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A stable approach for integrating the impedance matrix in cylindrical, radial inhomoge-

neous structures is developed and studied. A Stroh-like system using the time-harmonic

displacement-traction state vector is used to derive the Riccati matrix differential

equation involving the impedance matrix. It is found that the resulting equation is stiff

local expansion is performed by combining the matricant and impedance matrices. This

method offers a stable solution for fully anisotropic materials, which was previously

unavailable in the literature. Several approximation schemes for integrating the Riccati

equation in cylindrical coordinates are considered: exponential, Magnus, Taylor series,

Lagrange polynomials, with numerical examples indicating that the exponential scheme

performs best. The impedance matrix is compared with solutions involving Buchwald

potentials in which the material is limited to piecewise constant transverse isotropy.

Lastly a scattering example is considered and compared with the literature.

& 2013 Published by Elsevier Ltd.
1. Introduction

Wave propagation in layered elastic media has been widely studied resulting in a variety of solution approaches. These
include the use of scalar and vector potentials [1], the transfer matrix method [2–6], and the delta matrix method [7,8].
Alternatively, computationally stable methods have also been developed, e.g. the stiffness matrix [9,10], the global matrix
[11], and the reflectivity method [12]. Such approaches are limited to isotropic or transversely isotropic materials whereas
we are interested in general anisotropic solids in order to develop scattering solutions related to metamaterial devices
such as acoustic cloaks [13–15] which can be modeled as radially inhomogeneous anisotropic solids. The goal of this paper
is to produce a stable solution method for such materials.

We considered a matricant propagator solution [16,17] based on the Stroh formalism to solve for scattering from a
generally anisotropic material. The method involves the creation of a state space representation of the system where six
first order, ordinary differential equations, must be integrated which may often diverge. A stable scheme for finding the
solution to the differential equations, inspired by [18], is developed by combining the matricant and impedance matrices.
The scheme is considered with several different expansion methods to yield relatively high orders of accuracy and is
compared with solutions from the conditional impedance matrix and Buchwald’s scalar potentials [19].

The outline of the paper is as follows. In Section 2, we begin with definitions of the impedance and matricant matrices. An
explicit method for finding the impedance in piecewise uniform, transversely isotropic materials is developed in Section 3. This
method also serves as a tool to compare with more general solution methods based on the Riccati matrix differential equation
for the impedance matrix. It is found that the Riccati differential equation is stiff and leads to exponentially growing
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instabilities. In Section 4, an alternative approach for integrating the matricant is derived to find a stable means of integrating
the impedance matrix. We then use different expansion techniques used in the integration process in order to find higher order
accurate schemes. Lastly in Section 5 a scattering example from the literature is considered.

2. Impedance and matricant matrices

We consider time harmonic wave motion in radially inhomogeneous cylindrically anisotropic solids. The associated
equilibrium equations for linear elastodynamics in cylindrical coordinates are summarized in Appendix A. Here we need
only focus on the relation between the vectors UðrÞ and VðrÞ associated with displacement and traction, respectively.
Precise definitions follow from Eqs. (A.5) (which includes the superscript n that is omitted here for simplicity). The
dimension of each vector is taken as m, where m is either 3, 2 or 1; m¼3 in general, m¼2 if z-dependence is not
considered, and m¼1 for pure out-of-plane shear horizontal (SH) motion. For the moment we may consider m as general.
The main focus of the paper is the m�m conditional impedance matrix z defined such that

VðrÞ ¼�izðrÞUðrÞ: (1)

It is shown in Eq. (A.6) that the equations for linear elastodynamics can be cast as a system of 2m linear ordinary
differential equations [17]

dg
dr
¼Qg with gðrÞ ¼

U

V

� �
, Q ðrÞ ¼

Q 1 Q 2

Q 3 Q 4

 !
, (2)

where Q þ ¼�TQT, þ denotes the Hermitian transpose and T is defined in (A.10). It follows from Eqs. (1) and (2) that zðrÞ
satisfies a differential Riccati equation

dz

dr
þzQ 1�Q 4z�izQ 2z�iQ 3 ¼ 0, (3)

with assumed initial condition zðr0Þ at some specified r¼ r0, hence the name conditional impedance.
One approach to solving for the conditional impedance matrix, z, is to first solve for the 2m� 2m matricant Mðr,r0Þ

which is defined as the solution of the initial value problem

dM

dr
ðr,r0Þ ¼Q ðrÞMðr,r0Þ, Mðr0,r0Þ ¼ Ið2mÞ, M¼

M1 M2

M3 M4

 !
: (4)

Hence

gðrÞ ¼Mðr,r0Þgðr0Þ: (5)

Using the relations

UðrÞ ¼ ðM1�iM2zðr0ÞÞUðr0Þ, VðrÞ ¼ ðM3�iM4zðr0ÞÞUðr0Þ, (6)

which follow from (1), the conditional impedance can be expressed in terms of the matricant as

zðrÞ ¼ iðM3�iM4zðr0ÞÞðM1�iM2zðr0ÞÞ
�1: (7)

The propagator nature of the matricant is apparent from Eq. (5) and from the property Mðr,r1Þ Mðr1,r0Þ ¼Mðr,r0Þ, and in
particular Mðr,r0Þ ¼Mðr0,rÞ�1. Also, the symmetry (A.10) implies Mðr,r0Þ ¼ TMþ

ðr0,rÞT. Hence, M�1
ðr,r0Þ ¼ TMþ

ðr,r0ÞT, that
is, M is T-unitary [20].

