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Abstract
An active elastodynamic cloak destructively interferes with an incident time harmonic in-plane (coupled compres-
sional/shear) elastic wave to produce zero total elastic field over a finite spatial region. A method is described which
explicitly predicts the source amplitudes of the active field. For a given number of sources and their positions in two
dimensions it is shown that the multipole amplitudes can be expressed as infinite sums of the coefficients of the incident
wave decomposed into regular Bessel functions. Importantly, the active field generated by the sources vanishes in the
far-field. In practice the infinite summations are clearly required to be truncated and the accuracy of cloaking is studied
when the truncation parameter is modified.
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1. Introduction
The main function of a cloaking device is to render an object invisible to some incident wave as seen by some
external observer. Over the past decade, a great deal of effort has been focused on passive cloaking, using
metamaterials to guide waves around specific regions of space, see e.g. the highly cited works [1–3]. In recent
times a rather different approach to cloaking has been noted as an alternative. It has been named active exterior
cloaking and it relies on a set of discrete active sources, lying outside the cloaking region, to nullify the incident
wave whilst their own radiated field must be negligible in the far-field. Interest has focused on the Helmholtz
equation in two dimensions [4–9]. In the work of Vasquez et al. [5,6] Green’s formula and addition theorems for
Bessel functions were used to formulate an integral equation, which was then converted to a linear system of
equations for the unknown amplitudes. Crucially, the integral equation provides the source amplitudes as linear
functions of the incident wave field. It was shown that active cloaking can be realized using as few as three active
sources in two dimensions (2D). Further work to render the linear relation for the source amplitudes in more
explicit form was developed in Vasquez et al. [8] and extended to the three dimensional (3D) Helmholtz case in
Vasquez et al. [7]. In Norris et al. [9], the integral representations of Vasquez et al. [8] for the source amplitudes
were reduced to closed-form explicit formulas. This obviated the need to reduce the integral equation of Vasquez
et al. [5,6] to a system of linear equations which is then required to be solved numerically or to evaluate line
integrals, as proposed in Vasquez et al. [8].
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There is, of course, a strong link between active exterior cloaking and the notion of anti-sound or in the
context of elastic media, anti-vibration. Interestingly the notion of anti-sound appears to have been considered
first in a patent published in 1936 by Paul Lueg [10]. The subject has focused greatly on the desire to reduce the
magnitude of a radiating field or to create so-called quiet zones in enclosed domains such as aircraft cabins using
simple sources. The idea to suppress completely the sound field in a finite volume inside an unbounded domain
using the Kirchhoff–Helmholtz integral formula and thus employing a continuous distribution of monopoles
and dipoles is described in Nelson and Elliott [11]. Anti-vibration techniques have also been developed
[12,13]. In general the focus of anti-sound is to reduce the sound radiated from a sound source or to create
a zone of silence by employing a finite number of radiating sources. The active field is not required to be non-
radiating however. Furthermore, very little work in the anti-sound community has focused on the exact shape
of the quiet zone with the exception of David and Elliott [14] who calculated, numerically the zone of silence
(<10 dB) region created when the amplitude of a single secondary source was chosen to reduce the noise of a
single primary source.

The aim of active exterior cloaking is to render the total field zero inside some prescribed domain (the cloak
or zone of silence), whilst ensuring that the active field itself is non-radiating. The technique introduced in the
early active exterior cloaking work enables a cloaked region to be identified clearly by the use of Graf’s addition
theorem. This approach allows precise determination of the necessary source amplitudes.

The infinite series associated with the multipole expansion of the mth active source is formally divergent
inside the circle that is centered on the source itself, i.e. for |x−xm| < am in the notation used later on. Therefore
the representation for the source is not valid in the domain in which it resides! This point has not been stressed
in the active cloaking community, although a related point was noted in the anti-sound community in Kempton
[15]. Clearly this point motivates the truncation of the series which has to be done practically in any case. This
limits accuracy but as we shall see later in many cases, only a small number of multipoles is required.

As yet it does not appear that active exterior cloaking has been applied to the elastodynamic context. This
paper will focus on the relevant 2D active elastodynamic cloaking problem. In general, elastodynamic cloaking
problems are more difficult to study than their acoustic or electromagnetic counterparts. Indeed in the case of
passive elastodynamic cloaking, this is due to the lack of invariance of Navier’s equations under coordinate
transformations [16] unless we relax the minor symmetry property of the required elastic modulus tensor. The
latter can be achieved by using Cosserat materials [17,18] or by employing non-linear pre-stress of hyperelastic
materials [19–21]. Here we show how the active approach to cloaking can be employed in the elastodynamic
case for the fully coupled 2D (in-plane) compressional/shear (P/SV) wave problem. As in the approach of
Norris et al. [9] we write down the relevant integral equation by employing, in this case, the isotropic Green’s
tensor. The required source amplitudes for arbitrary wave incidence can be determined explicitly by using Graf’s
addition theorem.

We shall begin in Section 2 with a statement of the problem, a review of the governing equations, and a
summary of the main results. The relevant integral relation is derived in Section 3, from which the main results
regarding the explicit form of the source amplitudes are shown to follow. We consider both compressional and
transverse (shear) wave incidence. We also describe the form of the active source field and the issues associated
with divergence described above. Numerical results follow in Section 4.

2. Problem formulation and main results

2.1. Problem overview

Let us consider the 2D configuration where the active cloaking devices consist of arrays of point multipole
sources located at positions xm ∈ R

2, m = 1, M as depicted in Figure 1. These sources can give rise to both
shear and compressional elastic waves. The active sources lie in the exterior region with respect to the cloaked
region C and for this reason, this type of cloaking is called active exterior cloaking [5]. Objects are undetectable
in the cloaked region by virtue of the destructive interference of the sources and the incident field with the result
that the total wave amplitude vanishes in the cloaked region C. As described in Norris et al. [9] this gives rise
to three significant advantages over passive cloaking: (i) the cloaked region is not completely surrounded by
a single cloaking device; (ii) only a small number of active sources are needed; (iii) the procedure works for
broadband input sources. The principal disadvantage of the method is of course that the incident field must be
known.
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Figure 1. Insonification of the actively cloaked region C generated by M active point multipole sources at xm, and active sources
regions Am, m = 1, M . The incident field in this case is a plane wave with wave vector k in the direction ψ .

The M active sources give rise to a cloaked zone C as indicated in Figure 1 by the shaded region whose
boundary ∂C is the closed concave union of the circular arcs ∂Cm m = 1, M , {am, θ (m)

1 , θ (m)
2 } associated with

the source at xm. In the general case {am, θ (m)
1 , θ (m)

2 } are distinct for different values of m. Note that the wave
incidence shown in Figure 1 is a plane wave although the solution derived below is for arbitrary incidence.
We therefore have to determine the amplitudes of the active sources as a function of the incident wave, and
then prove that the cloaked region is indeed the closed region C as indicated in Figure 1. Let us also define the
notation Am as the circular domain of radius am that contains the mth active source at its centre. We also define
the union of these domains A = ∪M

m=1Am.

