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Abstract

Effective elastic moduli for 3D solid-solid phononic crystals of arbitrary anisotropy and oblique lattice
structure are formulated analytically using the plane-wave expansion (PWE) method and the recently pro-
posed monodromy-matrix (MM) method. The latter approach employs Fourier series in two dimensions
with direct numerical integration along the third direction. As a result, the MM method converges much
quicker to the exact moduli in comparison with the PWE as the number of Fourier coefficients increases.
The MM method yields a more explicit formula than previous results, enabling a closed-form upper bound
on the effective Christoffel tensor. The MM approach significantly improves the efficiency and accuracy
of evaluating effective wave speeds for high-contrast composites and for configurations of closely spaced
inclusions, as demonstrated by three-dimensional examples.

1. Introduction

Long-wave low-frequency dispersion of acoustic waves in periodic structures is of both fundamental and
practical interest, particularly due to the current advances in manufacturing of metamaterials and phononic
crystals. In this light, the leading order dispersion (quasistatic limit) has recently been under intensive
study by various theoretical approaches such as plane-wave expansion (PWE) [1, 2, 3], scaling technique
[4, 5], asymptotics of multiple-scattering theory [6, 7, 8] and a newly proposed monodromy-matrix (MM)
method [9]. The cases treated were mostly confined to scalar waves in 2D (two-dimensional) structures.
Regarding vector waves in 2D and especially in 3D phononic crystals, a variety of methods have been
proposed for calculating the quasistatic effective elastic properties of 3D periodic composites containing
spherical inclusions arranged in a simple cubic array. For the case of rigid inclusions an integral equation
on the sphere surface was solved numerically to obtain the effective properties [10]. Spherical voids [11] and
subsequently elastic inclusions were considered using a Fourier series approach [12]. Alternative procedures
for elastic spherical inclusions include the method of singular distributions [13] and infinite series of periodic
multipole solutions of the equilibrium equations [14]. The latter multipole expansion method has also been
applied to cubic arrays of ellipsoidal inclusions [15]. A particular PWE-based method of calculation of
quasistatic speeds in 3D phononic crystals of cubic symmetry has been formulated and implemented in
[16]. A review of numerical methods for calculating effective properties of composites can be found in [17,
§2.8,§14.11].

Of all the methods available for calculating effective elastic moduli the PWE method is arguably the
simplest and most straightforward to implement. It requires only Fourier coefficients of the inclusion in
the unit cell, which makes it the method of choice for many problems. Unfortunately, PWE is not a very
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practical tool for the 3D case, where the vectors and matrices in the Fourier space are of very large algebraic
dimension, especially if the phononic crystal is composed of highly contrasting materials (examples in §5
illustrate this critical drawback).

The present paper provides the PWE and MM analytical formulations of the 21 components of the
effective elastic stiffness for 3D solid-solid phononic crystals of arbitrary anisotropy and arbitrary oblique
lattice. While the PWE method is widely used in some fields its formulation for general anisotropic static
elasticity has, surprisingly, not been discussed before. The PWE is presented here in a compact form
(see Eq. (15)) suitable for numerical implementation. The main thrust of the paper is concerned with
the MM approach. The motivation for advocating this method as an alternative to the more conventional
PWE technique is, first, that the MM method ’spares’ Fourier expansion in one of the coordinates (this
is particularly advantageous for the 3D numerics) and, second, that the MM method has much faster
convergence than PWE. Comparison of the MM and PWE calculations provided in the paper confirms a
markedly better efficiency of the MM method.

The paper is organised as follows. In Section 2, the quasistatic perturbation theory is used to define
the effective Christoffel equation in the form which serves as the common starting point for the PWE and
MM methods. The PWE formulation of the effective elastic moduli follows readily and is also presented in
Section 2. The MM formulation is described in Section 3: the derivation of the MM formula is in §3.1 (see
also Appendix 1), its numerical implementation is discussed in §3.2, generalization to the case of an oblique
lattice is presented in §3.3 and the scheme for recovering the full set of effective elastic moduli is provided
in §3.4. A closed-form estimate of the effective Christoffel matrix is presented in Section 4. Examples of the
MM and PWE calculations are provided in Section 5. Concluding remarks are given in Section 6.

2. Background. PWE formula

Consider a 3D anisotropic medium with density and elastic stiffness

ρ(x) = ρ(x + ep), C(x) = C(x + ep), (1)

which are assumed to be 1-periodic, i.e. invariant to period or translation vectors ep = (δpq) (a cubic
lattice, otherwise see §3.3). All roman indices run from 1 to 3. In the following, ∗ and + mean complex
and Hermitian conjugation. Assume no dissipation so that the elements of C satisfy cijkl = c∗klij (= cklij
for real case). Our goal is the quasistatic effective elastic stiffness Ceff with elements ceff

ijkl that have the

same symmetries as those of C, and matrices Ceff
jl defined by analogy with Eq. (2). For compact writing,

introduce the matrices
Cjl = (cijkl)

3
i,k=1 = C+

lj (2)

with components numbered by i, k. The elastodynamic equation for time-harmonic waves v (x, t) = v(x)e−iωt

is
∂j(Cjl∂lv) = −ρω2v, (3)

where ∂j ≡ ∂/∂xj and repeated indices are summed. The differential operator in Eq. (3) is self-adjoint with
respect to the Floquet condition v(x) = u(x)eik·x with 1-periodic u(x) = u(x + ep) and k = kκκκ (|κκκ| = 1).
Substituting this condition in (3) casts it into the form

(C0 + kC1 + k2C2)u = ρω2u, where

C0u ≡ −∂j(Cjl∂lu), C1u ≡ −i(κjCjl∂l + κl∂jCjl)u, C2u ≡ κjκlCjlu.
(4)

All operators C are self-adjoint. We introduce for future use linear, areal and volumetric averages over the
unit-cell: 〈·〉j is the average over coordinate xj ; 〈·〉j is the average over the section orthogonal to xj , and 〈·〉
is the complete average. These averages in turn define inner products of vector-valued functions. Thus, for
a scalar function f and vector-functions f , h,