An alternative approach to finding z uses the two-point impedance matrix, which by definition relates the traction and
displacement vectors at two values of r according to [17]

Vðr0Þ

�VðrÞ

 !
¼�iZðr,r0Þ

Uðr0Þ

UðrÞ

 !
, Z¼

Z1 Z2

Z3 Z4

 !
: (8)

The two-point impedance matrix has the important property that it is Hermitian, Z¼ Zþ [17]. The relations between the
matricant of (4) and the impedance matrix of (8) evaluated at cylindrical surfaces r, r0 are easily deduced [17]

Mðr,r0Þ ¼
�Z�1

2 Z1 iZ�1
2

iZ3�iZ4Z�1
2 Z1 �Z4Z�1

2

 !
,

Zðr,r0Þ ¼
�iM�1

2 M1 iM�1
2

iM4M�1
2 M1�M3 �iM4M�1

2

 !
: (9)

Introducing (9) into (7), we can relate the conditional impedance zðrÞ to the two-point impedance matrix Zðr,r0Þ

according to

zðrÞ ¼ Z3ðZ1�zðr0ÞÞ
�1Z2�Z4: (10)
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3. Piecewise uniform transverse isotropy

In this section we develop an approach suitable for piecewise uniform transversely isotropic cylinders by explicit
calculation of the global impedance matrix Z of (8), from which the conditional impedance can be found using (10). The
method is based on a recursive algorithm proposed by Rokhlin et al. [9] called the stiffness matrix method. The analysis
in [9] was restricted to multilayered media in Cartesian coordinates, whereas the present method is applicable to
cylindrically layered media of transverse isotropy. We will refer to Rokhlin and Wang [9] several times in this section to
note the similarities and differences of the approaches.

Consider n41 layers of uniform transversely isotropic materials with the kth layer rk�1orork, k 2 1,n, see Fig. 1. The
explicit form of the local two-point impedance matrix of the kth layer is Zk

ðrk,rk�1Þ as defined by Eq. (B.9). Denote the
global two-point impedance matrix for the cylinder between r0 and rk by ZK

¼ ZK
ðrk,r0Þ. Our objective is the global two-

point impedance matrix for the entire cylinder, Zðrn,r0Þ � ZN
ðrn,r0Þ.

Consider first the two bordering layers between r¼ r0 and r¼ r2 and sharing the r¼ r1 surface. Continuity of
displacements and traction on the interface implies

V0

�V1

 !
¼�i

Za
1 Za

2

Za
3 Za

4

 !
U0

U1

 !
, (11a)

V1

�V2

 !
¼�i

Zb
1 Zb

2

Zb
3 Zb

4

0
@

1
A U1

U2

 !
, (11b)

where Za
� Z1
ðr1,r0Þ, Zb

� Z2
ðr2,r1Þ. From the second row of Eq. (11a) and the first row of Eq. (11b), we have

U1 ¼�ðZ
a
4þZb

1Þ
�1
ðZa

3U0þZb
2U2Þ: (12)

Introducing Eq. (12) into Eqs. (11a) and (11b), we define the impedance matrix Z2
ðr2,r0Þ that relates the traction vector to

the displacement vector on the inner ðr¼ r0Þ and outer ðr¼ r2Þ surfaces of the bilayer

V0

�V2

 !
¼�iZ2

ðr2,r0Þ
U0

U2

 !
, (13)

where

Z2
ðr2,r0Þ ¼

Za
1�Za

2ðZ
a
4þZb

1Þ
�1Za

3 �Za
2ðZ

a
4þZb

1Þ
�1Zb

2

�Zb
3ðZ

a
4þZb

1Þ
�1Za

3 Zb
4�Zb

3ðZ
a
4þZb

1Þ
�1Zb

2

0
@

1
A, (14)

Za
i ¼ Z1

i , Zb
i ¼ Z2

i and Zk
i ðk¼ 1,2, i¼ 1,4Þ are given by Eqs. (B.9). Note that Eqs. (11a) and (11b) are similar, apart from a sign

change, to Eqs. (19) and (20) in [9].
Fig. 1. A cylindrically anisotropic multilayered media is considered in the system of cylindrical coordinates. The media consists of n anisotropic layers

with different densities and elasticity tensors in general.
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Employing (13) recursively, the global impedance matrix ZK
ðrk,r0Þ for the cylinder between r0 and rk is obtained with