2.2. Compressional/shear (P/SV) in-plane wave propagation

We consider time harmonic solutions with the factor e−iωt understood but omitted. Navier’s equations in 2D for
the displacement u = (u1, u2), uj = uj(x1, x2), are,

∂jσij + ρω2ui = fi, σij = Cijkl ∂luk , (1)

where f is the forcing, Cijkl = λδijδkl + μ(δikδjl + δilδjk) and the summation convention on repeated indices is
understood. Hence, in the absence of forcing (f = 0),

(λ+ 2μ)∇∇ · u + μ∇2u + ρω2u = 0. (2)

The Helmholtz decomposition for the displacement,

u = ∇
+ ∇×(�k) (3)

leads to separate Helmholtz equations for the scalar potentials

∇2
+ k2
p
 = 0, ∇2� + k2

s� = 0 (4)

where kp, ks are the longitudinal and shear wave numbers, respectively: k2
p = ω2ρ/(λ+ 2μ), k2

s = ω2ρ/μ. We
also define, for later use, κ ≡ ks/kp, or equivalently κ2 = 2(1 − ν)/(1 − 2ν) where ν is Poisson’s ratio. We seek
the total wave field in the form of an incident wave, ui, plus the active source field, ud, such that

u(x) = ui + ud ⇒ 
(x) = 
i +
d, �(x) = �i +�d. (5)
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We assume the general form of an incident field in the regular basis, and hence

(

i

�i

)
=

∞∑
n=−∞

(
A(p)

n U +
n (kpx)

A(s)
n U +

n (ksx)

)
, (6a)

(

d

�d

)
=

M∑
m=1

∞∑
n=−∞

(
B(p)

m,nV +
n (kp(x − xm))

B(s)
m,nV +

n (ks(x − xm))

)
, (6b)

where the functions U ±
n (z) and V ±

n (z) are defined by

U ±
n (z) = Jn(|z|)e±in arg z, V ±

n (z) = H (1)
n (|z|)e±in arg z. (7)

Here arg z ∈ [0, 2π) and arg (− z) = arg z ± π ∈ [0, 2π). Define the derivative functions U ±
n

′(z) and V ±
n

′(z) as

U ±
n

′
(z) = J ′

n(|z|)e±in arg z, V ±
n

′
(z) = H (1)

n
′
(|z|)e±in arg z. (8)

Note that the functions U ±
n (z) and V ±

n (z) possess the properties

U ±
n (−z) = (−1)nU ±

n (z), V ±
n (−z) = (−1)nV ±

n (z). (9)

In the following we write U0 and V0, with obvious meaning.

2.3. Summary of the main results

Here we shall state the main results and the required source amplitudes to enable perfect active cloaking together
with necessary and sufficient conditions on these amplitudes. The latter ensures we can compare accuracy of
the cloaking technique. We shall prove these results in Section 3. Let {am, θ (m)

1 , θ (m)
2 } define the circular arc ∂Cm

of the closed boundary of the cloaked region associated with the source at xm. The active source amplitude
coefficients for the general form of an incident field (equation (6a)) are

⎛
⎝B(p)

m, l

B(s)
m, l

⎞
⎠ =

∞∑
n=−∞

⎛
⎝B(p)

m, ln A(p)
n

B(s)
m, ln A(s)

n

⎞
⎠ , where (10a)

⎛
⎝B(p)

m, ln

B(s)
m, ln

⎞
⎠ = 1

4(ksam)2

∞∑
q=−∞

(−1)q
[
e−i(q+l)θ (m)

2 − e−i(q+l)θ (m)
1
]

×
{

U +
n+q(kpxm)

(
v1(kpam, ksam)
v2(kpam, ksam)

)
+ U +

n+q(ksxm)

(−v2(ksam, kpam)
v1(ksam, kpam)

)}
, (10b)

v(α,β) =
(

v1
v2

)
=

⎛
⎜⎝
[
α

(m)
s

2

q+l − 2q
]
αJ ′

l (α) i
[
α

(m)
s

2

q+l − 2l
]
αJl(α)

−i
[
α

(m)
s

2 − 2lq
]
Jl(β) −2α(m)

p α
(m)
s J ′

l (β)

⎞
⎟⎠
⎛
⎝ Jq(α)

iJ ′
q(α)

⎞
⎠ . (10c)
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The derivation of equation (10) is given in Section 3.4. Alternatively, defining a vector a(m)
i ≡ amê(θ (m)

i )
(i = 1, 2), and incorporating equations (7) and (8), equation (10b) reduces to the form⎛

⎝B(p)
m, ln

B(s)
m, ln

⎞
⎠ = 1

4α(m)
s

2

∞∑
q=−∞

(−1)q

{
U +

n+q(kpxm)

(
V1(kpa, ksa)
V2(kpa, ksa)

)

+ U +
n+q(ksxm)

(−V2(ksa, kpa)
V1(ksa, kpa)

)}∣∣∣∣
a(m)

2

a(m)
1

, where (11a)

V(α, β) =
(

V1
V2

)
=

⎛
⎜⎝
[
α

(m)
s

2

q+l − 2q
]
αU−

l
′
(α) i

[
α

(m)
s

2

q+l − 2l
]
αU−

l (α)

−i
[
α

(m)
s

2 − 2lq
]
U−

l (β) −2α(m)
p α

(m)
s U−

l
′
(β)

⎞
⎟⎠
⎛
⎝ U−

q (α)

iU−
q

′(α)

⎞
⎠ . (11b)

Next, we note that the active source coefficients B(p)
m, l and B(s)

m, l must satisfy the necessary and sufficient
conditions to ensure active cloaking inside the domain C.

∀ n ∈ Z :
M∑

m=1

∞∑
l=−∞

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B(p)
m, lU

−
n−l(kpxm) = 0,

B(s)
m, lU

−
n−l(ksxm) = 0,

B(p)
m, lV

−
n−l(kpxm) = −A(p)

n ,

B(s)
m, lV

−
n−l(ksxm) = −A(s)

n .

(12)

The first pair of conditions is required to ensure zero radiated field outside the union of the active regions, A,
and the second pair ensures that the total field is zero inside C. These constraints on B(p)

m, l and B(s)
m, l will be used

to estimate the error in the active cloaking region in the following sections by truncating the infinite sums in
equation (12).

3. Derivation of the source amplitude expressions and constraints
Let us first formulate the problem in terms of an integral equation.

3.1. Green’s tensor and integral equation formulation

Consider the particular solution of Navier’s equations (1) in the presence of a point force,

f = Fδ(x − x0) ⇒ ui = GikFk (13)

where Gik is the 2D (in-plane) Green’s tensor. Specifically, Gik(x) satisfies

�ijk,j + ρω2Gik = δikδ(x), �ijk = CijpqGpk,q, (14)

with solution
Gik = (ρω2

)−1
[
δik k2

s Gs + ∂i∂k(Gs − Gp)
]

(15)

where

Gs = 1

4i
V0(ksx), Gp = 1

4i
V0(kpx). (16)

The solution in equation (15) can be checked by substitution into the governing equation (14) and using the
identities (∇2 + k2

α)Gα = δ(x), α = p, s.
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It is convenient to work without subscripts, writing equation (15) as

−ρω2G(x) = ∇∇Gp + (I∇2 − ∇∇)Gs = ∇∇Gp + (∇×k)(∇×k)Gs for x 
= 0, (17)

where (∇×k)i = eij3∂j. Using equation (13) in the form u = G ·F, combined with the Helmholtz decomposition
for u gives

∇
+ (∇×k)� = (ρω2
)−1 [∇∇Gp · F + (∇×k)(∇×k)Gs · F

]
, x 
= 0, (18)

implying
−ρω2
 = F · ∇Gp = F1∂1Gp + F2∂2Gp,

−ρω2� = F · (∇×k)Gs = F1∂2Gs − F2∂1Gs,
x 
= 0. (19)

This makes it clear that for a standard point source, regardless of the choice of F, both compressional and shear
waves propagate away from the point source.