〈f〉j =

∫ 1

0

fdxj , 〈f〉 =

∫
[0,1]3

fdx, (f ,h)j = 〈h+f〉j , (f ,h) = 〈h+f〉. (5)
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Next we apply perturbation theory to (4) with a view to defining the quasistatic effective Christoffel
matrix whose eigenvalues yield the effective speeds

cα ≡ cα(κκκ) ≡ lim
k→0

ωα (k) /k, α = 1, 2, 3. (6)

For k = 0, the eigenvalue ω = 0 has multiplicity 3 and corresponds to three constant linear independent
eigenvectors u0α. Consider the asymptotics

ω2
α = 0 + kλ1α + k2λ2α +O(k3), (7a)

uα = u0α + ku1α + k2u2α + O(k3). (7b)

Substituting (7) into (4) and collecting terms with the same power of k yields

1 : C0u0α = 0, (8a)

k : C1u0α + C0u1α = ρλ1αu0α, (8b)

k2 : C2u0α + C1u1α + C0u2α = ρλ1αu1α + ρλ2αu0α. (8c)

Scalar multiplying (8b) by u0α and (8c) by ek, and using (C1u0α,u0α) = 0 together with self-adjointness of
C0 leads to

λ1α = 0; u1α = −C−1
0 C1u0α; (C2u0α, ek) + (C1u1α, ek) = 〈ρ〉λ2α(u0α, ek), k = 1, 2, 3, (9)

where λ2α = c2α due to λ1α = 0 and (6). Inserting u1α from (9)2 in (9)3 gives

Γu0α = 〈ρ〉c2αu0α, α = 1, 2, 3, (10)

where Γ = ((C2ek, ei)− (C−1
0 C1ek, C1ei))3

i,k=1. Substituting C1, C2 from (4) defines the quasistatic effective

3× 3 Christoffel matrix Γ = (Γik)
3
i,k=1 in the form

Γ(κ) = Ce
jlκjκl where Ce

jl ≡ 〈Cjl〉 − 〈(∂pC+
pj)C

−1
0 (∂qCql)〉

(
= Ce+

lj

)
. (11)

The matrix Ce
jl is distinguished from Ceff

jl , in terms of which the Christoffel matrix is

Γ(κ) = Ceff
jl κjκl =

1

2

(
Ceff
jl + Ceff

lj

)
κjκl. (12)

Comparison of Eqs. (11)1 and (12) implies that Ce
jl and Ceff

jl are related by

Ceff
jl + Ceff

lj = Ce
jl + Ce

lj (13)

and they are equal if j = l. Equation (11)2 does not yield Ceff
jl explicitly, only in the combination (13);

however, this connection is sufficient for the purpose of finding all elements of Ceff , as described in §3.4. For
now we focus on methods to calculate Ce

jl .

Equation (11)2 is still an implicit formula for the matrix Ce
jl in so far as the operator C−1

0 is not specified.
One way to an explicit implementation of (11)2 is via its transformation to Fourier space which must be
truncated to define C−1

0 as a matrix inverse. Thus taking the 3D Fourier expansion

Cjl(x) =
∑

g∈Z3
Ĉjl(g)e2πig·x, Ĉjl(g) = 〈Cjl(x)e−2πig·x〉 (14)

and plugging it into (11)2 yields the PWE formula for Ce
jl as follows

Ce
jl = Ĉjl(0)− q+

j C−1
0 ql, where qj = (giĈij(g))g∈Z3\0, C0 = (gkg

′
pĈkp(g − g′))g,g′∈Z3\0. (15)

This result corresponds to the quasistatic limit of the effective elastic coefficients for a dynamically homog-
enized periodic medium, see [18, eq. (2.11)].

Unfortunately, although the PWE formula (15) is straightforward, its numerical use in 3D is complicated
by the large algebraic dimensions of vectors and matrices of Fourier coefficients. This motivates using the
monodromy matrix (MM) method which confines the PWE computation to 2D, see next Section. The MM
method will also be shown to have significantly faster convergence than PWE.
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3. MM formula

3.1. Derivation

The idea underlying the MM method is to reduce the 3-dimensional problem of Eq. (11)2 to an equivalent
1-dimensional equation that can be integrated. This is achieved by focusing on a single coordinate and using
Fourier transforms in the orthogonal coordinates. The MM formula may be deduced proceeding from Eq.
(11)2; using integration by parts, let us recast it into the form

Ce
jl = 〈Cjl〉 − 〈(∂pC+

pj)U〉 = 〈Cjp∂pV〉, (16)

where we have denoted C−1
0 (∂qCql) = U and V = U + xlI3 with I3 standing for the 3× 3 identity matrix.

Thus we need to solve the equation

C0U = ∂qCql ⇔ C0U = −C0xlI3 ⇔ C0V = 0 ⇔ ∂q(Cqp∂pV) = 0 with V = U + xlI3. (17)

In the following derivation the indices j, l are regarded as fixed, all repeated indices are summed and among
them the indices a, b are specialized by the condition a, b 6= l. The suffix 0 of the differential operators
Q0, M0 below indicates their reference to ω, k = 0 (similarly to C0).

Equation (17) can be rewritten as an ordinary differential equation in the designated coordinate xl

Ξ′ = Q0 Ξ with ′ ≡ ∂l, Ξ =

(
V

Clp∂pV

)
, Q0 =

(
−B−1A1 B−1

A2 −A+
1 B−1A1 A+

1 B−1

)
, (18)

where Ξ is a 6× 3 matrix and the matrix operators B, A1 and A2 are defined by

BV = CllV, A1V = Clb∂bV, A2V = −∂a(Cab∂bV). (19)

Note that B and A2 are self-adjoint at any fixed xl with respect to the inner product (·, ·)l (see (5)). Denote
Ξ(s) ≡ Ξ(x) |xl=s. The solution to (18) with some initial matrix function Ξ (0) has the form

Ξ(xl) = M0(xl) Ξ (0) with M0(xl) =

∫̂ xl

0

(I + Q0dxl), (20)

where M0 is a propagator matrix defined through the multiplicative integral
∫̂

and I is the identity operator.
Note the identities

for W0 =

(
I3

0

)
, W̃0 =

(
0
I3

)
: Q0W0 = 0, Q+

0 W̃0 = 0 ⇒ M0W0 = W0, M+
0 W̃0 = W̃0. (21)

It is seen that for any value of xl the operator M0 − I has no inverse but at the same time it is a

one-to-one mapping from the subspace orthogonal to W0 onto the subspace orthogonal to W̃0. By the
definitions of V and Ξ in (17), (18) and due to periodicity of U, it follows that

