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Elastic cylindrical shells are fitted with an internal mechanism which is optimized so that, in the

quasi-static regime, the combined system exhibits prescribed effective acoustic properties. The

mechanism consists of a central mass supported by an axisymmetric distribution of elastic stiff-

eners. By appropriate selection of the mass and stiffness of the internal mechanism, the shell’s

effective acoustic properties (bulk modulus and density) can be tuned as desired. Subsonic flexural

waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently

large number of such stiffeners. The effectiveness of the proposed metamaterial is demonstrated by

matching the properties of a thin aluminum shell with a polymer insert to those of water. The scat-

tering cross section in water is nearly zero over a broad range of frequencies at the lower end of the

spectrum. By arranging the tuned shells in an array the resulting acoustic metamaterial is capable

of steering waves. As an example, a cylindrical-to-plane wave lens is designed by varying the bulk

modulus in the array according to the conformal mapping of a unit circle to a square.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4894723]
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I. INTRODUCTION

Transformation based design of materials for wave

steering originated in electromagnetics. Using singular trans-

formations and the invariance of Maxwell’s equations under

such transformations the possibility of wave steering was

demonstrated.1 The idea is to steer an incident wave in a fi-

nite region surrounding the object such that there is no scat-

tering. Although the theory is frequency independent, only

cloaking of objects at microwave frequencies has been

achieved experimentally.2 Cloaking objects at frequencies of

visible light is theoretically possible using conformal map-

ping as shown by Leonhardt,3 but is experimentally uncon-

firmed. Other applications of transformation optics include

beam shifters and splitters.4

By natural progression the ideas found applications in

acoustics. Cummer and Schurig5 showed the equivalent

invariance under coordinate transformations between

Maxwell’s and Helmholtz’ equations. Using singular trans-

formations they designed a two-dimensional acoustic cloak

with anisotropic density and bulk modulus. Simulations

showed that the cloak could steer waves around the annulus.

Chen and Chan6 applied the same concept to the design of a

three-dimensional acoustic cloak. Cloaking of elastody-

namic waves was also investigated.7 One way to achieve the

anisotropic density required for inertial cloaking is by use of

layered fluids.8,9 However, such cloaking devices are not

viable because the density requirement results in an infin-

itely massive cloak.10 Unlike cylindrical acoustic cloaks,

carpet cloaks have been experimentally shown to hide

objects resting on a surface.11 Yet another application of

transformation acoustics is a cylindrical-to-plane wave lens

as designed by Layman et al.12 It works by steering waves,

due to a monopole source at the center, from the corners to

the faces of the lens. Their device is based on constructive

multiple scattering from finite embedded elastic materials in

a fluid matrix, something previously investigated by Torrent

and Sanchez-Dehesa.13

This article expands the possibilities in Ref. 13 demon-

strating that it is possible to tune an elastic component in a

fluid to yield desired acoustic properties at low frequencies.

The component is an elastic shell fitted with an internal

springs-mass system (oscillator). The oscillator is comprised

of a central rod with J identical and axisymmetrically dis-

tributed lengthwise ribs fixing it to the shell. The rod

behaves as an added mass and the ribs provide additional

stiffness. These two parameters together with the shell thick-

ness determine the effective acoustic properties of the com-

plete system.

Acoustic scattering from an empty shell as studied by

Bleich and Baron14 is very different from that for a stiffened

shell. The addition of an internal mechanical oscillator to a

shell was originally investigated by Achenbach et al.15 They

showed that a single spring-mass system excites flexural

modes which are subsonic in an empty shell. Guo16 presented

the analysis for a diametrical pair of springs supporting a cen-

tral mass. The geometry of the forcing results in a normal

mode scattering solution which is of two-type for even and

odd modes. Recently, Titovich and Norris17 obtained the

scattering response for an axisymmetric distribution of an ar-

bitrary number of springs supporting a central mass. Their

results are applied here to demonstrate that it is possible to

tune an elastic shell such that: (1) The density and speed of

the shell-springs-mass system is matched to water and (2) the

flexural resonances are suppressed at low frequencies.

The paper is organized as follows. The analytical

solution for a shell with a central mass attached by J
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axisymmetric linear springs is summarized in Sec. II. The

quasi-static acoustical properties of the system are then

determined in Sec. III. Material selection for the shell is

described in Sec. IV as well as the presence of flexural

resonances at low frequencies. As an example, an aluminum

shell is tuned to water in Sec. IV. Two physical oscillator

designs are proposed in Sec. V. The effect of surrounding

fluid for a shell-springs-mass system in a fluid saturated

array is described in Sec. VI. Wave steering by such an

array is demonstrated in Sec. VI with a cylindrical-to-plane

wave lens constructed from a 7� 7 array of tuned shells.

