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Tunable cylindrical shell as an element in acoustic metamaterial
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Elastic cylindrical shells are fitted with an internal mechanism which is optimized so that, in the
quasi-static regime, the combined system exhibits prescribed effective acoustic properties. The
mechanism consists of a central mass supported by an axisymmetric distribution of elastic stiff-
eners. By appropriate selection of the mass and stiffness of the internal mechanism, the shell’s
effective acoustic properties (bulk modulus and density) can be tuned as desired. Subsonic flexural
waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently
large number of such stiffeners. The effectiveness of the proposed metamaterial is demonstrated by
matching the properties of a thin aluminum shell with a polymer insert to those of water. The scat-
tering cross section in water is nearly zero over a broad range of frequencies at the lower end of the
spectrum. By arranging the tuned shells in an array the resulting acoustic metamaterial is capable
of steering waves. As an example, a cylindrical-to-plane wave lens is designed by varying the bulk

modulus in the array according to the conformal mapping of a unit circle to a square.
© 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4894723]
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I. INTRODUCTION

Transformation based design of materials for wave
steering originated in electromagnetics. Using singular trans-
formations and the invariance of Maxwell’s equations under
such transformations the possibility of wave steering was
demonstrated.' The idea is to steer an incident wave in a fi-
nite region surrounding the object such that there is no scat-
tering. Although the theory is frequency independent, only
cloaking of objects at microwave frequencies has been
achieved experimentally.” Cloaking objects at frequencies of
visible light is theoretically possible using conformal map-
ping as shown by Leonhardt,? but is experimentally uncon-
firmed. Other applications of transformation optics include
beam shifters and splitters.*

By natural progression the ideas found applications in
acoustics. Cummer and Schurig® showed the equivalent
invariance under coordinate transformations between
Maxwell’s and Helmholtz’ equations. Using singular trans-
formations they designed a two-dimensional acoustic cloak
with anisotropic density and bulk modulus. Simulations
showed that the cloak could steer waves around the annulus.
Chen and Chan® applied the same concept to the design of a
three-dimensional acoustic cloak. Cloaking of elastody-
namic waves was also investigated.” One way to achieve the
anisotropic density required for inertial cloaking is by use of
layered fluids.®* However, such cloaking devices are not
viable because the density requirement results in an infin-
itely massive cloak.'® Unlike cylindrical acoustic cloaks,
carpet cloaks have been experimentally shown to hide
objects resting on a surface.'' Yet another application of
transformation acoustics is a cylindrical-to-plane wave lens
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as designed by Layman ez al.'* It works by steering waves,
due to a monopole source at the center, from the corners to
the faces of the lens. Their device is based on constructive
multiple scattering from finite embedded elastic materials in
a fluid matrix, something previously investigated by Torrent
and Sanchez-Dehesa.'”

This article expands the possibilities in Ref. 13 demon-
strating that it is possible to tune an elastic component in a
fluid to yield desired acoustic properties at low frequencies.
The component is an elastic shell fitted with an internal
springs-mass system (oscillator). The oscillator is comprised
of a central rod with J identical and axisymmetrically dis-
tributed lengthwise ribs fixing it to the shell. The rod
behaves as an added mass and the ribs provide additional
stiffness. These two parameters together with the shell thick-
ness determine the effective acoustic properties of the com-
plete system.

Acoustic scattering from an empty shell as studied by
Bleich and Baron'” is very different from that for a stiffened
shell. The addition of an internal mechanical oscillator to a
shell was originally investigated by Achenbach er al.'”> They
showed that a single spring-mass system excites flexural
modes which are subsonic in an empty shell. Guo'® presented
the analysis for a diametrical pair of springs supporting a cen-
tral mass. The geometry of the forcing results in a normal
mode scattering solution which is of two-type for even and
odd modes. Recently, Titovich and Norris'’ obtained the
scattering response for an axisymmetric distribution of an ar-
bitrary number of springs supporting a central mass. Their
results are applied here to demonstrate that it is possible to
tune an elastic shell such that: (1) The density and speed of
the shell-springs-mass system is matched to water and (2) the
flexural resonances are suppressed at low frequencies.

