Journal of Sound and Vibration 332 (2013) 2520-2531

Contents lists available at SciVerse ScienceDirect

JOURNAL OF

Journal of Sound and Vibration

journal homepage: www.elsevier.com/locate/jsvi i

Stable methods to solve the impedance matrix for radially
inhomogeneous cylindrically anisotropic structures

Andrew N. Norris, Adam J. Nagy *, Feruza A. Amirkulova

Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854, United States

ARTICLE INFO ABSTRACT

Article history: A stable approach for integrating the impedance matrix in cylindrical, radial inhomoge-
Received 2 July 2012 neous structures is developed and studied. A Stroh-like system using the time-harmonic
Received in revised form displacement-traction state vector is used to derive the Riccati matrix differential

15 December 2012

Accepted 19 December 2012
Handling Editor: G. Degrande
Available online 26 January 2013

equation involving the impedance matrix. It is found that the resulting equation is stiff
and leads to exponential instabilities. A stable scheme for integration is found in which a
local expansion is performed by combining the matricant and impedance matrices. This
method offers a stable solution for fully anisotropic materials, which was previously
unavailable in the literature. Several approximation schemes for integrating the Riccati
equation in cylindrical coordinates are considered: exponential, Magnus, Taylor series,
Lagrange polynomials, with numerical examples indicating that the exponential scheme
performs best. The impedance matrix is compared with solutions involving Buchwald
potentials in which the material is limited to piecewise constant transverse isotropy.
Lastly a scattering example is considered and compared with the literature.

© 2013 Published by Elsevier Ltd.

1. Introduction

Wave propagation in layered elastic media has been widely studied resulting in a variety of solution approaches. These
include the use of scalar and vector potentials [1], the transfer matrix method [2-6], and the delta matrix method [7,8].
Alternatively, computationally stable methods have also been developed, e.g. the stiffness matrix [9,10], the global matrix
[11], and the reflectivity method [12]. Such approaches are limited to isotropic or transversely isotropic materials whereas
we are interested in general anisotropic solids in order to develop scattering solutions related to metamaterial devices
such as acoustic cloaks [13-15] which can be modeled as radially inhomogeneous anisotropic solids. The goal of this paper
is to produce a stable solution method for such materials.

We considered a matricant propagator solution [16,17] based on the Stroh formalism to solve for scattering from a
generally anisotropic material. The method involves the creation of a state space representation of the system where six
first order, ordinary differential equations, must be integrated which may often diverge. A stable scheme for finding the
solution to the differential equations, inspired by [18], is developed by combining the matricant and impedance matrices.
The scheme is considered with several different expansion methods to yield relatively high orders of accuracy and is
compared with solutions from the conditional impedance matrix and Buchwald’s scalar potentials [19].

The outline of the paper is as follows. In Section 2, we begin with definitions of the impedance and matricant matrices. An
explicit method for finding the impedance in piecewise uniform, transversely isotropic materials is developed in Section 3. This
method also serves as a tool to compare with more general solution methods based on the Riccati matrix differential equation
for the impedance matrix. It is found that the Riccati differential equation is stiff and leads to exponentially growing
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instabilities. In Section 4, an alternative approach for integrating the matricant is derived to find a stable means of integrating
the impedance matrix. We then use different expansion techniques used in the integration process in order to find higher order
accurate schemes. Lastly in Section 5 a scattering example from the literature is considered.

2. Impedance and matricant matrices

We consider time harmonic wave motion in radially inhomogeneous cylindrically anisotropic solids. The associated
equilibrium equations for linear elastodynamics in cylindrical coordinates are summarized in Appendix A. Here we need
only focus on the relation between the vectors U(r) and V(r) associated with displacement and traction, respectively.
Precise definitions follow from Eqgs. (A.5) (which includes the superscript n that is omitted here for simplicity). The
dimension of each vector is taken as m, where m is either 3, 2 or 1; m=3 in general, m=2 if z-dependence is not
considered, and m=1 for pure out-of-plane shear horizontal (SH) motion. For the moment we may consider m as general.
The main focus of the paper is the m x m conditional impedance matrix z defined such that

V(r) = —iz(rnU(r). (1)

It is shown in Eq. (A.6) that the equations for linear elastodynamics can be cast as a system of 2m linear ordinary
differential equations [17]

Q Q2>' @)
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where Q" = —TQT, + denotes the Hermitian transpose and T is defined in (A.10). It follows from Egs. (1) and (2) that z(r)
satisfies a differential Riccati equation