Conclusions are presented in Sec. VII.

II. SCATTERING FROM A SHELL WITH AN INTERNAL
MASS

We review the main results from Ref. 17 for later use.

Consider an infinitely long thin elastic shell of external ra-

dius a, thickness h� a, density qs, elastic modulus Es,

Poisson’s ratio �s, and extensional wave speed cp defined by

c2
p ¼ Es=½qsð1� �2

s Þ�. The internal mechanism consists of a

central mass m per unit axial length supported by J massless

springs of individual spring stiffness j (with units of stress).

The mass is centered so that the springs act concentrically

under small amplitude motion of the mass (see derivation in

the Appendix of Ref. 17).

The shell is surrounded by an acoustic fluid (water) of

density q and wave speed c with bulk modulus K ¼ qc2.

Time harmonic solutions are sought with factor e�ixt omitted

as understood.

The total acoustic pressure p in the fluid satisfies

Helmholtz’ equation r2pþ k2p ¼ 0, and is decomposed

into incident and scattered pressure fields as p ¼ pi þ ps,

where pi ¼
P1

n¼�1AnJnðkrÞeinh and ps ¼
P1

n¼�1BnHð1Þn

�ðkrÞeinh; r � a, respectively, with Hð1Þn the Hankel func-

tion of the first kind of order n. The scattered pressure is

expressed via B ¼ TA where B and A are infinite vectors

with elements Bn and An, respectively, and T is the so-called

T-matrix.

The main result from Ref. 17 is that the T-matrix splits

into the superposition of the T-matrix for the empty shell

plus a J-cyclical contribution due to the springs-mass

system,

T ¼ Tð0Þ þ
XJ

j¼1

bjb
T
j ; (1)

where Tð0Þ ¼ diagðTnÞ is the empty shell T-matrix with com-

ponents Tn ¼ ðf�n � fnÞ=ð2fnÞ, fn ¼ ðZsh
n þ ZnÞHð1Þ0n ðkaÞ. The

acoustic impedance is Zn ¼ iqcHð1Þn ðkaÞ=Hð1Þn
0ðkaÞ and

the shell impedance is Zsh
n ¼ �iqscpðh=aÞ½X� ðb2n4=XÞ

�ðX� n2=XÞ�1�, where b ¼ ð1=
ffiffiffiffiffi
12
p
Þðh=aÞ and the dimen-

sionless frequency X is X ¼ xa=cp. The other part of

the T-matrix in Eq. (1) depends on bj; n ¼ ði=fnÞ
�ð2qcZtot

n =pkaÞ1=2
if n ¼ j mod J; otherwise 0, where the

resonant behavior of the shell-springs-mass system is gov-

erned by the total equivalent impedance ð1=Ztot
n Þ ¼ ð1=Zsp

n Þ
þ
P1

p¼�1ð1=Zsh
nþpJ þ ZnþpJÞ in terms of the spring-mass im-

pedance Zsp
n and resonant frequency xsp,

Zsp
n Jð Þ ¼ iJj

2pax

1

1� xsp=x
� �2

; n ¼ 61modJ;

1; otherwise;

8><
>:

x2
sp ¼ HJ

j
m
; HJ ¼

J; J ¼ 1; 2;

J=2; J � 3:
(2)

(

The total scattering cross section (TSCS or rtot), which

is a measure of the power scattered in all directions due to an

incident wave, will be used throughout this paper to compare

various shell models. In the far-field r � a the scattered

pressure is ps ¼
ffiffiffiffiffiffiffiffiffiffi
a=2r

p
eikrgðhÞ þ OððkrÞ�3=2Þ, where gðhÞ is

the form function, and hence

rtot ¼
r

a

ð2p

0

psp
�
s dh ¼ 1

2

ð2p

0

jg hð Þj2dh: (3)

III. EFFECTIVE PROPERTIES
OF THE SHELL-SPRINGS-MASS SYSTEM

For a given thin shell of thickness h, the internal springs

increase the system stiffness and the added mass increases

the density. This suggests the possibility of tuning the effec-

tive acoustic parameters of a stiffened shell through the val-

ues of stiffness j and mass m. The effective acoustic

properties as functions of j and m are determined next.

A. Effective density

The effective density is the ratio of total mass to volume,

qeff ¼ ðms þ mÞ=ðpa2Þ, where ms ¼ qspða2 � ða� hÞ2Þ is

the mass per unit length of the shell. Hence, since h� a by

assumption,

qeff ¼ qm þ qs 2
h

a
� h

a

� �2
 !