The paper is organized as follows. The analytical
solution for a shell with a central mass attached by J
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axisymmetric linear springs is summarized in Sec. II. The
quasi-static acoustical properties of the system are then
determined in Sec. III. Material selection for the shell is
described in Sec. IV as well as the presence of flexural
resonances at low frequencies. As an example, an aluminum
shell is tuned to water in Sec. IV. Two physical oscillator
designs are proposed in Sec. V. The effect of surrounding
fluid for a shell-springs-mass system in a fluid saturated
array is described in Sec. VI. Wave steering by such an
array is demonstrated in Sec. VI with a cylindrical-to-plane
wave lens constructed from a 7 x 7 array of tuned shells.
Conclusions are presented in Sec. VII.

Il. SCATTERING FROM A SHELL WITH AN INTERNAL
MASS

We review the main results from Ref. 17 for later use.
Consider an infinitely long thin elastic shell of external ra-
dius a, thickness h < a, density p,, elastic modulus Ej,
Poisson’s ratio v, and extensional wave speed ¢, defined by
2 = Ey/[p;(1 — 1})]. The internal mechanism consists of a
central mass m per unit axial length supported by J massless
springs of individual spring stiffness x (with units of stress).
The mass is centered so that the springs act concentrically
under small amplitude motion of the mass (see derivation in
the Appendix of Ref. 17).

The shell is surrounded by an acoustic fluid (water) of
density p and wave speed ¢ with bulk modulus K = pc?.
Time harmonic solutions are sought with factor e~ omitted
as understood.

The total acoustic pressure p in the fluid satisfies
Helmholtz’ equation V?p + k?p =0, and is decomposed
into incident and scattered pressure fields as p = p; + ps,
where p; =3 AJ,(kr)e"” and p, =3 _ B,HD
x (kr)e®, r > a, respectively, with H,Sl) the Hankel func-
tion of the first kind of order n. The scattered pressure is
expressed via B = TA where B and A are infinite vectors
with elements B, and A, respectively, and T is the so-called
T-matrix.

The main result from Ref. 17 is that the T-matrix splits
into the superposition of the T-matrix for the empty shell
plus a J-cyclical contribution due to the springs-mass
system,

J
T=T"+> b/, M
j=1

where T = diag(T),) is the empty shell T-matrix with com-
ponents T, = (& — (,)/(24,), Ly = (2" + Z,)H'" (ka). The
acoustic impedance is Z, = ipcHD(ka)/H\" (ka) and
the shell impedance is Z = —ip,c,(h/a)[Q — (*n*/Q)
—(Q—n2/Q)7"], where f = (1/1/12)(h/a) and the dimen-
sionless frequency Q is Q = wa/c,. The other part of
the T-matrix in Eq. (1) depends on b;, = (i/{,)
X (2pcZ?/ nka)l/ 2 if n = jmodJ, otherwise0, where the
resonant behavior of the shell-springs-mass system is gov-
erned by the total equivalent impedance (1/Z") = (1/Z)
300 (1/Z}); + Zyspy) in terms of the spring-mass im-

n+py
edance Z* and resonant frequency wy,,
n 4
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1
. iJk | —————, n==*lmod/,
Z”p(']) - 2naw = (a)s,,/a)) .
1, otherwise,
5 K J, J =12,
w, =H;—, H;y= 2
p = His Hy {1/2’ J>3 )

The total scattering cross section (TSCS or ), which
is a measure of the power scattered in all directions due to an
incident wave, will be used throughout this paper to compare
various shell models. In the far-field r > a the scattered

: _ ks A\ —3/2 :
pressure is p; = \/a/2re’™ g(0) + O((kr)~7'7), where g(0) is
the form function, and hence

r 21 i 1 21 5
Otot = —J pspyd0 = —J |g(9)| do. 3)
a)o 2 )y

lll. EFFECTIVE PROPERTIES
OF THE SHELL-SPRINGS-MASS SYSTEM

For a given thin shell of thickness £, the internal springs
increase the system stiffness and the added mass increases
the density. This suggests the possibility of tuning the effec-
tive acoustic parameters of a stiffened shell through the val-
ues of stiffness x and mass m. The effective acoustic
properties as functions of x and m are determined next.

