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Hyperelastic cloaking theory: transformation
elasticity with pre-stressed solids
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Transformation elasticity, by analogy with transformation acoustics and optics, converts
material domains without altering wave properties, thereby enabling cloaking and related
effects. By noting the similarity between transformation elasticity and the theory of
incremental motion superimposed on finite pre-strain, it is shown that the constitutive
parameters of transformation elasticity correspond to the density and moduli of small-
on-large theory. The formal equivalence indicates that transformation elasticity can be
achieved by selecting a particular finite (hyperelastic) strain energy function, which for
isotropic elasticity is semilinear strain energy. The associated elastic transformation is
restricted by the requirement of statically equilibrated pre-stress. This constraint can
be cast as trF = constant, where F is the deformation gradient, subject to symmetry
constraints, and its consequences are explored both analytically and through numerical
examples of cloaking of anti-plane and in-plane wave motion.

Keywords: cloaking; hyperelastic; elastic waves; pre-stress

1. Introduction

The principle underlying cloaking of electromagnetic and acoustic waves is the
transformation or change-of-variables method (Greenleaf et al. 2003, Pendry et al.
2006), whereby the material properties of the cloak are defined by a spatial
transformation. While the first applications were to electromagnetism, e.g.
(Schurig et al. 2006), it was quickly realized that the same mathematical methods
work equally well in acoustics (Cummer & Schurig 2007, Chen & Chan 2007,
Cummer et al. 2008). The fundamental identity underlying electromagnetic and
acoustic transformation is the observation that the Laplacian in the original
coordinates maps to a differential operator in the physical coordinates that
involves a tensor which can be interpreted as the new, transformed, material
properties (Greenleaf et al. 2007). The equivalence between the Laplacian in
the original coordinates and the new operator involves an arbitrary divergence-
free tensor (Norris 2008), implying for the acoustic case that the transformed
material properties are not unique. For a given transformation function, one
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can achieve acoustic cloaking by a variety of materials, ranging from fluids with
anisotropic inertia, to quasi-solids with isotropic density but anisotropic stiffness
(Norris 2008, 2009). Non-uniqueness of the material properties does not apply in
the electromagnetic case, where, for instance, the permittivity and permeability
tensors must be proportionate for a transformation of the vacuum.

A crucial aspect of transformation optics and acoustics is that the mapped
properties correspond to exotic material properties far removed from the realm
of the original material. This aspect is accentuated in transformation elasticity.
In the first study of transformation theory to elastodynamics, Milton et al. (2006)
concluded that the transformed materials are described by the Willis model. This
constitutive theory for material response is dispersive, involving coupling between
stress and velocity, in addition to anisotropic inertia (Willis 1997, Milton & Willis
2007). Brun et al. (2009) considered the transformation of isotropic elasticity in
cylindrical coordinates and found transformed material properties with isotropic
inertia and elastic behaviour of Cosserat type. The governing equations for
Cosserat elastic materials (Cosserat & Cosserat 1909) are the same as those
of ‘normal’ linear elasticity except that the elastic moduli do not satisfy the
minor symmetry, i.e. C eff

jikl �= C eff
ijkl (although they do satisfy the major symmetry

C eff
klij = C eff

ijkl). This implies a non-symmetric stress, st �= s which depends not only
on the strain e (the symmetric part of the displacement gradient) but also on the
local rotation 1

2(Vu − (Vu)t).
A thorough analysis of transformation theory for elasticity (Norris & Shuvalov

2011) indicates that, as in acoustics, the range of mapped material properties
is highly non-unique, thus explaining the divergence in the previously obtained
results (Milton et al. 2006; Brun et al. 2009). The transformed elastodynamic
constitutive parameters may be characterized through their dependence on
(i) the transformation (mapping function) and (ii) on the relation between
the displacement fields in the two descriptions, represented by matrices: F, the
deformation matrix, and A, respectively. It was shown (Norris & Shuvalov 2011)
that requiring stress to be symmetric implies A = F and that the material must
be of Willis form, as Milton et al. (2006) found. Setting A = I, on the other hand,
results in Cosserat materials with non-symmetric stress but isotropic density, as
found by Brun et al. (2009) and by Vasquez et al. (2012). An alternative approach
to transformation elasticity has been proposed that employs inextensible fibres
embedded in an elastic material (Olsson 2011; Olsson & Wall 2011). This has
the advantage that the effective material has isotropic density and retains both
the minor and major symmetries of the stiffness tensor. Despite the non-unique
nature of transformation elasticity, the materials required are, in all cases, outside
the usual realms of possibility.

In this paper, we consider a class of materials displaying non-symmetric stress
of the type necessary to achieve elastodynamic cloaking. Effective moduli with
the major symmetry (Cijkl = Cklij) that do not display the minor symmetry
(Cijkl �= Cjikl) are found in the theory of incremental motion superimposed on
finite deformation (Ogden 2007). We take advantage of the similarities between
transformation elasticity and small-on-large motion in the presence of finite pre-
strain. The starting point is the formal equivalence of the constitutive parameters
of transformation elasticity with the density and moduli for incremental motion
after finite pre-stress. This offers the possibility for achieving elasticity of the
Proc. R. Soc. A
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desired form by proper selection of the finite (hyperelastic) strain energy function.
Such an approach has been shown to be successful in the context of antiplane or
horizontally polarized shear (SH) wave motion. By using the neo-Hookean strain
energy for incompressible solids and applying a radially symmetric cylindrical
pre-strain, Parnell (2012) and Parnell et al. (2012) showed that the resulting
small-on-large equations are identically those required for cloaking of the SH
wave motion. Here, we consider the more general elastic transformation problem,
including but not limited to SH motion. We show that the form of the finite strain
energy is restricted in form for isotropic elasticity. The equivalence between the
transformation and the finite pre-strain also limits the type of transformation
possible. This contrasts with the acoustic and electromagnetic problems for
which the transformation is arbitrary. The elastic transformation is restricted
in form because the pre-stress must be statically equilibrated, implying that the
transformation must satisfy a partial differential equation. We show that this
constraint can be cast as trF = constant, (subject to symmetry constraints) and
explore its consequences both analytically and numerically.

