization methods. Several limiting cases, including the rigid grating, are discussed in §4l Numerical
examples illustrating the dependence of intromission angle and transmittivity on the slant angle ¢ are given
in §8l Conclusions are presented in 6

2. Acoustic transmission through a slab with anisotropic inertia

The exterior acoustic medium has density p and sound speed ¢, with bulk modulus K = pc?. The
governing acoustic equations for the acoustic pressure p and velocity v are

v = (iwp) " 'Vp, p=(iw) *Kdivv. (1)
Time harmonic dependence e~*? is assumed. The acoustic pressure comprises incident, reflected and trans-
mitted plane waves as shown in Fig. [4]

— eiksin612 X (eikcosezl + Reiikcosem) 71 <0, (2)
pP="Do Ttk cos 0(z1—b) r1 > b,
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where k = % and po is a constant. Define for later use the acoustic impedance

pe
Zy = .
0= cosh (3)

We are interested in conditions for which |T] = 1.

e

4 NR

FIGURE 4: Two-dimensional configuration for the equivalent uniform slab with anisotropic density.

Consider a uniform slab of thickness b, bulk modulus K and inertia tensor which is represented by a
2x2 symmetric matrix (p = pT') with elements p;j, i, j = 1,2. Specific models for anisotropic non-diagonal
density tensors are discussed in §3l The equations of motion within the slab are

v = (iwp)'Vp, p=(iw) 'K divv. (4)

The transmission and reflection coefficients follow from Appendix [Al as

_ikbP12 sin b WA ZIN . wby 1
T=c¢ R o G(COS%—%<Z—Z+Z—Z) Smc;z_g) s (5a)
i/ Z¢ ZhH\ . wb wb i/ Zy  Zh\ . wb\—1
R4 B (4B D)) g
5 Z,; Zo sin c Ccos c 5 Z(; + Zo sin o ( )
where ) 25 1
_ (P22 )§<i_sm )—5 Z,:( etp) 6
0 (detp K,  c2pa T P22 o ©)

The results ([B)-(6) have not been previously published. Maurel et al. ﬂ] consider the particular case of
aligned inertial and slab axes (p12 = 0). The case of a normal acoustic fluid in the slab corresponds to
p11 = p22, p12 = 0. Note that

R(=0) = R(0), [T(=0)|=[T(9) (7)

Thus, as a function of incident angle the reflection coefficient is symmetric about # = 0, but only the
magnitude of the transmission coefficient is symmetric. The asymmetry as a function of 6 is evident from
the relation

7(9)

A similar expression for the ratio of transmission coefficients for transmission through an anisotropic die-
lectric slab was derived by Castanié et al. [14, Eqs. (18) to (21)], who also considered propagation through

T(_e) _ ei2kb% sin9. (8)
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layered anisotropic dielectric media. Note that the identity (7)); for the reflection coefficient is expected
based on reciprocity [15].
Equation (Gal) implies |T'| = 1 when the impedances match,

T0,) =1 & Zo=2) (9)

Hence, enhanced acoustic transmittivity occurs if
229 2, _ K
p~sin” 0; + (det p) cos® 6; = KPP (10)
S

The value of §; satisfying this relation is the intromission angle. It is clear from (), that the intromission
effect is symmetric in the incident angle, i.e. |T(£6;)| = 1.

3. Single-layer gratings as anisotropic inertial slabs
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FIGURE 5: A single-layer grating. The grating material is an acoustic fluid of bulk modulus Ko, density pp and volume fraction
f. A symmetric gratings is shown on the left. On the right, the elements of the grating are rotated through angle ¢ to make a
slab that is non-symmetric with respect to the incident angle 0 of Fig. @l

Consider first the symmetric single-layer grating (SLG) of Fig. Bl for which the grating fluid has properties
Ky, po, and volume fraction f € [0,1]. The effective bulk modulus K and density tensor p of the slab follow
from standard quasi-static homogenization, e.g. ﬂ, eq. (3)], as

L_J 1= f (0N L _J I=f _
Z—Ko‘i‘ K p_(o p2>a Pl_P0+ P ) p2_fp0+(1 f)p (11)

The SLG rotated through angle ¢ relative to the xiz9 directions as in Fig. Bl has the same effective bulk
modulus K, while the inertia tensor becomes non-diagonal and symmetric, with
p11 = p1cos” ¢ + pzsin® ¢,
p= (,011 p12> . paz = p1sin® ¢ + py cos® (12)
P21 P22 )
p12 = (p1 — p2)singcos ¢ (= pa1).

