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We consider a periodic lattice structure in d = 2
or 3 dimensions with unit cell comprising Z thin
elastic members emanating from a similarly situated
central node. A general theoretical approach provides
an algebraic formula for the effective elasticity of
such frameworks. The method yields the effective
cubic elastic constants for three-dimensional space-
filling lattices with Z = 4, 6, 8, 12 and 14, the
last being the ‘stiffest’ lattice proposed by Gurtner
& Durand (Gurtner & Durand 2014 Proc. R. Soc.
A 470, 20130611. (doi:10.1098/rspa.2013.0611)). The
analytical expressions provide explicit formulae for
the effective properties of pentamode materials, both
isotropic and anisotropic, obtained from the general
formulation in the stretch-dominated limit for Z = d +
1.

1. Introduction
Space frames, or periodic lattice structures of rods
and joints, have long been of interest to engineers,
architects, materials scientists and others. The octet
truss, for instance, which is common in modern large-
scale structures because of its load-bearing capacity
may be attributed to Alexander Graham Bell’s interest
in tetrahedral cells for building man-carrying kites
[1]. Recent fabrications of micro-architectured materials
have used the octet truss tetrahedral cell design to
achieve ultralight and ultrastiff structures [2]. An
even stiffer structure comprising tetrakaidecahedral
unit cells was proposed by Gurtner & Durand [3,
4] (figure 1). Unlike the octet truss that has cubic
elastic symmetry, the tetrakaidecahedral structure can
display isotropic effective elastic properties. At the
other end of the stiffness spectrum for elastic lattice
structures are pentamode materials (PMs) with five
easy modes of deformation [5] (see also [6], p. 666).
The range of such material properties, including high
stiffness, strength and fracture toughness, exhibited by
low-density micro-architectured materials is reviewed
in [7].

2014 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Unit cell for some lattices considered (table 1). The stretch-dominated Z = 14 lattice with the node at the centre of
the tetrakaidecahedral unit cell has maximal stiffness [4]. (a) Z = 4, (b) Z = 6, (c) Z = 8, (d) Z = 12 and (e) Z = 14. (Online
version in colour.)

The response of low-density lattice structures depends on whether the deformation under load
is dominated by stretching versus bending. This in turn depends upon the coordination number,
Z, the number of nearest neighbouring joints in the unit cell; see figure 1 for several examples
ranging from pentamodal (Z = 4) to stiffest (Z = 14). Maxwell [8] described the necessary
although not sufficient condition for a d-dimensional (d = 2, 3) space frame of b struts and j
pin joints to be just rigid: b − 3 = (j − 3)d. For an infinite periodic structure, b ≈ jZ/2, Maxwell’s
condition becomes Z = 2d. Structures with Z = 2d, known as isostatic lattices, are at the threshold
of mechanical stability [9]. A closer examination of the issue taking into account the degrees of
freedom in the applied strain field, d(d + 1)/2, leads to the conclusion that the necessary and
sufficient condition for rigidity of frameworks with coordination number Z is Z ≥ d(d + 1) [10].
The octet truss lattice (Z = 12) is an example of a three-dimensional lattice which satisfies the
rigidity condition [11]. Three-dimensional frameworks with Z< 12 admit soft modes; thus, as in
§4f, a cubic framework with Z = 6 has three soft modes. Zero-frequency modes, ‘floppy’ modes,
that occur for Z< 2d correspond to collapse mechanisms, a topic also examined by Hutchinson &
Fleck [12] for truss-like two-dimensional lattices.

Three-dimensional elasticity is characterized by six positive eigenvalues [13]. A PM in three
dimensions is the special case of elasticity with five zero eigenvalues, hence ‘penta’. An inviscid
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compressible fluid like water serves as a useful reference material for PMs as it has a single
bulk modulus but zero shear rigidity, the elastic stiffness tensor is C = K0I ⊗ I ⇔ Cijkl = K0δijδkl,
where K0 is the bulk modulus and Cijkl are the components of C. This form of the elastic moduli
corresponds to a rank one 6 × 6 matrix Voigt matrix [CIJ] with single non-zero eigenvalue 3K0.
PMs can therefore be thought of as elastic generalizations of water but without the ability to
flow; however, unlike water, for which the stress is isotropic, PMs can display anisotropy. Recent
interest in PMs has increased after the observation that they provide the potential for realizing
transformation acoustics [14]. PMs can be realized from specific microstructures with tetrahedral-
like unit cells [5,15]. These types of PM lattice structures are related to low-density materials such
as foams in which the low density is a consequence of the low filling fraction of the solid phase;
see [16] for a review of mechanical properties of low-density materials. Here, we consider specific
microstructures and find explicit values for the elastic moduli for isotropic and anisotropic PMs.

The purpose of this paper is twofold. First, we fill the need for a general theoretical approach
that provides a simple means to estimate the effective elasticity of frameworks with nodes
which are all similarly situated. Nodes are similarly situated if the framework appears the same
when viewed from any one of the nodes [17]; the unit cell must therefore be space-filling,
as are the cases in figure 1. Specific homogenization methods have been proposed for lattice
structures; for example, Tollenaere & Caillerie [18] use a mix of analytical and finite-element
methods, while [19,20] provide a general mathematical scheme that is not easy to implement
in practice. More general micropolar elasticity theories have also been considered for two-
dimensional frameworks, for example by applying force and moment balances on the unit cell
[21] or, alternatively, using energy-based methods [22]. The method proposed here derives the
elastic tensor relating the symmetric stress to the strain. It does not assume micropolar theories,
although the solution involves a local rotation within the unit cell required for balancing the
moments (§3). In contrast to prior works, the present method is explicit and practical; it provides,
for instance, the effective cubic elastic constants for all the examples in figure 1 (§4f ). The second
objective is to provide analytical expressions for the effective properties of PMs, both isotropic
and anisotropic. The general theory derived here is perfectly suited to this goal. We show in §4a
that the minimal coordination number necessary for a fully positive definite elasticity tensor is
Z = d + 1 (d = 2 or 3); the pentamode limit therefore follows by taking the stretch-dominated limit
for Z = d + 1.