3�3 components

ZK
¼

ZK�1
1 �ZK�1

2 ðZk
1þZK�1

4 Þ
�1ZK�1

3 �ZK�1
2 ðZk

1þZK�1
4 Þ

�1Zk
2

�Zk
3ðZ

k
1þZK�1

4 Þ
�1ZK�1

3 Zk
4�Zk

3ðZ
k
1þZK�1

4 Þ
�1Zk

2

0
@

1
A, (15)

where ZK�1
i ði¼ 1,4Þ are the 3�3 sub-matrices of the matrix ZK�1

ðrk�1,r0Þ for k�1 layers, Zk
i ði¼ 1,4Þ are the 3�3 sub-

matrices of the matrix Zk
ðrk,rk�1Þ for the kth layer, defined by Eq. (B.9). The global impedance matrix for the N-layered

cylinder is obtained by using Eq. (15) ðN�1Þ times.
The main differences between the present results and those of [9] are, first, that by construction the local Zk and global

ZK two-point impedance matrices are Hermitian matrices. Second, the present results are valid for cylindrically layered
structures, as compared with those of [9] which are for multilayered structures in Cartesian coordinates. Despite the
differences, we note that the two-point impedance matrix Zk of Eq. (8) and the global two-point impedance matrix
ZK
ðrk,r0Þ are, apart from some sign differences, similar to the stiffness matrix Km and global stiffness matrix KM of Rokhlin

and Wang [9].
4. Stable solution technique for general anisotropy

In this section we propose and demonstrate a stable numerical scheme for solving the conditional impedance matrix
zðrÞ defined by (1) in the case of arbitrary radially dependent cylindrical anisotropy, i.e. density and elastic moduli are
arbitrary functions of r: rðrÞ, Cijkl(r).
4.1. Stability issues

Direct numerical integration of either (3) for the conditional impedance zðrÞ or (4) for the matricant Mðr,r0Þ is not a
feasible strategy. The stiff nature of (4) leads to exponentially growing instabilities for M. These become unavoidable
at large values of n and/or kr for the elastic problem. On the other hand, singularities and numeric instabilities may
form when Eq. (3) is integrated, which is a well-known issue for Riccati equations [18]. The singularities (poles) of the
impedance matrix occur at finite values of r associated with traction-free modes for the given frequency. One can, in
principle, avoid the singularity by switching to the differential equation for the inverse of the impedance: the admittance
A¼ z�1 [21, p. 136]. The admittance satisfies a Riccati differential equation, which follows from Eq. (3) as

dA

dr
þ iAQ 3AþAQ 4�Q 1Aþ iQ 2 ¼ 0: (16)

However singularities again arise, this time corresponding to rigid modes. One could develop a numerical scheme that
switches back and forth between integrating the impedance and admittance but since the locations of the singularities are
not known in advance, and in practice they can be very close together, this does not offer a viable method. The curves
shown in Fig. 2 exemplify the problem of singularities in the impedance. The appearance of the peaks in Fig. 2 indicates
values of r beyond which accurate numerical solution cannot be obtained regardless of the step size in the integration
scheme. The inability of such standard methods to obtain correct results was the motivation behind the proposed solution
technique discussed next.
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Fig. 2. Solid, aluminium cylinder integrated with 200 evenly spaced steps, using the fourth-order scheme of Section 4.4.2, from r¼0.5 to r¼1.0, with

kz¼0 and ka¼10. Plotted is the determinant of the upper left 2� 2 sub-matrix of the 3� 3 conditional impedance matrix normalized by n3þ1 vs. r.

Where Eq. (B.7) was used for the initial impedance at r¼0.5.
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4.2. Möbius scheme

Numerical difficulties in integrating the matrix Riccati equations are well known and have been studied extensively.
A procedure mentioned earlier for avoiding singularities is a generalization of the idea of switching, where one undergoes
a change of variables, which is closely related to invariant embedding methods, see e.g. [22]. Here we follow a different
approach, based on [18], which views the solution of the Riccati equation as a ‘‘Grassmanian flow’’ of m-dimensional
subspaces (the impedance matrix) on a larger vector space of dimension 2m. The idea is to recast the equation for z in the
form of a forward marching scheme of step size h based on (7)

zðrþhÞ ¼ iðM3�iM4zðrÞÞðM1�iM2zðrÞÞ�1, (17)

where M¼Mðrþh,rÞ. The key to the method is that M can always be calculated in a stable manner for sufficiently small
step size h. This approach is one of a class of methods called Möbius schemes, which by design are formulated on the
natural geometrical setting of the larger vector space, in this case that of M. Accordingly Möbius schemes are able to
handle numerical instability and pass smoothly and accurately through singularities [18]. The method therefore combines
both the matricant and the impedance, each of which is unstable when solved in a global sense separately.

4.3. Approximations for Mðrþh,rÞ

The Möbius scheme shifts the problem to that of finding approximations for Mðrþh,rÞ accurate to some given order in
h. The Peano series [20] of cascading integrals for the matricant is formally guaranteed to remain bounded for any h, but is
numerically impractical. Our objective is to develop approximations for Mðrþh,rÞ in the form

Mðrþh,rÞ ¼ Ið2mÞ þhMð1ÞðrÞþ
h2

2!
Mð2ÞðrÞþ

h3

3!
Mð3ÞðrÞþ � � � , (18)

where the terms Mð2ÞðrÞ do not require explicit integration schemes for their evaluation. Consider first the case of Q
sufficiently smooth. Then the identity