Ξ(1) = Ξ(0) + W0 ⇒ Ξ(0) = (M0(1)− I)−1W0 ≡ S. (22)

Thus from (20), (22) and (18), (21),

Ξ(xl) = M0(xl)S ⇒ V = W+
0 M0(xl)S, Clp∂pV = W̃+

0 M0(xl)S. (23)

Substituting V obtained from (23) into (16) yields the desired formula for Ce
jl, which is discussed further

in §3.2.3. Note, since M is self-adjoint with respect to (·, ·)l,

〈Clp∂pV〉l = (M0(xl)S,W̃0)l = (S,M+
0 (xl)W̃0)l = (S,W̃0)l = 〈W̃+

0 S〉l. (24)

The latter identity implies that the laterally averaged ’traction’ component of Ξ(xl) is independent of xl,
and may be identified as a net ’force’ acting on the faces xl= constant.
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Further simplification can be achieved for the matrices Ceff
ll (= Ce

ll). By (16) and (58)

Ceff
ll = 〈Clp∂pV〉 = 〈W̃+

0 S〉 ≡ 〈W̃+
0 (M0(1)− I)−1W0〉l. (25)

Equation (25) suffices to define the effective Christoffel tensor for k = kκ parallel to the translation vector
el in which case Γ(κ) = Ceff

ll . Note that an alternative derivation of (25) is given in Appendix 1.
Finally it is noted that M0(1) which appears in the above expressions is formally a monodromy matrix

(MM) relatively to the coordinate xl, for which reason this approach and its outcome formulas are referred
to as the MM ones. The MM approach to finding effective speed of shear (scalar) waves in 2D structures
was first presented in [9], where Eq. (25) for vector waves was also mentioned but with neither derivation
nor discussion.

3.2. Implementation

3.2.1. Propagator matrix in direction el
As above, we fix l and keep a, b 6= l. Introduce the 2D Fourier expansion

Cpq(x) =
∑

g∈Z2
e2πigaxaĈpq(g, xl), Ĉpq(g, xl) = 〈Cpq(x)e−2πigaxa〉l. (26)

Operators B,A1,A2 and matrix operators Q,M0(xl) defined in (18)-(20) are represented in the 2D Fourier
space by the following infinite matrices truncated to a finite size in calculations:

B 7→ B = (Ĉll(g − g′, xl))g,g′∈Z2 , (27a)

A1 7→ A1 = 2πi(Ĉlb(g − g′, xl)g
′
b)g,g′∈Z2 , (27b)

A2 7→ A2 = 4π2(gaĈab(g − g′, xl)g
′
b)g,g′∈Z2 , (27c)

Q0 7→ Q0 =

(
−B−1A1 B−1

A2 −A+
1 B−1A1 A+

1 B−1

)
, (27d)

M0(xl) 7→ M0(xl) =

∫̂ xl

0

(I + Q0dxl). (27e)

3.2.2. Principal directions κ ‖ el
Consider the effective matrices Ceff

ll (= Γ if κ ‖ el). In view of the above notations, formula (25) for Ceff
ll

is expressed as

Ceff
ll = W̃+

0̂
Ŝ with Ŝ = (M0(1)− I)−1W0̂, (28)

where

W0̂ =

(
E0̂

0

)
, W̃0̂ =

(
0
E0̂

)
with E0̂ = (δg0I3)g∈Z2 . (29)

Calculation of Ŝ in (28) can be performed by means of calculating M0 from its definition (27e), using
any of the known methods for evaluating multiplicative integrals. However, this approach may suffer from
numerical instabilities for M0 of large size due to exponential growth of some components of M0. Another
method rests on calculating the resolvent (M0 − αI)−1 without calculating M0. The advantage of doing
so is due to the fact that growing dimension of M0 leads to a relatively moderate growth of the resolvent
components. Let us consider this latter method in some detail.

Denote the resolvent Rα(xl) = (M0(xl)−αI)−1 where α is not an eigenvalue of M0(xl). Since the matrix
M0(xl) satisfies the differential equation M′

0(xl) = Q0(xl)M0(xl) with the initial condition M0(0) = I, it
follows that Rα(xl) with a randomly chosen α 6= 1 satisfies a Riccati equation with initial condition as
follows {

R′α = −RαQ0(I + αRα),

Rα(0) = (1− α)−1I,
(30)
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where ′ = ∂l. Since eigenvalues of M0 usually tend to lie close to the real axis and unit circle, it is rec-
ommended to take α ∈ C far from these sets. Integrating Eq. (30) numerically (we used the Runge-Kutta
method of fourth order) provides Rα(1) = (M0(1)−αI)−1 where α 6= 1. To exploit it for finding Ceff

ll given
by (28) we use the identity

Ŝ ≡ (M0(1)− I)−1W0̂ = (I + (α− 1)Rα(1))−1Rα(1)W0̂ = (I + (α− 1)Rα(1))−1 W0̂

1− α
. (31)

Thus Ŝ is found from the linear system

(1− α)
(
I + (α− 1)Rα(1)

)
Ŝ = W0̂. (32)

To solve (32), we first note that the matrix T ≡ (1− α)
(
I + (α − 1)Rα(1)

)
satisfies TW0̂ = 0, W̃+

0̂
T = 0

with W0̂, W̃0̂ from (29) and thus has 3 zero columns on the left of its vertical midline and 3 zero rows below

the horizontal midline. Removing these columns and rows yields the reduced matrix T̃ =
(
T1 T2

T3 T4

)
where

the square block T3 has 3 rows and 3 columns less than the block T2. Since T3 is numerically large, while
T1,T4 are medium and T2 small, it is convenient to apply Schur’s formula to arrive at the final relation in
the form

Ceff
ll = E+

0̂

(
T2 −T1T

−1
3 T4

)−1
E0̂. (33)