(4a)

	 qm þ 2
h

a
qs; where qm ¼

m

pa2
: (4b)

B. Effective bulk modulus

Applying a hydrostatic pressure p0 on the outside of the

infinitely long cylindrical shell results in a decrease of the ra-

dius a! a� d. The quasi-static effective bulk modulus is

defined as Keff ¼ �p0=ðDV=VÞ, where the volume change is

DV=V ¼ DA=A 	 �2ðd=aÞ since the elastic deformation is

plane strain. The radial and azimuthal strain in the shell are

both approximately equal to ehoop ¼ d=a, so that the effective

bulk modulus is

Keff 	
p0

2ehoop

: (5)

The axial stress is ra ¼ �srhoop, and consequently the hoop

strain and stress are related by qsc
2
p ¼ ðEs=1� �2

s Þ as

ehoop ¼
1

Es
rhoop � �srað Þ ¼

rhoop

qsc
2
p

: (6)
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An imaginary bisecting cut exposes the internal forces

as shown in Fig. 1. The static equilibrium condition is then

2hrhoop � 2ap0 þ F ¼ 0; (7)

where F is the horizontal resultant per unit length of the

forces exerted by the springs on the half shell. At the same

time, the spring forces are proportional to d, say

F ¼ keffd: (8)

Equations (5)–(8) imply that

Keff ¼
h

2a
qsc

2
p þ

keff

4
; (9)

where the effective stiffness keff remains to be determined.

Hence, referring to Fig. 1,

F 

X

fx ¼ jd�

XJ=4

j¼�J=4

cos hj for even J;

XðJ�1Þ=2

j¼0

sin hj for odd J:

8>>>>><
>>>>>:

(10)

Performing the sums and using Eq. (8) gives

keff ¼ j�
cot

p
J

� �
for even J;

1

2
cot

p
2J

� �
for odd J:

8>>><
>>>:

(11)

Consider even J, in which case Eqs. (9) and (11) imply

that the effective bulk modulus is [Ksh as in Eq. (2.56) on

page 38 of Ref. 18]

Keff ¼
h

a
Ksh þ Ksp; (12)

where Ksh ¼ ðqsc
2
p=2Þ and Ksp ¼ ðj=4Þcotðp=JÞ. The effec-

tive bulk modulus is greater than that of the bare shell and

the increase, Ksp, is proportional to the spring stiffness.

Substituting Eqs. (4) and (12) into Eq. (2), the resonant fre-

quency of the oscillator can be expressed in terms of the den-

sity and bulk modulus of the effective medium as

x2
sp ¼ HJ tan

p
J

� �
4

pa2

Keff �
h

a
Ksh

qeff � 2
h

a
qs

0
BB@

1
CCA: (13)

In the case of odd J, tanðp=JÞ should be replaced by

2 tanðp=ð2JÞÞ which has the same limit for large J, as

expected. From here on the analysis will be carried out for J
even.

IV. IMPEDANCE AND INDEX MATCHING

A. Matched effective properties of water at low
frequencies

For a thin elastic shell to have the effective acoustic

properties of water at low frequencies the internal oscillator

must be tuned by selecting appropriate values of the added

density qm and added bulk modulus Ksp [see Eqs. (4) and

(12)]. Setting the effective properties to water, qeff ¼ q and

Keff ¼ K, in Eqs. (4) and (12) yields

qm ¼ q� 2
h

a
qs and Ksp ¼ K � h

a
Ksh: (14)

The requirements that qm and Ksp are non-negative impose

an upper bound on the shell thickness:

h

a
<

q
2qs

min 1;
2c

cp

� �2
 !

;
h

a
� 1: (15)

Note that if cp ¼ 2c ¼ ðEs=qsð1� �2
s ÞÞ

1=2
, then the

empty shell has the same density and bulk modulus as water

in the quasi-static limit. For typical engineering metals,

cp > 2c, therefore the realistic bound on shell thickness is a

consequence of Ksp � 0, Eq. (14). Table I tabulates the upper

bound on shell thickness for several materials. For some

materials, the shell has to be thick in order to match the den-

sity of water, so thin-shell approximations do not apply. In

FIG. 1. (Color online) External and internal forces acting on the shell with

J ¼ 8 springs of stiffness j supporting a central mass m.

TABLE I. The upper bound on shell thickness based on matched density

h=aðqeff ¼ qÞ and matched bulk modulus h=aðKeff ¼ KÞ to water using sev-

eral materials. Units of density are kg/m3, elastic modulus GPa, speed m/s.

The effective density is matched to water q when h=a ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q=qs

p
.