& 120,-Quz-i2Q,2-iQ; =0, 3)

with assumed initial condition z(rg) at some specified r = rp, hence the name conditional impedance.
One approach to solving for the conditional impedance matrix, z, is to first solve for the 2m x 2m matricant M(r,1o)
which is defined as the solution of the initial value problem

dM M; M
W(r-ro) =Q(M(r,rg), M(ro,r0) =Iom), M= <M; Mj > (4)
Hence
7(r) =M(r,10)(10). (5)
Using the relations
U(r) = (M; —iM2z(r0))U(rp), V(1) = (M3—iM42(rp))U(ro), (6)

which follow from (1), the conditional impedance can be expressed in terms of the matricant as
Z(r) = i(M3 —iM4Z(ro)) (M1 —iM22(r0)) " )
The propagator nature of the matricant is apparent from Eq. (5) and from the property M(r,r1) M(r1,rg) =M(r,1p), and in
particular M(r,rg) = M(ro,r)" 1. Also, the symmetry (A.10) implies M(r,ro) = TM ™ (ro,r)T. Hence, M~ (r,rg) = TM™* (r,1o)T, that
is, M is T-unitary [20].
An alternative approach to finding z uses the two-point impedance matrix, which by definition relates the traction and
displacement vectors at two values of r according to [17]

V(ro) , U(ro) Z 1
(—V(r)) =1Z(r,r0)< um ) Z= <Z3 Z4>' (8)

The two-point impedance matrix has the important property that it is Hermitian, Z=Z" [17]. The relations between the
matricant of (4) and the impedance matrix of (8) evaluated at cylindrical surfaces r, ry are easily deduced [17]

-7;'7, iz;!
M(r: T()) =1 . . -1 —1 |»
123 —12422 Z] —2422
—iM; "My iM; !
Z(rer): . -1 . -1 |- (9)
1M4M2 M] 7M3 71M4M2

Introducing (9) into (7), we can relate the conditional impedance z(r) to the two-point impedance matrix Z(r,ro)
according to

2(r)=23(Z1~2(ro)) ' Z,~Z4. (10)
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3. Piecewise uniform transverse isotropy

In this section we develop an approach suitable for piecewise uniform transversely isotropic cylinders by explicit
calculation of the global impedance matrix Z of (8), from which the conditional impedance can be found using (10). The
method is based on a recursive algorithm proposed by Rokhlin et al. [9] called the stiffness matrix method. The analysis
in [9] was restricted to multilayered media in Cartesian coordinates, whereas the present method is applicable to
cylindrically layered media of transverse isotropy. We will refer to Rokhlin and Wang [9] several times in this section to
note the similarities and differences of the approaches.

Consider n > 1 layers of uniform transversely isotropic materials with the kth layer r,_; <r <ry, k € 1,n, see Fig. 1. The
explicit form of the local two-point impedance matrix of the kth layer is Z*(ry.r_1) as defined by Eq. (B.9). Denote the
global two-point impedance matrix for the cylinder between 1y and r by ZX = Z¥(r,.,19). Our objective is the global two-
point impedance matrix for the entire cylinder, Z(r,,ro) = ZN(ra,ro).

Consider first the two bordering layers between r=ry, and r=r, and sharing the r=r; surface. Continuity of
displacements and traction on the interface implies

Vo (78 Z8\ (U

(“’1>:_1<Z% z)\u ) (112
Vv, (7 7 U,
<V2>:_1<zg 2 )l ) (11b)

where Z° = Z'(rq,1q), Z° = Z3(r,,r1). From the second row of Eq. (11a) and the first row of Eq. (11b), we have
Uy = —(Z5+Z)) " (Z5Uo + Z5U,). (12)

Introducing Eq. (12) into Eqgs. (11a) and (11b), we define the impedance matrix Z3(r,,r) that relates the traction vector to
the displacement vector on the inner (r =ro) and outer (r =r5) surfaces of the bilayer

Vo . Uo
(—Vz) =-iZ (U-ﬁ))(Uz)v (13)

2 (BBEAINT'ZS -BEZHT) T
Z(T'z,rg)— ’

where
14
~LYZ+2) ' -T2+ 2) 7' (1)

Z} = Z}, Zf’ = Zi2 and Z;‘ (k=1,2, i=1,4) are given by Egs. (B.9). Note that Egs. (11a) and (11b) are similar, apart from a sign
change, to Eqs. (19) and (20) in [9].