3.2.3. Off-principal directions

Consider k = kκ of arbitrary orientation relatively to the translations el. In order to find the effective
Christoffel tensor Γ(κ) of Eq. (12) for arbitrary κ (∦ el), we need to calculate Ce

jl with j 6= l. Applying the
2D Fourier expansion to Eqs. (16) and (23) yields

Ce
jl = 〈E+

0̂
(A1 + Cjl∂l)V̂〉l = Ceff

ll + 〈E+

0̂
(Cll −Cjl)B

−1(A1V̂ − N̂)〉l, where

(
V̂

N̂

)
= M0(xl)Ŝ (34)

and Cjp = (Ĉjp(g − g′, xl))g,g′∈Z2 with g = (ga gb) and a, b 6= l. As detailed above, the matrix Ŝ

can be calculated with a very good precision. Evaluation of V̂(xl) and N̂(xl) is no longer that accurate,
particularly for high-contrast structures which require many terms in the Fourier series and hence need M0

of large algebraic dimension and therefore with large values of some components. Thus a negligible error
in S may become noticeable after multiplying by M0. In this regard, we present an alternative method of
calculating Ce

jl with j 6= l which circumvents (34).
For the fixed functions ρ(x) and cijkl (x) with a given cubic lattice of periods ep = (δpq), introduce the

new periods ap = Aep where A has integer components aij . The solutions v(x) = u(x)eik·x and ω (k) of
the wave equation (3) remain unaltered, as they do not depend on the choice of periods. But now in order
to define Ceff

jl by the MM formula (which requires periods to coincide with base vectors) we should apply the
change of variables x→ Ax that leads, as explained in §3.3, to new functions for the density and elasticity
with the periods ep = (δpq). According to Eqs. (49) and (56) of §3.3,

Ceff
pq = apjC̃

eff
jl aql = apjAC

eff

jl A+aql

(
⇔ C̃eff

jl = bjpC
eff
pq blq, C

eff

jl = bjpBCeff
pqB

+blq

)
(35)

where C̃eff
jl and C

eff

jl are the effective matrices associated with the new profiles c̃ijkl(x) = bjpblqcipkq(Ax)

and cijkl(x) = bimbjpbknblqcmpnq(Ax), respectively, and bij stand for components of A−1. We may apply
(35) successively for each of the transformations ap = Ajep, j = 1, 2, 3,

A1 =

1 0 0
0 1 −1
0 1 1

⇔ a1 = e1,

a2 = e2 + e3,

a3 = −e2 + e3,

A2 =

 1 0 1
0 1 0
−1 0 1

⇔ ..., A3 =

1 −1 0
1 1 0
0 0 1

⇔ ... . (36)
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Using the inverse forms in (35) leads to a variety of identities, for instance,

Ceff
23 + Ceff

32 = 4(C̃eff
22 )A1 −Ceff

22 −Ceff
33 = 4(AC

eff

22 A+)A1 −Ceff
22 −Ceff

33 ,

Ceff
31 + Ceff

13 = 4(C̃eff
33 )A2

−Ceff
33 −Ceff

11 = 4(AC
eff

33 A+)A2
−Ceff

33 −Ceff
11 ,

Ceff
12 + Ceff

21 = 4(C̃eff
11 )A3 −Ceff

11 −Ceff
22 = 4(AC

eff

11 A+)A3 −Ceff
11 + Ceff

22 .

(37)

Inserting (37) in (12) eliminates Ceff
jl + Ceff

lj with j 6= l and expresses the effective Christoffel tensor Γ fully

in terms of the matrices Ceff
ll and either of (C̃eff

ll )An or (C
eff

ll )An (n = 1, 2, 3), which are defined by Eqs. (25),
(28) with cijkl (x) replaced by c̃ijkl (x) or cijkl (x), respectively. Thus all calculations have been reduced to
the form (28) which ensures a numerically stable evaluation of Γ.

Note that the transformed elasticity cijkl(x) retains the usual symmetries under the interchange of
indices, while c̃ijkl(x) does not (see §3.3). Also, the transformations defined by (36) for the cubic unit cell
can be identified as rotations by virtue of the fact that 1√

2
Aj , j = 1, 2, 3, are orthogonal matrices of unit

determinant. Hence, apart from a factor of 1
4 ,
(
cijkl(x)

)
Aj

is precisely the elasticity tensor represented in a

coordinate system rotated about the axis ej by π
4 from the original.

3.3. The case of an oblique lattice

3.3.1. Equivalent problem on a cubic lattice

Consider the problem of quasistatic asymptotics of the wave equation (3) for the general case of a 3D
periodic elastic medium with

ρ(x) = ρ (x + ap) , cijkl(x) = cijkl (x + ap) , (38)

where the translation vectors ap form an oblique lattice. We will define the solution of this problem via the
solution for a simpler case of a cubic lattice.

The oblique lattice vectors are defined by a matrix A ( 6= I) as

ap = Aep with A = (apq)
3
p,q=1 = (ap · eq)3

p,q=1 ; B ≡ A−1 = (bpq)
3
p,q=1 (39)

where ep are the orthonormal vectors used previously. Define the new or transformed position variable
x′ = Bx (⇔ x = Ax′), the associated displacement ṽ(x′) = v(x) and material parameters ρ̃(x′) = ρ(x),

c
(1)
ijkl(x

′) = cijkl(x), which are seen to be periodic in x′ with respect to the vectors ep. Setting C
(1)
jl =(

c
(1)
ijkl

)3
i,k=1

, the equation of motion (3) becomes

bjpblq ∂j′
(
C(1)
pq ∂l′ ṽ

)
= −ρ̃ω2ṽ, (40)

where ∂j′ ≡ ∂/∂x′j . Using the fact that B is constant allows it to be removed explicitly from (40) by
incorporation into a newly defined stiffness tensor. Thus, replacing x′ → x we have