The quantities in parentheses are outside the realm of thin shell theory and

were obtained using the finite element analysis.

Material qs Es �s cp
h

a
qÞð h

a
KÞð

Al Oxide 3920 370 0.22 9959 0.137 0.012

Molybdenum 10 300 276 0.32 5463 0.050 0.015

Al 3003-H18 2730 69 0.33 5326 0.204 0.058

Stl AISI 4340 7850 205 0.28 5323 0.067 0.020

Ti beta-31S 4940 105 0.33 4884 0.107 0.038

Copper 8700 110 0.35 3796 0.059 0.036

Concrete 2300 25 0.33 3493 0.248 (0.143)

Brick 2000 17 0.3 3056 0.293 (0.199)

Platinum 21 450 147 0.39 2842 0.024 0.026

Silver 10 500 72.4 0.37 2827 0.049 0.054

Acrylic 1190 3.2 0.35 1751 0.600 (0.615)

ABS 1040 2.3 0.35 1588 0.804 (0.761)

Lead 11 340 13.87 0.42 1215 0.045 (0.205)
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that case Eq. (4) for density must be used exactly yielding

an upper bound on thickness of h=a ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q=qs

p
.

Tuning the bulk modulus to water requires the use of finite

element analysis to accurately determine the thickness to ra-

dius ratio.

It is intriguing to see that for some materials such as plat-

inum and silver the thickness bounds are nearly the same,

implying that at that thickness the shell has the stiffness and

density of water. To investigate the effectiveness, simulations

were done for plane wave incidence on shells of radius

a¼ 1 cm. The TSCSs in Fig. 2 are negligible at low frequen-

cies for brick, acrylic, silver, and platinum shells of thickness

h=a ¼ 0:220; 0:615; 0:052; 0:0252, respectively. The TSCS

of a rigid rod of radius 1 cm is shown for comparison. There

are several flexural resonances for the thick brick shell at

ka ¼ 0:297ðn ¼ 2Þ; 0:863ðn ¼ 3Þ; 1:638ðn ¼ 4Þ and for the

thick acrylic shell at ka ¼ 0:658ðn ¼ 2Þ; 1:452ðn ¼ 3Þ, but

none for the thin silver and platinum shells.

Although thin silver and platinum shells exhibit trans-

parency in water up to ka ¼ 1 they are not practical. For

shells made of common engineering materials (i.e., alumi-

num), stiffness and mass need to be added to obtain the den-

sity and bulk modulus of water. A procedure for tuning thin

elastic shells is described next.

B. Tuning an aluminum shell to water

1. Internal resonance

Consider a thin shell made of aluminum 3003-H18

(qs ¼ 2730 kg=m3, cp ¼ 5326 m=s). Matching the effective

properties of the shell-springs-mass system to water as

Keff ¼ K and qeff ¼ q, yields the resonant frequency xsp of

Eq. (13). A necessary condition for low frequency matching

of the effective properties is that the first internal resonance

lies above the low-frequency range, here considered as

roughly 0 < ka < 0:5. Figure 3 plots the non-dimensional

resonant wave number kspa where ksp ¼ xsp=c.

As the shell thickness decreases, the resonant fre-

quency of the internal oscillator increases at a diminishing

rate. Equivalently, as the shell becomes thinner the added

stiffness must increase faster than the mass. Also note that

the resonant frequency drops as the number of springs, J,

increases. This is due to the factor HJ tanðp=JÞ in Eq. (13).

From Fig. 3 as well as Table I we see that the upper bound

on shell thickness is h=a ¼ 0:058. Since aluminum is rela-

tively light there is a substantial mass deficiency qm ¼ 0:683q.

In order to tune the shell to water (q ¼ 1000 kg=m3,

c ¼ 1500 m=s), a central mass is added. However, the mass

has to be supported by springs so the shell must be thinner

than the upper bound, namely, h=a ¼ 0:03, to accommodate

the additional stiffness.

FIG. 2. (Color online) TSCS vs ka for brick, acrylic, silver, and platinum

shells tuned to water with a ¼ 1 cm and h=a ¼ 0:220; 0:615; 0:052; 0:0252,

respectively.

FIG. 3. (Color online) Non-dimensional resonant wave number kspa
¼ xspa=c of the internal springs-mass system as a function of shell thickness

[see Eq. (13)]. The aluminum shell is tuned to water.

