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A method for solving elastodynamic problems in radially inhomogeneous elastic materials
with spherical anisotropy is presented, i.e. materials having cijkl = cijkl(r) in a spherical
coordinate system {r , q, f}. The time-harmonic displacement field u(r , q, f) is expanded
in a separation of variables form with dependence on q, f described by vector spherical
harmonics with r-dependent amplitudes. It is proved that such separation of variables
solution is generally possible only if the spherical anisotropy is restricted to transverse
isotropy (TI) with the principal axis in the radial direction, in which case the amplitudes
are determined by a first-order ordinary differential system. Restricted forms of the
displacement field, such as u(r , q), admit this type of separation of variables solution
for certain lower material symmetries. These results extend the Stroh formalism of
elastodynamics in rectangular and cylindrical systems to spherical coordinates.
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1. Introduction

The Stroh formalism (Wu et al. 1991), which recasts equations of time-harmonic
elastodynamics in the form of a first-order ordinary differential system (ODS),
is a powerful technique in dealing with elastic materials inhomogeneous in one
coordinate. The method was originally established for rectangular coordinates
(e.g. Ting 1996; Wu 1998; Shuvalov 2000; Shuvalov et al. 2004) and has been
developed for applications in cylindrical coordinate systems (Shuvalov 2003a;
Norris & Shuvalov 2010). One complicating factor for cylindrical, when compared
with rectangular, anisotropy is that the radial and azimuthal basis vectors er
and eq depend on the angular coordinate q. This, however, does not hamper
separation of variables and allows for a Stroh-like ODS provided that the material
coefficients depend either on the radial or axial coordinate r or z . The situation
is quite different for spherical anisotropy. The lowest anisotropy that supports
general displacement fields which can be described by a separation of variables
appears to be transverse isotropy (TI) with the axis of symmetry in the radial
direction, as was assumed in the derivations by Hu (1954) for statics and Shul’ga
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et al. (1988) for dynamics (the term ‘spherically isotropic’ used by Hu (1954)
and others is equivalent to TI). A state space system was developed for radially
inhomogeneous TI by Shul’ga et al. (1988), who also identified two distinct types
of wave motion solutions: an uncoupled pure shear motion and a coupled radial–
angular solution pair. The state vector approach has been applied to vibrations
of thick-walled TI shells (Chen & Ding 2001; Hasheminejad & Maleki 2009) and
further developed for piezoelectric shells (Scandrett 2002). Lower symmetry can
support specific types of kinematically restricted deformation. The most general
form of spherical anisotropy which admits static solutions of the form u = u(r)er
in spherical coordinates (r , q, f) is described by Ting (1998).

The purpose of this paper is to present a method for solving elastodynamic
problems in radially inhomogeneous elastic materials with spherical anisotropy,
i.e. materials having cijkl = cijkl(r) in a spherical coordinate system (Lekhnitskii
1963). No a priori restrictions are made on the form of the displacement field.
The main departure from previous studies is the use of vector spherical harmonic
functions as the set of vector basis functions. We show that the most general
type of spherical symmetry, for which the basis of vector spherical harmonics
always yields a separable solution, is transverse isotropy about er (certain lower
symmetries admit such solutions as well but only under appropriate kinematic
restrictions). Such anisotropy restriction may actually be not so severe, since
any spherical anisotropic material with properties independent of the polar-axis
orientation must be TI anyway (see below). The spherical TI problem reduces to
an ODS in the radial coordinate r with a system matrix possessing hermiticity
properties that guarantee physical attributes such as energy conservation. The
key feature of this analysis is the set of basis functions, vector spherical harmonics,
which allow for the first time application of the full Stroh formalism to spherical
elasticity for arbitrary displacement fields.

The paper is organized as follows. The concept of spherical anisotropy is
revisited in §2. Vector spherical harmonic basis functions are introduced in §3.
The main result, which is the Stroh-like ODS for the state vector comprising
the r-dependent components of displacement and radial traction in the basis
of vector spherical harmonics, is described in §4 and proved in detail in §5.
Explicit solutions and their properties are discussed in §6. Conclusions and further
prospects are presented in §7.

2. Elastic anisotropy in cylindrical and spherical coordinates

The concept of cylindrical and spherical elastic anisotropy was introduced by
Saint-Venant and subsequently developed by Lekhnitskii (1963). The concept is
motivated by the existence of special materials possessing either a physically
distinguished direction aligned with the Z -axis of the cylindrical coordinate
system or a point that can be identified as the origin O of the spherical system.
It is physically relevant to consider such materials in terms of tensor fields in an
orthogonal curvilinear coordinate system. A tensor F of order p ∈ N is defined at
every point r of a material body P by the array {Fi1...ip} (ij = 1, 2, 3; j = 1, . . . , p)
of its components in some frame of orthogonal basis vectors (e1, e2, e3) associated
with r ∈ R