Mðrþh,rÞ ¼ Ið2mÞ þ

Z h

0
Q ðrþsÞMðrþs,rÞ ds (19)

may be written in the form of a series in powers of h by using (18) for the left member and a Taylor series evaluated at r for
Q in the integral

hMð1Þ þ
h2

2!
Mð2Þ þ

h3

3!
Mð3Þ þ � � � ¼

Z h

0
QþsQ 0 þ

s2

2!
Q 00 þ

s3

3!
Q 000 þ � � �

� �
� Ið2mÞ þsMð1Þ þ

s2

2!
Mð2Þ þ � � �

� �� �
ds, (20)

with the argument r understood for all functions. Comparing equal orders of hk in (20) implies

Mð1ÞðrÞ ¼Q ðrÞ,

Mð2ÞðrÞ ¼Q 0ðrÞþQ ðrÞMð1ÞðrÞ,

Mð3ÞðrÞ ¼Q 00ðrÞþ2Q 0ðrÞMð1ÞðrÞþQ ðrÞMð2ÞðrÞ,

Mð4ÞðrÞ ¼Q 000ðrÞþ3Q 00ðrÞMð1ÞðrÞþ3Q 0ðrÞMð2ÞðrÞþQ ðrÞMð3ÞðrÞ, (21)

etc. The matricant may now be found by employing (18). The series (21), while illustrative, is restricted to profiles that
are analytically smooth functions of r. It is not suitable for piece-wise constant or piece-wise smooth profiles, which are
of practical interest. Derivatives of the profile are therefore to be avoided if possible. In that sense, the approximation
formed from Eqs. (18) and (21) is only valid to O(h), and the iterative scheme (17) shares the same accuracy.

An expansion accurate to second order can be obtained by using a Taylor series expansion evaluated at the
midpoint [18]

Q ðrþsÞ �Q rþ
h

2

� �
þ s�

h

2

� �
Q 0 rþ

h

2

� �
þ s�

h

2

� �2

Q 00 þOðs3Þ: (22)

Substitution into (19) then gives, using (18)

Mð1Þ ¼Mð2Þ ¼Q rþ
h

2

� �
, Mð3Þ ¼ Ið2mÞ þ

1

2
Q 0 rþ

h

2

� �� �
Mð1Þ: (23)

This leads to an expansion up to Oðh2
Þ requiring only Q at a single position with no derivatives

TS 2nd : Mðrþh,rÞ ¼ Ið2mÞ þhQ rþ
h

2

� �
þ

h2

2
Q 2 rþ

h

2

� �
þOðh3

Þ: (24)

The form of (24) suggests an alternative expression that is accurate to the same order

EXP 2ndðaÞ : Mðrþh,rÞ ¼ exp hQ rþ
h

2

� �� �
þOðh3

Þ: (25)



A.N. Norris et al. / Journal of Sound and Vibration 332 (2013) 2520–2531 2525
Approximations (24) and (25), together with Eq. (17) each yield a second-order accurate Möbius scheme. EXP 2nd has the
added feature that it is unimodular, and hence energy conserving. Detailed comparisons are provided in Section 4.6.

4.4. Lagrange interpolation expansions

We now consider Lagrange polynomial expansions for Q in Eq. (19) in order to obtain higher order expressions without
using derivatives of Q ðrÞ. The Lagrange polynomial of order n approximates Q ðrþsÞ with the expression [23]

Q ðrþsÞ ¼
Xn

j ¼ 0

Q ðrþxjhÞLj
s

h

� �
, LjðxÞ ¼

Yn

l ¼ 0,laj

x�xl

xj�xl

� �
, (26)

where xj 2 ½0,1�, j¼ 0,1, . . . ,n, are chosen points. Substituting into (20) and using the notation Q xj
¼Q ðrþxjhÞ implies the

sequence

MðkÞ ¼
Xn

j ¼ 0

LðkÞj Q xj

8<
:

9=
;Mðk�1Þ, Mð0Þ � I,

LðkÞj ¼ k

Z 1

0
LjðxÞx

k�1 dx, k¼ 1,2,3 . . . : (27)

Note that
Pn

j ¼ 0 LðkÞj ¼ 1. In the following subsections we derive expansions based on (26) for n¼1 and n¼3.

4.4.1. Two-point approximation: Halves

We approximate Q with two points using (26) for n¼1. In this case the integrals LðkÞj can be simplified with the result
that

MðkÞ ¼
X1

j ¼ 0

Lj
k

kþ1

� �
Q xj

8<
:

9=
;Mðk�1Þ, Mð0Þ � I, k¼ 1,2,3 . . . : (28)

Taking equi-space points x0 ¼
1
4 and x1 ¼

3
4, yields

LP 2nd : Mðrþh,rÞ ¼ Ið2mÞ þ
h

2
ðQ 1=4þQ 3=4Þþ

h2

24
ðQ 1=4þ5Q 3=4ÞðQ 1=4þQ 3=4ÞþOðh3

Þ: (29)

This again gives a Möbius scheme of second-order accuracy in h. It also suggests, by analogy with (25)

EXP 2ndðbÞ : Mðrþh,rÞ ¼ exp
h

2
Q 3=4

� �
exp

h

2
Q 1=4

� �
þOðh3

Þ: (30)

Note that the expansions (29) and (30) only agree with one another to first order, O(h).