The paper proceeds as follows: the lattice model is introduced and the main results for the
effective properties are summarized in §2. The detailed derivation is presented in §3. In §4,
some properties of the effective moduli are described, including the stretch-dominated limit,
and examples of five different lattice structures are given. PMs, which arise as a special case
of the stretch-dominated limit when the coordination number is d + 1, are discussed in §5. The
two-dimensional case is presented in §6 and the conclusion is given in §7.

2. Lattice model
The structural unit cell in d-dimensions (d = 2, 3) comprises Z ≥ d + 1 rods and has volume V. Let
0 denote the position of the single junction in the unit cell with the cell edges at the midpoints
of the rods, located at Ri for i = 1, . . . , Z. Under the action of a static loading the relative position
of the vertex initially located at Ri moves to ri. The angle between members i and j before and
after deformation is Ψij = cos−1(Ri · Rj/(RiRj)) and ψij = cos−1(ri · rj/(rirj)), respectively, where

Ri = |Ri|, ri = |ri|. The end displacement �ri = ri − Ri is decomposed as �ri =�r‖
i +�r⊥

i . In the

linear approximation assumed here �r‖
i ≈�riei, where �ri = ri − Ri and the unit axial vector

is ei = Ri/Ri (|ei| = 1). The change in angle between members i and j is �ψij ≡ψij − Ψij, j 	= i.
The transverse displacement �r⊥

i can include a contribution �rrot
i (ei ·�rrot

i = 0) caused by rigid
body rotation of the unit cell. We therefore define�rb

i =�r⊥
i −�rrot

i , the transverse displacement
associated with flexural bending. Vectors perpendicular to ei are used to define transverse
bending forces: the unit vector eij is perpendicular to ei and lies in the plane spanned by ei and
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ej with eij · ej < 0, that is,1 eij = ei × (ei × ej)|ei × ej|−1 = (cosψijei − ej)/ sinψij, i 	= j ∈ 1Z. The unit
vector(s) eαi , α= 1 : d − 1, are such that {ei, eαi } form an orthonormal set of d-vectors. Summation
on repeated lower case Greek superscripts is understood (and only relevant for three dimensions).
Define

P‖
i = ei ⊗ ei and P⊥

i = eαi ⊗ eαi , (2.1)

so that P‖
i + P⊥

i = I, the unit matrix in d-dimensions. The axial tensor of a vector v is defined by its
action on a vector w as ax(v)w = v × w. Finally, although the derivation will be mostly coordinate
free, for the purpose of defining examples and the components of the effective stiffness tensor, we
will use the orthonormal basis {aq} (q = 1 : d).

(a) Forces on individual members
The members interact in the static limit via combined axial forces directed along the members,
and bending moments, associated with axial deformation and transverse flexure, respectively.
We also include the possibility of nodal bending stiffness, associated with torsional spring effects
at the junction. The strain energy can then be represented as [4]

H=Hs + Hb + Hn (2.2)

for stretch, bending and nodal deformation, respectively. Later, we consider the limit in which the
contributions from bending, Hb and Hn, are small, and the deformation may be approximated
by axial forces only, which is the stretch-dominated limit. Physically, this corresponds to slender
members with small thickness to length ratio.

We assume strain energy of the form

Hs =
Z∑

i=1

(�ri)2

2Mi
, Hb =

Z∑
i=1

(�rb
i )2

2Ni
and Hn =

Z∑
i=1

∑
j	=i

RiRj

2Nij
(�ψij)

2, (2.3)

where Mi are the axial compliances, Ni are the bending compliances and Nij are the nodal bending
compliances. The force acting at the end of member i (i = 1, . . . , Z) is

fi = fs
i + fb

i + fn
i , (2.4)

where fs
i =�r‖

i /Mi, acting parallel to the member, is associated with stretching. The perpendicular
component of the force acting on the member’s end comprises a shear force fb

i =�rb
i /Ni caused

by the bending of the member, plus a shear force fn
i = Rj�ψijeij/Nij associated with the node

compliance. The axial and bending compliances can be related to the member properties via

Mi =
∫Ri

0

dx
EiAi

and Ni =
∫Ri

0

x2 dx
EiIi

, i ∈ 1Z, (2.5)

where Ei(x), Ai(x) and Ii(x) are Young’s modulus, the cross-sectional area and the moment of
inertia, respectively, with x = 0 at the nodal junction. We assume circular or square cross section
in three dimensions so that only a single bending compliance is required for each member,
otherwise the results below involving Ni are not generally valid although they could be amended
with necessary analytical complication. The nodal bending compliances Nij ≥ 0 are arbitrary and
satisfy the symmetry Nij = Nji, which ensures that the sum of the moments of the node bending
forces is zero.

1If ei = −ej, we consider a slight perturbation so that ψij 	= π .
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(b) Effective stress and moduli
We consider the forces on the members of the unit cell responding to an applied macroscopic
loading. The forces acting at the node of the unit cell are equilibrated, as are the moments,

Z∑
i=1

fi = 0 and
Z∑

i=1

Ri × fi = 0. (2.6)

Treating the volume of the cell as a continuum with equilibrated stress σ , integrating div x ⊗ σ = σ

over V and identifying the tractions as the point forces fi acting on the cell boundary imply the
well-known connection

σ = V−1
Z∑

i=1

Ri ⊗ fi. (2.7)

The symmetry of the stress, σ = σT, is guaranteed by the moment balance (2.6)2. Our aim is to
derive the effective elastic moduli defined by the fourth-order tensor C, which relates the stress
to the macroscopic strain ε according to

σ = Cε. (2.8)

The elements of the elastic stiffness C when expressed in an orthonormal basis possess the
symmetries Cijkl = Cjikl and Cijkl = Cklij, and the elements can also be represented in terms of the
Voigt notation via Cijkl → CIJ = CJI.