A. Effective density

The effective density is the ratio of total mass to volume,
Peii = (mg +m)/(na?), where my = p,n(a® — (a—h)?) is
the mass per unit length of the shell. Hence, since & < a by
assumption,

hoo(h\?
Pett = Pm T Ps (25 - (E) ) (4a)

h
~ P, + 2;,0‘?, where p,, = %. (4b)

B. Effective bulk modulus

Applying a hydrostatic pressure pg on the outside of the
infinitely long cylindrical shell results in a decrease of the ra-
dius @ — a — 0. The quasi-static effective bulk modulus is
defined as Keir = —po/(AV/V), where the volume change is
AV )V = AA/A = —2(d/a) since the elastic deformation is
plane strain. The radial and azimuthal strain in the shell are
both approximately equal to énop = 0/a, so that the effective
bulk modulus is

®)

Ker =~ :
Ehoop

The axial stress is 6, = VsOp0p, and consequently the hoop
strain and stress are related by p; 12, = (E;/1 — V%) as

1 Ohoo
P
Ehoop = E_(O'hoop - Vso'a) = 0 2 (6)
s s¥p
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FIG. 1. (Color online) External and internal forces acting on the shell with
J = 8 springs of stiffness x supporting a central mass .

An imaginary bisecting cut exposes the internal forces
as shown in Fig. 1. The static equilibrium condition is then

2homeop — 2apy + F = 0, @)

where F is the horizontal resultant per unit length of the
forces exerted by the springs on the half shell. At the same
time, the spring forces are proportional to 9, say

F = kegr0. ®)

Equations (5)—(8) imply that

ket

h
Kefr = *PJC; + U €))

2a

where the effective stiffness k. remains to be determined.
Hence, referring to Fig. 1,

J/4
Z cos0; forevenJ,
_ _ J==71/4
F= fo =wrdx ¢’ (10)
Z sin0; foroddJ.
=0
Performing the sums and using Eq. (8) gives
cot (;) forevenJ,
kefr = Kk X § 4 7r (1D
3 cot (ﬁ) foroddJ.

Consider even J, in which case Egs. (9) and (11) imply
that the effective bulk modulus is [K, as in Eq. (2.56) on
page 38 of Ref. 18]

h
Keff = aKsh + Kspa (12)

where Ky, = (p,c;/2) and Ky, = (1c/4)cot(n/J). The effec-
tive bulk modulus is greater than that of the bare shell and
the increase, Kj,, is proportional to the spring stiffness.
Substituting Egs. (4) and (12) into Eq. (2), the resonant fre-
quency of the oscillator can be expressed in terms of the den-
sity and bulk modulus of the effective medium as
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h

, o 4 | Ketr — EKsh
(Usp :H] tan<7> @ —h . (13)
Pett — 2 a Ps

In the case of odd J, tan(n/J) should be replaced by
2tan(n/(2J)) which has the same limit for large J, as
expected. From here on the analysis will be carried out for J
even.

IV. IMPEDANCE AND INDEX MATCHING

A. Matched effective properties of water at low
frequencies

For a thin elastic shell to have the effective acoustic
properties of water at low frequencies the internal oscillator
must be tuned by selecting appropriate values of the added
density p,, and added bulk modulus K, [see Egs. (4) and
(12)]. Setting the effective properties to water, p.; = p and
K. = K, in Egs. (4) and (12) yields

h h
Pup=p—2-p, and Ky =K —-Kg,. (14)
a a

The requirements that p,, and K, are non-negative impose
an upper bound on the shell thickness:

h 2¢\ 2 h
—<imin<1, (—‘) ) T (15)
a 2p; Cp a

Note that if ¢, =2c = (E,/p,(1 —12))"/?, then the
empty shell has the same density and bulk modulus as water
in the quasi-static limit. For typical engineering metals,
¢p > 2c, therefore the realistic bound on shell thickness is a
consequence of K, > 0, Eq. (14). Table I tabulates the upper
bound on shell thickness for several materials. For some
materials, the shell has to be thick in order to match the den-
sity of water, so thin-shell approximations do not apply. In

TABLE I. The upper bound on shell thickness based on matched density
h/a(pe = p) and matched bulk modulus /2/a(Kee = K) to water using sev-
eral materials. Units of density are kg/m?, elastic modulus GPa, speed m/s.
The effective density is matched to water p when h/a=1— /1 —p/p,.
The quantities in parentheses are outside the realm of thin shell theory and
were obtained using the finite element analysis.