FIG. 4. (Color online) Plot (a) shows the total scattering cross-section for an

aluminum shell of thickness h=a ¼ 0:03 with J ¼ 4; 8; 16 springs support-

ing a central mass. The dashed line is the TSCS of the empty shell. Plot (b)

is a close up of plot (a) showing the achieved decrease in the scattering

cross-section from an empty shell to a tuned shell with J ¼ 16 springs.
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2. Flexural resonances

The scattering response of the tuned shell is analyzed for

plane wave incidence. Figure 4(a) shows the TSCS of Eq. (3)

as a function of ka for the three cases in Fig. 3 at the thickness

ratio h=a ¼ 0:03. The star on the horizontal axis indicates the

resonant frequency of the springs-mass system, which per pre-

vious discussion decreases with J. For J ¼ 4 and J ¼ 8

springs the tuning is only effective at extremely low frequen-

cies, because of the presence of several flexural resonances.

However with J ¼ 16 springs the TSCS is close to zero at fre-

quencies up to ka ¼ 0:8, where the magnified view is shown

in Fig. 4(b). By further increasing the number of springs, the

transparent region increases only slightly, because it is

bounded by the resonant frequency of the oscillator which for

large J is at about kspa ¼ xspa=c ¼ 0:95 [see Eq. (13)].

The shell thickness of h=a ¼ 0:03 is the optimal shell

thickness, because it maximizes the range of frequencies of

low TSCS. At the optimal thickness the lowest resonance

of the combined acoustic and shell impedances

ð
P1

p¼�11=ðZsh
nþpJ þ ZnþpJÞÞ�1

coincides with the resonant

frequency of the oscillator Zsp
n . The result is that there is a

large region free from flexural resonances but still close

enough to the oscillator resonance for it to be effective.

The reason for the decrease in the number of flexural

resonances with increasing J can be understood by consider-

ing the radial displacement of the shell wðhÞ at each reso-

nance. These are plotted in Fig. 5, where indeed each

resonance corresponds to a certain flexural mode. The red ra-

dial lines indicate the positions of the springs. From these we

can conclude that as the number of springs J increases more

flexural modes are constrained by the springs. The modes

that do appear are either modes where the spring attachments

coincide with the anti-nodes of the radial displacement or if

the mode is odd, the displacement is anti-symmetric.

Note that although we can attribute each resonance peak

to a flexural mode, the position of the peak is difficult to pre-

dict in the low frequency range, see Ref. 17 for further details.

V. INTERNAL OSCILLATOR DESIGNS

The analytical model demonstrated the theoretical possi-

bility of tuning elastic shells. We next consider several phys-

ical oscillator designs selected for their effectiveness and

ease of manufacturing.

A. A one-component internal oscillator

Consider a one-component internal mechanism consist-

ing of J ¼ 16 elastic stiffeners (ribs) of thickness t and a cen-

tral mass (rod) of radius r1 made of the same material as

shown in Fig. 6(a).

The elastic modulus and density of the internal mecha-

nism are E1 and q1, respectively. Assuming that the stiffeners

only deform axially, the effective stiffness (per unit axial

length) is j ¼ E1t=ða� h� r1Þ. This first order approxima-

tion for additional stiffness j will prove sufficient for low fre-

quency tuning. The second parameter of interest is the mass of

the internal mechanism, m1 ¼ q1ðJtða� h� r1Þ þ pr2
1Þ.

The two variables which define the geometry of the inter-

nal mechanism, t and r1, determine the effective bulk

modulus and density of the shell-oscillator system. From

Eq. (12), the contribution of the internal oscillator to the

bulk modulus of the shell-stiffener-mass system is Ksp

¼ 1
4

cotðp=JÞE1t=ða� h� r1Þ. Thus the effective properties

of the combined system become [see Eqs. (12) and (4)]

Keff ¼ Ksh
h

a
þ cot p=Jð ÞE1t

4 a� h� r1ð Þ ; (16a)

qeff ¼ qsh

h

a
2� h

a

� �
(16b)

þ q1

J

p
t

a
1� h

a
� r1

a

� �
þ r1

a

� �2
 !

; (16c)

FIG. 5. (Color online) Radial displacement wðhÞ for the J ¼ 4 case at reso-

nant frequencies: ka ¼ 0:081; 0:303; 0:338; 0:74 in (a), (b), (c), and (d),

respectively. Plots (e), (f), and (g) show the radial displacement wðhÞ for the

case with J ¼ 8 springs at resonant frequencies: ka ¼ 0:273; 0:321; 0:434,

respectively. Plot (h) is the radial displacement for J ¼ 16 springs at the res-

onant frequency of ka ¼ 0:945. The flexural modes in plots (a)–(d) are

n¼ 3, 5, 6, 7, 5, 6, 7, 15, respectively. The radial lines depict the internal

springs. The thickness of the aluminum shell is h=a ¼ 0:03. Displacement

has been arbitrarily scaled for clear depiction of the mode shape.
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where the O(ðh=aÞ2) term in the shell volume is retained

for improved accuracy. To get the effective properties, the

density of the shell has to be increased by qm ¼ qeff

�qshð2ðh=aÞ � ðh=aÞ2Þ. For example, from Table I the mass

deficiency for an aluminum shell with matched compressibil-

ity in water is qm ¼ 0:683q.