Z

@y

)

Fig. 1. A cylindrically anisotropic multilayered media is considered in the system of cylindrical coordinates. The media consists of n anisotropic layers
with different densities and elasticity tensors in general.
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Employing (13) recursively, the global impedance matrix Z¥(ry,ro) for the cylinder between ro and r is obtained with
3 x 3 components

A AR I RS RN ) (15)

=
( LY L-TEi+Zy )T

where Z?(‘1 (i=1,4) are the 3 x 3 sub-matrices of the matrix Z¥1(r,_,ro) for k—1 layers, Zf»‘ (i=1,4) are the 3 x 3 sub-
matrices of the matrix Z¥(ry,r_;) for the kth layer, defined by Eq. (B.9). The global impedance matrix for the N-layered
cylinder is obtained by using Eq. (15) (N—1) times.

The main differences between the present results and those of [9] are, first, that by construction the local Z* and global
Z¥ two-point impedance matrices are Hermitian matrices. Second, the present results are valid for cylindrically layered
structures, as compared with those of [9] which are for multilayered structures in Cartesian coordinates. Despite the
differences, we note that the two-point impedance matrix Z* of Eq. (8) and the global two-point impedance matrix
Z¥(r.1o) are, apart from some sign differences, similar to the stiffness matrix K™ and global stiffness matrix K of Rokhlin
and Wang [9].

4. Stable solution technique for general anisotropy

In this section we propose and demonstrate a stable numerical scheme for solving the conditional impedance matrix
z(r) defined by (1) in the case of arbitrary radially dependent cylindrical anisotropy, i.e. density and elastic moduli are
arbitrary functions of r: p(r), Gy(r).

4.1. Stability issues

Direct numerical integration of either (3) for the conditional impedance z(r) or (4) for the matricant M(r,rp) is not a
feasible strategy. The stiff nature of (4) leads to exponentially growing instabilities for M. These become unavoidable
at large values of n and/or kr for the elastic problem. On the other hand, singularities and numeric instabilities may
form when Eq. (3) is integrated, which is a well-known issue for Riccati equations [18]. The singularities (poles) of the
impedance matrix occur at finite values of r associated with traction-free modes for the given frequency. One can, in
principle, avoid the singularity by switching to the differential equation for the inverse of the impedance: the admittance
A=z [21, p. 136]. The admittance satisfies a Riccati differential equation, which follows from Eq. (3) as

dA . .

W+1AQ3A+AQ47Q1A+1Q2 =0. (16)
However singularities again arise, this time corresponding to rigid modes. One could develop a numerical scheme that
switches back and forth between integrating the impedance and admittance but since the locations of the singularities are
not known in advance, and in practice they can be very close together, this does not offer a viable method. The curves
shown in Fig. 2 exemplify the problem of singularities in the impedance. The appearance of the peaks in Fig. 2 indicates
values of r beyond which accurate numerical solution cannot be obtained regardless of the step size in the integration
scheme. The inability of such standard methods to obtain correct results was the motivation behind the proposed solution
technique discussed next.

[det(2)l/(n3+1)

10" n=1 ~, n=0 1

100 L i L L L L i i i
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

r

Fig. 2. Solid, aluminium cylinder integrated with 200 evenly spaced steps, using the fourth-order scheme of Section 4.4.2, from r=0.5 to r=1.0, with
k,=0 and ka=10. Plotted is the determinant of the upper left 2 x 2 sub-matrix of the 3 x 3 conditional impedance matrix normalized by n3+1 vs. r.
Where Eq. (B.7) was used for the initial impedance at r=0.5.
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4.2. Mébius scheme

Numerical difficulties in integrating the matrix Riccati equations are well known and have been studied extensively.
A procedure mentioned earlier for avoiding singularities is a generalization of the idea of switching, where one undergoes
a change of variables, which is closely related to invariant embedding methods, see e.g. [22]. Here we follow a different
approach, based on [18], which views the solution of the Riccati equation as a “Grassmanian flow” of m-dimensional
subspaces (the impedance matrix) on a larger vector space of dimension 2m. The idea is to recast the equation for z in the
form of a forward marching scheme of step size h based on (7)

Z(r+h) = i(M3—iM4z(r))(M; —iM,z(r)) "', (17)

where M = M(r+h,r). The key to the method is that M can always be calculated in a stable manner for sufficiently small
step size h. This approach is one of a class of methods called Mobius schemes, which by design are formulated on the
natural geometrical setting of the larger vector space, in this case that of M. Accordingly Mobius schemes are able to
handle numerical instability and pass smoothly and accurately through singularities [18]. The method therefore combines
both the matricant and the impedance, each of which is unstable when solved in a global sense separately.