Material Py E; Vg Cp ﬁ (p) ﬁ (K)
a a
Al Oxide 3920 370 0.22 9959 0.137 0.012
Molybdenum 10300 276 0.32 5463 0.050 0.015
Al 3003-H18 2730 69 0.33 5326 0.204 0.058
Stl AISI 4340 7850 205 0.28 5323 0.067 0.020
Ti beta-31S 4940 105 0.33 4884 0.107 0.038
Copper 8700 110 0.35 3796 0.059 0.036
Concrete 2300 25 0.33 3493 0.248 (0.143)
Brick 2000 17 0.3 3056 0.293 (0.199)
Platinum 21450 147 0.39 2842 0.024 0.026
Silver 10500 72.4 0.37 2827 0.049 0.054
Acrylic 1190 3.2 0.35 1751 0.600 (0.615)
ABS 1040 2.3 0.35 1588 0.804 (0.761)
Lead 11340 13.87 0.42 1215 0.045 (0.205)
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FIG. 2. (Color online) TSCS vs ka for brick, acrylic, silver, and platinum
shells tuned to water with ¢ = 1 cm and h/a = 0.220, 0.615, 0.052, 0.0252,
respectively.

that case Eq. (4) for density must be used exactly yielding
an upper bound on thickness of i/a=1-—+/1—p/p,.
Tuning the bulk modulus to water requires the use of finite
element analysis to accurately determine the thickness to ra-
dius ratio.

It is intriguing to see that for some materials such as plat-
inum and silver the thickness bounds are nearly the same,
implying that at that thickness the shell has the stiffness and
density of water. To investigate the effectiveness, simulations
were done for plane wave incidence on shells of radius
a=1cm. The TSCSs in Fig. 2 are negligible at low frequen-
cies for brick, acrylic, silver, and platinum shells of thickness
h/a = 0.220, 0.615, 0.052, 0.0252, respectively. The TSCS
of a rigid rod of radius 1 cm is shown for comparison. There
are several flexural resonances for the thick brick shell at
ka =0.297(n = 2), 0.863(n = 3), 1.638(n = 4) and for the
thick acrylic shell at ka = 0.658(n = 2), 1.452(n = 3), but
none for the thin silver and platinum shells.

Although thin silver and platinum shells exhibit trans-
parency in water up to ka = 1 they are not practical. For
shells made of common engineering materials (i.e., alumi-
num), stiffness and mass need to be added to obtain the den-
sity and bulk modulus of water. A procedure for tuning thin
elastic shells is described next.

B. Tuning an aluminum shell to water
1. Internal resonance

Consider a thin shell made of aluminum 3003-H18
(ps = 2730 kg/m?, ¢, = 5326 m/s). Matching the effective
properties of the shell-springs-mass system to water as
K.t = K and p i = p, yields the resonant frequency wy, of
Eq. (13). A necessary condition for low frequency matching
of the effective properties is that the first internal resonance
lies above the low-frequency range, here considered as
roughly 0 < ka < 0.5. Figure 3 plots the non-dimensional
resonant wave number ky,a where kg, = wy,/c.

As the shell thickness decreases, the resonant fre-
quency of the internal oscillator increases at a diminishing
rate. Equivalently, as the shell becomes thinner the added
stiffness must increase faster than the mass. Also note that
the resonant frequency drops as the number of springs, J,
increases. This is due to the factor H; tan(n/J) in Eq. (13).
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FIG. 3. (Color online) Non-dimensional resonant wave number kga
= wypa/c of the internal springs-mass system as a function of shell thickness
[see Eq. (13)]. The aluminum shell is tuned to water.

From Fig. 3 as well as Table I we see that the upper bound
on shell thickness is 4/a = 0.058. Since aluminum is rela-
tively light there is a substantial mass deficiency p,, = 0.683p.
In order to tune the shell to water (p = 1000 kg/m?,
¢ = 1500 m/s), a central mass is added. However, the mass
has to be supported by springs so the shell must be thinner
than the upper bound, namely, /1/a = 0.03, to accommodate
the additional stiffness.