With knowledge of Green’s tensor we can now develop an integral equation for the displacement. Indeed,
if u is a solution of the homogeneous equations in an infinite domain containing a finite region D and σ is the
associated stress, then by definition of Green’s tensor,∫

∂D
dSni

[
uj(y)�ijk(y − x) − σij(y)Gjk(y − x)

] =
{

uk(x), x ∈ D,
0, x /∈ D.

(20)

Equation (20) holds for both ui and ud separately inside the cloaked region, since both are assumed to be regular
there (this is a definition of exterior cloaking). Also, by its definition the total field is zero inside the cloaked
region with boundary ∂C, and therefore

ud(x) = −
∫
∂C

dSn · [ui(y) · �(y − x) − σ i(y) · G(y − x)
]
, x ∈ C. (21)

This is the fundamental relation used to find the source amplitudes.

3.2. General expressions for the source amplitudes

Following the procedure for the Helmholtz problem [9], we first substitute the assumed form of ud into the left
member of equation (21). Then we partition the integral in the right member into M segments over {∂Cm, m =
1, M} and identify each line integral with the mth component of ud, i.e. the part of the source field from the
multipoles at xm. Thus,

0 =
M∑

m=1

{∫
∂Cm

dSn · [ui(y) ·�(y − x) − σi(y) · G(y − x)
]

+
∞∑

n=−∞

(
B(p)

m,n∇V +
n (kp(x − xm)) + B(s)

m,n∇×kV +
n (ks(x − xm))

)}
, x ∈ C. (22)

We now use the generalized Graf addition theorem [22, equation (9.1.79)],

V +
l (y − x) =

∞∑
n=−∞

{
V +

n (y) U−
n−l(x), |y| > |x|,

U +
n (y) V−

n−l(x), |y| < |x|. (23)

The idea is to write �(y − x) and G(y − x) in equation (22) in terms of sources at xm. This suggests using
equation (23) for y − x = (y − xm) − (x − xm) subject to |y − xm| < |x − xm|. Hence, using equation (17),

G(y − x) = i

4ρω2

∞∑
n=−∞

{
∇∇U−

n

(
kp(y − xm)

)
V +

n

(
kp(x − xm)

)

+ (∇×k)(∇×k)U−
n

(
ks(y − xm)

)
V +

n

(
ks(x − xm)

)}
. (24)
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By virtue of the dependence of Green’s function on y − x, the derivatives ∇∇ can be understood as ∇y∇y or
∇x∇x or −∇y∇x, with the same equivalence for (∇×k)(∇×k). Inspection of equation (22) suggests that the forms
−∇y∇x and −(∇y×k)(∇x×k) are appropriate. Taking into account the negative sign in ∇∇ → −∇y∇x, Green’s
function can be written in the form

G(y − x) = −i

4ρω2

∞∑
n=−∞

{
∇yU

−
n

(
kp(y − xm)

)∇xV
+

n

(
kp(x − xm)

)

+ (∇y×k)U−
n

(
ks(y − xm)

)
(∇x×k)V +

n

(
ks(x − xm)

)}
. (25)

Substituting from equation (25) into equation (22), and identifying the coefficients of ∇V +
n (kp(x − xm)) and

∇×kV +
n (ks(x − xm)), yields

B(p)
m,n = −i

4ρω2

∫
∂Cm

dSn · [σ i(y) · ∇U−
n

(
kp(y − xm)

)− ui(y) · σ (p)
(
kp(y − xm)

)]
, (26a)

B(s)
m,n = −i

4ρω2

∫
∂Cm

dSn · [σ i(y) · (∇×k)U−
n

(
ks(y − xm)

)− ui(y) · σ (s)
(
ks(y − xm)

)]
, (26b)

where
σ

(p)
ij

(
kp(y − xm)

) = CijpqU−
n,pq

(
kp(y − xm)

)
,

σ
(s)
ij

(
ks(y − xm)

) = Cijpqepr3U−
n,rq

(
ks(y − xm)

)
.

(26c)

Therefore, given the incident field, we are now able to evaluate the required source amplitudes that guarantee
zero total field inside the domain C. We can however, make further progress on the integrals in equation (26) in
order to render them in simpler form, by using the fact that ∂Cm is the arc of the circle of radius am centered
at xm, which is the origin of the shifted coordinates y − xm. The integration is therefore simplified using polar
coordinates centered at xm, combined with the expressions for the displacements and traction components in
polar coordinates given in terms of the potentials,

ur = 
,r + 1

r
�,θ , uθ = 1

r

,θ −�,r,

σrr = −λk2
p
+ 2μ

(

,rr + 1

r
�,rθ − 1

r2
�,θ

)
,

σrθ = 2μ
(1

r

,rθ − 1

r2

,θ

)+ μ
( 1

r2
�,θθ −�,rr + 1

r
�,r

)
.

(27)

The four distinct terms in the integrals of equation (26), such as dSn · σ i(y) · ∇U−
n

(
kp(y − xm)

)
, then follow by

identifying 
 → U−
n

(
kpa), � → U−

n

(
ksa), where a(θ) ≡ y − xm is the radial vector of constant magnitude am.

Thus,

dSn · σ i · ∇U−
n = dS

[
σirr

∂

∂r
U−

n

(
kpa
)+ σirθ

1

r

∂

∂θ
U−

n

(
kpa
)]

= dθ
(
σirrkpamU−

n
′
(kpa) − inσirθU

−
n (kpa)

)
, (28a)

dSn · σ (p) · ui = dS
[
uirσ

(p)
rr + uiθσ

(p)
rθ

]
= dθ

μ

am

(
uir

[(
2n2 − k2

s a2
m

)
U−

n (kpa) − 2kpamUn
−′

(kpa)
]

+ uiθ 2in
[
U−

n (kpa) − kpamUn
−′

(kpa)
])

, (28b)

dSn · σ i · (∇×k)U−
n = dS

[
σirr

1

r

∂

∂θ
U−

n

(
ksa
)− σirθ

∂

∂r
U−

n

(
ksa
)]

= − dθ
(

inσirrU
−
n (ksa) + ksamσirθU

−
n

′
(ksa)

)
, (28c)
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dSn · σ (s) · ui = dS
[
uirσ

(s)
rr + uiθσ

(s)
rθ

]
= dθ

μ

am

(
uir 2in

[
U−

n (ksa) − ksamU−
n

′
(ksa)