4.3. Approximations for M(r+h,r)

The Mobius scheme shifts the problem to that of finding approximations for M(r + h,r) accurate to some given order in
h. The Peano series [20] of cascading integrals for the matricant is formally guaranteed to remain bounded for any h, but is
numerically impractical. Our objective is to develop approximations for M(r+h,r) in the form

2 3
M(r+h,r) = Lom +hMD (1) + %M<2>(r)+ %M(3)(r)+ o (18)

where the terms M?(r) do not require explicit integration schemes for their evaluation. Consider first the case of Q
sufficiently smooth. Then the identity

-h

M(r+h,r) =Iom + Q(r+s)M(r+s,r)ds (19)
0

may be written in the form of a series in powers of h by using (18) for the left member and a Taylor series evaluated at r for
Q in the integral

2 3 h 2 3 2
hM(1)+%M(2)+g'M(3)+"' = / ({Q+5Q’+%Q”+%Q”/+..} x {I(Zm)+5M(1)+%M(2)+“}) ds, (20)
. . 0 . . .

with the argument r understood for all functions. Comparing equal orders of h* in (20) implies
M (1) =Q),
M? () =Q " +QmMV (),
M () =Q"(N+2Q MMV (1) +QNM?(1),
M@ (1) =Q"(N+3Q" "MV (1) +3Q (MM (1 + QMM (1), 21

etc. The matricant may now be found by employing (18). The series (21), while illustrative, is restricted to profiles that
are analytically smooth functions of r. It is not suitable for piece-wise constant or piece-wise smooth profiles, which are
of practical interest. Derivatives of the profile are therefore to be avoided if possible. In that sense, the approximation
formed from Eqgs. (18) and (21) is only valid to O(h), and the iterative scheme (17) shares the same accuracy.

An expansion accurate to second order can be obtained by using a Taylor series expansion evaluated at the
midpoint [18]

h h\ (.  h N2 s
Qr+s)~Q(r+=)+(s—=)Q(r+5)+(5s—5) Q"+0(). (22)
2 2 2 2
Substitution into (19) then gives, using (18)
h 1., h
MY =M® = Q<r+ 5), M® = (l(zm) +5Q <r+ 5))M“). (23)
This leads to an expansion up to oh?) requiring only Q at a single position with no derivatives
h\ W h
TS 2nd : M(r+h,r) = l(zm)+hQ (H— j) + 7Q2 (H— j) +O(h3) (24)

The form of (24) suggests an alternative expression that is accurate to the same order

EXP 2nd(@): M(r+h,r)=exp (hQ <r+ g)) +o(). (25)
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Approximations (24) and (25), together with Eq. (17) each yield a second-order accurate Mobius scheme. EXP 2nd has the
added feature that it is unimodular, and hence energy conserving. Detailed comparisons are provided in Section 4.6.

4.4. Lagrange interpolation expansions

We now consider Lagrange polynomial expansions for Q in Eq. (19) in order to obtain higher order expressions without
using derivatives of Q(r). The Lagrange polynomial of order n approximates Q(r+s) with the expression [23]

Qr+9= > Qu+xhl(7),  Lx= I (x x,> (26)
j=o 0,1#j

Xj X]

where x; € [0,1], j=0,1,...,n, are chosen points. Substituting into (20) and using the notation Q= Q(r+x;h) implies the
sequence

M® — {Z L(k)Qx }M(k 1) M© =1,

1o =k / Leox " dx,  k=123.... 27)
Jo
Note that E}';OL]‘.") = 1. In the following subsections we derive expansions based on (26) for n=1 and n=3.

4.4.1. Two-point approximation: Halves
We approximate Q with two points using (26) for n=1. In this case the integrals L;k) can be simplified with the result
that

1

Mﬂ@:{z (kH)Q&}M(" hoMOsl k=123 28)
3
g

Taking equi-space points xo =} and x; =3, yields

e
LP 2nd: M@ +hr)=lom+ §(Q1/4 +Q3/a)+ 52 (Qi/a+5Q3/4) Q14 +Q3/4)+0(R). (29)

This again gives a Mobius scheme of second-order accuracy in h. It also suggests, by analogy with (25)
h h
EXP 2nd(b): M(r+h,r)=exp (i Q3/4> exp (i Q1/4> +0(h%). (30)
Note that the expansions (29) and (30) only agree with one another to first order, O(h).