∂j(C̃jl∂lṽ) = −ρ̃ω2ṽ, (41)

where ṽ(x) = v(Ax) and the material parameters are

ρ̃(x) = ρ(Ax) (= ρ̃(x + ep)) ,

c̃ijkl(x) = bjpblqcipkq(Ax) (= c̃ijkl(x + ep)) ,

C̃jl(x) = (c̃ijkl)
3
i,k=1 = bjpblqCpq(Ax) = C̃+

lj(x),

(42)

which are periodic in x with respect to the cubic lattice formed by vectors ep. Note that the tensor c̃ijkl for
A 6= I is of Cosserat type in that it is not invariant to permutations of indices i� j and k � l but retains
the major symmetry c̃ijkl = c̃∗klij (= c̃klij for real case).
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The Floquet condition v(x) = eik·xu(x) with periodic u(x) = u(x + aj) satisfying

−(∂l + ikl)Clq(∂q + ikq)u = ρω2u (43)

is equivalent to the condition ṽ(x) = eik̃·xũ(x)with periodic ũ(x) satisfying the equation that follows from
(40),

−(∂l + ik̃l)C̃lq(∂q + ik̃q)ũ = ρ̃ω̃2ũ, (44)

where
k̃ = A+k ( = k̃κ̃, |κ̃| = 1), ω̃(k̃) = ω(k), ũ(x) = u(Ax) (= ũ(x + ep)) . (45)

Equation (44), which is defined on a cubic lattice, has quasistatic asymptotics as described above. According
to (10),

Γ̃ũ0α = 〈ρ̃〉c̃2αũ0α with c̃α(κ̃) ≡ lim
k̃→0

ω̃α(k̃)/k̃, α = 1, 2, 3, (46)

where Γ̃(κ̃) = κ̃j κ̃lC̃
eff
jl . Let us write a similar relation for the quasistatic asymptotics of (43),

Γu0α = 〈ρ〉c2αu0α with cα(κ) ≡ lim
k→0

ωα(k)/k, (47)

where k = kκ ( |κ| = 1) and Γ(κ) is to be determined. Comparing (46) and (47) with regard for (45) and
making use of the equality 〈ρ̃〉 ≡

∫
[0,1]3

ρ(Ax)dx = 〈ρ〉, we find that

1

〈ρ〉
k2Γ =

1

〈ρ̃〉
k̃2Γ̃ ⇒ Γ =

〈ρ〉
〈ρ̃〉

k̃j k̃l
k2

C̃eff
jl = κpapjC̃

eff
jl aqlκq (48)

and hence
Γ(κ) = Ceff

pqκpκq : Ceff
pq = apjC̃

eff
jl aql

(
⇔ C̃eff

jl = bjpC
eff
pq blq

)
. (49)

3.3.2. Alternative formulation using anisotropic mass density

Premultiplication of Eq. (41) by B allows it to be reformulated as

∂j(Cjl∂lv) = −ρω2v, (50)

where v and the material parameters are

v(x) = A+v(Ax)
(

= A+ṽ(x)
)
,

ρ(x) = BB+ρ(Ax) = BB+ρ̃(x) = ρ+(x) (= ρ(x + ep)) ,

cijkl(x) = bimbjpbknblqcmpnq(Ax) (= cijkl(x + ep)) ,

Cjl(x) = (cijkl)
3
i,k=1 = bjpblqBCpq(Ax)B+ = BC̃pq(x)B+ = C

+

lj(x),

(51)

which are periodic in x with respect to the cubic lattice of vectors ep. Note that the tensor cijkl retains the
major and minor symmetries of normal elasticity, cijkl = c∗klij and cijkl = cjikl, while the mass density is no
longer a scalar but becomes a symmetric tensor.

The Floquet condition now becomes v(x) = eik·xu(x) with periodic u(x) satisfying

−(∂l + ikl)Clq(∂q + ikq)u = ρω2u, (52)

where
k = A+k ( = kκ, |κ| = 1), ω(k) = ω(k), u(x) = A+u(Ax) (= u(x + ep)) . (53)

Its quasistatic asymptotics are

Γu0α = 〈ρ〉c2αu0α with cα(κ) ≡ lim
k→0

ωα(k)/k, α = 1, 2, 3, (54)
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where Γ(κ) = κjκlC
eff

jl . Comparing (47) and (54) with regard for (53) and making use of the equality
〈ρ〉 = BB+〈ρ̃〉 = BB+〈ρ〉, we find that

〈ρ〉−1k2Γ =〈ρ〉−1k
2
AΓA+ ⇒ Γ = κpapjAC

eff

jl A+aqlκq (55)

and hence
Ceff
pq = apjAC

eff

jl A+aql

(
⇔ C

eff

jl = bjpBCeff
pqB

+blq

)
. (56)

3.3.3. Summary of the oblique case

Given material constants ρ(x) and cijkl(x) on an oblique lattice we first identify the matrix A of (39).
We may proceed in either of two ways based on Cosserat elasticity with isotropic density, or normal elasticity
with anisotropic density. In each case we define material properties on a cubic lattice: ρ̃(x), C̃jl(x) from

Eq. (42) or ρ(x), Cjl(x) from Eq. (51), respectively. Then use the formulas of §3 to obtain C̃jl(x) → C̃eff
jl

or Cjl(x) → C
eff

jl , and finally insert the result into (49) or (56) to arrive at the sought effective Christoffel
matrix Γ as a function of unit direction vector κ in the oblique lattice. Knowing Γ(κ) yields the effective
speeds cα(κ) according to (47). Note that although the formulation in §2 was restricted to isotropic density,
the quasi-static effective elasticity is the same if one replaces the isotropic density tensor ρ(x)I by the
anisotropic density ρ(x)J with J = J+ constant positive definite. In the case of the anisotropic density
formulation for the oblique lattice J = BB+.