10

1571

tot
1 L

0.5¢F

FIG. 4. (Color online) Plot (a) shows the total scattering cross-section for an
aluminum shell of thickness //a = 0.03 with J =4, 8, 16 springs support-
ing a central mass. The dashed line is the TSCS of the empty shell. Plot (b)
is a close up of plot (a) showing the achieved decrease in the scattering
cross-section from an empty shell to a tuned shell with J = 16 springs.
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2. Flexural resonances

The scattering response of the tuned shell is analyzed for
plane wave incidence. Figure 4(a) shows the TSCS of Eq. (3)
as a function of ka for the three cases in Fig. 3 at the thickness
ratio i/a = 0.03. The star on the horizontal axis indicates the
resonant frequency of the springs-mass system, which per pre-
vious discussion decreases with J. For / =4 and J =8
springs the tuning is only effective at extremely low frequen-
cies, because of the presence of several flexural resonances.
However with J = 16 springs the TSCS is close to zero at fre-
quencies up to ka = 0.8, where the magnified view is shown
in Fig. 4(b). By further increasing the number of springs, the
transparent region increases only slightly, because it is
bounded by the resonant frequency of the oscillator which for
large J is at about kgpa = wspa/c = 0.95 [see Eq. (13)].

The shell thickness of 1/a = 0.03 is the optimal shell
thickness, because it maximizes the range of frequencies of
low TSCS. At the optimal thickness the lowest resonance
of the combined acoustic and shell impedances
ol /(2 +Zuipr))”" coincides with the resonant
frequency of the oscillator Z7. The result is that there is a
large region free from flexural resonances but still close
enough to the oscillator resonance for it to be effective.

The reason for the decrease in the number of flexural
resonances with increasing J can be understood by consider-
ing the radial displacement of the shell w(0) at each reso-
nance. These are plotted in Fig. 5, where indeed each
resonance corresponds to a certain flexural mode. The red ra-
dial lines indicate the positions of the springs. From these we
can conclude that as the number of springs J increases more
flexural modes are constrained by the springs. The modes
that do appear are either modes where the spring attachments
coincide with the anti-nodes of the radial displacement or if
the mode is odd, the displacement is anti-symmetric.

Note that although we can attribute each resonance peak
to a flexural mode, the position of the peak is difficult to pre-
dict in the low frequency range, see Ref. 17 for further details.

V. INTERNAL OSCILLATOR DESIGNS

The analytical model demonstrated the theoretical possi-
bility of tuning elastic shells. We next consider several phys-
ical oscillator designs selected for their effectiveness and
ease of manufacturing.

A. A one-component internal oscillator

Consider a one-component internal mechanism consist-
ing of J = 16 elastic stiffeners (ribs) of thickness ¢ and a cen-
tral mass (rod) of radius r; made of the same material as
shown in Fig. 6(a).

The elastic modulus and density of the internal mecha-
nism are E; and p, respectively. Assuming that the stiffeners
only deform axially, the effective stiffness (per unit axial
length) is x = Eyt/(a — h — ry). This first order approxima-
tion for additional stiffness x will prove sufficient for low fre-
quency tuning. The second parameter of interest is the mass of
the internal mechanism, m; = p, (Jt(a — h — ry) + 7r}).

The two variables which define the geometry of the inter-
nal mechanism, ¢ and r;, determine the effective bulk
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FIG. 5. (Color online) Radial displacement w(0) for the J = 4 case at reso-
nant frequencies: ka = 0.081, 0.303, 0.338, 0.74 in (a), (b), (c), and (d),
respectively. Plots (e), (f), and (g) show the radial displacement w(0) for the
case with J = 8 springs at resonant frequencies: ka = 0.273, 0.321, 0.434,
respectively. Plot (h) is the radial displacement for J = 16 springs at the res-
onant frequency of ka = 0.945. The flexural modes in plots (a)-(d) are
n=3,5,6,7,5, 6,7, 15, respectively. The radial lines depict the internal
springs. The thickness of the aluminum shell is #/a = 0.03. Displacement
has been arbitrarily scaled for clear depiction of the mode shape.