4.4.2. Four-point approximation: Fourths 4
Taking four evenly spaced points to approximate Q, x;={ + 4, j=0,1,2,3, and using the symbolic algebra program
Maple, yields

1
MD=2Q, 5+ Q35+ Qs/s+32Q73.
2)
M® = ( 50 Qu/s + 240 Qa8 + 210 Q5/8+720Q7/8)M( :
3
M? = ( 25 Q1825 Qa8 +35 Qs /5 +355 Q7/3>M()

@ _ ©)
M = ( %50 Q1/s + 150 Qa/s 1880 Qs + 1680Q7/8)M

LP 4th : (31)

Substitution of these terms into (18) gives M(r+h,r) up to fourth-order accuracy. Interestingly, when more points were
taken to evaluate Q the numerical accuracy was not found to improve. This was tried with even spacings, using from five
up to ten points. Finally, by analogy with (30) we define

h h h h
EXP 2nd(c) : M%(r-i-h,r) =exp (Z;QNS) exp <71Q5/8) exp <71Q3/8) exp <ZQ1/8) +O(h3), (32)
which, like (29) and (30), is consistent with the four-term Lagrange interpolation scheme (31) to first order.
4.5. Fourth-order Magnus integrator scheme

The Magnus integrator, created by Magnus [28], and further developed in [26] with a convergence proof and recurrence
relations, is a method to approximate a solution to (4) with

M(r+h,r) = e®M(r,r—h), (33)


qq
Line
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here we consider a fourth-order Magnus integrator scheme similarly done in [27] for the Helmholtz equation. We use the
following definitions to march a solution forward in r:

M(r +h,r) = e2M(r,r—h),
MG 4th: Q= %(Q(1)+Q(2))+ {3—2}12(Q(2)Q(1)—Q(1)Q(2))» (34)
Qi) =QU+h(—0), Qu=Qr+h}+).

As a fourth-order scheme the numerical precision of this method is very similar to that of the four-point Lagrange
polynomial approximation (31), which is seen in the examples of the following section.

4.6. Numerical examples and convergence

In order to illustrate the convergence property of the different expansions proposed (exponential, Magnus, Taylor
series, Lagrange polynomials), we consider a solid aluminium sample with properties p=2.7 kg/m3, E=70 GPa,
G =26 GPa and radius of r=1 and normalized these properties with respect to water for which p = 1.0 kg/m? and speed
of sound in water ¢ = 1.470 km/s. The numerical values reported were computed by implementing the Mdébius scheme
(17) and in the case of the Magnus integrator implementing (7), starting at r=0.5 with initial condition given by the
explicit solution (B.7) from [17] and discussed in Section 4. In all examples we take k,=0. Fig. 3 plots the difference in the
determinant of the upper left 2 x 2 sub-matrix of the exact conditional impedance from (B.7), and that calculated by
iterating (17) until r=1 is reached. The right hand side of Fig. 3 refers to the type of approximation used: Taylor Series (TS),
Lagrange Polynomial (LP), Exponential (EXP), Magnus (MG), and to the accuracy order. Thus, LP 1st was calculated using
Eq.(21), TS 2nd by (23), EXP (a) by (25), EXP (b) by (30), EXP (c) by (32), LP 2nd by (29), LP 4th by (31), MG 4th by (34), and
LP 3rd was calculated using a Lagrange Polynomial with points {xg,x1,X2} = {% % ,g}. Interestingly, the three EXP methods
(Egs. (25), (30) and (32)) gave similar results and were the best results for the fewest number of approximation points.
Fig. 4 plots the difference in the upper 2 x 2 sub-matrices at r=1.0 vs. the number of steps used in the iteration from r=0.5
to r=1.0. As expected, the higher order schemes are more accurate and require fewer steps in the integration process to
yield the same accuracy as a lower order scheme.