Note that p11,p22 > 0,
p12 <0 if ¢ > 0,
fA = f)p—po)?

=— singcos¢p = >0 if ¢ <0, 13
P12 Fr (= ¢ cos ¢ p12 ' o] (13)
P12 = 0 lf ¢ = 0,

while det p = p1p2 and tr p = p; + p2 are independent of ¢. The relative phase of the transmitted wave for
incidence at +0, eq. (8), becomes, using b = a cos ¢,

T(ie) —i2ka sin ¢ sin 6 (%)

—e pa+pitanZ ¢/ (14)
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The phase difference in ([I4) between T'(0) and T(—60) can be understood as follows. First, the term
—2kasin¢sin @ has clear geometrical meaning. Referring to Figure [6] note that ksinf is the conserved
horizontal wavenumber, while asin ¢ is the horizontal path length, resulting in the phase advance/delay of
+ka sin ¢ sin @ for incidence at +6. The additional factor, /m-%;tf;w’ which is positive but less than unity
on account of the fact that pa > pi, arises from acoustic propagation in the grating elements. This results
in a smaller phase effect than that of the rigid limit (p2 > p1). The phase term obviously becomes zero in

the symmetric limit ¢ = 0. Note, however, that for the fluid grating the phase also tends to zero as ¢ — 7.

=

X,=—asin ¢

X,=asin ¢

v/

(b)

FIGURE 6: Relative phase of the transmission coefficients for +6.

Using the explicit formulae for the anisotropic density tensor, the impedance matching condition (0]
becomes

pP2—pP1 2 1) K
(—p cos? ¢ + 7)75—1
pipz _

02

IT(0;)] =1 < |cos’0; =

(15)

This shows the explicit dependence on the orientation angle ¢. In particular, it implies that 96;/9¢ > 0
since pa — p1 > 0 and p1ps > p? for py # p.

4. Limiting cases and generalizations

The intromission angle for the single-layer grating of Fig. Hl is given by eq. (I3). Here we consider its
behavior for some limits of the parameters, such as rigid grating elements. The limiting case of ¢ = 0 was
considered by [1l], although they do not provide a simple full-transmission condition analogous to (1)) with

¢ = 0.

4.1. Rigid grating elements
If the grating element is much stiffer than the background fluid, then in the limit K/ Ky — 0 (I3 becomes

K ) (1-f)e2 -1

The case of a fixed rigid grating is obtained in the dual limit of large stiffness and density, i.e.

K
|T(6,)] =1, E}:o, %zO, & ‘cos@i:(l—f)cosqﬁ‘ (17)

This case, which we call the rigid limit, is of particular interest. It is easily realized if the background acoustic
medium is air.

In the rigid limit (I7) we have (see eq. (@) co = ccos ¢, and the transmission coefficient of (Bal) simplifies
to

T(@) _ eikasin¢sin9/(cosk,a_ %(

cos)  cosb;

cosf;  cos@ ) sin kza) ' (18)
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Hence,

1 0 0;
R(0)| =siny, v=tan! (—( s €2

|T
2

—~

0)| = cos,

cosb; cosf ) sin ka) (19)

and the relative phase of the transmission coefficients for +6 is
T(-6

T(0)

The reason for the phase difference —2ka sin ¢ sin 6 is evident from Fig. [6l

~

_ e—iZka sin¢sin0. (20)

4.2. Transmission at normal incidence : 6; =0
The intromission angle is identically zero if

K p3—(—=f)>(po—p)cos’d _ po

Ko~ ppo+ F = Do~ pPcotd = p 2!

TO)=1 <

~

This is a rather interesting identity : it indicates that the required impedance ratio v/ Kp/Kopo depends on
the density ratio and the ”‘environmental” parameters f and ¢ but not on the relative bulk moduli. If any
one of the three conditions f =1, ¢ = 5 or pg = p holds then (2I]) reduces to the expected one-dimensional
impedance matching condition Kypy = Kp. However, when f # 1 and py # p eq. (ZI) implies that the
grating material must have higher impedance than the background fluid.