3.4. Calculating the effective elastic moduli.

We return to the question of the full determination of ceff
ijkl from the Christoffel tensor, or more specifically,

from D defined by

dikjl =
1

2

(
ceff
ijkl + ceff

ilkj

)
. (57)

The elements of D satisfy the same symmetries as those of C (dikjl = djlik = diklj) and they follow from
Eq. (13) as

(dikjl)
3
i,k=1 =

1

2

(
Ceff
jl + Ceff

lj

)
=

1

2

(
Ce
jl + Ce

lj

)
≡ Djl

(
= Dlj

)
. (58)

Define the ’totally symmetric’ part of Ceff as ceff,s
ijkl = 1

3

(
ceff
ijkl + ceff

ikjl + ceff
iljk

)
. This is seen to be equal to the

totally symmetric part of D defined in (57), i.e. Ceff,s = Ds where ds
ijkl = 1

3

(
dijkl + dikjl + diljk

)
. Equation

(57) can then be rewritten as [19]

D =
3

2
Ceff,s − 1

2
Ceff ⇒ Ceff = 3Ds − 2D. (59)

The latter inverse relation may be simply represented in Voigt notation as
ceff
11 ceff

12 ceff
13 ceff

14 ceff
15 ceff

16

ceff
22 ceff

23 ceff
24 ceff

25 ceff
26

ceff
33 ceff

34 ceff
35 ceff

36

ceff
44 ceff

45 ceff
46

S Y M ceff
55 ceff

56

ceff
66

 =


d11 2d66 − d12 2d55 − d13 2d56 − d14 d15 d16

d22 2d44 − d23 d24 2d46 − d25 d26

d33 d34 d35 2d45 − d36

d23 d36 d25

SYM d13 d14

d12

 .

(60)

This one-to-one correspondence between the elements Ceff and D, combined with the identity (58), provides
the means to find the effective moduli from Ce

jl.
It remains to determine the full set of elements dijkl from Christoffel tensors for a given set of directions.

It is known that data for at least six distinct directions are required [20, 21]. The necessary and sufficient
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condition that a given sextet {Γ(α) ≡ Γ(κα), α = 1, .., 6} will yield the full elastic moduli tensor is that
the six directions {κα} do not lie on a cone through the origin and cannot be contained in less than three
distinct planes through the origin [21]. The set {κα} = {e1, e2, e3,

1√
2
A1e2,

1√
2
A2e3,

1√
2
A3e1} (see (36))

meets this requirement (and is in fact the set first proposed in [20]). Thus the complete set of dijkl follows
from [21, Eq. (3.17)] (see Eq. (58))

Djl =

3∑
α=1

Γ(α)
(
καj κ

α
l − 1√

2
(κα+3
j καl + καj κ

α+3
l )

)
+

3∑
α,β=1

β>α

Γ(9−α−β)(καj κ
β
l + κβj κ

α
l ). (61)

The equivalent form of (61) in Voigt notation is


d11 d12 d13 d14 d15 d16

d22 d23 d24 d25 d26

d33 d34 d35 d36

d44 d45 d46

S Y M d55 d56

d66

 =



Γ
(1)
11 Γ

(2)
11 Γ

(3)
11 Γ

(4)
11 Γ

(5)
11 Γ

(6)
11

Γ
(1)
22 Γ

(2)
22 Γ

(3)
22 Γ

(4)
22 Γ

(5)
22 Γ

(6)
22

Γ
(1)
33 Γ

(2)
33 Γ

(3)
33 Γ

(4)
33 Γ

(5)
33 Γ

(6)
33

Γ
(1)
23 Γ

(2)
23 Γ

(3)
23 Γ

(4)
23 Γ

(5)
23 Γ

(6)
23

Γ
(1)
31 Γ

(2)
31 Γ

(3)
31 Γ

(4)
31 Γ

(5)
31 Γ

(6)
31

Γ
(1)
12 Γ

(2)
12 Γ

(3)
12 Γ

(4)
12 Γ

(5)
12 Γ

(6)
12




1 0 0 0 − 1

2 − 1
2

0 1 0 − 1
2 0 − 1

2
0 0 1 − 1

2 − 1
2 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

(62)

The full set of ceff
ijkl can therefore be obtained from Eqs. (60) and (62) with (see Eq. (37))

Γ(1) = Ceff
11 , Γ(2) = Ceff

22 , Γ(3) = Ceff
33 ,

Γ(4) = 2(AC
eff

22 A+)A1
, Γ(5) = 2(AC

eff

33 A+)A2
, Γ(6) = 2(AC

eff

11 A+)A3
.

(63)

Other procedures for inverting a set of compatible Christoffel tensors to give the moduli can be found in
[21].

4. Closed-form upper bound of the effective Christoffel tensor

Let N ≥ 0 be the truncation parameter of the 3D or 2D Fourier expansion of Cjl(x), meaning that the
index g in (14) or (26) takes the values from the set [−N,N ]3 or [−N,N ]2, respectively. Denote truncated
approximations of the effective Christoffel tensor Γ (κ) = Ceff

jl κjκl calculated from (11)1 via the PWE and
MM formulas by Γ [N ]PWE and Γ [N ]MM, respectively. By analogy with [22], it can be proved that

N1 ≤ N2 ⇒ Γ [N1]MM ≥ Γ [N2]MM , Γ [N1]PWE ≥ Γ [N2]PWE ;

∀N ⇒ Γ ≤ Γ [N ]MM ≤ Γ [N ]PWE ,
(64)

where the inequality sign between two matrices is understood in the sense that their difference is a sign defi-
nite matrix and hence the differences of their similarly ordered eigenvalues are sign definite. The inequalities
(64)1 imply that the MM and PWE approximations of Γ obtained by truncating Eq. (11)1 are upper bounds
which converge from above to the exact value with growing N . Furthermore, the MM approximation of Γ
is more accurate than the PWE one at a given N , from (64)2.

Taking N = 0 in (64)2 yields
Γ ≤ Γ [0]MM ≤ Γ [0]PWE = 〈Γ〉 , (65)

where Γ [0]MM admits an explicit expression which is however rather cumbersome. Seeking a simpler result,
consider the above inequalities for one of the principal directions κ ‖ el so that Γ (κ) = Ceff

ll . Denote the
PWE and MM approximations (15) and (28) of Ceff

ll by Ceff
ll [N ]PWE and Ceff

ll [N ]MM . From (65),

Ceff
ll ≤ Ceff

ll [0]MM ≤ Ceff
ll [0]PWE = 〈Cll〉 , (66)
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where Ceff
ll [0]MM admits closed-form expression as follows. From (27d) and (27e) taken with N = 0 (i.e.

with g,g′ = 0),

Q0 [0] =

(
0 〈Cll〉−1

l
0 0

)
⇒ M0(1) =

(
I3 〈〈Cll〉−1

l
〉l

0 I3

)
, (67)

so that (28) with N = 0 yields

Ceff
ll [0]MM =

(
0 I3

)
S[0] ≡ S2 with S[0] =

(
0 〈〈Cll〉−1

l
〉l

0 0

)−1(
I3

0

)
≡
(

S1

S2

)
. (68)

Solving for S2 gives (
0 〈〈Cll〉−1

l
〉l

0 0

)(
S1

S2

)
=

(
I3

0

)
⇒ S2 = 〈〈Cll〉−1

l
〉−1
l . (69)

Thus from (66), (68) and (69),
Ceff
ll ≤ 〈〈Cll〉−1

l
〉−1
l ≤ 〈Cll〉 (70)

where 〈Cll〉 is identifiable as the Voigt average [17], known to provide an upper bound. The upper bound
provided by the first inequality in (70) has not to our knowledge been presented before.