modulus and density of the shell-oscillator system. From
Eq. (12), the contribution of the internal oscillator to the
bulk modulus of the shell-stiffener-mass system is Kj,
= tcot(n/J)Et/(a —h —ry). Thus the effective properties
of the combined system become [see Eqgs. (12) and (4)]

h  cot(m/J)E t

Keir = Ko, — , 16
eff " da—h—r) (16a)
h h
= 2—— 16b
Pett /’sha( a) (16b)
Jt h n r 2
+po|——{1————]+ <—) , (16¢)
Ta a a a
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FIG. 6. (Color online) Schematic of the tuned shell. Plot (a): A one-
component internal mechanism consists of J = 16 stiffeners (ribs) with
thickness ¢ and a central mass (rod) of radius r;. Plot (b) shows the same in-
ternal mechanism, but with an added internal rod of radius r,.

where the O((h/a)?) term in the shell volume is retained
for improved accuracy. To get the effective properties, the
density of the shell has to be increased by p,, = P
—pa(2(h/a) — (h/a)*). For example, from Table I the mass
deficiency for an aluminum shell with matched compressibil-
ity in water is p,, = 0.683p.

Next define the ratio of required additional stiffness in
each stiffener to the elastic modulus of the internal material,

Y h
K:—(K—Ksh—>tan ). (17)
k| a J

Solving the compressibility condition (16a) for ¢ yields
t=J_1nI€(a—h—r1). (18)

Substituting into the density condition in Eq. (16c) yields a
quadratic equation for r| /a,

2 2
. h r
<r—1) +K<1———'—1> _Pm_y, (19)
a a a P
For h/a < 1, the roots are approximately r, /a= (K +1)"" (K

=\/(pu/p) (K +1)~K).
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B. A two-component internal oscillator

It can happen that the density of the internal mechanism
material is so low, as in some plastics, that it becomes diffi-
cult to match both the density and bulk modulus. In that
case, a heavy central rod of radius r, can be added as shown
in Fig. 6(b). This rod has practically no effect of the effective
stiffness, but does offset the density. The effective bulk mod-
ulus for this system is the same as in Eq. (16a), and the effec-
tive density changes as follows:

+(p2— ) <—>27 (20)

where p, and K, are the density and bulk modulus of the
central rod. Three parameters now define the geometry of
the internal mechanism: ¢, r;, and r,. Since there are two
conditions, Egs. (16a) and (20), the radius of the internal os-
cillator is determined after selecting the fraction of density
added by the rod f, < p,,/p,, which yields r/a = \/f,.
Recalling Eq. (18) for ¢, and using the definition of p,,, Eq.
(20) can be rearranged as

m\° s hon\ (s n\> p

() +K(1>+(1)<> _Pu_y,

a a a 3 a) p
(21)

It is clear if p, = p;, Eq. (21) gives the solution for a one-
component oscillator, i.e., Eq. (19). For a very thin shell
with h/a < 1, the roots are approximately ri/a

= K+ 1) (R=\/(p/p))(K +1) ~K). where p=p,
—f»(p2 — py). The discriminant goes to zero if we select f,,
such that p,,/p; —f,(p,/py — 1) = K/K + 1 giving the sin-

gle solution r| /a = K /K + 1 which corresponds to the larg-
est possible central rod.

C. Aluminum shell with an acrylic internal mechanism

The shell is made of Aluminum 3003-H18
(p, = 2730 kg/m?, E = 69 GPa, v = 0.33) and the oscilla-
tor is acrylic (p; = 1190 kg/m?, E; = 3.2GPa, v = 0.35).
The longitudinal speed of sound, ¢; = c¢,(1 —v)/V1—2v,
is 6120 m/s for aluminum and 2078 m/s for acrylic. As in the
previous simulations, the shell has outer radius of @ = 1 cm
and thickness //a = 0.03. Using J = 16 stiffeners the shell
is tuned such that the effective properties mimic water.

We first solve Eq. (19) for (r;/a) and then apply Eq.
(18) to get the thickness, giving two solutions for the oscilla-
tor’s parameters (ry, ) = (8.21, 0.40) and (3.03, 1.80) (in
mm). Note that the lower limit on the internal mass radius r{
is geometrically constrained by the thickness of each stiff-
ener. The intersection of stiffeners gives a lower bound of
roughly r| > Jt/(2n). In the second solution the radius r; is
below this bound. This implies that the density is not
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matched to water and consequently only the first solution is
retained.

Although the present representation of the added stiff-
ness is a good approximation it is not exact. The solutions
were optimized in COMSOL yielding the exact bulk mod-
ulus of water. The geometry of the oscillator was found
to be

(r1, 1) = (7.96, 0.81) mm, (22)

corresponding to (pegr, Kefr) = (1000.8 kg/m?, 2.251 GPa).