(c) Summary of the main result for the effective elastic stiffness
We first introduce the vectors di, dαi , dij (= dji), the second-order symmetric tensors Di, Dα

i , Dij(=
Dji) and the L × L matrix with elements Pij, where L = Zd + Z(Z − 1)/2:

di = ei√
Mi

, dαi = eαi√
Ni

, (α = 1 : d − 1) dij =
√

RiRj

Nij

(
eij

Ri
+ eji

Rj

)
, (2.9a)

Di = RiP
‖
i√

VMi
, Dα

i = Ri√
VNi

1
2 (ei ⊗ eαi + eαi ⊗ ei),

Dij =
√

RiRj

VNij

(
ei ⊗ eij + ej ⊗ eji

)
,

⎫⎪⎪⎬
⎪⎪⎭ (2.9b)

{uk}|Lk=1 = {di, dαi , dij}, {Uk}|Lk=1 = {Di, Dα
i , Dij}, (α= 1 : d − 1) (2.9c)

and Pij = δij − ui ·
( L∑

k=1

uk ⊗ uk

)−1

· uj, i, j = 1 : L. (2.9d)

Then, under some general assumptions applicable to the three-dimensional structures in figure 1,
equation (3.11), the effective moduli can be written as

C =
L∑

i,j=1

PijUi ⊗ Uj. (2.10)

These results are derived in §3 and implications are discussed in §4, including a simple
expression (4.3) for the elastic moduli represented in 6 × 6 Voigt notation. The general structure
of equations (2.9) holds for d = 2 without requiring the zero rotation conditions of equation (3.11),
as discussed in §6.
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3. Derivation of the effective elasticity tensor

(a) Affine deformation
Strain is introduced through the affine kinematic assumption that the effect of deformation is to
cause the cell edges to displace in a linear manner proportional to the (local) deformation gradient
F. Edge points originally located at Ri are translated to FRi. In addition to the affine motion,
we include two d-vectors, introduced to satisfy the equilibrium conditions (2.6). Following [23],
we assume that the junction moves from the origin to χ . An additional rotation Q ∈SO(d) is
introduced, so that the vector defining the edge relative to the vertex is

ri = QFRi − χ . (3.1)

The linear approximation for the deformation is F = I + ε + ω with ε = εT and ω = −ωT. We
take Q = eΓ = I + Γ +O(Γ )2 where the skew symmetric matrix Γ is defined by the d-vector γ as
Γ = ax(γ ). Hence,

�ri ≡ ri − Ri = (ε + ω + Γ )Ri − χ . (3.2)

In the linear approximation ri can equally well be taken along Ri as far as second-order terms are
concerned. Thus,

�r‖
i = (RiP

‖
i : ε − ei · χ )ei,

�r⊥
i = P⊥

i (Riε ei − χ ) + Ri(ω + Γ )ei

and �ψij = ei · ε eij + ej · ε eji − (R−1
i eij + R−1

j eji) · χ .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

The tangential displacement governing the shear bending force is, after removing the affine rigid
body rotation,

�rb
i =�r⊥

i − Riωei. (3.4)

Note that we retain the unknown rotation Γ in order to satisfy the moment equilibrium condition
(2.6)2. Hence, in the linear approximation, (2.4) becomes

fi = M−1
i Ri(P

‖
i : ε)ei + N−1

i Ri(P
⊥
i εei + γ × ei) +

∑
j	=i

N−1
ij Rj(ei · εeij + ej · εeji)eij

−
⎛
⎝M−1

i P‖
i + N−1

i P⊥
i +
∑
j	=i

N−1
ij Rjeij ⊗ (R−1

i eij + R−1
j eji)

⎞
⎠χ . (3.5)

This explicit expression for the forces allows us to determine the vectors χ and γ , next.

(b) Solution of the equilibrium equations
Consider first the moment balance condition (2.6)2. Of the three terms that constitute the force
in equation (2.4), only the bending shear forces fb

i do not automatically yield zero moment.
Equilibrium of the moments therefore reduces to

Z∑
i=1

Ri × fb
i = 0. (3.6)

Substituting fb
i =�rb

i /Ni and using equations (3.4) and (3.6) allows us to find γ in the form

γ = B

⎛
⎝g × χ −

Z∑
j=1

R2
j

Nj
ej × εej

⎞
⎠ , where B =

( Z∑
i=1

R2
i

Ni
P⊥

i

)−1

, g =
Z∑

i=1

Ri

Ni
ei. (3.7)
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The force on member i becomes, using equation (3.5),

fi = Ri

Mi
(P‖

i : ε)ei + Ri

Ni

⎛
⎝P⊥

i εei + ax(ei)B
Z∑

j=1

R2
j

Nj
ax(ej)εej

⎞
⎠

+
∑
j	=i

Rj

Nij
(ei · εeij + ej · εeji)eij

−
⎛
⎝ P‖

i
Mi

+ P⊥
i

Ni
+ Ri

Ni
ax(ei)B ax(g) +

∑
j	=i

Rj

Nij
eij ⊗

(
eij

Ri
+ eji

Rj

)⎞
⎠χ . (3.8)

The equilibrium condition (2.6)1 can then be solved for χ as

χ = A−1
Z∑

i=1

⎛
⎝ Ri

Mi
(P‖

i : ε)ei + Ri

Ni
(P⊥

i + ax(g)BRi ax(ei)) · εei

+
∑
j	=i

Rj

Nij
(ei · εeij + ej · εeji)eij

⎞
⎠, (3.9)

where

A =
Z∑

i=1

⎛
⎝ P‖

i
Mi

+ P⊥
i

Ni
+
∑
j	=i

RiRj

Nij

eij

Ri
⊗
(

eij

Ri
+ eji

Rj

)⎞⎠+ ax(g)B ax(g). (3.10)

Equations (2.7), (3.8) and (3.9) provide the desired linear relation between the strain and the stress
from which one can derive the effective elastic moduli.

(c) A simplification
While equations (2.7), (2.8) and (3.8)–(3.10) provide all of the necessary ingredients for the most
general situation we assume for the remainder of the paper that the unit cell rotation vanishes,
implying γ = 0. Hence, the vector g and the second term in the expression for γ in equation (3.7)
vanish. The latter identity is equivalent to (Dv) × v = 0∀v, where D =∑Z

i=1 R2
i N−1

i ei ⊗ ei. This
implies that D must be proportional to the identity, hence the zero rotation condition may be
written as

Z∑
i=1

Ri

Ni
ei = 0 and

Z∑
i=1

R2
i

Ni

(
ei ⊗ ei − 1

d
I
)

= 0 ⇔ zero cell rotation. (3.11)

The identities (3.11) hold for the examples considered later. Note that the assumption of zero
rotation is not necessary for stretch-dominated lattices in which bending effects are negligible.