We begin in §2 with a review of transformation elasticity and of incremental
motion superimposed on finite pre-strain, emphasizing equivalence of the theories.
The form of the finite strain energy necessary to achieve transformation elasticity
is deduced in §3 and in §4, the constraint on the deformation for isotropic
elasticity is derived. Section 5 presents a detailed example of the type of radially
symmetric finite pre-strain possible for isotropic elasticity. These analytical
results are extended and illustrated in §6 through numerical examples of cloaking
of anti-plane and in-plane wave motion. Conclusions are presented in §7.

2. Background equations

We first review the theory of transformation elasticity for linearly elastic
solids, and then consider the separate theory for incremental deformation in
finite elasticity.

(a) Review of transformation elasticity

(i) Transformation notation

A transformation from the virtual configuration, U0, to the present
configuration U (also known as the physical or current domain) is described by
the mapping from x ∈ U0 to x ∈ U. Component subscripts in upper and lower
cases (I , J , . . . , i, j , . . .) are used to distinguish between explicit dependence upon
x and x, and the summation convention on repeated subscripts is assumed. The
transformation or mapping is assumed to be one-to-one and invertible. Perfect
cloaking requires that the transformation is one-to-many at a single point in U0.
This can be avoided by considering near-cloaks, where, for instance, a small hole
in U0 is mapped to a larger hole in U.

The transformation gradient is defined as F(0) = Vxx with inverse F(0)−1 =
Vx, or in component form F (0)

iI = vxi/vxI , F (0)−1

iI = vxI /vxi . The Jacobian of
the transformation is J0 = det F(0). The infinitesimal displacement u(0)(x, t) and
Proc. R. Soc. A
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stress s(0)(x, t) are assumed to satisfy the equations of linear elasticity in the
virtual domain

divxs(0) = r0ü(0), s(0) = C(0)Vxu(0) in U0, (2.1)

where r0 is the (scalar) mass density and the elements of the elastic stiffness
tensor satisfy the full symmetries C (0)

IJKL = C (0)
JIKL, C (0)

IJKL = C (0)
KLIJ ; the first identity

expresses the symmetry of the stress and the second is the consequence of an
assumed strain energy density function.

Particle displacement in the transformed domain, u(x, t), is assumed to be
related to the displacement in the virtual domain by the non-singular matrix
A as

u(0) = Atu (u(0)
I = AiI ui). (2.2)

The choice of the transpose, At in equation (2.2), means that the ‘gauge’ A
and the transformation gradient F(0) are similar objects, although at this stage
they are unrelated. Neither A or F(0) are second-order tensors because of the
fact that they each have one ‘leg’ in both domains. Milton et al. (2006) specify
A = F(0) since this is the only choice that guarantees a symmetric stress (see
§2a(ii)). Identifying (Milton et al. 2006) dx and dx with u(0) and u, respectively,
and using dx = F(0)−1

dx would lead one to expect At = F(0)−1
. However, the

displacements are not associated with the coordinate transformation and F(0)

and A are independent quantities.

(ii) The transformed equations of elasticity

Under the transformation (or change of coordinates) x → x the equilibrium and
constitutive relations (2.1) transform to (Norris & Shuvalov 2011)

sij ,i = ṗj , sij = C eff
ijklul ,k + S eff

ijl u̇l , pl = S eff
ijl uj ,i + reff

jl u̇j , in U0, (2.3)

with parameters Ceff , Seff and reff defined as follows in the Fourier time domain
(dependence e−iut understood but omitted)

C eff
ijkl = J0C

(0)
IJKLQijIJ QklKL,

S eff
ijl = (−iu)−1J0C

(0)
IJKLQijIJ QklKL,k

and reff
jl = r0J −1

0 AjKAlK + (−iu)−2J0C
(0)
IJKLQijIJ ,iQklKL,k ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.4)

where QijIJ = J −1
0 F (0)

iI AjJ . The elastic moduli and the density satisfy the
symmetries

C eff
ijkl = C eff

klij and reff
jl = reff

lj , (2.5)

although these are not the full symmetries for the Willis constitutive model (which
requires the additional ‘minor’ symmetry C eff

ijkl = C eff
jikl). Equations (2.3)–(2.4) are

the fundamental result of elastic transformation theory Norris & Shuvalov (2011).
The absence of the minor symmetries under the interchange of i and j in

C eff
ijkl and S eff

ijl of (2.4) implies that the stress is generally asymmetric. Symmetric
stress is guaranteed if QijIJ = QjiIJ , and occurs if the gauge matrix is of the form
Proc. R. Soc. A
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A = zF(0), for any scalar z �= 0, which may be set to unity with no loss in generality.
This A recovers the results of Milton et al. (2006) that the transformed material
is of the Willis form. As noted in (Milton et al. 2006), it is the only choice for A
that yields symmetric stress.

The equations in the transformed domain, which is the physical realm, clearly
display a great deal of non-uniqueness, corresponding to a vast realm of possible
material properties. Our preference is for non-dispersive (i.e. independent of
frequency) materials, in particular, those with the least ‘unusual’ properties, so
that they can conceivably be related to actual materials. In this regard, isotropic
density is achieved by taking the constant matrix A proportional to the identity,
A = zI, with z = 1 without loss of generality. In this case, reff = reffI, Seff = 0, with
non-dispersive density and elastic moduli given by

reff = J −1
0 r0 and C eff

ijkl = J −1
0 F (0)

iI F (0)
kK C (0)

IjKl . (2.6)

The equations of motion in the current domain are then

(C eff
ijklul ,k),i = reff üj . (2.7)

The effective moduli of (2.6) satisfy the major symmetry (2.5)1 but C eff
ijkl �= C eff

jikl ,
indicating a non-symmetric stress. Departure from symmetric stress is possible
in continuum theories such as Cosserat elasticity and micropolar theories of
elasticity. Another context admitting non-symmetric stress is the theory of
small-on-large motion, described next.

(b) Small-on-large theory

The solid material is considered in two distinct states: first, the reference
configuration of the solid under zero strain, U1, and secondly the current state of
the material, which is again identified with U. The hyperelastic theory of small
motion superimposed upon large depends upon the initial finite, i.e. large, static
pre-strain that maps X ∈ U1 to x ∈ U. The subsequent small motion is defined by
the dynamic mapping X → x + ū(x, t). The following theory assumes ū and the
associated strain are sufficiently small that tangent moduli can be employed to
derive the linear equations of motion for the small-on-large motion (Ogden 2007).