Next define the ratio of required additional stiffness in

each stiffener to the elastic modulus of the internal material,

K̂ ¼ 4J

pE1

K � Ksh
h

a

� �
tan

p
J

� �
: (17)

Solving the compressibility condition (16a) for t yields

t ¼ J�1pK̂ða� h� r1Þ: (18)

Substituting into the density condition in Eq. (16c) yields a

quadratic equation for r1=a,

r1

a

� �2

þ K̂ 1� h

a
� r1

a

� �2

� qm

q1

¼ 0: (19)

For h=a�1, the roots are approximately r1=a¼ðK̂þ1Þ�1ðK̂
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqm=q1ÞðK̂þ1Þ�K̂

q
Þ.

B. A two-component internal oscillator

It can happen that the density of the internal mechanism

material is so low, as in some plastics, that it becomes diffi-

cult to match both the density and bulk modulus. In that

case, a heavy central rod of radius r2 can be added as shown

in Fig. 6(b). This rod has practically no effect of the effective

stiffness, but does offset the density. The effective bulk mod-

ulus for this system is the same as in Eq. (16a), and the effec-

tive density changes as follows:

qeff ¼ qsh

h

a
2� h

a

� �
þ q1

J

p
t

a
1� h

a
� r1

a

� �
þ r1

a

� �2
 !

þ q2 � q1ð Þ
r2

a

� �2

; (20)

where q2 and K2 are the density and bulk modulus of the

central rod. Three parameters now define the geometry of

the internal mechanism: t, r1, and r2. Since there are two

conditions, Eqs. (16a) and (20), the radius of the internal os-

cillator is determined after selecting the fraction of density

added by the rod fq � qm=q2, which yields r2=a ¼
ffiffiffiffi
fq

p
.

Recalling Eq. (18) for t, and using the definition of qm, Eq.

(20) can be rearranged as

r1

a

� �2

þ K̂ 1� h

a
� r1

a

� �2

þ q2

q1

� 1

� �
r2

a

� �2

� qm

q1

¼ 0:

(21)

It is clear if q2 ¼ q1, Eq. (21) gives the solution for a one-

component oscillator, i.e., Eq. (19). For a very thin shell

with h=a� 1, the roots are approximately r1=a

¼ ðK̂ þ 1Þ�1ðK̂6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq̂=q1ÞðK̂ þ 1Þ � K̂

q
Þ, where q̂ ¼ qm

�fqðq2 � q1Þ. The discriminant goes to zero if we select fq
such that qm=q1 � fqðq2=q1 � 1Þ ¼ K̂=K̂ þ 1 giving the sin-

gle solution r1=a ¼ K̂=K̂ þ 1 which corresponds to the larg-

est possible central rod.

C. Aluminum shell with an acrylic internal mechanism

The shell is made of Aluminum 3003-H18

(qs ¼ 2730 kg=m3, E ¼ 69 GPa; � ¼ 0:33) and the oscilla-

tor is acrylic (q1 ¼ 1190 kg=m3, E1 ¼ 3:2 GPa; � ¼ 0:35).

The longitudinal speed of sound, cl ¼ cpð1� �Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�
p

,

is 6120 m/s for aluminum and 2078 m/s for acrylic. As in the

previous simulations, the shell has outer radius of a ¼ 1 cm

and thickness h=a ¼ 0:03. Using J ¼ 16 stiffeners the shell

is tuned such that the effective properties mimic water.

We first solve Eq. (19) for ðr1=aÞ and then apply Eq.

(18) to get the thickness, giving two solutions for the oscilla-

tor’s parameters ðr1; tÞ ¼ ð8:21; 0:40Þ and ð3:03; 1:80Þ (in

mm). Note that the lower limit on the internal mass radius r1

is geometrically constrained by the thickness of each stiff-

ener. The intersection of stiffeners gives a lower bound of

roughly r1 > Jt=ð2pÞ. In the second solution the radius r1 is

below this bound. This implies that the density is not

FIG. 6. (Color online) Schematic of the tuned shell. Plot (a): A one-

component internal mechanism consists of J ¼ 16 stiffeners (ribs) with

thickness t and a central mass (rod) of radius r1. Plot (b) shows the same in-

ternal mechanism, but with an added internal rod of radius r2.
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matched to water and consequently only the first solution is

retained.