The radius 7| is large compared to the shell radius a. It
can be made smaller while still matching the effective proper-
ties to water by inserting a central steel rod (p, =7944kg/m?,
E=200GPa, v=0.28). Solving Eq. (21) and using Eq. (18)
yields (r1,72,t)=(5.60,1.67,1.10)mm, which were opti-
mized in COMSOL to give

(r1, 12, t) = (5.60, 1.29, 1.43) mm. 23)

Figure 7 shows the TSCS for the two oscillator designs
in Egs. (22) and (23) as well as the analytical springs-mass
solution of Fig. 4(b) and that for the empty shell. The finite
element analysis was carried out in COMSOL.

The presence of the oscillator significantly decreases the
scattered power at low frequencies. The TSCS is effectively
zero at frequencies below ka = 0.6 making the shell transpar-
ent in water. The oscillator with the central rod gives the
broadest region of negligible scattering. The accuracy of the
analytical springs-mass solution'” vs the full finite element
analysis, evident in Fig. 7, is quite remarkable.

VI. ACYLINDRICAL TO PLANE WAVE LENS
CONSTRUCTED FROM AN ARRAY OF TUNED SHELLS

In this section we consider a relatively small (7 x 7)
array of tuned shells demonstrating wave steering
capabilities.

A. Unit cell of a fluid saturated array of shells

The unit cell of the square array, shown in Fig. 8, con-
sists of a central shell-springs-mass system surrounded by a
square region of water.

analytical solution—>>{|
-
150 acrylic oscillator <
acrylic/steel oscillato:
tot 1k 7/
empty shell—/)’
s
05} s
7
7~
-~
0 = : ‘
0 0.2 0.4 0.6 0.8 1
ka

FIG. 7. (Color online) Comparison of the TSCS for different oscillator
designs for an aluminum shell of thickness #/a = 0.03.
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b

FIG. 8. (Color online) A square unit cell of a fluid saturated array of shells.

The shell volume fraction in the unit cell is f = na* / b2,
where b is the cylinder spacing as well as the side length of
the unit cell. The equivalent density and bulk modulus,
Peqs Keg, of the unit cell depend on the surrounding fluid as

:1+f(@—1>7
p

q _ 1
K K '
1+ -1
f<Keff )

The equivalent density and bulk modulus of the unit cell are
significantly affected by the surrounding fluid. For shells of
radius @ = 1 cm with a relatively tight packing of b = 2.2a
yields a filling fraction of f = 0.65. In this case, in order to
have the effective quasi-static bulk modulus of the unit cell
K., = 2 K, the effective bulk modulus of the shell-springs-
mass system must be K¢ = 4.33 K.

The effective impedance of each shell relative to water
(acoustic impedance Z = +/pK) is determined by

(24a)

Sk

=

(24b)

PeriKett PegKeq (1 —a —f)p/ﬂeq) (25)

pK pK \1—(1—-f)Ke/K

B. Bulk modulus distribution via conformal map

The wave equation for an acoustic medium is invariant
under coordinate transformations. Moreover, if the transfor-
mation y =x-+iy — s=x"+1iy is conformal, s=s(y),
then the mapped density p’ and bulk modulus K’ in the trans-
formed coordinates are'®

o' =p, K =Klds/dy|. (26)

We consider the conformal transformation of a unit y
circle to a unit s square. The circle is first mapped to the
upper half plane through a bilinear transformation; the sub-
sequent polygon mapping takes the upper half plane to the
unit square in s. The resulting unit square to unit circle
inverse mapping is
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1+
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where K() is the complete elliptic integral of the first kind
and cn(u) is the Jacobi elliptic function. The bulk modulus
distribution in the transformed space is

V= ; (27a)

27b)

) 2K
K== (28)

()

The distribution (28) is used to design a cylindrical-to-
plane wave lens. The proposed array contains 7 X 7 unit cells
of size b = 2.2a with cylinders of radius ¢ = 1 cm giving a
filling fraction f = 0.65 and the side length of the lens
L = 15.4 cm. The complex variable defining the square is
{s(x+iy)|x,y : =L/2, L/2}. Substituting s into Eq. (27)
and then the obtained 7y into Eq. (28) gives the continuous
function of the bulk modulus distribution. This function is
then discretized by averaging it over each unit cell. Using
this required equivalent stiffness of each unit cell K,, the

properties of the shell-springs-mass system are obtained
from Eq. (24) as Kegr/K = (1 + 1.54(K /K,, — 1))”". Figure
9(a) shows the bulk modulus of each shell-spring-mass sys-
tem normalized to water. The effective density of each sys-
tem is tuned to water, see Eq. (26).