]
+ uiθ

[(
(ksam)2 − 2n2

)
U−

n (ksa) + 2ksamU−
n

′
(ksa)

))
. (28d)

Noting the reversal of the sense of the integral in equation (26) and incorporating equation (28a) leads to

B(p)
m, l = 1

4k2
s

∫ θ
(m)
2

θ
(m)
1

dθ e−i l θ

{
iα(m)

p J ′
l (α

(m)
p )

σirr

μ
+ l Jl(α

(m)
p )

σirθ

μ

+ i
[(
α(m)

s
2 − 2 l2

)
Jl(α

(m)
p ) + 2α(m)

p J ′
l (α

(m)
p )
]uir

am
+ 2 l

[
Jl(α

(m)
p ) − α(m)

p J ′
l (α

(m)
p )
]uiθ

am

}
, (29a)

B(s)
m, l = 1

4k2
s

∫ θ
(m)
2

θ
(m)
1

dθ e−i l θ

{
− iα(m)

s J ′
l (α

(m)
s )

σirθ

μ
+ lJl(α

(m)
s )

σirr

μ

− i
[(
α(m)

s
2 − 2 l2

)
Jl(α

(m)
s ) + 2α(m)

s J ′
l (α

(m)
s )
]uiθ

am
+ 2 l

[
Jl(α

(m)
s ) − α(m)

s J ′
l (α

(m)
s )
]uir

am

}
, (29b)

where α(m)
p = kp am, α(m)

s = ks am, θ (m)
1 and θ (m)

2 are the angular positions of the vectors a(m)
i ≡ amê(θ (m)

i ),
i = 1, 2, which describe the initial and final positions of segment ∂Cm. Equation (29) provides an expression for
the source amplitudes for any time harmonic incident field.

Let us now specialize the result to the specific case of plane wave incidence. This is important in its own
right but also allows us to derive the general incident wave case by integration as we shall show.

3.3. Plane wave incidence

Let us define
uψα (x) = eikα ê(ψα)·x, α = p, s (30)

where ê(ψα) = (cosψα, sinψα) so that uψα correspond to compressional (p) and shear (s) plane waves of unit
amplitude.

3.3.1. Longitudinal incident plane wave. Consider now longitudinal plane wave incidence


i(x) = Apuψp (x) (31)

where Ap ≡ const is a known wave amplitude. Then using the relation 
i(y) = 
i(xm)uψp(a) with a = amê(θ),
and equation (27) with 
 = 
i, � = 0, reduces equation (29) to the form:

B(p)
m, l = 
i(xm)

4κα(m)
s

∫ θ
(m)
2

θ
(m)
1

dθ e−i l θuψp (a)

{
iα(m)

p
2
J ′

l (α
(m)
p )
[
2 sin2(θ − ψp) − κ2

]
+ lα(m)

p Jl(α
(m)
p ) sin 2(θ − ψp) − i2l sin(θ − ψp)

[
Jl(α

(m)
p ) − α(m)

p J ′
l (α

(m)
p )
]

− cos(θ − ψp)
[(
α(m)

s
2 − 2 l2

)
Jl(α

(m)
p ) + 2α(m)

p J ′
l (α

(m)
p )
]}

, (32a)

B(s)
m, l = 
i(xm)

4κα(m)
s

∫ θ
(m)
2

θ
(m)
1

dθ e−i l θuψp (a) ·
{[

2 sin2(θ − ψp) − κ2
]

l α(m)
p Jl(α

(m)
s )

− i sin 2(θ − ψp)α(m)
p α(m)

s J ′
l (α

(m)
s ) + i2 l cos(θ − ψp)

[
Jl(α

(m)
s ) − α(m)

s J ′
l (α

(m)
s )

]

− sin(θ − ψp)
[(
α(m)

s
2 − 2 l2

)
Jl(α

(m)
s ) + 2α(m)

s J ′
l (α

(m)
s )
]}

. (32b)
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Then noting that uψp (a) = eikpam cos(θ−ψp) = eiα(m)
p cos(θ−ψp), equation (32) can be written

B(p)
m, l = i
i(xm)

4κα(m)
s

e−i lψp ·
{
α(m)

p
2
J ′

l (α
(m)
p )
[
2L′′

0(α(m)
p ) − (κ2 − 2

)
L0(α(m)

p )
]

− 2 lα(m)
p Jl(α

(m)
p )L′

1(α(m)
p ) − 2lL1(α(m)

p )
[
Jl(α

(m)
p ) − α(m)

p J ′
l (α

(m)
p )
]

+ L′
0(α(m)

p )
[(
α(m)

s
2 − 2 l2

)
Jl(α

(m)
p ) + 2α(m)

p J ′
l (α

(m)
p )
]}

, (33a)

B(s)
m, l = 
i(xm)

4κα(m)
s

e−i lψp ·
{

lα(m)
p Jl(α

(m)
s )
[
2L′′

0(α(m)
p ) − (κ2 − 2

)
L0(α(m)

p )
]

− 2α(m)
p α(m)

s J ′
l (α

(m)
s )L′

1(α(m)
p ) + 2 l L′

0(α(m)
p )
[
Jl(α

(m)
s ) − α(m)

s J ′
l (α

(m)
s )
]

− L1(α(m)
p )
[(
α(m)

s
2 − 2 l2

)
Jl(α

(m)
s ) + 2α(m)

s J ′
l (α

(m)
s )
]}

, (33b)

where the functions L0(α) and L1(α) are defined by

Lj(α) =
∫ θ

(m)
2 −ψp

θ
(m)
1 −ψp

dθ (sin θ)j ei(α cos θ−lθ), j = 0, 1. (34)

L0(α) can be evaluated by using the Jacobi–Anger identity eix sin θ =∑∞
n=−∞ Jn(x)einθ ,

L0(α) =
∞∑

n=−∞
Jn(α) in

∫ θ
(m)
2 −ψp

θ
(m)
1 −ψp

dθ e−i(n+l)θ

=
∞∑

n=−∞
Jn(α) in+1 ei(n+l)ψp

n + l

[
e−i(n+l)θ (m)

2 − e−i(n+l)θ (m)
1
]
. (35)

Integration by parts yields L1(α) in the form

L1(α) = − l

α
L0(α) − 1

iα
ei(α cos θ−lθ)

∣∣∣∣∣
θ

(m)
2 −ψp

θ
(m)
1 −ψp

. (36)

Taking into account the Jacobi–Anger identity and equation (35), the function L1(α) and its derivative L′
1(α) can

be expressed

L1(α) = 1

α

∞∑
n=−∞

Jn(α) n in+1 ei(n+l)ψp

n + l
· [e−i(n+l)θ (m)

2 − e−i(n+l)θ (m)
1
]
, (37a)

L′
1(α) = 1

α2

∞∑
n=−∞

n in+1
[
αJ ′

n(α) − Jn(α)
] ei(n+l)ψp

n + l
· [e−i(n+l)θ (m)

2 − e−i(n+l)θ (m)
1
]
. (37b)
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Introducing the explicit results for the functions L0(α) and L1(α) into equation (33) yields expressions for the
amplitude coefficients in the form:

B(p)
m, l = 
i(xm)