Combining the new bound from (70) with the Voigt inequality Ceff
al ≤ 〈Cal〉 (a 6= l) yields

Γ(κ) ≤ ΓB(κ) ≡ (〈Cal〉κaκl)a6=l + 〈〈Cll〉−1

l
〉−1
l κ2

l , (71)

where the subscript ”B” implies bound. Denote the eigenvalues of the matrix ΓB by 〈ρ〉 c2Bα and order them
in the same way as the eigenvalues 〈ρ〉 c2α of Γ, then it follows that

cα(κ) ≤ cBα(κ), α = 1, 2, 3. (72)

It will be demonstrated in §5 that the upper bounds cBα of the effective speeds can also serve as their
reasonable estimate.
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a)

f
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cl(Ep)

ct(Ep)

ct(St)
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N=3N=3
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b)

Figure 1: (a) A cubic lattice of symmetric steel cubes in Epoxy at filling fraction f = 1/8. (b) Effective wave speeds as a
function of f . The PWE and MM calculated values are plotted by thin and thick lines (light blue and red online), respectively.
The broad curves indicate the Hashin-Shtrikman lower bounds.

5. Numerical examples

We consider two examples of 3D phononic crystals composed of steel inclusions in epoxy matrix. The
material parameters are c11 (St) = 170 GPa, c66 (St) = 80 GPa, ρ (St) = 7.7 g/cm3 for steel and c11 (Ep) =
7.537 GPa, c66 (Ep) = 1.482 GPa, ρ (Ep) = 1.142 g/cm3 for epoxy. This implies cl (St) = 4.7 mm/µs,
ct (St) = 3.22 mm/µs and cl (Ep) = 2.57 mm/µs, ct (Ep) = 1.14 mm/µs for the longitudinal and transverse

speeds. The number of Fourier modes is (2N + 1)
3

for the PWE method and (2N + 1)
2

for the MM method;
we performed the calculations for N = 0, 3, 5.

The first example assumes a cubic lattice of cubic steel inclusions (Fig. 1a). We present the effective
longitudinal and transverse speeds cl and ct in the principal direction as functions of the volume fraction
of steel inclusions (Fig. 1b). The curves calculated by the PWE method are plotted by thin lines (light
blue and red online), the curves calculated by the MM method are plotted by thick lines (dark blue and
red online). For each method, we present three different data obtained with N = 0, N = 3 and N = 5
(dotted, dashed and solid lines, respectively). The Hashin-Shtrikman lower bounds [23] are also plotted
(the Hashin-Shtrikman upper bounds lie far above the other curves and are not displayed). It is observed
from Fig. 1b that the results of both methods monotonically converge from above to the exact value with
growing N in agreement with the general statement of §4. What is significant is that the convergence of the
MM method is seen to be much faster than that of the PWE method. In fact, the explicit MM estimate for
N = 0 which follows from (70) in the form

c2l =
1

〈ρ〉

〈
〈c11〉−1

1

〉−1

1
, c2t =

1

〈ρ〉

〈
〈c66〉−1

1

〉−1

1
, (73)

provides a much better estimate for cl and ct at f > 0.5 than the PWE calculation with N = 5, i.e. with
matrices of about 4000×4000 size. Note that as f → 1 in the example of Fig. 1, the bound (70) may be
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approximated, yielding

ceff
11 /

( 1

c11(St)
+

1− f1/3

c11(Ep)

)−1

. (74)

At the same time the geometry of the unit cell for f → 1 indicates that the modulus ceff
11 can be estimated by

an equivalent medium stratified in the 1−direction, for which the uniaxial strain assumption with constant
stress σ11 leads to the approximation ceff

11 ≈ 〈c−1
11 〉−1, the same as the right hand side of (74) (as f → 1).

This, combined with the fact that 1−f1/3 tends to zero faster than 1−f as f → 1, explains the exceptional
accuracy of the new bound as an estimate for the moduli. Note that, by comparison, the Hashin-Shtrikman
bounds (upper or lower) do not provide a useful estimate in this case.

a) b)

Figure 2: A cubic lattice of Steel spheroids in Epoxy matrix. (a) The inclusions are oblate spheroids with minor axis a and
unit major axes. (b) The periodic structure for a = 0.5 and a = 1 (spheres).

The second example considers a cubic lattice of spheroidal steel inclusions in epoxy matrix. The shape
of the inclusion evolves from formally a disk of unit diameter to a ball of unit diameter (that is, inscribed
in a cubic unit cell) by means of elongating the radius along the x1 direction, see Fig. 2. We describe the
dependence of the effective speeds cl and ct along x1 and of the corresponding effective elastic moduli c11

and c66 on the shape of the spheroidal inclusion. Fourier coefficients for the PWE and MM methods are
given in Appendix 2. The results are obtained by the PWE method with N = 3 and N = 5 (open circles
in Fig. 3) and by the MM method with N = 0, N = 3 and N = 5 (dotted, dashed and solid lines in Fig.
3). The MM method is particularly efficient for the case in hand since it uses Fourier coefficients in the
x2x3 plane where the inclusions have circular cross-section and performs direct numerical integration of the
Riccati equation (see §3.2) along the direction x1 where the shape is ’distorted’. We observe an interesting
feature of a drastic increase of the effective longitudinal speed cl and of the modulus c11 when the inclusions
tend to touch each other, see Fig. 3a. This type of configuration where the inclusions are almost touching
is known to be particularly difficult for numerical calculation of the effective properties [10]. MM appears
to be particularly well suited to treating such problems with closely spaced inclusions since it explicitly
accounts for the thin gap region via integration of the Riccati equation. The PWE method, on the other
hand, clearly fails to capture the sharp increase in wave speed at N = 5 (matrix size ≈ 4000×4000). In fact,
the PWE for N = 3 does not even satisfy the strict upper bounds (73) derived from MM at N = 0.
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Figure 3: (a) Effective wave speeds for the periodic structure of Fig. 2 as a function of the spheroid minor axis a calculated by
the PWE and MM methods. (b) The corresponding elastic moduli.