3. The components change in the usual manner under a change of
basis (see Nair 2009, §2.6). Recall that the frame {e} = (ex , ey , ez) of a rectangular
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(orthogonal rectilinear) coordinate system in R
3 is independent of r and of the

origin point O, whereas an orthogonal curvilinear coordinate system implies a
varying frame, i.e. the frame {e(q)} = (er , eq, ez) with a fixed longitudinal axis
Z ‖ ez for the cylindrical system, and the frame {e(q, f)} = (er , eq, ef) with a fixed
origin O and polar axis Z for the spherical system. The essential difference
between the rectilinear and curvilinear arrays of components is related to the
meaning of a uniform tensor. If the array of components {Fi1...ip} in some
rectangular frame is uniform, i.e. Fi1...ip = const. for all ij , j and r ∈ P, then the
tensor F is also uniform, i.e. it is the same for all r, and vice versa. By contrast, a
uniform array of components {Fi1...ip} referred to a curvilinear frame {e} describes
a tensor F which generally depends on r since {e} does. For example, F = F(q) for
a uniform cylindrical array of components and F = F(q, f) for uniform spherical
components, unless these tensors are isotropic (components invariant to change
of basis under SO(3)) or if the cylindrical one is transversely isotropic (invariant
under SO(2) about ez). As a matter of definition, a tensor F associated with
cylindrical or spherical components which is not isotropic in the above sense is
called cylindrically or spherically anisotropic, respectively.

The components of a tensor may certainly be non-uniform so that {Fi1...ip} =
{Fi1...ip(r)} (where r does not have to be related to the same coordinate system as
the frame {e}). Many applications deal with a specific type of inhomogeneous body
P in which the curvilinear components Fi1...ip(r) of a non-uniform tensor vary with
position but maintain the same anisotropy (symmetry class) at every r ∈ P. This
is the general framework considered in this paper. A widely encountered example
is the case of a cylindrical or spherical, radially inhomogeneous elastic tensor with
cijkl = cijkl(r), where r may be measured from any point of the fixed axis Z of the
cylindrical system (since cijkl do not depend on z) or from the fixed origin O of
the spherical system.

Another particular aspect of cylindrical and spherical tensor components
{Fi1...ip} stems from the fact that the orientation of frame vectors is undefined
at certain points, namely (i) of the pair (er , eq) of the cylindrical frame at the
points r = 0 lying on the longitudinal axis Z , (ii) of the pair (eq, ef) of the
spherical frame at the points q = 0, p of the polar axis Z and (iii) of the whole
spherical frame (er , eq, ef) at the point r = 0 of the origin O. Now suppose that
a given body P contains either the axis Z or the point O and has a tensor F
described by the array of components {Fi1...ip(r)} which is single-valued at every
r ∈ P including the above-mentioned special points. Then in case (i), the array
{Fi1...ip} that is independent of r must at every r be invariant to the orientation
of the pair (er , eq), i.e. F must be transversely isotropic about Z ‖ ez ; in case (ii),
{Fi1...ip} that is independent of q must at every r be invariant to the orientation
of the pair (eq, ef), i.e. F must be transversely isotropic about er ; in case (iii),
{Fi1...ip} that is independent of r must at every r be invariant to the orientation
of the spherical frame (er , eq, ef), i.e. F must be isotropic. These restrictions on
cylindrical or spherical anisotropy, which result from eliminating a singularity
that exists only at isolated (axial or origin) points, are neither immanent nor
physically binding and can certainly be circumvented formally, say, by assuming
a small cavity surrounding each singular point. However, in the spherical case, it
is physically reasonable to single out the class of spherically anisotropic materials
invariant with respect to any orientation of the polar axis which may thus be
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called materials with complete spherical anisotropy. The remedy for case (ii)
described above must then be provided at every r. Hence, material tensors in
a body with complete spherical anisotropy can only be either uniform or radially
inhomogeneous and, unless isotropic, they must be transversely isotropic about
er . They are well defined everywhere except a single origin point O where (iii)
needs to be addressed.

3. Governing equations

(a) Elastodynamic equations

The dynamic equilibrium vector equation for a linearly elastic material when
expressed in spherical coordinates is

r−2(r2tr),r + (r sin q)−1[(sin qtq),q + tf,f + sin qKtq + Htf] = rü
with

K =
(0 −1 0

1 0 0
0 0 0

)
(= −KT), H =

( 0 0 − sin q
0 0 − cos q

sin q cos q 0

)
(= −HT).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1)

Here r = r(x) is the mass density, u = u(x, t) the displacement and ti = ti(x, t) =
eT

i s (i = r , q, f) the traction vectors defined by the elements of stress s(x, t)
in the orthonormal basis (er , eq, ef) of the spherical coordinates (r , q, f). The
left-hand side term in (3.1), div s = ∑

i V · (ei ⊗ ti), follows using (3.3)1 plus
the identities va/vq = a,q + Ka and va/vf = a,f + Ha, where the comma suffix
notation indicates partial differentiation of components only: a,4 ≡ ∑

i ai,4ei for
4 = q, f. The stress elements in the basis (er , eq, ef) are sij = cijkl3kl where cijkl =
cijkl(x) are the components of the spherically anisotropic elastic tensor and 3kl

are the components of the strain 3(x, t) = 1
2 [Vu + (Vu)T], with summation on

repeated indices assumed and T for transpose. The traction vectors can therefore
be written as (tr

tq

tf

)
=

⎛
⎝ Q R P

RT T S
PT ST M

⎞
⎠

⎛
⎝ u,r

r−1(u,q + Ku)
(r sin q)−1(u,f + Hu)

⎞
⎠ (3.2a)

with ⎛
⎝ Q R P

RT T S
PT ST M

⎞
⎠ =

((erer) (ereq) (eref)
(eqer) (eqeq) (eqef)
(efer) (efeq) (efef)

)
, (3.2b)

where, in the notation of Lothe & Barnett (1976), the matrix (ab) has components
(ab)jk = aicijkl bl for arbitrary vectors a and b.