4κ2

∞∑
q=−∞

iq+2eiqψp

q + l
·
{
α(m)

p J ′
l (α

(m)
p )

[
2J ′′

q (α(m)
p ) − (κ2 − 2

)
Jq(α(m)

p )

]

− 2 l q

α
(m)
p

Jl(α
(m)
p )

[
J ′

q(α(m)
p ) − 1

α
(m)
p

Jq(α(m)
p )

]
+ J ′

q(α(m)
p )

[
2J ′

l (α
(m)
p )

+ α
(m)
s

2 − 2l2

α
(m)
p

Jl(α
(m)
p )

]
− 2l q

α
(m)
p

Jq(α(m)
p )
[ 1

α
(m)
p

Jl(α
(m)
p ) − J ′

l (α
(m)
p )
]}

· [e−i(q+l)θ (m)
2 − e−i(q+l)θ (m)

1
]
, (38a)

B(s)
m, l = 
i(xm)

4κ

∞∑
q=−∞

iq+1eiqψp

q + l
·
{

l

κ
Jl(α

(m)
s )

[
2J ′′

q (α(m)
p ) − (κ2 − 2

)
Jq(α(m)

p )

]

− 2 q J ′
l (α

(m)
s )

[
J ′

q(α(m)
p ) − 1

α
(m)
p

Jq(α(m)
p )

]
+ 2lJ ′

q(α(m)
p )

[
1

α
(m)
s

Jl(α
(m)
s )

− J ′
l (α

(m)
s )

]
− q

α
(m)
p

Jq(α(m)
p )
[α(m)

s
2 − 2 l2

α
(m)
s

Jl(α
(m)
s ) + 2J ′

l (α
(m)
s )
]}

· [e−i(q+l)θ (m)
2 − e−i(q+l)θ (m)

1
]
. (38b)

After some simplification equation (38) can be written as⎛
⎝B(p)

m, l

B(s)
m, l

⎞
⎠ =
i(xm)

4α(m)
s

2

∞∑
q=−∞

iqeiqψp · [e−i(q+l)θ (m)
2 − e−i(q+l)θ (m)

1
]

·

⎛
⎜⎝
[
α

(m)
s

2

q+l − 2q
]
α

(m)
p J ′

l (α
(m)
p ) i

[
α

(m)
s

2

q+l − 2l
]
α

(m)
p Jl(α

(m)
p )

−i
[
α

(m)
s

2 − 2lq
]
Jl(α

(m)
s ) −2α(m)

p α
(m)
s J ′

l (α
(m)
s )

⎞
⎟⎠
⎛
⎝ Jq(α(m)

p )

iJ ′
q(α(m)

p )

⎞
⎠ . (39)

3.3.2. Transverse plane wave incidence. Consider now an incident transverse plane wave

�i = Ase
iksê(ψs)·x, (40)

where As ≡ const is a known transverse wave amplitude. Entirely analogous calculations to the compressional
wave case yield the source amplitudes in the form⎛

⎝ B(s)
m, l

−B(p)
m, l

⎞
⎠ = �i(xm)

4α(m)
s

2

∞∑
q=−∞

iqeiqψs
[
e−i(q+l)θ (m)

2 − e−i(q+l)θ (m)
1
]

·

⎛
⎜⎝
[
α

(m)
s

2

q+l − 2q
]
α

(m)
s J ′

l (α
(m)
s ) i

[
α

(m)
s

2

q+l − 2l
]
α

(m)
s Jl(α

(m)
s )

−i
[
α

(m)
s

2 − 2lq
]
Jl(α

(m)
p ) −2α(m)

p α
(m)
s J ′

l (α
(m)
p )

⎞
⎟⎠
⎛
⎝ Jq(α(m)

s )

iJ ′
q(α(m)

s )

⎞
⎠ . (41)

3.3.3. Plane wave incidence summarized. Adding the separate results of equations (39) and (41) gives for combined
incidence


i = Apeikpê(ψp)·x, �i = Ase
iksê(ψs)·x, (42)
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the source amplitudes

⎛
⎝B(p)

m, l

B(s)
m, l

⎞
⎠ = 1

4α(m)
s

2

∞∑
q=−∞

iq
[
e−i(q+l)θ (m)

2 − e−i(q+l)θ (m)
1
]

·
{

i(xm)eiqψp

(
v1(α(m)

p ,α(m)
s )

v2(α(m)
p ,α(m)

s )

)
+�i(xm)eiqψs

(
−v2(α(m)

s ,α(m)
p )

v1(α(m)
s ,α(m)

p )

)}
(43)

where the vector v(α,β) = (v1, v2)T is defined in equation (10c).

3.4. Arbitrary incident field as superposition of plane incident waves

The general form of incident field given by equation (6a) can be constructed as a superposition of plane incident
waves of the form of equation (42). This will enable us to find the general form of the amplitude coefficients for
incident waves of general form as a superposition of solutions for plane waves given by equation (43). Recall
the incident field for a combined incident plane wave having the form

(

i(x)
�i(x)

)
=
(

Apeikpê(ψp)·x

Aseiksê(ψs)·x

)
=

∞∑
q=−∞

(
iqe−iqψpU +

q (kpx)
iqe−iqψsU +

q (ksx)

)
. (44)

Multiplying the first row of equation (44) by (i−(n+q)/2π)ei(n+q)ψp and the second row by (i−(n+q)/2π)ei(n+q)ψs ,
integrating with respect to ψp and ψs respectively between 0 and 2π and then evaluating at x = xm we find

i−(n+q)

2π

∫ 2π

0
dψp
i(xm)ei(n+q)ψp = U +

n+q(kpxm), (45a)

i−(n+q)

2π

∫ 2π

0
dψs�i(xm)ei(n+q)ψs = U +

n+q(ksxm). (45b)

To obtain the form of the amplitude coefficients given by equation (10) for the general incidence in equation
(6a) we multiply the first and second of the equations in equation (43) by A(p)

n γn(ψp,ψs) and A(s)
n γn(ψp,ψs)

respectively, where γn(ψp,ψs) = i−2n/(2π)2einψpeinψs , carry out the double integration with respect to ψp and
ψs between 0 and 2π , incorporate equation (45) and sum over all n ∈ Z.

3.5. Necessary and sufficient conditions on the source amplitudes

In this section we will define the constraints on the active source coefficients B(p)
m,n and B(s)

m,n by expressing the
active source field ud in terms of near-field and far-field source amplitudes and using Graf’s addition theorem
(equation (23)). When |x| > |y| the components of ud can be defined as a sum of multipoles at the origin using
the first identity in equation (23)


d =
∞∑

n=−∞
F(p)

n V +
n (kpx),

�d =
∞∑

n=−∞
F(s)

n V +
n (ksx),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for |x| > max(|xm| + am), (46)

where

F(p)
n =

M∑
m=1

∞∑
l=−∞

B(p)
m, lU

−
n−l(kpxm), F(s)

n =
M∑

m=1

∞∑
l=−∞

B(s)
m, lU

−
n−l(ksxm). (47)
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If the active field 
d and �d does not radiate into the far-field, then we must have F(p)
n = 0, F(s)

n = 0, ∀ n
ensuring the necessity of equation (12)1,2. Sufficiency is guaranteed by substituting the expressions in equation
(12)1,2 into an assumed far-field of the form of equation (46).