Assume further that full transmission at 6; = 0 corresponds to ¢ = 0, then (1) (or ([ZI))) requires

7(0)| =1, K pi— (10— f)*po—p)?
¢=07} 7 % oo+ F(1 = f)(po — p)* 22)
Now vary ¢, with (22]) satisfied, then eq. (I5)) becomes
_ g (L="1po  (po—p\ .
|T(9;) =1 & sinf; = \/fp+ = oo (po +p> sin ¢. (23)

This provides a possible active model for changing the angular receptivity of the slab by rotating the elements
of the single-layer grating.

4.8. Zigzag structures

A zigzag structure, as shown in Fig. [, here means one that is made from layers in series, each layer
being a SLG with grating elements oriented at ¢ or —¢. The only difference between adjacent layers is that
the effective density p12 changes sign. Let by (b—) be the combined thickness of the layers with orientation
+¢ (—¢), so that the total thickness is b = b4 + b_. The transmission coefficient is

=

o
p
a

(a) (b) (©
FIGURE 7: Zigzag structures are SLGs in series with alternating orientations +¢.
ik(ba—b_ ) P12 i wb i Zy  Z, wby 1
T0) =e ik(b+—b-) 532 S”19<cos — == (—? + —9) sin —) ) (24)
co 2\Zy, Zy cy

the reflection coefficient is given by eq. (BD), and the other parameters in ([24) are as before. The three
examples of zigzag structures in Fig. [0 all have by = b_ and therefore T'(—6) = T'(6) in each case.
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5. Numerical examples

The examples presented use non-dimensional parameters as far as possible; in particular the frequency
is defined by kd. The length of the grating elements is a = 20d, see Fig. [l and the total slab thickness b
depends on the orientation angle through b = a cos ¢. All results shown were generated with COMSOL using
periodic boundary conditions to simulate wave transmission through an infinitely periodic structure.

(a) f=0.5, kd = 0.25 (e) f=0.75, kd = 0.25

(b) f =05, kd=0.5 () f=0.75, kd = 0.5

NN

(d) f=05kd=1 (h) f=0.75, kd = 1

FIGURE 8: Total pressure plots at different frequencies for a symmetric (¢ = 0) slab of rigid elements. The incident angle is
taken to be the intromission angle §; = cos™1(1 — f), where f = 0.5 = 6; = 60° in (a) through (d) while f = 0.75 = §; = 41.4°
in (e) through (h). The values of kd range from 0.25 to 1.0, as indicated.

5.0.1. Rigid grating elements

We begin with a symmetric slab of rigid elements, ¢ = 0, in Figure 8 The plots show total pressure for
waves incident at the intromission angle for two different values of the filling fraction, f = 0.5 and f = 0.75,
at four frequencies at or below kd = 1. The plots clearly show total transmission for frequencies kd < 1.
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(a) ¢ = 30°, f =05

(b) ¢ (d) ¢ = —30°, f =0.75

~

FIGURE 9: Total pressure plots for incidence at the intromission angle of a slanted grating of rigid elements, §; = cos™! ((1 -
f) cos ¢), ¢ = £30°, at frequency kd = 1. Plots (a) and (b) show the full pressure field for filling fraction f = 0.5, while (c)

and (d) are for higher filling fraction f = 0.75.

(b) ¢ = —60°, kd = 0.25 (d) ¢ = —60°, kd = 0.5

FIGURE 10: Wave transmission through a SLG of thin rigid elements (volume fraction f = 0+) oriented at ¢ = £60° for
incidence at the intromission angle 6; = 60°.

As noted above, full transmission through an asymmetric grating of elements oriented at angle ¢ can be
obtained at both 6; and —6;. In the numerical experiments shown in Fig.[@we change the direction of rotation
of slab elements instead of changing the incident direction, i.e., using +¢ instead of +6. Figure[d shows that
the pressure amplitude transmitted through the slab for ¢ is the same as for —¢. The transmitted phases
are clearly different; the phase effect is easier to see in Fig. [9 for the example with lower filling fraction.
In the limit of zero but still finite filling fraction, f = 0+, the rigid element SLG acts like a comb, totally
transparent for incidence at §; = +¢, as illustrated in Figure [0l with a zoom-in shown in Fig.[IIl The phase

9



difference between incidence at ; = +¢ and ¢ is most dramatic in this limit of thin rigid grating elements.
This proves the original assertion about what happens in Fig. RI(b).