(d) Effective stiffness
In order to arrive at an explicit expression for the elastic stiffness tensor, we first write the stress
in terms of strain, using equations (2.7) and (3.5)–(3.9),

σ = 1
V

Z∑
i=1

(
R2

i
Mi

P‖
i (P‖

i : ε) + R2
i

Ni
ei ⊗ eαi (eαi · εei)

)
+

Z∑
i=1
j	=i

RiRj

Nij
ei ⊗ eij(ei · εeij + ej · εeji)

− 1
V

⎛
⎜⎜⎝

Z∑
i=1

(
Ri√
Mi

P‖
i di + Ri√

Ni
(ei ⊗ eαi )dαi

)
+

Z∑
i=1
j	=i

√
RiRj

Nij
(ei ⊗ eij)dij

⎞
⎟⎟⎠ · A−1
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·

⎛
⎜⎜⎝

Z∑
k=1

(
dk

Rk√
Mk

P‖
i : ε + dαk

Rk√
Nk

eαk · εek

)
+ 1

2

Z∑
k=1
l	=k

dkl

√
RkRl

Nkl
(ek · εekl + el · εelk)

⎞
⎟⎟⎠. (3.12)

It follows from (3.12), the symmetry of the stress and strain and from the definition of the second-
order symmetric tensors Di, Dij in (2.9b) that the elastic moduli can be expressed as

C =
Z∑

i=1

(Di ⊗ Di + Dα
i ⊗ Dα

i ) + 1
2

Z∑
i=1
j	=i

Dij ⊗ Dij

−

⎛
⎜⎜⎝

Z∑
i=1

(Didi + Dα
i ⊗ dαi ) + 1

2

Z∑
i=1
j	=i

Dijdij

⎞
⎟⎟⎠ · A−1

·

⎛
⎜⎜⎝

Z∑
k=1

(dk Dk + dαk ⊗ Dα
k ) + 1

2

Z∑
k=1
l	=k

dkl Dkl

⎞
⎟⎟⎠. (3.13)

Finally, we note, based on the definitions of the vectors in (2.9a), that

A =
Z∑

i=1

(di ⊗ di + dαi ⊗ dαi ) + 1
2

Z∑
i=1
j	=i

dij ⊗ dij =
L∑

i=1

ui ⊗ ui. (3.14)

The sets {uk} and {Uk} defined in (2.9c) combine the Z vectors/tensors associated with stretch,
the (d − 1)Z vectors/tensors associated with shear, and the Z(Z − 1)/2 vectors/tensors associated
with nodal bending into sets of L = dZ + Z(Z − 1)/2 elements in terms of which (3.13) becomes

C =
L∑

i=1

Ui ⊗ Ui −
( L∑

i=1

Uiui

)
·
⎛
⎝ L∑

j=1

uj ⊗ uj

⎞
⎠

−1

·
( L∑

k=1

ukUk

)
. (3.15)

It then follows from the definition of P in (2.9d) that C can be expressed in the form (2.10).

4. Properties of the effective moduli

(a) Generalized Kelvin form
The L × L symmetric matrix P with elements Pij defined in equation (2.9d) has the crucial
properties

P2 = P, rank P = L − d, (4.1)

i.e. P is a projector, and the dimension of its projection space is tr P = L − d. Hence, the summation
in (2.10) is essentially the sum of L − d tensor products of second-order tensors. This is to be
compared with the Kelvin form for the elasticity tensor [13]

C =
3d−3∑
i=1

λiSi ⊗ Si, where λi > 0, tr SiSj = δij. (4.2)

The second-order symmetric tensors are eigenvectors {Si} that diagonalize the elasticity tensor,
with eigenvectors λi known as the Kelvin stiffnesses. Equation (2.10) provides a non-diagonal
representation for C.

Note that L ≡ Ls + Lb + Ln, where Ls = Z is associated with stretch, Lb = (d − 1)Z with bending
shear and Ln = Z(Z − 1)/2 with nodal bending. A necessary although not sufficient condition for
positive definiteness of C is that the rank of P, which is L − d, exceeds 3d − 3. Ignoring nodal
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bending (L = Ls + Lb), this is satisfied if Z ≥ d + 1 for d = 2 and 3. The requirement is stricter in
the stretch-dominated limit (L = Ls): Z ≥ 6 in two dimensions and Z ≥ 10 in three dimensions.

(b) 6 × 6 matrix in three dimensions
The main result of equation (2.10) implies a simple representation for the 6 × 6 matrix of
elastic moduli [CIJ] based on the compact Voigt notation (Cijkl → CIJ) in the orthonormal basis
{a1, a2, a3}. Let [u]3×L denote the L vectors {uk} and let [U]6×L denote the L second-order
tensors {Uk} according to UIk = ai · Uk · aj with the standard correspondence I ∈ {1, 2, 3, 4, 5, 6} →
ij ∈ {11, 22, 33, 23, 31, 12}. Then equation (2.10) becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= [U][U]T − [U][u]T([u][u]T)−1[u][U]T. (4.3)

(c) Bulk modulus
If the effective medium has isotropic or cubic symmetry, then a strain ε = εI produces strain σ =
dKεI, where K is the d-dimensional bulk modulus. More generally, whether or not the symmetry
is cubic or isotropic, we can define K = d−2Ciijj. The bulk modulus follows from equations (2.9)
and (2.10) as

K = 1
d2V

Z∑
i,j=1

Pij
RiRj√
MiMj

. (4.4)

This simplifies further under the broad assumption that

Z∑
i=1

ei√
M1

= 0, (4.5)

which is certainly true of all the examples of figure 1 considered in §4f, so that

K = 1
d2V

Z∑
i=1

R2
i

Mi
. (4.6)

Note that the bulk modulus depends only on the axial stiffness of the members.
Assume the members are the same material (Ei = E), and each has constant cross section (area

or width) Ai, then according to equations (2.5)1 and (4.6)

K = φ

d2 E, where φ = 1
V

Z∑
i=1

AiRi (4.7)

is the volume fraction of solid material in the lattice. The scaling of the bulk modulus with volume
fraction, K ∝ φE, is well known (e.g. [24, eqn (2.2)] for d = 2, [25,26] for tetrakaidecahedral unit
cells (see below) and [4]).