Towards that end, we introduce the deformation gradient of the pre-strain
F = VXx with inverse F−1 = VX, and Jacobian J = detF. The polar decomposition
is F = RU = VR, where R is proper orthogonal (RRt = RtR = I, detR = 1) and the
tensors U, V ∈ Sym+ are the positive definite solutions of U2 = C ≡ FtF, V2 = B ≡
FFt . The material is assumed to be hyperelastic, implying the existence of a strain
energy function W per unit volume from which the static Cauchy pre-stress is
defined as

s
pre
ij = J −1Fia

vW
vFja

. (2.8)

The assumed dependence of W on the deformation F, along with the freedom
to change the current coordinate basis (which has nothing to do with
transformation!) implies that W must depend upon QF for any orthogonal
Q, and taking Q = Rt implies the dependence W = W(U). Assuming the
density in the reference configuration is rr, the governing equations for
Proc. R. Soc. A
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subsequent small-on-large motion ū(x, t) then follow from the well-known theory
(Ogden 2007) as

(A0ijkl ūl ,k)i = rūj ,tt , (2.9)

where

r = J −1rr, A0ijkl = J −1FiaFkbAajbl and Aajbl = v2W
vFjavFlb

(= Ablaj). (2.10)

3. Potential strain energy functions

Our objective is to find possible hyperelastic solids, i.e. strain energy functions W
such that the equations for small-on-large motion are equivalent to those required
after transformation of a homogeneous material with properties {r0, C

(0)
IjKl}.

The connection between the transformation and the small-on-large theories is
made by first identifying the displacement fields as equivalent, ū(x, t) = u(x, t),
and then requiring that the equations of motion (2.7) and (2.9) are the same.
The latter is satisfied if

r = greff and A0ijkl = gC eff
ijkl , (3.1)

for some positive constant g. Hence,

J −1rr = gJ −1
0 r0 and J −1FiaFkbAajbl = gJ −1

0 F (0)
iI F (0)

kK C (0)
IjKl . (3.2)

The reference density rr can then be chosen so that g = 1, and equation (3.2)
then implies that the hyperelastic material is defined by

rr = r0J −1
0 J and Aajbl = J −1

0 JF−1
ai F (0)

iI F−1
bk F (0)

kK C (0)
IjKl . (3.3)

Equation (3.3)1 is automatically satisfied if the transformation and the finite
deformation are related in the following manner:

F =
(

grr

r0

)1/3

F(0)G−1 and g = detG, (3.4)

for some non-singular G. Equation (3.3)2 combined with the expression for
Aajbl in equation (2.10) yields a second-order differential equation for the strain
energy function,

v2W
vFjavFlb

=
(

rr

g2r0

)1/3

GaI GbKC (0)
IjKl . (3.5)

Recall that r0 and C (0)
IjKl are constant, but at this stage, the remaining quantities

in (3.5), i.e. rr and G, are not so constrained. The density in the reference
configuration could be inhomogeneous, rr = rr(X). In that case, (3.5) would not
have a general solution for W unless G also depends upon X in such a manner
that the right-hand side is independent of X. This suggests that permitting rr
to be inhomogeneous does not provide any simplification, and we therefore take
the reference density to be constant, although not necessarily the same as r0.
The quantity G could, in principle, be a matrix function of F, but this makes
Proc. R. Soc. A
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the integration of (3.5) difficult if not impossible. We therefore restrict attention
to constant G. Consideration of the important case of isotropic elasticity in §4
indicates that the degrees of freedom embodied in G do not provide any significant
additional properties, and therefore for the remainder of the paper we take G = I,
and set rr = r0 with no loss in generality. In this case, the solution of (3.5) such
that W = 0 under zero deformation (F = I) is

W = 1
2(Fja − dja)(Flb − dlb)C

(0)
ajbl . (3.6)

Equation (3.6) provides a formal solution for W, one that is consistent
with (3.5). However, the dependence of W in (3.6) upon F points to a fundamental
difficulty, since the strain energy should be a function of U. The two are not equal
in general, unless

R = I ⇔ F = U = V. (3.7)

We henceforth assume (3.7) to be the case: that is, we restrict consideration to
deformations that are everywhere rotation-free. Equation (3.6) then suggests the
following possible form of the finite strain energy

W = 1
2EjaElb C (0)

ajbl where E ≡ U − I. (3.8)

Although this has realistic dependence on U, it will not in general satisfy
equation (3.5), i.e. v2W/vFjavFlb �= C (0)

ajbl . We return to this crucial point for
isotropic elasticity in §4c, where we demonstrate that equation (3.5) is satisfied
by the isotropic form of (3.8) under additional conditions. Note that the strain
measure E, which is sometimes called the extension tensor, has as conjugate
stress measure Sa = vW/vE = 1

2(SU + US) where S = JF−1s(Ft)−1 is the second
Piola–Kirchhoff tensor (Dill 2007, §2.5).

We restrict attention henceforth to the case of hyperelastic materials that are
isotropic in the undeformed state.

4. Isotropic elasticity

(a) Semilinear strain energy function

The initial moduli are C (0)
ajbl = l0dajdbl + m0(dabdjl + dladjb) with original Lamé

moduli m0 > 0, l0 and Poisson’s ratio n = l0/[2(l0 + m0)] ∈ (−1, 1
2). We consider

the isotropic version of the hyperelastic strain energy in (3.8),

W = l0

2
(trE)2 + m0tr(E)2 = l0

2
(i1 − 3)2 + m0((i1 − 1)2 − 2(i2 − 1)), (4.1)

with the latter expression in terms of two of the three invariants of U: i1 =
l1 + l2 + l3, i2 = l1l2 + l2l3 + l3l1 where l1, l2, l3 are the principal stretches
of U. Materials with strain energy (4.1) have been called semilinear (Lur’e 1968)
because of its relative simplicity and the linear form of the Piola–Kirchhoff stress
TR, related to the Cauchy stress by spre = J −1FTt

R; thus TR = 2m0F + (l0(trE) −
2m0)R. John (1960) proposed the strain energy (4.1) based on the explicit form of
its complementary energy density in terms of TR, a property also noted by others
Proc. R. Soc. A
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(Zubov 1970, Raasch 1975). The semilinear strain energy is a special case of the
more general harmonic strain energy function (John 1960). Plane strain solutions
for harmonic strain energy are reviewed in Ogden (1997, §5.2). Sensenig (1964)
examined the stability of circular tubes under internal pressure, while Jafari et al.
(1984) considered both internal and external pressure loading. The latter study
has implications for the stability of the pre-strain developed here, see §5b(iii).