Next we consider the near-field. Assuming |xm| > am ∀m and using the general form of an incident field
given by equation (6a), the near-field source amplitudes can be obtained as


d =
∞∑

n=−∞
E(p)

n U +
n (kpx),

�d =
∞∑

n=−∞
E(s)

n U +
n (ksx),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

for |x| < max(|xm| − am), (48)

where

E(p)
n =

M∑
m=1

∞∑
l=−∞

B(p)
m, lV

−
n−l(kpxm), E(s)

n =
M∑

m=1

∞∑
l=−∞

B(s)
m, lV

−
n−l(ksxm). (49)

If the total field is zero in the near-field, then we must have E(p)
n + A(p)

n and E(s)
n + A(s)

n ensuring the necessity of
equation (12)3,4. Sufficiency is guaranteed by substituting the expressions in equation (12)3,4 into an assumed
near-field of the form of equation (48).

3.6. Divergence of the active field summation

The infinite sum expression for the active source fields defined by equation (6b) with source amplitudes
(10a)–(10c) is formally valid only in |x − xm| > am. That is, the expression is not itself valid in the domain A
in which the sources reside! A valid form could be obtained by using the alternative version of Graf’s addition
theorem in the domain Am associated with the arc ∂Cm, but the usual form of Graf in the domain Am associated
with all other ∂Cn, n 
= m. We would then be assured that the active field is zero everywhere outside C. However
if we were to do this, the mth source would not be present in the domain Am since the active field would be
bounded by construction.

Active cloaking therefore requires that we use the expression in equation (6b) with source amplitudes
(10a)–(10c) for the active field everywhere but we must take a finite number of terms in the multipole expan-
sion. That is, we use the source amplitudes that appear in the infinite sum as motivation for the choice of source
amplitudes that should be chosen in an active field that contains only a finite number of multipoles. This ensures
a finite (but large) field inside A. We should note that this type of difficulty and the fact that it may be used to
our advantage in the anti-sound context was noted by Kempton [15].

With a finite sum for the active field therefore, the integral equation (20) is not perfectly satisfied but instead

u(x) ≈
{

0, x ∈ C,
ui(x), x /∈ C ∪ A,

(50)

and the field is large (but finite) inside A. Finally we note that a straightforward truncation of the active field may
not be optimal in terms of cloaking and ensuring a non-radiating field. This issue will be considered elsewhere.

4. Numerical examples
The numerical calculations for active source configurations of the type shown in Figure 2 are performed for
plane longitudinal and transverse incident waves of a unit amplitude, (Ap = 1, As = 0) and (Ap = 0, As = 1),
for angles of incidence ψp = ψs = 7◦. Variable values are taken for the wave numbers kp and ks, the number of
sources M , and the number of terms N in equations (47) and (49) (the truncation size). The M active sources
are symmetrically located on a circle of radius b, with

am = a, |xm| = b, βm = (m − 1)β0, β0 = 2π
(m − 1

M

)
, m = 1, M , (51)
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Figure 2. Plane wave insonification of the cloaking region C generated by four (M = 4) active sources placed at the corners of a
square.

−10 −5 0 5 10
10

−21

10
−20

10
−19

10
−18

10
−17

10
−16

10
−15

|F
n
(s)app|

n

M=3
M=4
M=5
M=6
M=8
M=10
M=12
M=14

−10 −5 0 5 10
10

−24

10
−23

10
−22

10
−21

10
−20

10
−19

10
−18

10
−17

10
−16

10
−15

|F
n
(p)app|

n

M=3
M=4
M=5
M=6
M=8
M=10
M=12
M=14

Figure 3. Variation of the far-field amplitude coefficients with number of active sources (M = 3, 14) for transverse incident waves.
In all cases N = 100, ψs = 7◦.

where βm is the argument of vector xm, and a ≥ b sin π
M . The circular arcs are defined by

θ
(m)
1,2 = π + βm ∓

∣∣∣∣ sin−1

(
b

a
sin

π

M

)
− π

M

∣∣∣∣, m = 1, M . (52)

In all examples, we take a = b sin π
M and consider an elastic medium having the properties of aluminum with

cp = 6427 m/s, cs =3112 m/s, and ρ = 2694 kg/m3 [23].
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Figure 4. Variation of the far-field amplitude coefficients with number of active sources (M = 3, 14) for longitudinal incidence,
N = 100, ψp = 7◦.

4.1. The scattering amplitudes

Consider the truncated versions of the infinite sums in equation (49) for the far-field amplitudes F(p)
n and F(s)

n ,
and equation (47) for the nearfield amplitudes E(p)

n and E(s)
n :

F(p)app
n

E(p)app
n

}
=

M∑
m=1

N∑
l=−N

B(p)
m,l ×

{
U −

n−l(xm),
V −

n−l(xm),
∀ n ∈ Z, (53a)

F(s)app
n

E(s)app
n

}
=

M∑
m=1

N∑
l=−N

B(s)
m,l ×

{
U −

n−l(xm),
V −

n−l(xm),
∀ n ∈ Z. (53b)

The approximate near-field E(p)app
n , E(s)app

n and far-field F(p)app
n , F(s)app

n amplitudes are calculated at the incident
shear wave number ks = 5 varying the number of active sources M and the truncation size N . The dependence of
the far-field coefficients |F(p)app

n |, |F(s)app
n | is illustrated in Figure 3 for transverse and in Figure 4 for longitudinal

wave incidences. As M increases, the far-field coefficients fluctuate at small |n|, and decrease at larger values
of |n| for both compressional and shear incident waves.

The variation of the near-field coefficients |A(p)
n + E(p)app

n |, |A(s)
n + E(s)app

n | with the number of sources M
is depicted in Figure 5 for transverse and in Figure 6 for longitudinal incident waves. For longitudinal wave
incidence, the near-field |A(p)

n + E(p)app
n | is less than 10−4 and |A(s)

n + E(s)app
n | is less than 10−7. In contrast, the

results are less accurate for transverse waves, as the near-field |A(p)
n + E(p)app

n | approaches the order of 10−1 and
|A(s)

n + E(s)app
n | reaches a value 10−4.

Figure 7 displays the near-field amplitude coefficients |A(p)
n +E(p)app

n | and |A(s)
n +E(s)app

n | as functions of n, the
order of Bessel function, for different values of N and M . The accuracy of the near-field coefficients improves
as N and M increase. Increasing the number of sources M allows a decrease in the truncation size N and the
order of error.

4.2. Far-field response

The radiated field as x → ∞ is given by equation (46). Using the asymptotic expansion of the Hankel function
for large argument yields the far-field behavior of ud


d = f (p)(θ)
eikp|x|√
kp|x|

[
1 + O

( 1

kp|x|
)]

, �d = f (s)(θ)
eiks|x|

√
ks|x|

[
1 + O

( 1

ks|x|
)]

, (54)
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Figure 5. Dependence of the near-field amplitude coefficients on n, the order of Bessel function, varying the number of active
sources (M = 5, 14) for transverse incidence, N = 100, ψs = 7◦.