(b) Vector spherical harmonics

Our objective here is to develop separation of variables vector solutions in the
form v(r , q, f) = ∑

A VA(r)A(q, f) where the three vectors A(er) are independent
of r and provide a complete basis for representing vectorial functions of the
spherical angles. Vector spherical harmonics are one such set of functions.
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It is useful to first introduce the angular parts D and D · D ≡ D2 of the vector
differential operators V and V · V ≡ V2(≡ D) in spherical coordinates:

V = er
v

vr
+ 1

r
D

(
⇒ D = eq

v

vq
+ ef

sin q

v

vf

)
,

Df (r) = 1
r2

v

vr

(
r2 vf

vr

)
+ 1

r2
D2f

and Df(r) =
∑

i

[
ei

1
r2

v

vr

(
r2 vfi

vr

)]
+ 1

r2
D2f,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

so that Df = r−2D2f and Df = r−2D2f for pure angular functions f (er) and f(er),
respectively. Another ingredient is the set of (scalar) spherical harmonics Y m

n of
polar order n and azimuthal order m, for which there are several slightly different
notations in use. Following Martin (2006, p. 64), let

Y m
n (er) ≡ Y me

n + iY mo
n = Am

n Pm
n (cos q)eimf

with

Am
n = (−1)m

√
(2n + 1)

4p

(n − m)!
(n + m)! ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4)

where Pm
n (cos q) are the associated Legendre functions of the first kind. The

functions Y m
n (er) satisfy the equation

1
sin q

v

vq

(
sin q

vY m
n

vq

)
+ 1

sin2 q

v2Y m
n

vf2
(≡ D2Y m

n ) = −l2Y m
n with l = [n(n + 1)]1/2.

(3.5)
In these terms, the vector spherical harmonics are defined as

Pmn(er) = erY m
n (er),

Bmn(er) = l−1DY m
n (er)

and Cmn(er) = Bmn(er) × er

⎫⎪⎬
⎪⎭ (3.6)

(see Martin 2006, §3.17 for a literature review). The vector harmonics are
pointwise orthogonal

Pmn · Bmn = Bmn · Cmn = Cmn · Pmn = 0 (3.7)

and orthonormal when integrated by dU = sin q dq df:
∫

U

dUPmn · B∗
mn =

∫
U

dUBmn · C∗
mn =

∫
U

dUCmn · P∗
mn = 0

and ∫
U

dUPmn · P∗
mn =

∫
U

dUBmn · B∗
mn =

∫
U

dUCmn · C∗
mn = dmmdnn,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.8)
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where the latter two identities hold at n, n �= 0, see §6d. Using Morse & Feshbach
(1953, p. 1901), the vector spherical harmonics can be shown to satisfy the
following identities where f = f (r) and indices m and n are suppressed:

V · f P = r−2(r2f )′Y , V · f B = −r−1f lY , V · f C = 0;

D(f A) = (Df )A + r−2fD2A where A ≡ P, B, C

and D2P = 2lB − (l2 + 2)P, D2B = 2lP − l2B, D2C = −l2C.

⎫⎪⎪⎬
⎪⎪⎭ (3.9)

4. The Stroh formalism in spherical coordinates

We consider time-harmonic motion with the time dependence e−iut omitted but
understood. It is useful to re-write the equilibrium equation (3.1) in the form
distinguishing terms with radial and angular derivatives, namely

(r2tr),r + r t = −r2ru2u (4.1a)

with

t ≡ (sin q)−1[(sin qtq),q + tf,f + sin qKtq + Htf], (4.1b)

where ti are defined by (3.2a). In the following, the density and elastic coefficients
are assumed to be radially inhomogeneous. Suppressing the indices m and n,
denote A(er) ≡ P, B, C and let

u =
∑
A

UAA, tr =
∑
A

TAA, t =
∑
A

GAA (4.2a)

and

U = (UP, UB, UC)T, T = (TP, TB, TC)T, G = (GP, GB, GC)T. (4.2b)

Our objective in this paper is twofold: first to find the most general symmetry
which admits the separation of variables solution u = ∑

A UA(r)A; and, second,
to obtain these separation of variables solutions when they are possible.