(d) Model simplification
While the model considered is quite general, in practice there is little information on the form
of the nodal compliances for practical situations. For the remainder of the paper, we concentrate
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Table 1. Three-dimensional lattice structures considered. They display cubic elastic symmetry with C11 = K + 4
3μ2, C12 =

K − 2
3μ2 andC44 =μ1,whereK is givenbyequation (4.11). All cases except Z = 14haveuniform rod lengthR and compliances

M and N. The boundary of the tetrakaidecahedral (Z = 14) unit cell has 36 edges each of length a and the cell comprises

members of two types: six of length R1 =
√
2a and eight of length R2 =

√
3
2 a, the average length of the members is

R̄= 1.306a. The associated compliances are M1, N1 and M2, N2. The unit cell volume is V. The volume fraction φ in all cases
is based on cylindrical rods of uniform radius b. Note that the volume fraction increases with coordination number Z.

Z cell V φ {ei} (not normalized) μ1

K
μ2

K

4 diamond
64

3
√
3
R3 1.02

b2

R2

( −1
−1
−1

)( −1
1
1

)(
1−1
1

)(
1
1−1

) 9M
4M + 2 N

3M
2 N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 simple cubic 8R3 2.36
b2

R2

( ±1
0
0

)(
0±1
0

)(
0
0±1

) 3M
2 N

3
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 BCC
32

3
√
3
R3 4.08

b2

R2

( ±1
±1
±1

)
1 + M

2 N
3M
2 N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 FCC octet truss 4
√
2R3 6.66

b2

R2

(
0±1
±1

)( ±1
0±1

)( ±1
±1
0

) 3
4

+ 3M
4 N

3
8

+ 9M
8 N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 tetrakaidecahedral 8
√
2a3 8.66

b2

R̄2

( ±1
0
0

)(
0±1
0

)(
0
0±1

)( ±1
±1
±1

) 3
2
1/M1 + 1/N2
1/M1 + 1/M2

1/N2 + 2/M2 + 3/N1
2(1/M1 + 1/M2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

on just the stretch and shear bending effects, so that L = Ls + Lb + Ln → Ls + Lb = dZ. The stress–
strain relation is then

σ =
Z∑

i=1

⎛
⎝Ri ⊗ Xi

⎡
⎣I ⊗ Ri −

( Z∑
k=1

Xk

)−1 Z∑
j=1

Xj ⊗ Rj

⎤
⎦
⎞
⎠ : ε, where Xi = P‖

i
Mi

+ P⊥
i

Ni
. (4.8)

A further simplification is obtained by ignoring shear bending effects, i.e. L → Ls = Z, the stretch-
dominated limit, considered next.

(e) Stretch-dominated limit
In this limit, the forces fi have no transverse components. Physically, this corresponds to infinite
bending compliances, 1/Ni = 0, 1/Nij = 0, and may be achieved approximately by long slender
members. By ignoring shear and nodal bending, the expression for C reduces to

C = 1
V

Z∑
i,j=1

RiRj√
MiMj

PijP
‖
i ⊗ P‖

j and Pij = δij − ei√
Mi

·
( Z∑

k=1

P‖
k

Mk

)−1

· ej√
Mj

. (4.9)

It follows from equation (4.1) that the Z × Z projection matrix P with elements Pij has rank Z − d.

(f) Examples in three dimensions: Z = 4, 6, 8, 12, 14
All examples display cubic symmetry, with three independent elastic moduli: C11, C12 and
C44. Introduce the fourth-order tensors I, J and D with components Iijkl = 1

2 (δikδjl + δilδjk), Jijkl =
1
3 δijδkl and Dijkl = δi1δj1δk1δl1 + δi2δj2δk2δl2 + δi3δj3δk3δl3. A solid of cubic symmetry has elasticity of
the form

C = 3KJ + 2μ1(I − D) + 2μ2(D − J). (4.10)

The isotropic tensor J and the tensors of cubic symmetry (I − D) and (D − J) are positive definite
[27], so the requirement of positive strain energy is that K, μ1 and μ2 are positive. These three
parameters, called the ‘principal elasticities’ by Kelvin [13], can be related to the standard Voigt
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stiffness notation: K = (C11 + 2C12)/3, μ1 = C44 and μ2 = (C11 − C12)/2. The bulk modulus follows
from equation (4.7) as

K = φ

9
E ∀Z; K = ZR2

9VM
, Z 	= 14; K = 4a2

3V

(
1

M1
+ 1

M2

)
, Z = 14, (4.11)

where, for Z = 14, M1 and M2 are the axial compliances of the two different types of members. It
may be checked that K14 = K6 + K8, where KZ denotes the bulk modulus for coordination number
Z. The shear moduli are given in table 1. Note that the effective compliance, relating strain to stress
by ε = C−1σ , is simply C−1 = (3K)−1J + (2μ1)−1(I − D) + (2μ2)−1(D − J). The ratio M/N may also
be expressed in terms of the volume fraction φ as the rods are assumed to be solid circular so that

M
N

= 3
4

b2

R2 . (4.12)

Hence, table 1 indicates that μ1 = O(φ2) for Z = 4, 6 and μ2 = O(φ2) for Z = 4, 8; otherwise, μ1,
μ2 = O(φ).