10° TS 1st
TS 2nd
LP 2nd
1072
N
= LP 3rd
3 10 1 EXP (a)
| MG 4th
. LP 4th
g, 1078 EXP (b)
D EXP (c)
=k
1078
10—10 H H H H H H

05 055 06 065 07 075 08 085 09 095 1
r

Fig. 3. Solid, aluminium cylinder integrated with 2000 evenly spaced steps from r=0.5 to r=1.0, with k,=0, n=0 and ka=5. Plotted is the difference of
the determinants of the upper left 2 x 2 sub-matrices of Eq. (B.7) and those calculated from Section 4. As noted in Section 4.6 the right hand side refers to
the type and order accuracy, they are listed top to bottom as worst to best at r=1.

|det(z) - det(z)|

107

-6 H H H H H H H H H
10 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

# of steps

Fig. 4. Solid, aluminium cylinder integrated from r=0.5 to r=1.0, with k,=0, n=0 and ka=25. Plotted is the difference of the determinants of the upper
left 2 x 2 sub-matrices of Eq. (B.7) and those calculated from Section 4 at r=1 vs. # of steps.
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5. Scattering example

In this section we explore the use of the impedance matrix by considering acoustic scattering from a solid aluminium
cylinder immersed in water. Perpendicular plane wave incidence, i.e. k,=0, in a uniform exterior fluid is considered with time
harmonic dependence e~i* henceforth omitted. The total radial stress and displacement fields in the surrounding fluid are

O =—Kk > i"(J(kr)+BaH{ (krye™,
n=-oo

ur=— > i"(, (kr)+B,Hy (kr)e, (35)
n=—oo
where r is the radial coordinate, K is the bulk modulus, k is the wavenumber, H{" is the Hankel function of the first kind, and
the coefficients B,, are to be determined [1]. We use the definition of the conditional impedance matrix, noted in
Eq. (1), and write this statement for the innermost radial coordinate at r=b, for which we find the initial impedance matrix
from Eq. (B.7), and for the outer surface at r=a where
V(b) = —iz;U(b), V(a)= —iz,U(a). (36)

The conditional impedance matrix, z, = z(a), is found from the integration technique outlined in Section 4, or for transversely
isotropic materials may be found directly using Eq. (B.7). Considering acoustic fluid in the exterior we write Eq. (36) for r=a in
detail for which the shear stress, 6,9, must be zero with

. (O . Uy (P11 Ur
1a( 0 >:_112<u6>:_1<p2 q2><u9>' (37)

Eliminating u, using the second row of Eq. (37) implies

. O i .
ia- " = _—(1P2—q2P1) = —izo. (38)
r q2

Using (35) and equating with (38) we find the scattering coefficient

Kka],(ka)+zo],, (ka)

- ) 39
KkaH'" (ka)-+zoH{" (ka) (39)

Numerical simulation was conducted for a solid aluminium cylinder with properties normalized with respect to water and
with the total pressure field illustrated in Fig. 5. Fig. 6 shows both the total scattering cross-section o,; and the back-
scattering amplitude f(r), where the far field form function, f(0), is

2 &N 201
0)=— i €,By cos no, 40
f©® ‘/EZ:O nBn (40)
where ¢g =1 and ¢, =2 for m > 0. The total scattering cross-section is then

G = S Imag(f(0)). (a1)

Fig. 6 closely matches the behavior of a similar analysis conducted in [24].

4 6
3 4
2 2
1
0
> 0
-2
-1
-4
-2
-6
-3
-8
_4 B |5
-4 -2 0 2 4

Fig. 5. Plotted pressure field described by Eq. (35) for an aluminium cylinder, integrated from r=0.5 to r=1.0 (area between the two red circles drawn)
using the fourth-order scheme, Eq. (31), with 500 steps. The initial impedance at r=0.5 was found using Eq. (B.7). ka=5, k,=0, and o, = 2.468. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Otot

[f(z)l
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[f(m)]
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3
<
>
7

107!

ka

Fig. 6. Total scattering cross-section and backscattering amplitude plotted against non-dimensional frequency, ka. Aluminum cylinder with the same
properties as listed in Fig. 5, integrated using the fourth-order scheme from r=0.5 to r=1.0 using 500 steps. The initial impedance at r=0.5 was found
using Eq. (B.7).

6. Conclusion

Two computationally stable methods were considered to calculate the impedance matrix. Seeking solutions of 3D
elasticity in the form of time-harmonic cylindrical waves, a matrix Riccati equation for the impedance matrix was
formulated. Direct integration of the Riccati equation is numerically unstable, it leads to exponentially growing
instabilities, which is inescapable at high frequency, large values of n, and layer thickness. We integrated the Riccati
equation for the impedance matrix which has singularities along the real radial coordinate associated with traction
free modes. To avoid instabilities we developed a new stable numerical scheme for cylindrically anisotropic structures
that passes through these singularities by combining the impedance and matricant. This scheme evaluates the
impedance matrix for continuous systems by integrating the Riccati equation over the thickness of each layer. Different
expansion methods were considered and compared, it was noted that matrix exponential approximations yielded the
best results.