In view of equations (4.1)–(4.2), the first problem implies answering
the following question: given the ansatz U = U(r), what symmetry yields
simultaneous conditions T = T(r) and G = G(r)? Direct calculation of TA = tr · A
from (3.2a) with u = ∑

A UA(r)A shows that T = T(r) holds for tetragonal, cubic
and transversely isotropic symmetries if their principal axes are parallel to er ,
but is invalid for any other cases including the above symmetries with non-
radial principal axes, the trigonal symmetry and certainly any lower symmetries.
Note that the other traction vectors tq and tf do not admit a similar expansion
in A with scalar coefficients depending on r even if the material is isotropic
and uniform; however, this is not so for their combination t. Calculation of
GA = t · A shows that G = G(r) is possible, but it holds only for TI with the
principal axis along er . Thus, altogether the separation of variables solution
u = ∑

A UA(r)A is ensured only in the presence of TI about er ; otherwise, the
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coefficients UA must depend on the spherical angles (apart from the theoretical
possibility of coincidental equalities between material constants that is of no
practical interest).

Regarding the second problem, it is solved by deriving the first-order ODS in
r (solutions of such ODS are standard; see §6b). This is done in detail in the next
section. For now, we simply formulate the overall result.

Theorem 4.1. Time-harmonic solutions of the equations of linear elasticity in
a spherically anisotropic radially inhomogeneous body with r(r) and cijkl(r) admit
the separation of variables using the vector spherical harmonic functions only if
the material is transversely isotropic about er . In this case, the separable solution
for the displacement and radial-traction vectors is in the form u = ∑

A UA(r)A,
tr = ∑

A TA(r)A (with A ≡ P, B, C and the indices m and n being omitted). The
amplitudes U(r) = (UP, UB, UC)T and T(r) = (TP, TB, TC)T are defined by the
Stroh-like ODS

h′ = iG
r2

h with h(r) =
(

U
ir2T

)
,

G(r) =
(

irT −1RT −T −1

r2(Q − RT −1RT) − r4ru2I −irRT −1

)
, (4.3a)

where ′ = d/dr,

T = diag[c11, c66, c66], R =
( 2c12 lc66 0

−lc12 −c66 0
0 0 −c66

)
(4.3b)

and

Q =
⎛
⎝l2c66 + 4(c22 − c44) l(2c44 − 2c22 − c66) 0

l(2c44 − 2c22 − c66) l2c22 + c66 − 2c44 0
0 0 l2c44 + c66 − 2c44

⎞
⎠ = QT,

(4.3c)

and l = [n(n + 1)]1/2. For real material parameters (and real u2), G = TG+
T

where + means Hermitian conjugation and T is a matrix with zero diagonal and
identity off-diagonal 3 × 3 blocks.

5. Derivation of the Stroh-like ODS for spherical transverse isotropy

(a) Elastic coefficients and stress

Having established that the separation of variables solution via the use of
harmonics works only for TI, our purpose here is to obtain the explicit form
of the ODS which is stated by Theorem 4.1. The derivation proceeds by splitting
the problem into the isotropic and anisotropic parts based on the standard form
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of the transversely isotropic elastic coefficients cijkl(r) (Fedorov 1968):

cijkl = c(iso)
ijkl + c(anis)

ijkl : c(iso)
ijkl = c23dijdkl + c44(dikdjl + dildjk),

c(anis)
ijkl = a1(dikdj1dl1 + dildj1dk1 + djkdi1dl1 + djldi1dk1)

+ a2di1dj1dk1dl1 + a3(dijdk1dl1 + dkldi1dj1)

with

a1 = c66 − c44, a2 = c11 + c22 − 2c12 − 4c66,

a3 = c12 − c23, c22 = c23 + 2c44.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

These partitions stress as

s = s(iso) + s(anis), s(iso) = c23(V · u)I + 2c443

and

s(anis) = 2a1(er ⊗ gr + gr ⊗ er) + a2ur ,rer ⊗ er + a3[ur ,rI + (V · u)er ⊗ er ]

⎫⎪⎬
⎪⎭
(5.2)

where
gr = er3 = 1

2(u,r + Vur − r−1u⊥) with u⊥ ≡ uqeq + ufef.

Another useful split occurs due to uncoupling of the shear wave motion with
u polarized along C. We begin with this observation and subsequently examine
solutions with u spanned by P and B.

(b) Uncoupled shear-horizontal solution

Keeping the conventional term ‘shear-horizontal’ (SH) for the waves with u
parallel to C, assume that

uSH = UC (r)C. (5.3)

Inserting the ansatz (5.3) into (5.2) readily determines the SH radial traction as

tr = TC C with TC = c66(U ′
C − r−1UC ) (5.4)

(note that the SH tractions tq and tf are not aligned with C). Applying the
divergence identities (3.9) to the isotropic and anisotropic parts of the stress
gives the equalities

div s
(iso)
SH = [c′

44(U
′
C − r−1UC ) + c44(DUC − l2r−2UC )]C

and

div s
(anis)
SH = [a ′

1(U
′
C − r−1UC )C + a1(DUC − 2r−2UC )]C.

⎫⎪⎪⎬
⎪⎪⎭ (5.5)

Adding them leads to the equation of SH motion div sSH = −ru2uSH in the form

(r2c66U ′
C )′ + (r2ru2 − l2c44 + 2(c44 − c66) − rc′

66)UC = 0. (5.6)

The latter can be recast, using (5.4), as

(r2c66U ′
C )′ − (2c66 + rc′

66)UC = (r2TC )′ + rTc. (5.7)
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Thus, (5.4) is the first and (5.7) the second equations of the following ODS for
SH waves: (

UC
ir2TC

)′
= i

( −ir−1 −(r2c66)−1

(l2 − 2)c44 − r2ru2 ir−1

) (
UC

ir2TC

)
. (5.8)

This is clearly the same as the pair of equations in the third and sixth rows of
system (4.3a).