Z = 14: the tetrakaidecahedral unit cell

The tetrakaidecahedron is a truncated octahedron with all edges of the same length a ⇒ V =
8
√

2a3. Rods extend from the centre to all faces of the Kelvin cell as shown in figure 1. Note the
functional dependence μ1 =μ1(M1, N2) and μ2 =μ2(M2, N1, N2). Isotropy (μ1 =μ2) is achieved if

3
M1

− 3
N1

= 2
M2

− 2
N2

, (4.13)

in which case the effective Poisson ratio is

ν = M−1
1 − N−1

1

4M−1
1 − 2N−1

1 + 2N−1
2

. (4.14)

In the stretch-dominated limit 1/N1, 1/N2 → 0 the 6 × 6 Voigt matrix of effective elastic moduli
is

C14 = C6 + C8, where C6 = φ6

3
E

(
I 0
0 0

)
, C8 = φ8

9
E

(
J 0
0 I

)
, (4.15)

all elements of the 3 × 3 matrix J are unity, and the volume fractions φ6 = 6R1A1/V and φ8 =
8R2A2/V satisfy φ = φ6 + φ8. The three moduli follow from (4.15) as

K = φ

9
E, μ1 = φ8

9
E and μ2 = φ6

6
E. (4.16)

Isotropy, μ1 =μ2 ≡μ, is achieved if 3φ6 = 2φ8, i.e.

A1 = 4

3
√

3
A2 ⇒ μ= φ

15
E, (4.17)

in which case the effective Poisson ratio is ν = 1
4 , in agreement with (4.14). This effective solid is

the three-dimensional isotropic ‘optimal’ material introduced by Gurtner & Durand [4].

5. Pentamode lattices

(a) Z = d + 1 and the pentamode limit
As discussed in §4a, Z = d + 1 is the minimal coordination number necessary for a fully positive
definite elasticity tensor. We now examine this case in particular in the limit of stretch-dominant
deformation.
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Given that a PM is an elastic solid with a single Kelvin modulus, the elastic stiffness must be
of the form

C = λS ⊗ S, λ> 0, S ∈ Sym. (5.1)

Note that the parameter λ is somewhat arbitrary as it can be replaced by unity by subsuming it
into the definition of S. As rank P = Z − d, it follows that the single non-zero eigenvalue of P of
(4.9) is unity, i.e. there exists a (d + 1)-vector b such that

P = bbT, where bTb = 1. (5.2)

Hence, (4.9)1 yields the moduli explicitly in the form (5.1) with

λ= 1 and S = V−1/2
d+1∑
i=1

RiM
1/2
i biP

‖
i . (5.3)

The eigenvalue property Pb = b implies that b satisfies
∑d+1

i=1 biui = 0, i.e. it is closely related with
the fact that the d + 1 vectors ui are necessarily linearly dependent. Alternatively, b follows by
assuming that C of equation (4.9) has PM form C = S ⊗ S, then use CI = S tr S and I : CI = (tr S)2,
from which we deduce that the moduli have the form (5.1) with

λ=
⎛
⎝V

d+1∑
k=1

γk

⎞
⎠

−1

and S =
d+1∑
i=1

γiP
‖
i , where γi = R2

i
Mi

− Ri

Mi
·
⎛
⎝d+1∑

k=1

P‖
k

Mk

⎞
⎠

−1

·
d+1∑
j=1

Rj

Mj
. (5.4)

Equations (5.1), (5.3) and (5.4) provide two alternative and explicit formulae for the PM moduli.
It is interesting to note that either of the above formulae for C leads to an expression for

the axial force in member i based on equations (2.7) and (2.8). Thus, using equation (5.4) gives
fi = Vλ(S : ε)R−1

i γiei. It may be checked from the definition of γi that the forces are equilibrated,
as

d+1∑
i=1

R−1
i γiei = 0. (5.5)

This identity implies that γi = 0 for some member i only if (but not iff) the remaining d members
are linearly dependent. When this unusual circumstance occurs, the member i bears no load as
fi = 0 for any applied strain. For instance, if two members are collinear in two dimensions, say
members 1 and 2, then the third member is not load bearing only if R−1

1 γ1 = R−1
2 γ2. When d of the

members span a (d − 1)-plane, the remaining member is non-load bearing if it is orthogonal to the
plane.

Writing S in terms of its principal directions and eigenvalues, S = s1q1q1 + s2q2q2 + s3q3q3,
where {q1, q2, q3} is an orthonormal triad, it follows that the elastic moduli in this basis are

CIJ = λsIsJ if I, J ∈ {1, 2, 3}, 0 otherwise. (5.6)

The material symmetry displayed by PMs is therefore isotropic, transversely isotropic or
orthotropic, the lowest symmetry, depending on whether the triplet of eigenvalues {s1, s2, s3}
has one, two or three distinct members. The five ‘easy’ pentamode strains correspond to the
five-dimensional space S : ε = 0. Three of the easy strains are pure shear: qiqj + qjqi, i 	= j, and
the other two are s1q2q2 − s2q1q1 and s2q3q3 − s3q2q2. Any other zero-energy strain is a linear
combination of these.

(b) Poisson’s ratio of a pentamode material
In practice, there must be some small but finite rigidity that makes C full rank, the material is
unstable otherwise. The five soft modes of the PM are represented by 0< {μi, i = 1, . . . , 5} � K,
where the set of generalized shear moduli must be determined as part of the full elasticity tensor.
A measurable quantity that depends upon the soft moduli is Poisson’s ratio: for a given pair of
directions defined by the orthonormal vectors n and m, Poisson’s ratio νnm is the ratio of the
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contraction in the m-direction to the extension in the n-direction for a uniaxial applied stress
along n, i.e. νnm = −(mm : Mnn)/(nn : Mnn), where M = C−1 is the fourth-order tensor of elastic
compliance. As an example, consider the diamond-like structure of figure 1a with shear moduli
given by table 1, Z = 4. In the pentamode limit K �μ1 = 3μ2, with ni, mi as the components in the
principal axes, we obtain (e.g. [28])

νnm = (1/2) − n2
1m2

1 − n2
2m2

2 − n2
3m2

3

n4
1 + n4

2 + n4
3

∈
[

0,
1
2

]
. (5.7)

The actual values of the soft moduli {μi, i = 1, . . . , 5} are sensitive to features such as junction
strength and might not be easily calculated in comparison with the pentamode stiffness. An
estimate of Poisson’s effect can be obtained by assuming the five soft moduli equal, in which
case C(0) ≡ C of equation (5.1) is modified to