4.4.2. Four-point approximation: Fourths

Taking four evenly spaced points to approximate Q , xj ¼
1
8 þ

j
4, j¼ 0,1,2,3, and using the symbolic algebra program

Maple, yields

LP 4th :

Mð1Þ ¼ 13
48 Q 1=8þ

11
48 Q 3=8þ

11
48 Q 5=8þ

13
48Q 7=8,

Mð2Þ ¼ 23
720 Q 1=8þ

67
240 Q 3=8þ

43
240 Q 5=8þ

367
720Q 7=8

� �
Mð1Þ,

Mð3Þ ¼ � 1
48 Q 1=8þ

19
80 Q 3=8þ

7
80 Q 5=8þ

167
240Q 7=8

� �
Mð2Þ,

Mð4Þ ¼ � 23
560 Q 1=8þ

389
1680 Q 3=8�

67
1680 Q 5=8þ

1427
1680Q 7=8

� �
Mð3Þ:

(31)

Substitution of these terms into (18) gives Mðrþh,rÞ up to fourth-order accuracy. Interestingly, when more points were
taken to evaluate Q the numerical accuracy was not found to improve. This was tried with even spacings, using from five
up to ten points. Finally, by analogy with (30) we define

EXP 2ndðcÞ : Mþðrþh,rÞ ¼ exp
h

4
Q 7=8

� �
exp

h

4
Q 5=8

� �
exp

h

4
Q 3=8

� �
exp

h

4
Q 1=8

� �
þOðh3

Þ, (32)

which, like (29) and (30), is consistent with the four-term Lagrange interpolation scheme (31) to first order.

4.5. Fourth-order Magnus integrator scheme

The Magnus integrator, created by Magnus [28], and further developed in [26] with a convergence proof and recurrence
relations, is a method to approximate a solution to (4) with

Mðrþh,rÞ ¼ eOMðr,r�hÞ, (33)

qq
Line
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here we consider a fourth-order Magnus integrator scheme similarly done in [27] for the Helmholtz equation. We use the
following definitions to march a solution forward in r:

MG 4th :

Mðrþh,rÞ ¼ eOMðr,r�hÞ,

O¼ h
2 ðQ ð1Þ þQ ð2ÞÞþ

ffiffi
3
p

h2

12 ðQ ð2ÞQ ð1Þ�Q ð1ÞQ ð2ÞÞ,

Q ð1Þ ¼Q ðrþhð12�
ffiffi
3
p

6 ÞÞ, Q ð2Þ ¼Q ðrþhð12 þ
ffiffi
3
p

6 ÞÞ:

(34)

As a fourth-order scheme the numerical precision of this method is very similar to that of the four-point Lagrange
polynomial approximation (31), which is seen in the examples of the following section.
4.6. Numerical examples and convergence

In order to illustrate the convergence property of the different expansions proposed (exponential, Magnus, Taylor
series, Lagrange polynomials), we consider a solid aluminium sample with properties r¼ 2:7 kg=m3, E¼ 70 GPa,
G¼ 26 GPa and radius of r¼1 and normalized these properties with respect to water for which r¼ 1:0 kg=m3 and speed
of sound in water c¼ 1:470 km=s. The numerical values reported were computed by implementing the Möbius scheme
(17) and in the case of the Magnus integrator implementing (7), starting at r¼0.5 with initial condition given by the
explicit solution (B.7) from [17] and discussed in Section 4. In all examples we take kz¼0. Fig. 3 plots the difference in the
determinant of the upper left 2� 2 sub-matrix of the exact conditional impedance from (B.7), and that calculated by
iterating (17) until r¼1 is reached. The right hand side of Fig. 3 refers to the type of approximation used: Taylor Series (TS),
Lagrange Polynomial (LP), Exponential (EXP), Magnus (MG), and to the accuracy order. Thus, LP 1st was calculated using
Eq. (21), TS 2nd by (23), EXP (a) by (25), EXP (b) by (30), EXP (c) by (32), LP 2nd by (29), LP 4th by (31), MG 4th by (34), and
LP 3rd was calculated using a Lagrange Polynomial with points fx0,x1,x2g ¼ f

1
6 ,12 ,5

6g. Interestingly, the three EXP methods
(Eqs. (25), (30) and (32)) gave similar results and were the best results for the fewest number of approximation points.
Fig. 4 plots the difference in the upper 2� 2 sub-matrices at r¼1.0 vs. the number of steps used in the iteration from r¼0.5
to r¼1.0. As expected, the higher order schemes are more accurate and require fewer steps in the integration process to
yield the same accuracy as a lower order scheme.
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10−10

10−8

10−6

10−4

10−2

100

r

|d
et

(z
) −

 d
et

(z
*)

|

TS 2nd

EXP (c)
EXP (b)
LP 4th
MG 4th

TS 1st

LP 2nd

EXP (a)
LP 3rd

Fig. 3. Solid, aluminium cylinder integrated with 2000 evenly spaced steps from r¼0.5 to r¼1.0, with kz¼0, n¼0 and ka¼5. Plotted is the difference of

the determinants of the upper left 2� 2 sub-matrices of Eq. (B.7) and those calculated from Section 4. As noted in Section 4.6 the right hand side refers to

the type and order accuracy, they are listed top to bottom as worst to best at r¼1.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10−6