The pre-stress follows from (2.8) as

spre = J −1[l0(i1 − 3)V + 2m0(V2 − V)]. (4.2)

It is emphasized that we are restricting attention to deformations with U = F = Ft ,
so that the Piola–Kirchhoff stress is also symmetric with TR = l0(trE)I + 2m0E.
Applying the equilibrium equation for the finite deformation,

DivTR = 0 ⇒ l0xa,aj + 2m0xj ,aa = 0. (4.3)

We seek solutions with symmetric deformation gradient, xj ,a = xa,j , and hence
xa,aj = xj ,aa. Consequently, equation (4.3) is satisfied by finite deformations
satisfying either of the equivalent conditions xj ,aa = 0 and xa,aj = 0. Thus

if xj ,a = xa,j then xa,aj = 0 ⇔ xj ,aa = 0. (4.4)

Since the two partial differential equations in (4.4) are the same, we need only
seek solutions of one. Focusing on xa,aj = 0, we conclude that the most general
type of deformation x(X) is described by

Div x = c(= constant > 0), where VXx = (VXx)T. (4.5)

The appearance of the positive constant of integration in (4.5)1 means that the
sum of the principal stretches is fixed,

l1 + l2 + l3 = c (i1 = c). (4.6)

Further implications of the general solution (4.5) for a material that is isotropic
in its undeformed state are explored in greater detail in §4b. For now, we note
that the pre-stress follows from (4.2) and (4.6) as

spre = 2m0J −1
(

V2 − V + (c − 3)n
1 − 2n

V
)

. (4.7)

(b) The limit of n = 1
2

It is of interest to consider the limit of the isotropic solution for n = 1
2 . By

assumption the pre-stress must remain finite. Consequently, using equation (4.7),
it becomes clear that in the limit as n → 1

2 , the constant of integration c ≡ 3, i.e.

W = m0tr(U2 − I), spre = pJ −1V + 2m0J −1(V2 − V),

Div x = 3, and F = FT (= U = V),

}
for n = 1

2
(4.8)
Proc. R. Soc. A
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where the scalar p(X) defines the constraint reaction stress (the factor J −1 is
included for later simplification). The latter arises from the limiting process of
n → 1

2 in equation (4.7), and has also been shown to be the unique form of the
reaction stress for the constraint trV = 3 (Beatty & Hayes 1992). Note that in
writing spre in (4.8), we maintain a term proportional to V in the second term
rather than incorporating it with the constraint term. This form is consistent with
the requirement that p = 0 and hence spre = 0 in the undeformed state x ≡ X.
The equilibrium equation for the pre-strain follows from equation (4.8) as VXp +
2m0V2

Xx = 0, and since V2
Xx = 0 (see equation (4.4)), it follows that p = constant.

Several aspects of (4.8) are noteworthy. The limit of n = 1
2 is usually associated

with incompressibility, i.e. the constraint J = 1 or equivalently i3 ≡ l1l2l3 = 1,
although the reason underlying this identification originates in linear elasticity
and is therefore by no means required. Strictly speaking, the isochoric constraint
i3 = 1 conserves volume under the deformation. Here, we find that n = 1

2 implies
the kinematic constraint on the deformation that i1 = l1 + l2 + l3 = 3. The latter
is associated with the notion of incompressibility in linear elasticity in the form
trE = 0 and in the present context can be viewed as a ‘semilinear’ feature, in
keeping with the descriptor (Lur’e 1968) for the strain energy function (4.1). The
kinematic condition, Div x = 3 or equivalently

l1 + l2 + l3 = 3 (trV = 3), (4.9)

has been called the Bell constraint (Beatty & Hayes 1992) by virtue of the fact
that Bell (1985, 1989) showed it to be consistent with numerous sets of data
for metals in finite strain. Solids satisfying this constraint have been called Bell
materials (Beatty & Hayes 1992). In contrast to the constraint l1l2l3 = 1, it can
be shown that volume decreases for every deformation of a Bell material, and
hence isochoric deformations are not possible (Beatty & Hayes 1992).

Another feature of the n = 1
2 limit is that the strain energy in (4.8) has the

functional dependence W = m0(l2
1 + l2

2 + l2
3 − 3). It is interesting to compare this

with the strain energy for a neo-Hookean solid, WNH = (m0/2)(l2
1 + l2

2 + l2
3 − 3),

associated with incompressibility (i.e. i3 = 1). Both strain energies reduce to the
incompressible form for linear elasticity, and the factor 1

2 appearing in W but not
in WNH can be attributed to the different constraints in each case (i1 = 3 or i3 = 1).
Parnell (2012) and Parnell et al. (2012) considered neo-Hookean materials in the
context of transformation elasticity for isochoric deformation. The present result
indicates that the same form of the strain energy but with a different constraint
yields a quite distinct class of volume decreasing deformations. This aspect will
be examined further in §4c in terms of specific examples.

(c) Consistency condition

It remains to show that the semilinear strain energy (4.1) satisfies

Aajbl = l0dajdbl + m0(dabdjl + dladjb), where Aajbl ≡ v2W
vFjavFlb

. (4.10)

Since the moduli A are isotropic, it sufficient to show the equivalence in any
orthogonal system of coordinates. We choose the principal coordinate system, in
Proc. R. Soc. A
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which the non-zero components of A for isotropic elasticity satisfy (Ogden 2007,
eqns (3.31)–(3.34))

Aiijj = Wij , (4.11a)

Aijij − Aijji = Wi + Wj

li + lj
, i �= j , (4.11b)

Aijij + Aijji = Wi − Wj

li − lj
, i �= j , li �= lj (4.11c)

and Aijij + Aijji = Wii − Wij , i �= j , li = lj , (4.11d)

where Wi = vW/vli , Wij = v2W/vlivlj , i, j ∈ {1, 2, 3} with no summation on
repeated indices. Using W and c as defined in equations (4.1) and (4.6) gives

Wi = l0(c − 3) + 2m0(li − 1)

and Wii = l0 + 2m0, Wij = l0, i �= j .