6. Conclusion

The PWE and MM methods of calculating quasistatic effective speeds in three-dimensional phononic
crystals have been formulated and compared. The MM method can be viewed as a two-dimensional PWE
combined with a one-dimensional propagator matrix approach. The propagator part of the MM scheme is
calculated by numerical integration of a (nonlinear) Riccati differential equation to produce the monodromy
matrix.

It was shown both analytically and numerically that the MM method provides more accurate approxi-
mations than the PWE scheme. In particular, the closed form MM bounds (70) (see also (73)) using only
one Fourier mode to estimate the effective speed gives better approximations than PWE bounds using more
than a thousand (eleven in each of xi, i = 1, 2, 3) Fourier modes in the case of densely packed structures
(see Fig. 1b for f > 0.5).

The speed-up of the MM method as compared with PWE via reduction in matrix size is particularly
significant for the three-dimensional homogenization problem. Thus, numerical implementation of the PWE
scheme needs a matrix of dimension 3(2N + 1)3× 3(2N + 1)3, requiring a considerable amount of computer
memory even for small N . By contrast, the MM scheme uses matrices of dimension 6(2N+1)2×6(2N+1)2.
The reduced memory requirement for the MM method is at the cost of the computer time needed to solve the
Riccati equation, a relatively small price to pay. In fact, the ability to set the step size in the Runge-Kutta
scheme enables the MM method to efficiently and accurately solve configurations for which the PWE is
particularly ill-suited, such as narrow gaps (see Fig. 1b for f → 1) and closely spaced inclusions (Fig. 3 for
a→ 1).
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Appendix

Appendix 1. Alternative derivation of Eq. (25) for Ceff
ll .

Let k be parallel to one of the translation vectors. Take the latter to be e1 = (δ1i) and so k = (k1, 0, 0).
Equation (3) may be rewritten in the form

η′ = (Q0 + ω2Q1)η where ′ ≡ ∂1, η =

(
v

C1p∂pv

)
, Q1 =

(
0 0
−ρI3 0

)
, (75)

while Q0 is defined in (18) and (19) with j = 1 and a, b = 2, 3. Denote η (x1) ≡ η(x1, x2, x3). The solution
to (75) with some initial function η (0) can be written via the matricant in the form

η (x1) = M(x1)η (0) with M(x1) =

∫̂ x1

0

(I + (Q0 + ω2Q1)dx1). (76)

Taking into account assumed 1-periodicity in x1 and hence the Floquet condition v = eik1x1u for the
solution of (3) implies that the solution η of (75) must satisfy η(1) = eik1η(0). Thus, with reference to (76),
ω(k1, 0, 0) ≡ ω(k1) is an eigenvalue of (3) iff there exists w ≡ w(x2, x3) such that

M(1)w = eik1w. (77)

Consider asymptotic expansion of (77) in small ω, k1. By (76),

M(1) = M0 + ω2M1 +O(ω4) where

M0 ≡M0 [1, 0] , M0 [b, a] =
∫̂ b
a
(I + Q0dx1), M1 =

∫ 1

0

M0 [1, x1]Q1M0 [x1, 0] dx1.
(78)

The identity M0W0 = W0 with the 6× 3 matrix W0 = (I3 0)
+

(see (21)) implies triple multiplicity of the
zero-order ω = 0. Therefore we may write

ωα(k1) = cαk1 +O(k2
1), wα = w0α + k1w1α + k2

1w2α + O(k3
1) with w0α = W0u0α, (79)

where α = 1, 2, 3 and u0α are some constant linear independent 3×1 vectors. Inserting (78)-(79) along with
eik1 = 1 + ik1 − 1

2k
2
1 +O(k3

1) in (77) and equating the terms of the same order in k1 yields

1 : M0w0α = w0α, (80a)

k1 : M0w1α = iw0α + w1α, (80b)

k2
1 : M0w2α + c2αM1w0α = −1

2
w0α + iw1α + w2α. (80c)

Express w1α from (80b) and substitute it in (80c), then scalar multiply the latter by the 6 × 3 matrix

W̃0 = (0 I3)
+

satisfying the identity M+
0 [b, a] W̃0 = W̃0 (see (21)). As a result, we obtain

Ceff
11 = 〈W̃+

0 (M0 − I)−1W0〉1 for κ = e1 = (δ1i) . (81)

It is seen that (25) with M0 (1) ≡M0 and l = 1 is the same as (81), QED.

Appendix 2. Fourier coefficients for spheroidal inclusions

The coefficients for the spheroids of Fig. 2a are as follows:
1. MM method. Identity (27) yields

Ĉpq(g2, g3, x1) =

{
Cpq(Ep), x1 6∈

[
1−a

2 , 1+a
2

]
,

Cpq(Ep) + (Cpq(St)−Cpq(Ep))χ̂1(g2, g3, x1), x1 ∈
[

1−a
2 , 1+a

2

]
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with

χ̂1(g2, g3, x1) = (−1)g2+g3
RJ1(2πR

√
g2

2 + g2
3)√

g2
2 + g2

3

, R2 = 1− (2x1 − 1)2

a2
,

where J1 is the first order Bessel function.
2. PWE method. Identity (13) yields

Ĉpq(g) = Cpq(Ep)δg0 + (Cpq(St)−Cpq(Ep))χ̂2(g),

where

χ̂2(g) =
a(−1)g1+g2+g3

2π2|ga|3
(sin(π|ga|)− π|ga| cos(π|ga|)), |ga| =

√
(ag1)2 + g2

2 + g2
3

and δ is a Kronecker symbol.
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