FIGURE 11: Zoomed-in view of the phase difference in plot (b) of Figure

As a final example of a grating with rigid elements, Fig.[2shows the computed reflection and transmission
coefficients for three different slanted gratings. The intromission angle in each case was chosen to be 6; = 60°
which constrains the orientation angle ¢ and the volume fraction f to satisfy (1 — f)cos¢ = %, see eq. (7).
Figure indicates that the transmission spectrum does not change significantly as long as the relation
between 0;, ¢ and f is obeyed.

FIGURE 12: Full transmission at 8; = 60° for three different rigid SLGs with elements oriented at ¢ = 0°, 30° and 60°. The
solid and dashed curves show |T\2 and |R|27 respectively. The black, red, and green curves are for the cases ¢ = 0°, +30° and
+60°, respectively. The frequency is kd = 0.25.

5.0.2. Acoustic grating elements

The material properties of the gratings are selected so that the intromission angle is zero when the grating
elements are symmetric, i.e. 89 = 0 for ¢ = 0, and we consider the change in properties as the elements are
subsequently rotated to ¢ > 0. The background acoustic medium is assumed to be water, p = 1000 kg/m?,
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¢ = 1500 m/s, and K = 2.25 GPa. We first consider a denser fluid, pg = 10p, at volume fraction f = 0.3, then
equation ([22) yields Ky = 1.008 GPa, guaranteeing that a wave of normal incidence has full transmission
for ¢ = 0°. We then vary ¢, with all other material parameters fixed, to calculate the intromission angle
for each ¢ according to eq. (23). Figure shows how the intromission angle changes with ¢. Notice that
¢ can be positive or negative so that the gratings can rotate in two directions. The full field shown in Fig.
[I4 illustrates the phase transfer across the SLG. This is clearly more complicated than in the rigid case,
where the acoustic propagation is along parallel waveguides. The interaction of the two fluids in the SLG is
particularly evident in Fig. [[4{c

~
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FIGURE 13: The intromission angle changes with ¢ for an acoustic grating with filling fraction f = 0.3 subject to the constraint
that (a) ; = 0° for ¢ = 0. The intromission angle 6; in the other cases is : (b) 13.3°, (c) 26.3°, (d) 38.8°, (e) 50.1°.

In the previous example the grating elements were chosen as denser than the background (water) and it
was found that the grating had to be less stiff (lower bulk modulus) than water. Conversely, if we consider
a SLG using a fluid that is lighter than the background, the same constraint that the intromission angle is
zero for symmetric alignment, 6; = 0 at ¢ = 0, requires that the fluid is stiffer than water. For instance, eq.
[22)) is satisfied with f = 0.3, po = 0.45p and Ky = 21.29 GPa, so that the intromission angle is zero for the
symmetric configuration ¢ = 0. Figure [[5] shows how the intromission angle changes with ¢ for this grating.
Figure show the full field for ¢ = +30° and ¢ = £60°. It is instructive to compare these results with
those for the other fluid in Fig. T4

It is possible, in principle, to design materials with low density po < p and high stiffness Ky > K. Metal
foams, e.g. Duocel®aluminum foam, can have very low density pp < p and relatively high stiffness, however,
the random structure usually limits the effective bulk modulus to be less than that of water. Simultaneously
ultra-light and ultra-stiff materials are obtained using thin lattice structures with ordered periodicity ﬂﬁ]
These materials possess significant shear modulus, i.e. the Poisson’s ratio is not close to %, which implies they
support both shear and longitudinal waves. By carefully selecting the unit cell one can achieve a one-wave
fluid like material with properties pg = p and Ko = K of water, specifically known as Metal Water ﬂﬁ] The
low shear rigidity is ensured by using very thin members with large flexural compliance. The metal water
structure, designed to have quasistatic properties of water, also exhibits interesting band structure which
makes it a narrow-band negative index material HE] The generalization of the metal water structure is a
class of metallic pentamode materials with low-shear and design specific density and stiffness, which could
in principle achieve desired values of pg, Kj.
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FIGURE 15: The intromission angle is constrained to be zero for symmetric alignment (¢ = 0) for a grating with fluid less
dense and stiffer than the background, (a). For filling fraction f = 0.3, the grating elements are rotated by angle ¢ and the
intromission angle 6; becomes (b) 6.5°, (c) 12.5°, (d) 17.6°, (e) 21.4°.