}
(4.12)

These satisfy (4.11a), (4.11c) and (4.11d). The remaining conditions
(4.11b) become

Wi + Wj = 0 ⇒ (l0 + m0)(c − 3) − m0(lk − 1) = 0, i �= j �= k �= i. (4.13)

Equation (4.13) constitutes three conditions, which taken together imply the
unique but trivial solution li = 1, i ∈ {1, 2, 3}, i.e. zero pre-strain. We avoid this by
restricting attention to two-dimensional dynamic solutions only, either in-plane
(P/SV) or out-of-plane (SH) motion.

(i) In-plane (P/SV) motion

The small-on-large displacements for in-plane motion are of the form
u1(x1, x2, t), u2(x1, x2, t), u3 = 0. The condition (4.13) then only needs to be
satisfied in the single instance i, j = 1, 2, implying that the out-of-plane extension
is related to the sum of the in-plane extensions by

l3 = 1 − 1
2n

(l1 + l2 − 2). (4.14)

Since l3 is strictly positive, this places an upper limit on the sum of the in-plane
extensions: l1 + l2 < 2(1 + n).

(ii) Out-of-plane (SH) motion

The out-of-plane SH motion is of the form u1 = u2 = 0, u3(x1, x2, t). The
requirement now is that A1313 and A2323 are both equal to m0 in order to recover
the out-of-plane equation of motion and associated tractions. Using (4.11b)
and (4.11c)

A1313 − m0 =
(

l0 + m0

l1 + l3

)
[c − 3 − (1 − 2n)(l2 − 1)]

and A2323 − m0 =
(

l0 + m0

l2 + l3

)
[c − 3 − (1 − 2n)(l1 − 1)],

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.15)
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where c is the constant from equation (4.6). In this form, it is clear that if n �=
1
2 , then in-plane pre-stretches must be the same, l1 = l2 = 1 + (c − 3)/(1 − 2n),
and therefore all the stretches are constant (since c is a constant). This rules
out the possibility of SH cloaking since we require that the in-plane pre-strain
be inhomogeneous. However, if both n = 1

2 and c = 3 simultaneously hold, then
A1313 = A2323 = m0 for inhomogeneous and unequal in-plane stretches l1 and l2.
We are therefore led to the conclusion that SH cloaking requires a separate limit
of the semilinear strain energy, one satisfying the Bell constraint (4.9) for which
the strain energy and stress are given by (4.8). Note that we do not get the
neo-Hookean strain energy in this limit.

5. Applications to isotropic elasticity

(a) Radially symmetric cylindrical deformations

Consider deformations that are radially symmetric, r = r(R), q = Q, in cylindrical
coordinates (r , q, x3) and (R, Q, X3). The stretch in the x3-direction is assumed
fixed, l3 = constant. The deformation gradient for r = r(R) is irrotational with

(Ft =)F = lrIr + lqIq + l3I3, lr = r ′ and lq = r
R

, (5.1)

where Ir = er ⊗ er , Iq = eq ⊗ eq and I3 = e3 ⊗ e3. The condition (4.6) implies that
the sum of the in-plane principal stretches is constant, say c0, and the constraint
(4.14) relates this to c of equation (4.9),

(1 − 2n)c0 + 2nc = 2(1 + n) where c0 = lr + lq. (5.2)

Equation (4.5) for x reduces to an ordinary differential equation for r(R),

r ′ + r
R

= c0, (5.3)

with general solution

r = c0

2
R + c1R−1, c1 = constant. (5.4)

Note that the free parameter c0 may be expressed in terms of either c or l3,
using equations (4.14) and (5.2). Using equations (4.7), (5.3) and (5.1) it follows
that the principal stretches and stresses for the radially symmetric cylindrical
configuration are

lr = 2 − lq + 2n(1 − l3), lq = r
R

, l3,

and spre
rr = m0

l3lq

(lr − lq), s
pre
q = m0

l3lr
(lq − lr), spre

zz = 2m0

lrlq

(1 + n)(l3 − 1).

⎫⎪⎬
⎪⎭

(5.5)

Note that
r
R

→ 1, spre
rr → 0 as r → ∞ iff l3 = 1 (⇔ c0 = 2). (5.6)
Proc. R. Soc. A
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(b) Two types of cloaking

(i) Conventional cloaking

The conventional concept of a cloaking material is that it occupies a finite
region, in this case, the shell R ∈ [A, B] that maps to an equivalent shell in
physical space with the same outer surface and an inner surface of radius
larger than the original, i.e. r ∈ [a, B], a ∈ (A, B). Applying (5.4) with the two
constraints r(A) = a and r(B) = B yields

r = R + (a − A)
[
(B/R)2 − 1
(B/A)2 − 1

]
R
A

, R ∈ [A, B], (CC) (5.7)

which specifies the previously free parameter l3 (also c and c0) as

l3 = 1 − 1
n

[
(a/A) − 1
(B/A)2 − 1

]
< 1. (5.8)

The constraint l3 > 0 therefore sets a lower limit in the permissible value of the
outer radius as

B > A
(

1 + 1
n

( a
A

− 1
))1/2

. (5.9)

The mapping (5.7) must also be one-to-one within the shell with lr = r ′ > 0.
This means that there should be no zero of r ′ = 0 for R ∈ [A, B]. The convex
nature of the solution (5.7) implies there is only one zero, say at R = R0. Since
sgn(r ′) = sgn(R − R0), it follows that R0 < A must hold. Noting from (5.4) that
R2

0 = 2c1/c0, and using (5.7) to infer c0 and c1, the condition R2
0 < A2 becomes

a < amax ≡ 2A
[1 + (A/B)2] . (5.10)

The magnification factor a/A ≥ 1, which measures the ratio of the radius of the
mapped hole to the radius of the original one, is therefore bounded according to

a
A

< 2. (5.11)

In order to achieve a reasonable degree of cloaking one expects that the
magnification factor is large, so that the mapped hole corresponds to an original
hole of small radius and hence small scattering cross-section. The limitation
expressed by (5.11) therefore places a severe restriction on the use of the
hyperelastic material as a conventional cloak. Note that the upper limit on a
in (5.10) is not strictly achievable because a = amax implies lr(A) = r ′(A) = 0 and
hence the principal stresses s

pre
q , spre

zz become infinite at r = a.
The hyperelastic mapped solid has other aspects that further diminish its

attractiveness as a conventional cloaking (CC) material. Specifically, a non-zero
traction must be imposed on both the outer and inner boundaries to maintain
the state of pre-stress. Noting that the radial stress is

spre
rr (R) = −2m0

l3

R
r

[ r
R

− 1 − n(1 − l3)
]
, (5.12)
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Figure 1. The transformed radius r as a function of R for two-dimensional radially symmetric
pre-strain, from equation (5.7). The seven curves correspond to A = 0.1, 0.2, . . . , 0.7 with B = 1 in
each case. The value of the mapped inner radius for each curve is a ≡ r(A) = 0.9 amax, where amax
is defined in equation (5.10). The dashed line indicates r = R. Mappings that lie above this line
represent spatial compression, applicable to cloaking.

with r given in (5.7), yields

spre
rr (A) = spre

rr (B) − 2m0

l3

(
1 − A

a

)
and spre

rr (B) = 2m0

l3
n(1 − l3). (5.13)

The necessity of the inner traction at r = a is a reasonable condition, but the
requirement for an equilibrating traction at r = B is physically difficult. One way
to avoid this is to let B → ∞, considered below.