Each shell-spring-mass system is designed by the
method outlined in Sec. V. The thickness of the aluminum
shells has to vary form 0.03 to 0.12 to achieve this inhomo-
geneity of bulk modulus from Kei/K =0.93t03.21.
Appropriate geometry of acrylic internal oscillator with J
= 16 stiffeners tunes the shell to the required acoustic prop-
erties. The slow shells with K.g /K ranging from 0.62 to 0.86
are made of acrylic with #/a = 0.3 and tuned with an acrylic
oscillator. The central shell is removed to give room for a
monopole source.

The total pressure field was obtained by simulating the
lens made of elastic shells in COMSOL. A symmetric quarter
of the pressure field at monopole source frequencies of 10
kHz (ka =042, A/a=15) and 15kHz (ka = 0.63,
//a = 10) is shown at the same scales in Figs. 9(c) and 9(d),
respectively. Also, Fig. 9(b) shows the pressure ratio along
the quarter circular arcs in Figs. 9(c) and 9(d) between the
field with the lens (shown) and source only (not shown).
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45 60 75 90 FIG. 9. (Color online) Cylindrical to

plane wave lens. Plot (a) shows the
bulk modulus distribution in the 7 x 7
(b) array of tuned shell. Plots (c) and (d)
show the pressure field around the lens
at 10 and 15 kHz, respectively. Plot (b)

(©)
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is the pressure normalized by the
monopole source pressure without the
lens along the quarter circular arcs in
(c) and (d).
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At low frequencies the wavelength is much larger than
the shell size 1/a = 15 and the lens is essentially transpar-
ent. However, at 15kHz when A/a = 10 each tuned shell
behaves as an effective acoustic medium steering the wave
from the corner to the faces. The wave travels across only
three rows of shells and the maximum amplitude is magni-
fied by a factor of 7 as seen in Fig. 9(b). The increase in the
pressure amplitude from the faces and its decrease from the
corner demonstrates wave steering.

A larger array of shells will increase the effectiveness of
the lens. In the design of each shell, it is important to under-
stand that this is a model with three parameters: Shell thick-
ness, oscillator stiffness, and mass. The effectiveness of the
internal oscillator changes with shell thickness. The follow-
ing procedure will guarantee a successful design of an acous-
tic lens:

(1) Select the thickness of each shell to optimize the range
of frequencies for it to behave as an effective medium.

(2) Design each oscillator so as to suppress all low fre-
quency flexural waves of the shell and maximize its nat-
ural frequency.

VIl. CONCLUSIONS

Elastic shells can be tuned to yield quasi-static effective
acoustic medium properties. For some exotic materials the
balance between density and shell stiffness is perfect for
transparency in water, but, for most common metals some
stiffness and mass need to be added. The proposed design of
the internal oscillator is an axisymmetric distribution of
lengthwise ribs (stiffeners) supporting a central rod. With
J = 16 stiffeners, the low frequency flexural resonances of
the shell are suppressed. Simulations of an aluminum shell
tuned to water with an acrylic oscillator show transparency
up to ka = 0.8.

A fluid saturated array of tuned elastic shells is capable
of steering waves. The unit cell is comprised of the shell-
spring-mass system surrounded by a fluid region. For the
cell to have desired density and bulk modulus, the effective
properties of the shell are tuned according to the filling frac-
tion. A cylindrical-to-plane wave lens has been simulated
with a 7 x 7 array of such cells. At frequencies ka < 0.7 the
shells behave as an effective medium. The acoustic energy
from the monopole source at the center of the lens is steered
away from the corners, decreasing the pressure by a factor of
3, to the faces, where the pressure increases by a factor of 7.

J. Acoust. Soc. Am., Vol. 136, No. 4, October 2014

This was achieved with the wave passing through only three
rows of shells.
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