(c) In-plane problem

We now consider U = ∑
A UAA and T = ∑

A TAA where A = P, B only, in which
sense this case may be referred to as the ‘in-plane’ problem. It implies restricting
attention to the upper 2 × 2 block of the matrices in (4.3).

(i) Isotropic part

Assume

uin−plane =
∑
A

UA(r)A with A = P, B. (5.9)

The equation for tr = ers readily follows from s(iso) in (5.2)1 to yield the isotropic
part of the first equation of the in-plane ODS as

rTiso = rTisoU′ + RT
isoU with Tiso =

(
c23 0
0 c44

)
, RT

iso =
(

2c23 −lc23
lc44 −c44

)
. (5.10)

In order to formulate the second equation, which is based on the equilibrium
condition div s = −ru2u, it is convenient to use the following identity for the
radially inhomogeneous medium

(r2tr),r + r2ru2u = [(r2tr),r − r2div s]homo, (5.11)

where the ‘homogeneous’ term on the right-hand side is understood to be
evaluated as if the elastic moduli are independent of r , i.e. derivatives of cijkl(r)
are ignored. This reduces the task to concentrating on the right-hand side term
in (5.11), namely, to expanding div shomo in vector spherical harmonics given that
u = ∑

A UAA:

div shomo =
∑
A

FAA with A = P, B. (5.12)

Using div s
(iso)
homo = (c23 + c44)V(V · u) + c44V2u and the identities (3.9) yields the

isotropic part Fiso of the vector F = (FP, FB)T as

Fiso =

⎛
⎜⎜⎝

c22D − 1
r2

(2c22 + l2c44)
l

r

[
(c44 − c22)

d
dr

+ 1
r
(c22 + c44)

]
l

r

[
(c22 − c44)

d
dr

+ 1
r
c22

]
c44 − l2

r2
c22

⎞
⎟⎟⎠ U. (5.13)
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Combining (5.13) with (5.10) and substituting into (5.11) gives

(r2Tiso)′ = rRisoU′ + (Qiso − r2ru2I)U
with

Qiso =
(

4(c22 − c44) + l2c44 l(c44 − 2c22)
l(c44 − 2c22) −c44 + l2c22

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.14)

(ii) Anisotropic part

From (5.2)2 and the definition of aj in (5.1), the anisotropic part to be added
to the first equation is

rTanis = rTanisU′ + RT
anisU

with

Tanis =
(

c11 − c23 0
0 c66 − c44

)
, RT

anis =
(

2(c12 − c23) l(c23 − c12)
l(c66 − c44) c44 − c66

)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.15)

Again using (5.2)2, now with the identities

V[(V · u)er ⊗ er ] =
(

D + 2
r

v

vr
− 2

r2

)
u,rer ,

V[f (r)er ⊗ er ] =
(

f,r + 2
r
f
)

er

and V[f (r)(er ⊗ B + B ⊗ er)] = f ′B + f V(er ⊗ B + B ⊗ er)

= f ′B + r−1f (3B − lP),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.16)

yields the anisotropic part Fanis of the vector F = (FP, FB)T defined in (5.12):

Fanis =

⎛
⎜⎜⎝
(a2 + 2a3)D + 1

r2
(2a3 − 4a1 − l2a1)

l

r

[
(a1 − a3)

d
dr

+ 1
r
(3a1 − a3)

]
l

r

(
(a3 − a1)

d
dr

+ 2
r
a1

)
a1

(
D − 2

r2

)
⎞
⎟⎟⎠ U.

(5.17)

Combining (5.17) with (5.15) and substituting the result into (5.11) gives

(r2Tanis)′ = rRanisU′ + (Qanis − r2ru2I)U with Qanis = (c66 − c44)
(

l2 −l
−l 1

)
.

(5.18)

(iii) Result

The isotropic and anisotropic parts of the in-plane solution can now be
superimposed. Adding (5.15) to (5.10) and (5.18) to (5.14) gives the in-plane
part of (4.3a). This, together with (5.8), completes the proof of Theorem 4.1.
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6. Discussion

(a) Radially uniform materials

Consider first the SH motion. Assuming radially uniform material coefficients
and denoting UC (r) → u(R) with R = ru(r/c66)1/2, the uncoupled equation (5.6)
becomes

(R2u′)′ + [R2 − m(m + 1)] u = 0, m(m + 1) = [n(n + 1) − 2]c44

c66
+ 2, (6.1)

the solutions of which are spherical Bessel functions jm(R) and ym(R)
(alternatively, Hankel functions h(1)

m (R) and h(2)
m (R)). The identity (6.1)2 was

obtained by Hu (1954) for static equilibrium, and the vector function defined by
(5.3) with Bessel or Hankel function solutions for UC (r) is equivalent to the vector
function M (r , q, f) of Morse & Feshbach (1953) (see also Dassios & Rigou 1995).