Examples of the radial deformation are given in figure 1.

(ii) Hyperelastic cloaking

The hyperelastic material is now considered as infinite in extent. The
cloaking effect is caused by allowing a radially symmetric hole in the unstressed
configuration to be expanded under the action of an internal pressure to become
a larger hole. We therefore require that the traction at infinity is zero, and that
r/R tends to unity, so that (5.6) applies. Then setting the mapped hole radius to
r(A) = a (>A) implies the unique mapping

r = R + (a − A)
(

A
R

)
, R ∈ [A, ∞). (HC) (5.14)

This deformation is simply the limiting case of (5.7) for B → ∞. Note that the
restriction (5.11) still applies to the magnification factor a/A, in order to ensure
lr > 0 for r > a. The traction at the inner surface is a pressure which follows from
(5.13) in the limit B → ∞, l3 → 1, as

spre
rr (A) = −pin, where pin = 2m0

(
1 − A

a

)
. (5.15)
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It is interesting to note that the internal pressure is independent of the Poisson’s
ratio n and it is therefore the same as pin found by Parnell (2012) considering SH
incremental motion.

(iii) Stability of the pre-strain

Jafari et al. (1984) examined the stability of a finite thickness tube composed
of material with harmonic strain energy, which includes semilinear strain energy
as a special case. They showed that radially symmetric two-dimensional finite
deformations are stable under interior pressurization with zero exterior pressure.
This implies that the finite pre-strain HC is stable. The stability of the CC
deformation (5.7) does not appear to have been considered and remains an open
question. However, the stability of the HC, corresponding to B → ∞, means there
exists a minimum Bmin for which CC stability is ensured for all B > Bmin.

(c) The limiting case when n = 1
2

In this limit, the constraint (4.9) applies and the pre-stress for the radially
symmetric deformation follows from (4.8) with constant ‘pressure’ p (see §4b) as

spre
rr = 2m0

l3lq

(lr − g0) and s
pre
qq = 2m0

l3lr
(lq − g0), (5.16)

where the value of the constant g0 = 1 + p/(2m0) depends on the specified
boundary conditions, and lr = dr/dR, lq = r/R, with r(R) given by
equation (5.4) for c0 ≡ 2, For instance, in the case of hyperelastic cloaking (HC)
as defined in §5b(ii) we find, noting the result (5.6), that p = 0, yielding the same
interior pressure pin as equation (5.15).

6. Numerical examples

We illustrate the above theory in the two-dimensional setting where we consider
wave scattering from a cylindrical cavity with and without a cloak where the cloak
is a conventional cloak created via pre-stress. We shall show that partial cloaking
is achieved, in the sense that scattering is significantly reduced by presence of
a cloak. We are not able to achieve perfect cloaking since the cavity has to be
of finite radius initially and furthermore, the hyperelastic theory above restricts
the expansion to be at most twice the initial radius, i.e. a < 2A. We consider
two cases: horizontally polarized shear (SH) waves and coupled compressional/
in-plane shear (P/SV) waves. We take B/a = 2 which upon using (5.10) gives an
initial inner to outer cloak radius ratio B/A = 1/(2 − √

3) ≈ 3.732 and a/A = b =
1/(2(2 − √

3)) ≈ 1.866.
For the SH and P/SV wave examples considered below, we use the description

in appendices A(a) and A(b) regarding scattering from a cylindrical cavity in an
undeformed medium owing to an incident field generated by a line source. In both
cases considered, we assume that the line source is located at a distance R0 from
the centre of the cavity with R0/B = 2, it is of unit amplitude C = 1 and in the
P/SV case it generates purely compressional waves.
Proc. R. Soc. A
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Figure 2. SH wave field. (a) Total (i) and scattered (ii) fields corresponding to an undeformed cavity
with scaled radius KsA = 2p. (b) Total (i) and scattered (ii) fields corresponding to a conventional
cloak generated via pre-stress where the scaled deformed inner radius is Ksa = 2p and initial inner
cavity radius defined by a = bA where b ≈ 1.863.

(a) SH wave propagation

In this case, the shear wavenumber Ks of the medium is defined by K 2
s =

u2/c2
s = r0u2/m0 where r0 is the density of the medium in the undeformed

configuration. We use the solution in appendix A(a) to solve the corresponding
(conventional and pre-stress) cloak problem, the difference arising merely owing
to the modified argument due to the hyperelastic deformation (and invariance
of equations). We shall always consider the case when R0 > B, the outer cloak
boundary. Thus in R > B, the solution can be written as (A 2), noting that the
scattering coefficients are equivalent to scattering coefficients for a cavity of radius
A. Therein resides the reduction in scattering. In a < R < B, the total field is given
by Wi + Ws but with an argument given by

R(r) = c−1
0 (r +

√
r2 − 2c0c1) (6.1)

i.e. that corresponding to the hyperelastic deformation described above (see
equation (5.4)).
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Figure 3. (a) Scaled scattering cross section gSHKs and (b) percentage reduction in scattering
cross-section g% by using a hyperelastic cloak (with a = bA where b ≈ 1.863.), both plotted against
scaled cavity radius Ksa for the SH wave case. The cross section is plotted without (solid) and
with (dashed) a hyperelastic cloak. A significant reduction in scattering is achieved by using a
hyperelastic cloak.