10−4

10−2

100

102

104

# of steps

|d
et

(z
) −

 d
et

(z
* )| TS 2nd

TS 1st
LP 2nd
LP 3rd

MG 4th
LP 4th
EXP (a)
EXP (b)
EXP (c)

Fig. 4. Solid, aluminium cylinder integrated from r¼0.5 to r¼1.0, with kz¼0, n¼0 and ka¼25. Plotted is the difference of the determinants of the upper

left 2� 2 sub-matrices of Eq. (B.7) and those calculated from Section 4 at r¼1 vs. # of steps.



A.N. Norris et al. / Journal of Sound and Vibration 332 (2013) 2520–2531 2527
5. Scattering example

In this section we explore the use of the impedance matrix by considering acoustic scattering from a solid aluminium
cylinder immersed in water. Perpendicular plane wave incidence, i.e. kz¼0, in a uniform exterior fluid is considered with time
harmonic dependence e�iot henceforth omitted. The total radial stress and displacement fields in the surrounding fluid are

srr ¼�Kk
X1

n ¼ �1

in
ðJnðkrÞþBnHð1Þn ðkrÞÞeiny,

ur ¼�
X1

n ¼ �1

in
ðJn
0
ðkrÞþBnHð1Þ0n ðkrÞÞeiny, (35)

where r is the radial coordinate, K is the bulk modulus, k is the wavenumber, Hð1Þn is the Hankel function of the first kind, and
the coefficients Bn are to be determined [1]. We use the definition of the conditional impedance matrix, noted in
Eq. (1), and write this statement for the innermost radial coordinate at r¼b, for which we find the initial impedance matrix
from Eq. (B.7), and for the outer surface at r¼a where

VðbÞ ¼�iz1UðbÞ, VðaÞ ¼ �iz2UðaÞ: (36)

The conditional impedance matrix, z2 ¼ zðaÞ, is found from the integration technique outlined in Section 4, or for transversely
isotropic materials may be found directly using Eq. (B.7). Considering acoustic fluid in the exterior we write Eq. (36) for r¼a in
detail for which the shear stress, sry, must be zero with

ia
srr

0

� �
¼�iz2

ur

uy

 !
¼�i

p1 q1

p2 q2

 !
ur

uy

 !
: (37)

Eliminating uy using the second row of Eq. (37) implies

ia
srr

ur
¼

i

q2
ðq1p2�q2p1Þ ��iz0: (38)

Using (35) and equating with (38) we find the scattering coefficient

Bn ¼�
KkaJnðkaÞþz0Jn

0
ðkaÞ

KkaHð1Þn ðkaÞþz0Hð1Þ0n ðkaÞ
: (39)

Numerical simulation was conducted for a solid aluminium cylinder with properties normalized with respect to water and
with the total pressure field illustrated in Fig. 5. Fig. 6 shows both the total scattering cross-section stot and the back-
scattering amplitude f ðpÞ, where the far field form function, f ðyÞ, is

f ðyÞ ¼
2ffiffiffi
k
p

X1
n ¼ 0

i2n�1EnBn cos ny, (40)

where E0 ¼ 1 and Em ¼ 2 for m40. The total scattering cross-section is then

stot ¼
4p
ka

Imagðf ð0ÞÞ: (41)

Fig. 6 closely matches the behavior of a similar analysis conducted in [24].
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6. Conclusion

Two computationally stable methods were considered to calculate the impedance matrix. Seeking solutions of 3D
elasticity in the form of time-harmonic cylindrical waves, a matrix Riccati equation for the impedance matrix was
formulated. Direct integration of the Riccati equation is numerically unstable, it leads to exponentially growing
instabilities, which is inescapable at high frequency, large values of n, and layer thickness. We integrated the Riccati
equation for the impedance matrix which has singularities along the real radial coordinate associated with traction
free modes. To avoid instabilities we developed a new stable numerical scheme for cylindrically anisotropic structures
that passes through these singularities by combining the impedance and matricant. This scheme evaluates the
impedance matrix for continuous systems by integrating the Riccati equation over the thickness of each layer. Different
expansion methods were considered and compared, it was noted that matrix exponential approximations yielded the
best results.

An alternative method was developed to obtain the global impedance matrix for anisotropic, cylindrically layered
media using the impedance matrix for each layer. The recursive formula to calculate the total two-point impedance was
derived. The impedance matrix method was applied to obtain the total surface impedance matrix calculated recursively,
layer by layer by employing the recursive formula N�1 times for an N layered system. In the case of more complex
inhomogeneity and a large number of cylindrical layers, the recursive algorithm and the alternative integration technique
are far superior to methods involving finite element analysis and can be performed with completely anisotropic
materials.