The in-plane differential equations for displacement and traction amplitudes
may be recast as second-order differential equations for UP and UB . In the case
of radially uniform materials, these equations reduce to

(
0
0

)
=

(
c11 0
0 c66

) (
r2U ′

P
r2U ′

B

)′
+ rl(c12 + c66)

(
0 −1
1 0

) (
U ′

P
U ′

B

)

+
(

ru2r2 − 2(c22 + c23 − c12) − l2c66 l(c22 + c23 − c12 + c66)
l(c22 + c23 + 2c66) ru2r2 + 2(c44 − c66) − l2c22

)

×
(

UP
UB

)
. (6.2)

Even though the material coefficients are constant, this coupled pair of equations
does not seem to admit an evident explicit solution in terms of special functions
and should be solved by the means discussed in §6b. For isotropic materials with
c2
L = c11/r and c2

T = c66/r, equation (6.2) further simplify to the form

(r2U ′
P)′ +

(
u2

c2
L

r2 − l2 − 2
)

UP + 2lUB − lc−2
L (c2

L − c2
T )[(rUB)′ − lUP ] = 0,

(6.3a)
and

(r2U ′
B)′ +

(
u2

c2
T

r2 − l2
)

UB + 2lUP + lc−2
T (c2

L − c2
T )

[
1
r
(r2UP)′ − lUB

]
= 0,

(6.3b)

which leads to the known isotropic solutions. They may be elicited as follows.
Set the final term in (6.3a) to zero by assuming for some as yet unknown
function v that

UP = v′ and UB = l
v

r
. (6.4)
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Substituting this into equation (6.3) recasts them, respectively, as(
d
dr

− 2
r

)
MLv = 0,

l

r
c2
L

c2
T

MLv = 0 with MLv ≡ (r2v′)′ +
(

u2

c2
L

r2 − l2
)

v.

(6.5)

Both equalities are satisfied if v is a solution of the same spherical Bessel equation,
MLv = 0, which has solutions jn(ru/cL) and yn(ru/cL). Similarly, setting to zero
the final term in (6.3b) by taking

UP = l
w
r

, UB = 1
r
(rw)′, (6.6)

for some function w, we find that (6.3a) and (6.3b) become, respectively,

l

r
c2
T

c2
L

MTw = 0,
(

d
dr

− 1
r

)
MTw = 0, with MTw ≡ (r2w ′)′ +

(
u2

c2
T

r2 − l2
)

w.

(6.7)

These are satisfied if w is a solution of the spherical Bessel equation of order n,
MTw = 0.

The uncoupled longitudinal and transverse wave solutions (6.4) and (6.6) for
the uniform and isotropic case are consistent with the potential representation
using the Helmholtz decomposition. The vector functions of r , q and f formed
from (5.9) with (6.4) and (6.6) can be identified as the vector functions L and
N , respectively, of Morse & Feshbach (1953) (see also Dassios & Rigou 1995).

(b) Radially inhomogeneous materials

The first-order ODS (4.3a) with material coefficients depending on r admits
a general solution in the standard form h(r) = M(r , r0)h(r0), where h(r0) is the
initial data and the matricant M(r , r0) may be evaluated by the Peano series
(Pease 1965)

M(r , r0) = I +
∫ r

r0

dx
iG(x)

x2
+

∫ r

r0

dx
iG(x)

x2

∫ x

r0

dx1
iG(x1)

x2
1

+ · · · . (6.8)

The matricant solution applies for r , r0 �= 0. The case where the solution needs to
be extended to the origin point r = 0 requires a special treatment based on the
theory of ODS with an irregular singular point (Wasow 1965). A similar state of
affairs arises for the Stroh-like ODS in cylindrical coordinates at the axial points
r = 0 (except that they are regular singular points; Shuvalov 2003b, Norris &
Shuvalov 2010). In the following, we assume r , r0 �= 0.

By analogy with the cylindrical case, the algebraic symmetry G = TG+
T (see

Theorem 4.1) yields M+
TM = T and

d
dr

(
N +

TN
) = 0 with N (r) ≡ {h(a)}, (6.9)
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where the 6 × 6 matrix N (r) is composed of any six linearly independent
solutions h(a)(r) = (U(a), ir2T(a))T, a = 1 . . . 6, of (4.3a). Thus, N +(r)TN (r)
is a constant matrix which can be chosen to provide the partial solutions
h(a)(r) with appropriate pointwise orthogonality in the sense of a product (6.9)
(Shuvalov 2003a).