We take 30 terms in the modal sum (A 2) for the wave field, sufficient for
convergence of the solution. Figure 2 shows both the total (i) and scattered (ii)
fields corresponding to the following problems: scattering from a cavity of radius
A with KsA = 2p in an undeformed medium (a) and scattering from a cavity with
the presence of a hyperelastic cloak (b) with undeformed, A and deformed, a inner
radii defined via a = bA, where b is defined above. The outer cloak boundary B
is defined by KsB = 4p (b). This demonstrates significantly reduced scattering
owing to the presence of the hyperelastic cloak when compared with the non-
cloaked case. Indeed, we are able to quantify this by determining the reduction
in scattering cross section, defined in (A 3) for plane wave incidence. Without the
cloak, we have gSHKs = 5.39, whereas with the cloak gSHKs = 2.61 resulting in a
51.5 per cent reduction in scattering. Figure 3 shows the scattering cross section
gSHKs (a) together with the percentage reduction in scattering (b).

(b) P/SV wave propagation

In the P/SV case, in addition to the shear wavenumber Ks, we also introduce
the compressional wavenumber Kp via K 2

p = u2/c2
p = r0u2/(l0 + 2m0). We use

the undeformed medium solution as derived in appendix A(b) as a means of
determining the solution for the cloak problem. This solution is employed in
the exterior region together with the same solution but with modified argument
(owing to the hyperelastic deformation) in the cloak region. Thus in R > B, the
solution can be written as (A 5) with scattering coefficients An and Bn given
by (A 6a) and (A 6b) respectively, noting that they are equivalent to scattering
coefficients for a cavity of radius A and therefore a reduction in scattering is
present. Note that here a different effect is introduced when compared with the
SH case: shear waves are produced as a result of mode conversion on the boundary
of the cavity. In a < R < B, the total field is given by the sum of the scattered and
incident fields but with the argument as given in (6.1) owing to the hyperelastic
deformation.
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Figure 4. Scattered fields for the in-plane P/SV problem for an incident field generated by a
compressional source at R0 = 8p, Q0 = 0. (a) Compressional (i) and shear (ii) fields corresponding
to an undeformed cavity with scaled radius KpA = 2p. (b) Compressional (i) and shear (ii)
fields corresponding to a conventional cloak generated via pre-stress where the scaled deformed
inner radius is Kpa = 2p and initial inner cavity radius is KpA = p so that a = bA where
b ≈ 1.863.

We take 30 terms in the modal sums (A 5), which is sufficient for convergence
of the solution. Figure 4 shows the scattered fields corresponding to the P-
wave (i) and S-wave (ii) fields associated with n = 1/3 and for the following
problems: scattering from a cavity of radius A with KpA = 2p in an undeformed
medium (a) and scattering from a cavity with the presence of a hyperelastic cloak
(b) with undeformed, A and deformed, a inner radii defined via a/A = b. The
outer cloak boundary B is defined by KpB = 4p (b). Scattering is significantly
reduced owing to the presence of the hyperelastic cloak when compared with
the non-cloaked case although it is relatively difficult to see this directly with the
plots. As with the SH case, let us quantify this by determining the reduction in
scattering cross section, defined in (A 8) for plane wave incidence. Without the
cloak, gPKp = 13.564 whereas with the cloak gPKp = 7.258 resulting in a 46.48
per cent reduction in scattering. Figure 5 illustrates the scattering cross section
gPKp (a) together with the percentage reduction in scattering (b) compared for
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Figure 5. Scattering of P/SV waves from a cylindrical cavity. (a) Scaled scattering cross section
gPKp from the undeformed cavity (solid) with radius Kpa and from a deformed cavity with
initial scaled radius KpA such that a = bA where b ≈ 1.863 (dashed). (b) Percentage reduction
in scattering cross section g% owing to pre-stress. We have n = 1/3 (i), n = 7/15 (ii) and n = 49/99
(iii). Note that for the latter case, the peak in scattering cross section results in a narrow range of
values of Kpa where the cloak increases scattering. For other values, there is significant reduction
in scattering, especially at very low frequencies.

three different Poisson ratios: n = 1/3, 7/15 and 49/99. Note that for very low
frequencies, there is a huge reduction in scattering, close to 100 per cent. This
tails off at higher frequencies but still remains at around 50 per cent reduction
in scattering which is clearly significant. Reduction is larger for smaller Poisson
ratios. We also note the rather interesting result that the peak in the cross section
actually induces an increase in scattering at some values of Kpa when compared
with the case without the cloak although this is only for a narrow range of such
values. This can be associated with the increasing disparity in the P and SV wave
numbers as n tends to 1

2 , noting that K 2
s /K 2

p = 2(1 − n)/(1 − 2n).
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7. Conclusions

The close correspondence between transformation elasticity and small-on-large
theory points to a method for realizing the former. Specifically, the semilinear
strain energy function of equations (4.1) yields the correct incremental moduli
required for transformation of isotropic elasticity. The connection between the
two theories is that the transformation equals the finite deformation. The fact
that the pre-stress must be in a state of equilibrium places a constraint on the
type of transformations allowed. Specifically, they are limited by the condition
(4.6), or equivalently, trV = constant, which yields stable radially symmetric pre-
strain (Jafari et al. 1984). This implies that the actual size of a cylindrical target
can be increased in area by a factor of 4, its radius by factor of two, without any
change to the scattering cross section. The restricted form of the transformation
is not surprising considering the fact that the theory can simultaneously control
more than one wave type, in contrast to acoustics.

In the two-dimensional problems for which results were provided, it was shown
that the presence of a conventional cloak generated by the use of pre-stress leads
to a significant reduction in the scattering cross section from the cavity, when
compared with scattering from a cavity without a cloak. This effect is particularly
striking at low frequencies and for small Poisson ratios. We should note that
in general one has to consider stability of nonlinear elastic solids in the large
deformation regime. While we have not undertaken a full stability analysis, we
have noted that the deformation for what we have termed HC is automatically
stable (see §5b(iii)). Extension of these results will be the subject of subsequent
study. We also note that manufacturing nonlinear elastic solids with specific
strain energy functions can be difficult to achieve in practice, although this is
certainly no harder than generating complex metamaterials that appear to be
the current alternative.

This work sheds some light on transformation methods in other wave problems.
In acoustics and electromagnetism, there is no constraint on the transformation;
any one-to-one mapping is permitted. In principle, there is no constraint for
transformation elasticity either, although the transformed materials are quite
difficult if not impossible to obtain, especially since they are required to lose the
minor symmetry in their corresponding elastic modulus tensor. The equivalence
of transformation elasticity and small-on-large theory provides a unique and
potentially realizable solution, although with a limited range of transformations
allowed. It would be desirable to relax this constraint, which interestingly,
does not appear for the related problem of SH wave motion in incompressible
hyperelastic solids (Parnell 2012). The limit of incompressibility offers a clue to
a possible resolution for solids with Poisson’s ratio close to one-half, and will be
the subject of a separate study.