An alternative method was developed to obtain the global impedance matrix for anisotropic, cylindrically layered
media using the impedance matrix for each layer. The recursive formula to calculate the total two-point impedance was
derived. The impedance matrix method was applied to obtain the total surface impedance matrix calculated recursively,
layer by layer by employing the recursive formula N—1 times for an N layered system. In the case of more complex
inhomogeneity and a large number of cylindrical layers, the recursive algorithm and the alternative integration technique
are far superior to methods involving finite element analysis and can be performed with completely anisotropic
materials.

Application of the impedance matrix simplifies the formulation of various scattering and boundary value problems
for cylindrical structures. The impedance matrix can be applied to solve various acoustic and elastic scattering
problems for arbitrarily layered cylindrical shells and solids. As an example acoustic scattering from a solid
aluminium cylinder immersed in water was considered using the impedance matrix and compared with the literature.
Plots of the total pressure field, form function and total scattering cross-section agree with previously published
results.
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Appendix A. Cylindrically anisotropic media

The equilibrium equations of linear elastodynamics in cylindrical coordinates are [16]
(rtr),r +t0 +Kt) + ;= Tpﬁ, (A-1 )

where u = (u;, uy, u;)" is the displacement vector, p is the mass density, t;, t,, t, are the traction vectors, K is the 3 x 3
matrix with K;; = —1, K31 = 1 and zero otherwise, T denotes transpose and a comma suffix denotes partial differentiation.
Using the index notation (r,0,z) < (1,2,3) the stress-strain relationship is

0ij = Cijen (= (t))), (A.2)

where the elastic stiffness tensor elements have the usual symmetries Cjj; = Cjiy = Cj5, and the notation of summation
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over repeated indices is assumed. Combining the displacement strain equations in cylindrical coordinates with Eq. (A.2)
the traction vectors are [16]

t; Q R P u,
t|=|R T s ||r'@+Kw | (A3)
t PT s M u,
The form of the various matrices in (A.3) is, using Voigt notation for the moduli
Cin Cis Cis Ces Cas Cas Css Ca5 Css
Q=|[Cis Cos Cs6 |, T=|Cos Coo Casa|, M=|Css Caqa Csq |,
Cis Csg Css Css Coq Cuy C3s C3g4 C33
Cis Ci2 Cua Cis Cis Ci3 Css Cas C3s
R=|Ces Cas Cas |, P=|Csse Css6 C36 |, S=| Cos Cag Ca3 |. (A4)
Css Cos Cgs Css (g5 Css Css Cyq Czy

We consider cylindrically anisotropic media, illustrated in Fig. 1, for which the density, p, and elasticity tensor, C, depend
on the radial coordinate r. Solutions are sought in the form of time-harmonic cylindrical waves where the displacement and
radial traction vectors are of the form

u= U(n) (r)ei(HH +kzz—wt) irt, = V(n) (r)ei(n(? +kzz—wt) (A.S)

where w is the frequency, k; is the axial wavenumber, and n = 0, 1, 2, ... is the circumferential number. Plugging (A.5) into
(A.1) and (A.3) yields the state space representation [16] for the state vector #™ consisting of the displacement and radial
traction vectors

d gy 1 ) e (U0
all (r)_rG(r)n (r) with g™(r)= Vo) | (A.6)

The superscript (n) is omitted for the remainder of the paper. The 6 x 6 system matrix is [16]
. g(” ig(z)
iG= <ig‘3> _gi+ |’ (A7)

where all terms depend on the radial coordinate, r, and the superscript + denotes the adjoint or conjugate transpose of a
matrix. The 3 x 3 matrices in (A.7) are

g ——Q 'R-ikrg P, g% g Q"

g3 =g+ —T-R"Q 'R+iksP'Q 'R-S—P'Q 'R-8)*1+r2[l2(N-P'Q 'P)—po?I], (A8)

I is the 3 x 3 identity matrix, * indicates the Hermitian transpose, and

R=Rk, $=xS, T=T =x*Tx withx=K+inl (=—x"). (A.9)
The system matrix, G, has the important symmetry [16] which follows from the form of (A.7):
0 1

The problem is now reduced to finding a solution to Eq. (A.6); subject to appropriate boundary conditions. Next we
introduce the matricant and impedance matrices based on solutions of (A.6);.