Although the present representation of the added stiff-

ness is a good approximation it is not exact. The solutions

were optimized in COMSOL yielding the exact bulk mod-

ulus of water. The geometry of the oscillator was found

to be

ðr1; tÞ ¼ ð7:96; 0:81Þ mm; (22)

corresponding to ðqeff ; KeffÞ ¼ ð1000:8 kg=m3; 2:251 GPaÞ.
The radius r1 is large compared to the shell radius a. It

can be made smaller while still matching the effective proper-

ties to water by inserting a central steel rod (qs¼7944 kg=m3,

E¼200 GPa; �¼0:28). Solving Eq. (21) and using Eq. (18)

yields ðr1; r2; tÞ¼ð5:60;1:67;1:10Þmm, which were opti-

mized in COMSOL to give

ðr1; r2; tÞ ¼ ð5:60; 1:29; 1:43Þ mm: (23)

Figure 7 shows the TSCS for the two oscillator designs

in Eqs. (22) and (23) as well as the analytical springs-mass

solution of Fig. 4(b) and that for the empty shell. The finite

element analysis was carried out in COMSOL.

The presence of the oscillator significantly decreases the

scattered power at low frequencies. The TSCS is effectively

zero at frequencies below ka¼ 0.6 making the shell transpar-

ent in water. The oscillator with the central rod gives the

broadest region of negligible scattering. The accuracy of the

analytical springs-mass solution17 vs the full finite element

analysis, evident in Fig. 7, is quite remarkable.

VI. A CYLINDRICAL TO PLANE WAVE LENS
CONSTRUCTED FROM AN ARRAY OF TUNED SHELLS

In this section we consider a relatively small (7� 7)

array of tuned shells demonstrating wave steering

capabilities.

A. Unit cell of a fluid saturated array of shells

The unit cell of the square array, shown in Fig. 8, con-

sists of a central shell-springs-mass system surrounded by a

square region of water.

The shell volume fraction in the unit cell is f ¼ pa2=b2,

where b is the cylinder spacing as well as the side length of

the unit cell. The equivalent density and bulk modulus,

qeq; Keq, of the unit cell depend on the surrounding fluid as

qeq

q
¼ 1þ f

qeff

q
� 1

� �
; (24a)

Keq

K
¼ 1

1þ f
K

Keff

� 1

� � : (24b)

The equivalent density and bulk modulus of the unit cell are

significantly affected by the surrounding fluid. For shells of

radius a ¼ 1 cm with a relatively tight packing of b ¼ 2:2a
yields a filling fraction of f ¼ 0:65. In this case, in order to

have the effective quasi-static bulk modulus of the unit cell

Keq ¼ 2 K, the effective bulk modulus of the shell-springs-

mass system must be Keff ¼ 4:33 K.

The effective impedance of each shell relative to water

(acoustic impedance Z ¼
ffiffiffiffiffiffiffi
qK
p

) is determined by

qeffKeff

qK
¼

qeqKeq

qK

1� 1� fð Þq=qeq

1� 1� fð ÞKeq=K

 !
: (25)

B. Bulk modulus distribution via conformal map

The wave equation for an acoustic medium is invariant

under coordinate transformations. Moreover, if the transfor-

mation c ¼ xþ iy! s ¼ x0 þ iy0 is conformal, s ¼ sðcÞ,
then the mapped density q0 and bulk modulus K0 in the trans-

formed coordinates are19

q0 ¼ q; K0 ¼ Kjds=dcj: (26)

We consider the conformal transformation of a unit c
circle to a unit s square. The circle is first mapped to the

upper half plane through a bilinear transformation; the sub-

sequent polygon mapping takes the upper half plane to the

unit square in s. The resulting unit square to unit circle

inverse mapping is
FIG. 7. (Color online) Comparison of the TSCS for different oscillator

designs for an aluminum shell of thickness h=a ¼ 0:03.