6. Conclusions

Our main result is eq. (I5) which gives the intromission angle for the single-layer grating of Fig.
While it is known that EAT can be understood as impedance matching in the context of acoustics of fluids
with anisotropic inertia ﬂ] the present results show that this analogy extends further to include asymmetric
gratings. The principal axes of the anisotropic inertia are not necessarily aligned with the slab axes (Fig.
[B) which introduces asymmetry in the phase of the transmitted wave as a function of incidence angle +6.
These seemingly unusual results for total transmission can be easily understood when the grating elements
are rigid. Thus, any angle of intromission can be obtained with thin rigid elements by orienting them to the
desired value of 8;, a simple comb-like effect. Surprisingly, full transmission is also achieved at incident angle
—0;, see Fig.

The rigid grating with thin slanted elements illustrates the geometrical acoustics nature of the EAT
phenomenon. However, the simultaneous EAT effect at orientations +¢ emphasizes that the underlying
phenomenon is “geometrical impedance matching”. The term geometrical impedance matching is introduced
to signify the flux condition across the interface, as compared with the phase matching (Snell’s or Descartes’
law) in the transverse direction. Thus, geometrical impedance matching leads directly to the identity (1)
for the rigid grating. However, one needs a full wave approach in order to arrive at the more general result
of eq. (IH) for the intromission angle in the presence of an acoustic fluid grating. Despite this, the simplicity
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FIGURE 16: Total pressure plots for some configurations from Fig. at frequency kd = 0.25.

= —60°

of the identity eq. (T for the intromission angle is remarkable.

Appendix
A. Solution for an anisotropic inertial slab

The slab properties are bulk modulus K, and 2x2 inertia matrix p = p”. Define the state vector

u= <f;) , (A.1)

and consider solutions with constant horizontal phase such that u has the form

u($1, $2) _ U(xl)eik Sinelzl (AQ)
Then U(z,) satisfies
du = iwAU where (A.3)
T1
. 1 sin® 6
A sin 6 EI B, B= de(zp Ks ~ cZpa (A.4)
¢ p2 = 0

and I is the identity matrix. Note that the matrix A is independent of the frequency w.
Define the propagator matrix, M(x), as the solution of
dM(x)
dx

=iwAM with M(0) =1 (A.5)
Note that detM = 1 HE] The property AT = JAJ where the 2x2 matrix J has zeroes on the diagonal
and unity off diagonal, implies that the Hermitian conjugate satisfies MT = JM~1J and hence M~!(z) =
IMT (2)J = M(—2).
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We consider slabs with uniform properties in = € [0, b], so that
M(b) = P4, (A.6)

This explicit form of the propagator matrix simplifies, using eqs. (A4]) and (A.6) and the property that
cng is a square root of the identity, to give

M(b) = (cosw—bl — isinw—bB) eikb% Sine, (A7)
Co Co co
where 1/9
co = (—detB) /2. (A8)

Based on eqs. (@) and (A.2)),
U(0-) = po <Z@_11(1_RR)) , UMb +0) =pT (Z_Bll) , (A.9)

The continuity conditions at 1 = 0 and z; = b require the normal velocity v; and the pressure p to be
continuous, that is U(0+) = U(0—) and U(b—0) = U(b+ 0). Hence, with M;; = M;;(b),

Z;Y\ _ (M My (Z;'(1-R)
T ( _1) - (Mﬂ M) (7 () (A.10)
The transmission and reflection coefficients follow from (AIQ) as

T = 2(Myy + Mas + ZoMya + Z5 'Ma1) ™, (A.11a)
R=1— (M + ZgMyo) T. (A.11D)

Using the explicit solution for M(b) from (A7) and (A.g) yields ().
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