Figure 6. Variation of the near-field amplitude coefficients with number of active sources (M = 5, 14) for longitudinal wave incidence,
N = 100, ψp = 7◦.

where f (p) and f (s) are the far-field amplitude functions,

f (α)(θ) =
∞∑

n=−∞
f (α)
n einθ , f (α)

n = (−i)ne−i π4

√
2

π
F(α)

n , α = p, s. (55a)
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Figure 7. The near-field amplitude coefficients as a function of the Bessel function order n for different values of the truncation size
N in equation (53) generated by (a) M = 5 and (b) M = 8 active sources, for longitudinal incidence.

The total power radiated by the sources is �(θ) = �(p)(θ)+�(s)(θ) where the compressional and shear far-field
averaged radial flux vector components are

�(α)(θ) =
∫ 2π

0
dθ |f (α)

n |2 = 4
∞∑

n=−∞
|F(α)

n |2, α = p, s. (56)

The non-dimensional total scattering cross sections are then

Q = Q(p) + Q(s) where Q(α) = 4

kia

∞∑
n=−∞

|F(α)
n |2, α = p, s. (57)

and ki = kp for compressional incidence, ki = ks for shear wave incidence. Q(p) and Q(s) are normalized by
a = a1, the radius of source A1, see Figure 1.

Results for the total scattering cross sections Q(p) and Q(s) for both longitudinal and transverse incidence
are illustrated in Figure 8 versus the normalized wave number kia, and in Figure 9 against the number of active
sources M . These show that the error increases with the rise of wave number ki, but can be reduced by increasing
M and N . The increase of N reduces the error sharply in all cases.

4.3. Total displacement field

4.3.1. Longitudinal plane wave incidence. First, consider longitudinal plane wave incidence of the form of equation
(31). The total displacement vector components in Cartesian coordinates are

(
ux, uy

) =
(∂
i

∂x
+ ∂
d

∂x
+ ∂�d

∂y
,
∂
i

∂y
+ ∂
d

∂y
− ∂�d

∂x

)
. (58)

Introducing equations (31) and (6b) into equation (58) yields

ux

kp
=

M∑
m=1

∞∑
n=−∞

[
B(p)

m,n

(
cos θmV+

n
′(

kp(x − xm)
)− in sin θm

V+
n

(
kp(x − xm)

)
kp|x − xm|

)

+ B(s)
m,n

(
κ sin θmV+

n
′(

ks(x − xm)
)+ in cos θm

V+
n

(
ks(x − xm)

)
kp|x − xm|

)]
+ i cosψp
i, (59a)
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Figure 8. The total scattering cross sections Q(p) and Q(s) versus (a) the normalized wave number kpa for a longitudinal wave
incidence, and (b) ksa for a transverse incidence.
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(b) Transverse incidence, kp = 2, ψs = 7
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(c) Longitudinal incidence, kp = 5,ψp = 7
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Figure 9. Total scattering cross sections Q(p) and Q(s) versus the number of active sources M for longitudinal ((a) and (c)), and
transverse ((b) and (d)) wave incidence for kp = 2 and kp = 5 with ks = κkp and κ = cp/cs when cloaking devices are ON.

uy

kp
=

M∑
m=1

∞∑
n=−∞

[
B(p)

m,n

(
sin θmV+

n
′(

kp(x − xm)
)+ in cos θm

V+
n

(
kp(x − xm)

)
kp|x − xm|

)

+ B(s)
m,n

(
− κ cos θmV+

n
′(

ks(x − xm)
)+ in sin θm

V+
n

(
ks(x − xm)

)
kp|x − xm|

)]
+ i sinψp
i, (59a)
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(a) N = 5
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(b) N = 10
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(c) N = 20
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(d) N = 50

Figure 10. Absolute value of the displacement vector component |ux|/kp for N = 5 (a), N = 10 (b), N = 20 (c) and N = 50
(d) when cloaking devices are active with M = 3, kp = 2 for longitudinal wave incidence.

where
θm(x) = arg(x − xm). (60)

4.3.2. Transverse plane wave incidence. Transverse incident plane waves are of the form of equation (40). The total
displacement vector components in Cartesian coordinates are

(
ux, uy

) =
(∂
d

∂x
+ ∂�i

∂y
+ ∂�d

∂y
,
∂
d

∂y
− ∂�i

∂x
− ∂�d

∂x

)
. (61)

Introducing equations (40) and (6b) into equation (61) yields

ux

ks
=

M∑
m=1

∞∑
n=−∞

[
B(p)

m,n

(
κ−1 cos θmV+

n
′(

kp(x − xm)
)− in sin θm

V+
n

(
kp(x − xm)

)
ks|x − xm|

)

+ B(s)
m,n

(
sin θmV+

n
′(

ks(x − xm)
)+ in cos θm

V+
n

(
ks(x − xm)

)
ks|x − xm|

)]
+ i sinψs�i, (62a)

uy

ks
=

M∑
m=1

∞∑
n=−∞

[
B(p)

m,n

(
κ−1 sin θmV+

n
′(

kp(x − xm)
)+ in cos θm

V+
n

(
kp(x − xm)

)
ks|x − xm|

)

+ B(s)
m,n

(
− cos θmV+

n
′(

ks(x − xm)
)+ in sin θm

V+
n

(
ks(x − xm)

)
ks|x − xm|

)]
− i cosψs�i, (62b)

where θm is defined by equation (60).

4.3.3. Results. The magnitude of the displacement vector components ux and uy are evaluated for ψp = 7◦ for
various values of the truncation size N , the number of sources M , and the compressional wave number kp.
Greater accuracy is observed, as expected, with increased N and M . However, large N and M require longer
computation time, and some numerical experimentation is necessary to find the smallest values for which the
displacement field vanishes to the desired degree in the cloaked region.
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(a) N = 5
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(b) N = 10
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(c) N = 20
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(d) N = 30

Figure 11. Absolute value of the displacement vector components |uy|/kp for N = 5 (a), N = 10 (b), N = 20 (c) and N = 30
(d) when cloaking devices are active with M = 3, kp = 2 for longitudinal wave incidence.
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(a) kp = 5, M = 3
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(b) kp = 10, M = 3
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(c) kp = 5, M = 7
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(d) kp = 10, M = 7

Figure 12. Absolute value of the displacement vector component |uy|/kp for kp = 10, M = 3 (a), kp = 10, M = 3 (b), kp = 5, M = 7
(c) and kp = 10, M = 7 (d). Cloaking devices are active, N = 5, and longitudinal wave incidence.

The magnitudes of |ux|/kp and |uy|/kp are depicted in Figure 10 and Figure 11 for longitudinal incidence at
different values of N when cloaking devices are active with M = 3, kp = 2. As expected, the increase of N is
accompanied by the reduction of magnitudes |ux|/kp and |uy|/kp in the cloaked region.