FIG. 8. (Color online) A square unit cell of a fluid saturated array of shells.
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c ¼ 1� v
1þ v

e�ip=4; (27a)

v ¼ i cn2 1

2
K

1ffiffiffi
2
p
� �

sþ 1þ ið Þ
� �

; (27b)

where KðÞ is the complete elliptic integral of the first kind

and cnðuÞ is the Jacobi elliptic function. The bulk modulus

distribution in the transformed space is

K0 ¼ 2K

K
1ffiffiffi
2
p
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

c4 þ 1
p : (28)

The distribution (28) is used to design a cylindrical-to-

plane wave lens. The proposed array contains 7� 7 unit cells

of size b ¼ 2:2a with cylinders of radius a ¼ 1 cm giving a

filling fraction f ¼ 0:65 and the side length of the lens

L ¼ 15:4 cm. The complex variable defining the square is

fsðxþ iyÞjx; y : �L=2; L=2g. Substituting s into Eq. (27)

and then the obtained c into Eq. (28) gives the continuous

function of the bulk modulus distribution. This function is

then discretized by averaging it over each unit cell. Using

this required equivalent stiffness of each unit cell Keq the

properties of the shell-springs-mass system are obtained

from Eq. (24) as Keff=K ¼ ð1þ 1:54ðK=Keq � 1ÞÞ�1
. Figure

9(a) shows the bulk modulus of each shell-spring-mass sys-

tem normalized to water. The effective density of each sys-

tem is tuned to water, see Eq. (26).

Each shell-spring-mass system is designed by the

method outlined in Sec. V. The thickness of the aluminum

shells has to vary form 0:03 to 0:12 to achieve this inhomo-

geneity of bulk modulus from Keff=K ¼ 0:93 to 3:21.

Appropriate geometry of acrylic internal oscillator with J
¼ 16 stiffeners tunes the shell to the required acoustic prop-

erties. The slow shells with Keff=K ranging from 0.62 to 0.86

are made of acrylic with h=a ¼ 0:3 and tuned with an acrylic

oscillator. The central shell is removed to give room for a

monopole source.

The total pressure field was obtained by simulating the

lens made of elastic shells in COMSOL. A symmetric quarter

of the pressure field at monopole source frequencies of 10

kHz (ka ¼ 0:42; k=a ¼ 15) and 15 kHz (ka ¼ 0:63;
k=a ¼ 10) is shown at the same scales in Figs. 9(c) and 9(d),

respectively. Also, Fig. 9(b) shows the pressure ratio along

the quarter circular arcs in Figs. 9(c) and 9(d) between the

field with the lens (shown) and source only (not shown).

FIG. 9. (Color online) Cylindrical to

plane wave lens. Plot (a) shows the

bulk modulus distribution in the 7� 7

array of tuned shell. Plots (c) and (d)

show the pressure field around the lens

at 10 and 15 kHz, respectively. Plot (b)

is the pressure normalized by the

monopole source pressure without the

lens along the quarter circular arcs in

(c) and (d).
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At low frequencies the wavelength is much larger than

the shell size k=a ¼ 15 and the lens is essentially transpar-

ent. However, at 15 kHz when k=a ¼ 10 each tuned shell

behaves as an effective acoustic medium steering the wave

from the corner to the faces. The wave travels across only

three rows of shells and the maximum amplitude is magni-

fied by a factor of 7 as seen in Fig. 9(b). The increase in the

pressure amplitude from the faces and its decrease from the

corner demonstrates wave steering.

A larger array of shells will increase the effectiveness of

the lens. In the design of each shell, it is important to under-

stand that this is a model with three parameters: Shell thick-

ness, oscillator stiffness, and mass. The effectiveness of the

internal oscillator changes with shell thickness. The follow-

ing procedure will guarantee a successful design of an acous-

tic lens:

(1) Select the thickness of each shell to optimize the range

of frequencies for it to behave as an effective medium.

(2) Design each oscillator so as to suppress all low fre-

quency flexural waves of the shell and maximize its nat-

ural frequency.

VII. CONCLUSIONS

Elastic shells can be tuned to yield quasi-static effective

acoustic medium properties. For some exotic materials the

balance between density and shell stiffness is perfect for

transparency in water, but, for most common metals some

stiffness and mass need to be added. The proposed design of

the internal oscillator is an axisymmetric distribution of

lengthwise ribs (stiffeners) supporting a central rod. With

J ¼ 16 stiffeners, the low frequency flexural resonances of

the shell are suppressed. Simulations of an aluminum shell

tuned to water with an acrylic oscillator show transparency

up to ka ¼ 0:8.

A fluid saturated array of tuned elastic shells is capable

of steering waves. The unit cell is comprised of the shell-

spring-mass system surrounded by a fluid region. For the

cell to have desired density and bulk modulus, the effective

properties of the shell are tuned according to the filling frac-

tion. A cylindrical-to-plane wave lens has been simulated

with a 7� 7 array of such cells. At frequencies ka < 0:7 the

shells behave as an effective medium. The acoustic energy

from the monopole source at the center of the lens is steered

away from the corners, decreasing the pressure by a factor of

3, to the faces, where the pressure increases by a factor of 7.

This was achieved with the wave passing through only three

rows of shells.
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