Application of the impedance matrix simplifies the formulation of various scattering and boundary value problems
for cylindrical structures. The impedance matrix can be applied to solve various acoustic and elastic scattering
problems for arbitrarily layered cylindrical shells and solids. As an example acoustic scattering from a solid
aluminium cylinder immersed in water was considered using the impedance matrix and compared with the literature.
Plots of the total pressure field, form function and total scattering cross-section agree with previously published
results.
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Appendix A. Cylindrically anisotropic media

The equilibrium equations of linear elastodynamics in cylindrical coordinates are [16]

ðrtrÞ,rþty,yþKtyþrtz,z ¼ rr €u, (A.1)

where u¼ ður , uy, uzÞ
T is the displacement vector, r is the mass density, tr , ty, tz are the traction vectors, K is the 3� 3

matrix with K12 ¼�1, K21 ¼ 1 and zero otherwise, T denotes transpose and a comma suffix denotes partial differentiation.
Using the index notation ðr,y,zÞ2ð1,2,3Þ the stress–strain relationship is

sij ¼ Cijklekl ð ¼ ðtiÞjÞ, (A.2)

where the elastic stiffness tensor elements have the usual symmetries Cijkl ¼ Cjikl ¼ Cklij, and the notation of summation
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over repeated indices is assumed. Combining the displacement strain equations in cylindrical coordinates with Eq. (A.2)
the traction vectors are [16]

tr

ty
tz

0
B@

1
CA¼ Q̂ R P

RT T̂ S

PT ST M̂

0
B@

1
CA

u,r

r�1ðu,yþKuÞ

u,z

0
B@

1
CA: (A.3)

The form of the various matrices in (A.3) is, using Voigt notation for the moduli

Q̂ ¼

C11 C16 C15

C16 C66 C56

C15 C56 C55

0
B@

1
CA, T̂ ¼

C66 C26 C46

C26 C22 C24

C46 C24 C44

0
B@

1
CA, M̂ ¼

C55 C45 C35

C45 C44 C34

C35 C34 C33

0
B@

1
CA,

R¼

C16 C12 C14

C66 C26 C46

C56 C25 C45

0
B@

1
CA, P¼

C15 C14 C13

C56 C46 C36

C55 C45 C35

0
B@

1
CA, S¼

C56 C46 C36

C25 C24 C23

C45 C44 C34

0
B@

1
CA: (A.4)

We consider cylindrically anisotropic media, illustrated in Fig. 1, for which the density, r, and elasticity tensor, C, depend
on the radial coordinate r. Solutions are sought in the form of time-harmonic cylindrical waves where the displacement and
radial traction vectors are of the form

u¼UðnÞðrÞeiðnyþkzz�otÞ, irtr ¼ VðnÞðrÞeiðnyþkzz�otÞ, (A.5)

where o is the frequency, kz is the axial wavenumber, and n ¼ 0, 1, 2, . . . is the circumferential number. Plugging (A.5) into
(A.1) and (A.3) yields the state space representation [16] for the state vector gðnÞ consisting of the displacement and radial
traction vectors

d

dr
gðnÞðrÞ ¼

i

r
GðrÞgðnÞðrÞ with gðnÞðrÞ ¼

UðnÞðrÞ

VðnÞðrÞ

 !
: (A.6)

The superscript ðnÞ is omitted for the remainder of the paper. The 6� 6 system matrix is [16]

iG¼
gf1g igf2g

igf3g �gf1gþ

 !
, (A.7)

where all terms depend on the radial coordinate, r, and the superscript þ denotes the adjoint or conjugate transpose of a
matrix. The 3� 3 matrices in (A.7) are

gf1g ¼ �Q̂
�1 ~R�ikzrQ̂

�1
P, gf2g ¼ gf2gT ¼�Q̂

�1
,

gf3g ¼ gf3gþ ¼ ~T� ~R
þ

Q̂
�1 ~Rþ ikzr½PT Q̂

�1 ~R� ~S�ðPT Q̂
�1 ~R� ~SÞþ �þr2½k2

z ðM̂�PT Q̂
�1

PÞ�ro2I�, (A.8)

I is the 3� 3 identity matrix, þ indicates the Hermitian transpose, and

~R ¼Rj, ~S ¼ jS, ~T ¼ ~T
þ
¼ jþ T̂j with j¼Kþ inI ð ¼�jþ Þ: (A.9)

The system matrix, G, has the important symmetry [16] which follows from the form of (A.7):

G¼ TGþT with T¼
0 I

I 0

� �
: (A.10)

The problem is now reduced to finding a solution to Eq. (A.6)1 subject to appropriate boundary conditions. Next we
introduce the matricant and impedance matrices based on solutions of (A.6)1.