C(μ) ≡ C(0) + 2μ(I − (λ tr (S2))−1C(0)), (5.8)

which is invertible (and positive definite) for μ> 0. Using M = C−1(μ) define νnm(μ), then the
limit exists as the shear modulus is reduced to zero: νnm(0) ≡ νnm, where

νnm = (m · Sm)(n · Sn)
S : S − (n · Sn)2 . (5.9)

For the example of figure 1a S = I and equation (5.9) gives νnm = 1
2 . Generally, the values of

νnm from equation (5.9) associated with the principal axes of S (see (5.6)) are νij = sisj/(s2
j + s2

k),

i 	= j 	= k 	= i. If s1 > s2 > s3 > 0, then the largest and smallest values are ν12 >
1
2 and ν32 <

1
2 ,

respectively. Compare this with Poisson’s ratio of an incompressible isotropic elastic material:
ν = 1

2 . Negative values of Poisson’s ratio occur if the principal values of S are simultaneously
positive and negative.

(c) Transversely isotropic pentamode material lattice
Assume the unit cell has symmetry consistent with macroscopic transverse isotropy. It comprises
two types of rods: i = 1 with R1, M1 in direction e(= e1), and i = 2, . . . , d + 1 with R2, M2 in
directions ei symmetrically situated about −e with −e · ei = cos θ . Let c = cos θ and s = sin θ . We
find, after some simplification, that (5.1) and (5.4) give the PM elastic stiffness as

C = ds4R2
2

V(d − 1)2(dc2M1 + M2)
(I + (β − 1)e ⊗ e) ⊗ (I + (β − 1)e ⊗ e), (5.10)

where the non-dimensional parameter β and the unit cell volume V are

β = (d − 1)c(R1 + cR2)
s2R2

and V = (sR2)d−1(R1 + cR2) ×
{

4, d = 2,

6
√

3, d = 3.
(5.11)

Note that the elasticity of the rods enters only through the combination dc2M1 + M2.
The non-dimensional geometrical parameter β defines the anisotropy of the PM, with isotropy

iff β = 1. If β > 1, the PM is stiffer along the axial or preferred direction e than in the orthogonal
plane, and conversely it is stiffer in the plane if 0<β < 1. The axial stiffness vanishes if β = 0,
which is possible if θ = π/2. The unit cell becomes re-entrant if θ > π/2 ⇔ c< 0. If c< 0, then β < 0
and the principal values of S are simultaneously positive and negative with the negative value
associated with the axial direction. Note that R1 + cR2 must be positive as the unit cell volume V
is positive. As R1 + cR2 → 0, the members criss-cross and the infinite lattice becomes stacked in a
slab of unit thickness, hence the volume per cell tends to zero (V → 0).

Let e, the axis of transverse isotropy, be in the one-direction. A transversely isotropic elastic
solid (d = 3) has five independent moduli: C11, C22(= C33), C12 (= C13), C23 and C66(= C55) with
C44 = 1

2 (C22 − C23). The PM has C66 = 0 and C23 = C22 (⇒ C44 = 0) and C11C22 = C2
12, which are

consistent with rank C = 1. The two-dimensional version, technically of orthotropic symmetry, is
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(a) (b) (c)

Figure 2. Each of these two-dimensional PM lattices has isotropic quasi-static properties. The ratio of the R1 (vertical) to R2 is
determined by (5.13). The pure honeycomb structure is θ = 60◦. (a) θ = 50◦, (b) θ = 60◦ and (c) θ = 70◦. (Online version
in colour.)
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Figure 3. The elastic moduli for two- and three-dimensional PM lattices with rods of equal length (R1 = R2) and stiffness
(M1 = M2) as a function of the junction angle θ . Note that the two-dimensional (three dimensions) moduli are identical at the
isotropy angle 60◦ (70.53◦). The axial stiffness C11 vanishes at θ = π/2. As C12 =

√
C11C22, it follows that C12 also vanishes at

θ = π/2. (Online version in colour.)

defined by four independent moduli C11, C22, C12 and C66, which in the PM limit satisfy C66 = 0
and C11C22 = C2

12. In either case, the non-zero moduli are(
C11 C12
C12 C22

)
= K0

(
β 1
1 β−1

)
, where K0 = d

(d − 1)
cs2R2(R1 + cR2)
V(M2 + dc2M1)

. (5.12)

The PM is isotropic for β = 1, i.e. when the angle θ and R1/R2 are related by

R1

R2
= 1 − d cos θ2

(d − 1) cos θ
⇔ isotropy (β = 1). (5.13)

Hence, isotropy can be obtained if θ ∈ [cos−1(1/
√

d),π/2] with the proper ratio of lengths
(figure 2). At the limiting angles, R1 → 0(R2 → 0) as θ → cos−1 (1/

√
d) (θ → π/2). If the lengths are

equal (R1 = R2), isotropy is obtained for cos θ = 1/d, i.e. θ =60◦, 70.53◦, for d = 2, 3, corresponding
to hexagonal and tetrahedral unit cells, respectively. Some examples of isotropic PMs and their
properties are illustrated in figure 2. Transversely isotropic PMs are considered in figures 2–5.

The stiffness parameter K0 of (5.12) is the bulk modulus of the isotropic PM. Note that K0
is not equivalent to K of (4.7) as the latter is consequent upon the condition (4.5) which is not
assumed here. Instead, equations (2.5), (5.12) imply that the isotropic PM bulk modulus for
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Figure 4. (a) The solid curves show Poisson’s ratio ν12 for the same configuration as figure 3 (R1 = R2,M1 = M2). ν12 describes
the lateral contraction for loading along the axial e-direction. The related Poisson ratio ν21 = ν12/( 12 + 2ν212) is shown by the
dashed curves. (b) The two-dimensional lattice for (i) θ = 50◦ and (ii) θ = 110◦. (Online version in colour.)
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Figure 5. The principal stiffnesses (a) and Poisson’s ratios (b) for a diamond lattice with the centre ‘atom’ shifted along the
cube diagonal. The four vertices of the unit cell at (0 0 0), (0 2 2), (2 0 2) and (2 2 0), and the centre junction (atom) lies at (ppp).
Isotropy is p= 1. (Online version in colour.)