Figure 12 illustrates |uy|/kp for longitudinal incidence with N = 5 changing the values of kp and M whilst
Figure 13 and Figure 14 show corresponding values of |ux|/ks and |uy|/ks for shear incidence, varying N and M
with kp = 2 for the former, and altering the values of N and kp with M = 3 for the latter. The magnitude of the
total displacement field and its absolute maximum amplitude inside the cloaked region is depicted in Figure 15
with the parameters used in Figure 12. Comparison of these results shows that at higher frequencies, i.e., larger
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(a) N = 5, M = 3
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(b) N = 50, M = 3
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(c) N = 5, M = 6
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(d) N = 50, M = 6

Figure 13. Absolute value of the displacement vector component |ux|/ks for N = 5, M = 3 (a), N = 50, M = 3 (b), N = 5, M = 6
(c) and N = 50, M = 6 (d) when cloaking devices are active with kp = 2, ks = 4.1305 for transverse wave incidence.

values of kp, greater accuracy is achieved by increasing the number of sources M , whereas at lower frequencies
the smallest number of sources required, i.e. M = 3, produces reasonable cloaking, although this is enhanced
with increased values of N .

5. Conclusions
The external active acoustic cloaking model of Norris et al. [9] has been generalized to elastodynamics. Just as
in the former case, it is possible to represent the sources in exact terms, although it requires that the incident
elastic wave field is known in exact form; this is the price paid for active control. The control method proposed is
based on representing the incident field in terms of regular functions (Bessel functions) at each source position,
which leads to a linear system of equations for the source amplitudes that can be solved in closed form. The
linear nature of the solution of this essentially inverse problem means that arbitrary incident wave motion can
be treated by superposition.

The results presented here provide a first step in the direction of realistic active control of elastic waves.
Applications to structure borne waves, surface waves, and even geophysical waves, are possible. However, as
a control problem, many issues remain to be addressed. Not least is the issue of how to balance the goal of
silencing one region of space with the unavoidable source noise that must be generated in another, larger,
region. This quandary arises from the fact that the infinite series for the multipole expansion of the m active
sources is divergent inside the domain Am. Exact field cancellation is not achievable in practice; it becomes
necessary to truncate the series and balance the decrease in cloaking accuracy with whatever amplitude level is
deemed acceptable in the source region. This is obviously a crucial aspect and one that remains to be studied in
detail. We have pointed out some similarities with parallel issues in active noise control, and future studies will
examine analogies in these topics. One area for consideration is the low-frequency end of the spectrum. The
numerical simulations presented here indicate that a small number of multipoles provide adequate cancellation
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(a) N = 5,kp = 2
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(b) N = 5,kp = 5
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(c) N = 20,kp = 2
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(d) N = 20,kp = 5
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(e) N = 50,kp = 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(f) N = 50,kp = 5

Figure 14. Absolute value of the displacement vector components |uy|/ks for N = 5, kp = 2 (a), N = 5, kp = 5 (b), N = 20, kp = 2
(c), N = 20, kp = 5 (d), N = 50, kp = 2 (f), and N = 50, kp = 5 (e) with M = 3 active sources for transverse wave incidence when
the cloaking devices are active.

at low frequencies. This suggests a natural way to extend ideas based on monopoles to more elaborate source
distributions composed of finite numbers of multipoles of low order. Hopefully, the present results provide a
means to establish realistic strategies for practical application.
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Figure 15. The magnitude of the total displacement field with its maximum absolute amplitude in a cloaked region generated by
M = 3 active sources with kp = 5 (a) and kp = 10 (b), and by M = 7 active sources with kp = 5 (c) and kp = 10 (d) for a longitudinal
wave incidence with ψp = 7◦, N = 5 while cloaking devices are active.

Conflict of interest

None declared.

References

[1] Leonhardt, U. Optical conformal mapping. Science 2006; 312: 1777–1780.
[2] Pendry, JB, Schurig, D, and Smith, DR. Controlling electromagnetic fields. Science 2006; 312: 1780–1782.
[3] Cummer, SA, and Schurig, D. One path to acoustic cloaking. New J Phys 2007; 9: 45.
[4] Miller, DA. On perfect cloaking. Opt Express 2006; 14: 12457–12466.
[5] Vasquez, FG, Milton, GW, and Onofrei, D. Active exterior cloaking for the 2D Laplace and Helmholtz equations. Phys Rev Lett

2009; 103: 073901.
[6] Vasquez, FG, Milton, GW, and Onofrei, D. Broadband exterior cloaking. Opt Express 2009; 17: 14800–14805.
[7] Vasquez, FG, Milton, GW, Onofrei, D, and Seppecher, P. Transformation elastodynamics and active exterior acoustic cloaking.

In: Guenneau, S, and Craster, R, (eds) Acoustic metamaterials: negative refraction, imaging, lensing and cloaking. Dordrecht:
Springer, 2012.

[8] Vasquez, FG, Milton, GW, and Onofrei, D. Exterior cloaking with active sources in two dimensional acoustics. Wave Motion
2011; 49: 515–524.

[9] Norris, AN, Amirkulova, FA, and Parnell, WJ. Source amplitudes for active exterior cloaking. Inverse Probl 2012; 28: 105002.
[10] Guicking, D. On the invention of active noise control by Paul Lueg. J Acoust Soc Am 1990; 87: 2251–2254.
[11] Nelson, PA, and Elliott, SJ. Active control of sound. London: Academic Press, 1992.
[12] McKinnell, RJ. Active vibration isolation by cancelling bending waves. Proc R Soc A 1989; 421: 357–393.
[13] Fuller, CR, Elliott, SJ, and Nelson, PA. Active control of vibration. London: Academic Press, 1996.
[14] David, A, and Elliott, SJ. Numerical studies of actively generated quiet zones. Appl Acoust 1994; 41: 63–79.
[15] Kempton, AJ. The ambiguity of acoustic sources—A possibility for active control. J Sound Vib 1976; 48: 475–483.

 at RUTGERS UNIV on April 9, 2013mms.sagepub.comDownloaded from 

http://mms.sagepub.com/


Norris et al. 23

[16] Milton, GW, Briane, M, and Willis, JR. On cloaking for elasticity and physical equations with a transformation invariant form.
New J Phys 2006; 8: 248–267.

[17] Brun, M, Guenneau, S, and Movchan, AB. Achieving control of in-plane elastic waves. Appl Phys Lett 2009; 94: 061903.
[18] Norris, AN, and Shuvalov, AL. Elastic cloaking theory. Wave Motion 2011; 49: 525–538.
[19] Parnell, WJ. Nonlinear pre-stress for cloaking from antiplane elastic waves. Proc R Soc A 2012; 468: 563–580.
[20] Parnell, WJ, Norris, AN, and Shearer, T. Employing pre-stress to generate finite cloaks for antiplane elastic waves. Appl Phys

Lett 2012; 100: 171907.
[21] Norris, AN, and Parnell, WJ. Hyperelastic cloaking theory: Transformation elasticity with prestressed solids. Proc R Soc A 2012;

468: 2881–2903.
[22] Abramowitz, M, and Stegun, I. Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York:

Dover, 1974.
[23] Honarvar, F, and Sinclair, AN. Scattering of an obliquely incident plane wave from a circular clad rod. J Acoust Soc Am 1997;

102: 41–48.

 at RUTGERS UNIV on April 9, 2013mms.sagepub.comDownloaded from 

http://mms.sagepub.com/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