We would like to thank Ellis Dill for comments and suggestions. The work of A.N.N. was supported
by the Office of Naval Research and by the National Science Foundation.

Appendix A. Elastic wave scattering from cylindrical cavities

Brief summaries of the two-wave scattering problems are given below. For
further details, e.g. Eringen & Suhubi (1975). Scattering is considered from a
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cylindrical cavity of radius A, located at the origin of a Cartesian coordinate
system X = (X1, X2, X3), related to a cylindrical polar coordinate system via
X = (R cos Q, R sin Q, Z ). An incident wave is generated by a line source of
amplitude C (a force per unit length) located at the point (R0, Q0). We take
Q0 ∈ [0, 2p), subtended from the positive X -axis.

(a) SH wave scattering

In this case, the line source is polarized in the Z -direction thus creating incident
horizontally polarized shear (SH) waves which are then scattered from the cavity
without mode conversion. The total wave field in this domain will therefore be
U = (0, 0, W (X , Y )) where W satisfies

(V2 + K 2
s )W = CR−1

0 d(R − R0)d(Q − Q0) (A 1)

with K 2
s = ru2/m0 and C = C0/m0. We seek W in the form W = Wi + Ws

where Wi = (C/4i)H0(KsS) is the incident field and S = √
(X − X0)2 + (Y − Y0)2

with X0 = R0 cos Q0, Y0 = R0 sin Q0. We have defined H0(KsS) = H(1)
0 (KsS) =

J0(KsS) + iY0(KsS), the Hankel function of the first kind, noting that J0 and
Y0 are Bessel functions of the first and second kind, respectively, of order zero.
Together with the exp(−iut) time dependence in the problem, this ensures an
outgoing field from the source. Graf’s addition theorem allows us to write this field
relative to the coordinate system (R, Q) centred at the origin of the cavity (Martin
2006) and we can use the form appropriate on R = A in order to enforce the
traction-free boundary condition m0vW /vR = 0 on R = A, yielding the scattered
field in the form:

Ws =
∞∑

n=0

3nDnHn(KsR) cos(n(Q − Q0)) with Dn = C
i
4

J′
n(KsA)

H′
n(KsA)

Hn(KsR0),

(A 2)
where Hn and Jn are, respectively, Hankel and Bessel functions of the first kind of
order n. We have also defined 30 = 1, 3n = 2, n ≥ 1. If we take R0 → ∞ and C0 =
2im0

√
2pKsR0 ei(p/4−KsR0), the incident wave of unit amplitude takes the (plane-

wave) form Wi = exp{iKs(X cos Qinc + Y sin Qinc)}, where Qinc = Q0 − p ∈ [−p, p)
is the angle of incidence subtended from the negative X -axis. The scattered wave
Ws takes the form (A 2)1 with Dn → D(pw)

n ≡ −inJ′(KsA)/H′
n(KsA). The scattering

cross section of the cylindrical cavity for plane wave incidence is (Lewis et al. 1976)

gSH = 2
Ks

∞∑
n=0

3n |D(pw)
n |2. (A 3)

(b) P/SV wave scattering

In this case, the line source at (R0, Q0) with amplitude C0 is a compressional
source. Thus the incident field consists purely of in-plane compressional waves.
Owing to mode conversion, the scattered field consists of coupled in-plane
compressional (P) and vertically polarized shear (SV) waves. The total wave
Proc. R. Soc. A
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field will therefore be U = (U (X , Y ), V (X , Y ), 0) and using the Helmholtz
decomposition U = VF + V × (Jk), we deduce that

V2F + K 2
p F = CR−1

0 d(R − R0)d(Q − Q0), V2J + K 2
s J = 0 (A 4)

where K 2
p = u2r/(l0 + 2m0), K 2

s = u2r/m0 and C = C0/(l0 + 2m0). Seek the wave
field in the form F = Fi + Fs, J = Js where Fi = (C/4i)H0(KpS) is the incident
compressional wave with notation defined in appendix A(a). We satisfy the
traction-free (sRR = 0, sRQ = 0) boundary condition on R = A, by using Graf’s
addition theorem, and the scattered field is

Fs =
∞∑

n=0

3nAnHn(KpR) cos(n(Q − Q0)), Js =
∞∑

n=0

3nBnHn(KsR) sin(n(Q − Q0)).

(A 5)
The scattering coefficients are

An = i
4

CHn(KpR0)[I 1
n (KpA)M 22

n (KsA) − I 2
n (KpA)M 12

n (KsA)]
Dn

(A 6a)

and

Bn = i
4

CHn(KpR0)[I 2
n (KpA)M 11

n (KpA) − I 1
n (KpA)M 21

n (KpA)]
Dn

, (A 6b)

where

I 1
n (x) = (n2 + n − 1

2(KsA)2)Jn(x) − xJn−1(x),

I 2
n (x) = n(n + 1)Jn(x) − nxJn−1(x),

M 11
n (x) = −M 22

n (x) = (n2 + n − 1
2(KsA)2)Hn(x) − xHn−1(x),

M 12
n (x) = −M 21

n (x) = −n(n + 1)Hn(x) + nxHn−1(x)

and Dn = M 11
n (KpA)M 22

n (KsA) − M 21
n (KpA)M 12

n (KsA).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 7)

If we take R0 → ∞ together with C0 = 2i(l + 2m0)
√

2pKpR0 ei(p/4−KpR0), the
incident wave of unit amplitude takes the (plane-wave) form Fi = exp{iKp(X cos
Qinc + Y sin Qinc)}, where Qinc is defined above in appendix A(a). The plane wave
scattered fields take the form in (A 5) with An , Bn → A(pw)

n , B(pw)
n where the latter

are given defined in (A 6) under the replacement (i/4)CHn(KpR0) → −in . The
scattering cross section gP of the cylindrical cavity for plane compressional wave
incidence (subscript P indicating this fact) is (Lewis et al. 1976)

gP = 2
Kp

∞∑
n=0

3n(|A(pw)
n |2 + |B(pw)

n |2). (A 8)
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