Appendix B. Impedance for uniform transverse isotropy

We consider transversely isotropic solids with the symmetry axis in the z-direction. The displacement vector may be
decomposed using Buchwald’s scalar potentials [19], the functions ¢, y and
_ oy _op
u=Vp+V x (Xez)+<5—§>ez. (B.1)
The general solution of the equilibrium equations for transverse isotropy is of the form {,y,} = {@, 7,y jei0+kz-ot),
where

_ 1 1
=R, Ff;(kl n+ kfsfanfiz(sz).
1 2
— K K
U= RO fh(kir)+Shy 2 2 fh(kar),
k] k2

_ 1
T=-T - fhksr), (B.2)
3
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and R, S\ T. are unknown coefficients, f' (x) are cylindrical functions: f1(x) =J,(x) for solutions that are regular at r=0,
fﬁ(x) =Yn(x) for real valued irregular solutions at r=0, fﬁ(x) =H§1”(x) for outgoing (radiating) solutions, fﬁ(x) =H§]2’(x) for
ingoing solutions, where J,(x) is the Bessel function of the first kind; Y,(x) is the Bessel function of the second kind; Hg'z’(x)
is the Hankel functions of the first and second kinds. The displacement field can be represented as a linear combination of
any two of the four types of cylindrical functions ff1(x) (I=1,4). The wavenumbers ks, k», k3, and non-dimensional numbers
K1, Ko are given by

TVa>=b 2_chqk? K—cuki .
k%z:&v kgzuv KFM (i=1,2),
' 2C11Ca4 Co6 (€13 +C4a)k,
a=(C11+Caa)p? + (33 +2C13Caa—C11C33)K,
b=4C11C44(p(l)2—C33k§)(p602—C44k§). (33)

For isotropic material wavenumbers k;, k; reduce to kf = wzp/(/1+2u)—k§, k% = k% = cuzp/,u—kﬁ, Ki=1,Ky= —k%/k?.
The displacement and traction vectors U and V of (A.5) are obtained in a matrix form for each n as

Ry,
U(r):ZX’(r)w’, V(r):ZY’(r)w’, w = Sflm ) (B.4)
TOn

where the summation on [ is over any two of the possible [ = 1,4, and

I O e

in in
X = | g falan) ofuten  fuksn) |, (B.5)
iK] 1 iKZ 1
Kfn(lﬁ r) T n(kat) 0
Y!(r) = —iz!(nX'(n), (B.6)
and Z!, I =1,4, follows from [17]:
2066 in2Ces ik TCa4 &0h—Y)  Iny—yy)  183(5-E8)
Zi(r)=| —in2ces  2ce6 0 +co| —inOn—y2) Syi—&iy, néi—-&) |, (B.7)
—ik,rcaq 0 Z, —i&3(81-&)  n(é-&) 0
nz(fl}ﬁ—52}’2)—5152530’1—}’2)> .
Z;= ’ i="i =1,2),
C44< E3(&y1—E1Y2)—12 (Y1 —-Y2) b yiswr (@ )

should be derivative

Cosk3r? c Fukir)

= , &= j=1,2,3). B.8
o &3(Eay1=E1y2) -2 (V1-Y2) 7 jrfix(kjr) U ) B8

The formula for X' follows by substituting the potentials (B.2) into Eq. (B.1) and agrees with Ahmad’s results [25]. The
derivation of the matrix z!(r) can be found in [17]. Note that z!(r) (I = 1) is the exact form of the conditional impedance of a
solid cylinder, i.e. with material at r=0 and hence bounded displacements there [17].

The explicit form of the two-point impedance matrix (see Eq. (8)) of a given transversely isotropic layer is

k k -1
Z& 4L 7 X' (M) X ()
(MeTk—1) = Z/3< Zﬁ =

X'y Xy
Eq. (B.9), which defines the impedance matrix Z, is similar to Eq. (7) of [9] (for the stiffness matrix K), and the first and the
second matrices on the right hand side of Eq. (B.9) are similar to the matrices EJ, and (E%)~! in [9, Egs. (5) and (3)]. One
reason why we prefer to use the impedance matrix Z rather than the stiffness matrix as in [9] is that the impedance is
always Hermitian: Z=Z".

Y —Y(rien)

Y'(r) Y3 (ry) (8.9)
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