Appendix B. Impedance for uniform transverse isotropy

We consider transversely isotropic solids with the symmetry axis in the z-direction. The displacement vector may be
decomposed using Buchwald’s scalar potentials [19], the functions j, w and c

u¼=jþ=� ðwezÞþ
@c
@z
�
@j
@z

� �
ez: (B.1)

The general solution of the equilibrium equations for transverse isotropy is of the form fj,w,cg ¼ fj,w,cgeiðnyþkzz�otÞ,
where

j ¼ Rl
on

1

k1
f l

nðk1rÞþ
1

k2
Sl

onf l
nðk2rÞ,

c ¼
k1

k1
Rl

onf l
nðk1rÞþSl

on

k2

k2
f l

nðk2rÞ,

w ¼�Tl
on

1

k3
f l

nðk3rÞ, (B.2)
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and Rl
on, Sl

on, Tl
on are unknown coefficients, f l

nðxÞ are cylindrical functions: f 1
nðxÞ ¼ JnðxÞ for solutions that are regular at r¼0,

f 2
nðxÞ ¼ YnðxÞ for real valued irregular solutions at r¼0, f 3

nðxÞ ¼Hð1Þn ðxÞ for outgoing (radiating) solutions, f 4
nðxÞ ¼Hð2Þn ðxÞ for

ingoing solutions, where Jn(x) is the Bessel function of the first kind; Yn(x) is the Bessel function of the second kind; Hð1,2Þ
n ðxÞ

is the Hankel functions of the first and second kinds. The displacement field can be represented as a linear combination of
any two of the four types of cylindrical functions f l

nðxÞ ðl¼ 1,4Þ. The wavenumbers k1, k2, k3, and non-dimensional numbers
k1, k2 are given by

k2
1,2 ¼

a8
ffiffiffiffiffiffiffiffiffiffiffiffi
a2�b
p

2c11c44
, k2

3 ¼
ro2�c44k2

z

c66
, ki ¼

c66k2
3�c11k2

i

ðc13þc44Þkz
ði¼ 1,2Þ,

a¼ ðc11þc44Þro2þðc2
13þ2c13c44�c11c33Þk

2
z ,

b¼ 4c11c44ðro2�c33k2
z Þðro

2�c44k2
z Þ: (B.3)

For isotropic material wavenumbers ki, ki reduce to k2
1 ¼o2r=ðlþ2mÞ�k2

z , k2
2 ¼ k2

3 ¼o2r=m�k2
z , k1 ¼ 1, k2 ¼�k2

2=k2
z .

The displacement and traction vectors U and V of (A.5) are obtained in a matrix form for each n as

UðrÞ ¼
X

l

Xl
ðrÞwl, VðrÞ ¼

X
l

Yl
ðrÞwl, wl ¼

Rl
on

Sl
on

Tl
on

0
BB@

1
CCA, (B.4)

where the summation on l is over any two of the possible l¼ 1,4, and

Xl
ðrÞ ¼

f l
nðk1rÞ f l

nðk2rÞ �
in

k3r
f l

nðk3rÞ

in

k1r
f l

nðk1rÞ
in

k2r
f l

nðk2rÞ f l
nðk3rÞ

ik1

k1
f l

nðk1rÞ
ik2

k2
f l

nðk2rÞ 0

0
BBBBBBB@

1
CCCCCCCA

, (B.5)

Yl
ðrÞ ¼�izlðrÞXl

ðrÞ, (B.6)

and zl, l¼ 1,4, follows from [17]:

zlðrÞ ¼

2c66 in2c66 ikzrc44

�in2c66 2c66 0

�ikzrc44 0 Zz

0
B@

1
CAþc0

x3ðy1�y2Þ inðy1�y2Þ ix3ðx1�x2Þ

�inðy1�y2Þ x2y1�x1y2 nðx1�x2Þ

�ix3ðx1�x2Þ nðx1�x2Þ 0

0
B@

1
CA, (B.7)

Zz ¼ c44
n2ðx1y1�x2y2Þ�x1x2x3ðy1�y2Þ

x3ðx2y1�x1y2Þ�n2ðy1�y2Þ

� �
Þ, yi ¼ kir ði¼ 1,2Þ,

c0 ¼
c66k2

3r2

x3ðx2y1�x1y2Þ�n2ðy1�y2Þ
, xj ¼ kjr

f l
nðkjrÞ

f l
nðkjrÞ

ðj¼ 1,2,3Þ: (B.8)

The formula for Xl follows by substituting the potentials (B.2) into Eq. (B.1) and agrees with Ahmad’s results [25]. The
derivation of the matrix zlðrÞ can be found in [17]. Note that z1ðrÞ ðl� 1Þ is the exact form of the conditional impedance of a
solid cylinder, i.e. with material at r¼0 and hence bounded displacements there [17].

The explicit form of the two-point impedance matrix (see Eq. (8)) of a given transversely isotropic layer is

Zk
ðrk,rk�1Þ ¼

Zk
1 Zk

2

Zk
3 Zk

4

0
@

1
A¼ �Y1

ðrk�1Þ �Y3
ðrk�1Þ

Y1
ðrkÞ Y3

ðrkÞ

" #
X1
ðrk�1Þ X3

ðrk�1Þ

X1
ðrkÞ X3

ðrkÞ

" #�1

: (B.9)

Eq. (B.9), which defines the impedance matrix Z, is similar to Eq. (7) of [9] (for the stiffness matrix K), and the first and the
second matrices on the right hand side of Eq. (B.9) are similar to the matrices Es

m and ðEu
mÞ
�1 in [9, Eqs. (5) and (3)]. One

reason why we prefer to use the impedance matrix Z rather than the stiffness matrix as in [9] is that the impedance is
always Hermitian: Z¼ Zþ .
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