uniform members is

K0 = Kf and f = d2s4
[

d − 1 + A1

A2dc
(1 − dc2)

]−1 [
d − 1 + A2

A1
dc(1 − dc2)

]−1
, (5.14)

where A1, A2 are the cross-sectional areas (strut thicknesses for d = 2). For a given θ and d, f ≤ 1
with equality iff A1/A2 = dc. Hence, the maximum possible isotropic effective bulk modulus for
a given volume fraction φ is precisely K of (4.7). This result agrees with [24, eqn (2.2)] for d = 2,
and with the bulk modulus for a regular lattice with tetrakaidecahedral unit cells [25,26], i.e. an
open Kelvin foam (figure 6). The latter structure, comprising joints with four struts and a unit cell
of 14 faces (six squares and eight hexagons), has cubic symmetry; however, the two shear moduli
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Figure 6. The tetrakaidecahedral open foam unit cell [25] has low-density PM behaviour similar to the diamond lattice.

are almost equal so that the structure is almost isotropic. In fact, if the struts are circular and have
Poisson’s ratio equal to zero then the effective material is precisely isotropic with shear modulus
μ= (4

√
2/9π )φ2E [25].

Note that [29] considered a tetrahedral unit cell of four identical half-struts that join at equal
angles and found K = φE/8 (not φE/9); the difference arises from taking the cell volume for the
tetrahedron, but since the tetrahedron is not a space-filling polyhedron, this is not the correct unit
volume to use.

6. Two dimensions: a special case

(a) Shear force as a nodal bending force
For d = 2, the total force (2.4) on member i can be simplified as

fi = M−1
i �riei +

∑
j	=i

N′
ij
−1Rj�ψijeij (6.1)

with generalized nodal compliance N′
ij given by

1
N′

ij
= 1

Nij
+ 1

N(b)
ij

, where N(b)
ij ≡ NiNj

RiRj

∑
k

R2
k

Nk
. (6.2)

Hence, the shear force can be considered as an equivalent nodal bending force. Significantly, the
moments of the shear forces are now automatically equilibrated due to the symmetry N′

ij = N′
ji.

Equation (6.1) follows by first noting that the vector moment of the shear force is in
the direction perpendicular to the plane of the lattice, say a3. Define the angle of deflection
associated with flexural bending: θi ≡ a3 · (ei ×�rb

i )/Ri. The moment of the shear force is Ri

×fb
i = (R2

i /Ni)θia3, and the moment equilibrium condition (3.7) becomes

∑
i

R2
i

Ni
θi = 0 ⇒ θi =

(∑
k

R2
k

Nk

)−1∑
j	=i

R2
j

Nj
(θi − θj). (6.3)

However, θi − θj = ±�ψij (more precisely θi − θj =�ψija3 · (ej × ei)/|ej × ei|), therefore equation
(6.3) allows us to express the single shear force acting on member i as the sum of nodal bending
forces with compliances N(b)

ij , from which equation (6.1) follows.
The significance of equation (6.1) is that it allows us to express the effective moduli for d = 2 as

follows: define

di = ei√
Mi

, Di = Ri
ei ⊗ ei√

VMi
, dij =

√√√√RiRj

N′
ij

(
eij

Ri
+ eji

Rj

)
, (6.4a)
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Dij =
√√√√RiRj

VN′
ij

(ei ⊗ eij + ej ⊗ eji), where
1

N′
ij

= 1
Nij

+ RiRj

NiNj

( Z∑
k=1

R2
k

Nk

)−1

, (6.4b)

{uk}|Lk=1 = {di, dij}, {Uk}|Lk=1 = {Di, Dij}, L = Z(Z + 1)
2

(6.4c)

and Pij = δij − ui ·
( N∑

k=1

uk ⊗ uk

)−1

· uj ⇒ C =
L∑

i,j=1

PijUi ⊗ Uj. (6.4d)

Note that this result is valid for any similarly situated two-dimensional lattice structure; in
particular, it does not require the zero rotation assumption (3.11).

(b) Example: honeycomb lattice
As an application of equation (6.4), we consider the transversely isotropic lattice of §5c in two
dimensions (Z = 3), now including the effects of the bending compliances of the individual
members, N1 and N2. Using the same notation as in §5c, we find

C11
C22
C12

⎫⎪⎬
⎪⎭= (1/2)cs

(2c2M1 + M2)N2 + 2 s2M1M2
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β(N2 + s2c−2M2),
1
β

(N2 + s−2(2M1 + c2M2)),

(N2 − M2),

and C66 = (1/2)sR2(R1 + cR2)

s2(2R2
2N1 + R2

1N2) + (cR1 + R2)2M2
. (6.5)

These are in agreement with the in-plane moduli found by Kim & Al-Hassani [30]. Note that
the moduli of equation (6.5) reduce to the PM moduli (5.12) as the bending compliance N2 → ∞,
independent of the bending compliance N1.

7. Conclusion
Our main result, equation (2.9), is that the effective moduli of the lattice structure can be
expressed C =∑L

i,j=1 PijUi ⊗ Uj, where L = Zd + Z(Z − 1)/2, Ui are second-order tensors and Pij
are elements of an L × L projection matrix P of rank L − d. Explicit forms for the parameters
{Ui, Pij} have been derived in terms of the cell volume, and the length, orientation, axial and
bending stiffness of each of the Z rods. This Kelvin-like representation for the elasticity tensor
implies as a necessary although not sufficient condition for positive definiteness of C that the
rank of P exceeds 3d − 3, which is satisfied if the coordination number satisfies Z ≥ d + 1. The L
second-order tensors {Ui} are split into Z stretch-dominated and Z(Z − 1)/2 bending-dominated
elements. The latter contribute little to the stiffness in the limit of very thin members, in which
case the elastic stiffness is stretch dominated and, at most, of rank Z − d. The formulation
developed here is applicable to the entire range of stiffness possible in similarly situated lattice
frameworks, from the Z = 14 structure proposed by Gurtner & Durand [4] with full rank C to PMs
corresponding to coordination number Z = d + 1, with C of rank one.
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