Recalling the angular indices of the vector spherical harmonics Amn(er) ≡ Pmn ,
Bmn and Cmn defines the displacement-traction modes in full as

h(a)(r) =
(

u(a)

ir2t(a)
r

)
=

∞∑
n=0

h(a)
n (a = 1 . . . 6)

with

h(a)
n (r) =

(
u(a)

n

ir2t(a)
nr

)
=

∑
A

(
U (a)

Amn ,n(r)
∑

|m|<n Amn

ir2T (a)
Amn ,n(r)

∑
|m|<n Amn

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.10)

where it is taken into account that U (a)
Amn ,n and T (a)

Amn ,n(r) are independent of m (see
§6c). There is no pointwise orthogonality of the ‘full’ modes in general owing to
the complex conjugation in (6.9) and its absence in (3.7). At the same time, one
can make use of (6.9) along with the integral orthogonality of vector harmonics
(3.8). This enables evaluation of the angular (and time-period) average of the
radial component of energy flux associated with the mode h(a)(r) as

P (a)
r ≡ −

∫
U

〈t(a)
r · u̇(a)〉tdU = − u

4r2

∫
U

h(a)+(r)Th(a)(r)dU. (6.11)

This may be further reduced by using (3.8), (6.9) and (6.11),

P (a)
r =

∞∑
n=0

P (a)
nr where P (a)

nr ≡ −
∫

U

〈t(a)
rn · u̇(a)

n 〉tdU

= − u

4r2
(2n + 1)h(a)+

n (r)Th(a)
n (r). (6.12)

Thus, the fluxes P (a)
nr carried by the modes h

(a)
n (r) add up to give P (a)

r of (6.11).
According to (6.9), these fluxes do not depend on r which is consistent with
energy conservation for the assumed case of real material parameters.

(c) The case u(r , q) (m = 0)

The separation of variables using vector spherical harmonics involves a single
auxiliary equation (3.5) which does not depend on m, and hence Theorem 4.1
holds for any m (Shul’ga et al. 1988). This does not, however, preclude the
possibility that some lower symmetry permits such separation for the specific case
of m = 0. The derivation along the lines of §4 shows that ‘radially tetragonal’
symmetry, with er parallel to the fourfold axis and with c24, c34 = 0, admits
separation of variables for m = 0. The result for this tetragonal symmetry at m = 0
amounts to replacing 2c44 by c22 − c23 in all entries of Q in (4.3c), except the term
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l2c44 in the last diagonal component. Any other tetragonal symmetry (including
that with er ‖ fourfold axis but with c24 = −c34 �= 0), any trigonal symmetry and
indeed all lower symmetries prevent separation of variables even for m = 0.

The same question may be raised concerning the SH uncoupling for m = 0. The
above consideration implies that (5.8) with m = 0 can be extended to ‘radially
tetragonal’ symmetry. Moreover, it can be shown that orthorhombic symmetry
aligned with the coordinate planes also leads to SH uncoupling for m = 0, with the
equation of motion obtained from (5.8) by replacing c66 with c55. In this case, the
SH modes admit the separation of variables form uSH(r , q) = UC(r)l−1Pn,q(q)ef

while the modes u(r , q) polarized in the plane {er , eq} do not. SH uncoupling is
generally precluded for tetragonal symmetry with c24 = −c34 �= 0 and for trigonal
symmetry even if m = 0.

(d) Solutions for n = 0

Consider the term h
(a)
0 (r) with n = 0 (and hence m = 0) of the series (6.10).

The corresponding spherical harmonics are

P00 = 1
2
√

p
er , B00 = 0 and C00 = 0. (6.13)

Vanishing of B00 and C00 may be formally inferred from the definition (3.6) by
taking the limit of [n(n + 1)]−1/2(v/vq)Pn(cos q) as n → 0. It is also consistent with
another framework that defines Bmn and Cmn without a normalization factor l−1.
Note however that the symmetry G = TG+

T of the system matrix in (4.3) is not
preserved under any change in the definition (3.6) unless it implies multiplying
all three harmonics Amn by the same factor.

By (6.13), the sextet h
(a)
0 (a = 1 . . . 6) for n = 0 contains only two non-zero

modes which are the modes a = l1, l2 of the longitudinal (radially polarized) wave

u = U (r)er and tr = T (r)er , (6.14)

where we drop the indices used in (6.10). Equation (4.3a) with n = 0 provides an
uncoupled system of two equations for the amplitudes U and T :

(
U

ir2T

)′
= i

⎛
⎝ 2ir−1c12c−1

11 −r−2c−1
11

4
(

c22 − c44 − c2
12

c11

)
− r2ru2 −2ir−1c12c−1

11

⎞
⎠ (

U
ir2T

)
, (6.15)

which reduces to a single second-order equation for U (r),

(r2c11U ′)′ + (r2ru2 + 4(c44 − c22) + 2(rc12)′)U = 0. (6.16)

Note that the wave (6.14) exerts the tractions ti = f (r)ei for i = q, f, where
f = c12U ′ + r−1(c22 − c44)U . Equations (6.15) and (6.16) are similar to the SH-
wave equations (5.8) and (5.7) formally taken with n = 0. Since the wave (6.14)
also implies m = 0, it follows from §6c that equations (6.15) and (6.16) obtained
from the transversely isotropic system (4.3b) and (4.3c) can be extended to the
tetragonal case, by replacing 2c44 with c22 − c23. The same results can be obtained
by inserting u = U (r)er in the initial elastodynamic equations (3.1)–(3.2) with
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tetragonal symmetry. Note, in this regard, that the elastostatic solution of the
form (6.14) was analysed for various symmetries in Ting (1998), Antman &
Negron-Marrero (1987) and Antman & Ting (2001).

Interestingly, replacing l−1 in the harmonics definition (3.6) with some other
power of l may lead to peculiar solutions at n = 0 different from (6.14). This is
a problem of interest in its own right. Consider the set of spherical harmonics
defined as

P̃mn = Pmn , B̃mn = l−1Bmn and C̃mn = l−1Cmn . (6.17)

The corresponding spherical harmonic functions for n = 0 are (dropping the m = 0
subscript)

P̃0 = A0er , B̃0 = −A0 tan
q

2
eq, C̃0 = A0 tan

q

2
ef with A0 = 1

2
√

p
, (6.18)

which follow from (6.17) using first an exchange of limits,

lim
n→0

1
n(n + 1)

d
dq

Pn(cos q) = d
dq

lim
n→0

Pn(cos q) − P0(cos q)
n(n + 1)

, (6.19)

and then Jolliffe’s formula (Jolliffe 1919) to evaluate the derivative with respect
to n,

dPn(z)
dn

∣∣∣∣
n=n

≡ Fn(z) = −Pn(z) ln
z + 1

2
+ 2

2nn!
dn

dzn

(
(z2 − 1)n ln

z + 1
2

)
. (6.20)

By (6.18), P̃0 corresponds to purely radial motion, while B̃0 and C̃0 (non-zero in
contrast to (6.13)) represent shearing and twisting about the polar axis, with
zero at one pole and singularity at the other. The latter can be avoided by
introducing a conical cut centred at r = 0 of arbitrarily small angular extent
at q = p. This obviates the singularity allowing the otherwise unnormalized
spherical harmonics B̃0 and C̃0 to satisfy the orthonormality conditions (3.8).
Note that the spherical harmonics B̃0 and C̃0 are derived from and related with
the Legendre polynomials of the first kind which define the spherical harmonic
P̃0, although the Legendre polynomials of the second kind may be represented as
Qn(z) = 1

2 [Fn(z) − (−1)nFn(−z)] (see equation (6.20); Jolliffe 1919).
Based on the above, it is of interest to consider specific n = 0 solutions in

the form

u =
∑
Ã0

ŨÃ0
(r)Ã0, tr =

∑
Ã0

T̃Ã0
(r)Ã0 and Ã0 = P̃0, B̃0, C̃0. (6.21)

The system (4.3) modified with respect to the spherical harmonics Ã of (6.17)
and taken for n = 0 defines the displacement amplitudes ŨÃ0

(r) by the following
equations:

(r2c11Ũ ′
P̃0

)′ + (r2ru2 + 4(c44 − c22) + 2(rc12)′)ŨP̃0

=
[
2

(
c44 − c22 + c2

12

c11

)
− rc′

66

]
ŨB̃0

+ r2[r−1(c66 + c12)ŨB̃0
]′ (6.22a)
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and

(r2c66Ũ ′
Ã0

)′ + (r2ru2 + 2(c44 − c66) − rc′
66)ŨÃ0

= 0, Ã0 = B̃0, C̃0. (6.22b)

It is seen that equation (6.22b) for the amplitudes ŨB̃0
and ŨC̃0

are the same
as the SH wave equation (5.6) with n = 0, and that ŨB̃0

provides a forcing term
in equation (6.22a) for ŨP̃0

(note also that (6.22a) reduces to (6.16) if ŨB̃0
= 0).

Thus the SH solution u = ŨC̃0
C̃0(‖ ef) is completely uncoupled. However, the SH

motion polarized in the B̃0 ‖ eq direction drives the radial motion and this results
in the coupled wave u = ŨP̃0

P̃0 + ŨB̃0
B̃0. At the same time, non-zero angular

motion requires that the issue of singularities at q = p be resolved. Under normal
circumstances, e.g. a solid sphere or a complete shell, this is not the case, and any
angular motion is precluded, i.e. ŨB̃0

= ŨC̃0
= 0 and only radial motion u = U (r)er

occurs (where U is defined by (6.16)). If the small conical cut device is introduced,
then the surface of the cone must apply a force and a moment sufficient to
maintain the dynamic tractions required of the solutions. The magnitudes of the
tractions for different types of motion depend critically on the cone angle 3 � 1.
For purely longitudinal motion the traction is independent of 3, i.e. O(1). The
(er , eq)-coupled motion requires normal traction tq of O(tan2(q/2)|q=p−3) = O(3−2)
and is therefore ruled out as a viable n = 0 dynamic solution. In the case of the
pure SH motion u = ŨC̃0

C̃0, the normal traction tq = r−1c44 tan(q/2) u is O(3−2),
a pure twist in the ef direction corresponding to a net torque about the polar
axis of order unity (r3 × 2pr3 × 3−2). This suggests that pure twisting motion
may be induced in a solid sphere with a fixed polar axis by application of torque
to a small conical insert.

7. Conclusion

The central result of the paper, Theorem 4.1, shows that spherically anisotropic
radially inhomogeneous materials admit elastodynamic solutions u(r , q, f) in a
separation of variables form. The angular dependence (on q and f) is described
by the vector spherical harmonics while the radial dependence (on r) is separated
and determined by the Stroh-like first-order ODS that is solvable by standard
means. It is proved that such separation of variables solution is generally possible
only if the spherical anisotropy is restricted to TI with the principal axis in the
radial direction er . TI about er distinguishes a class of materials with complete
spherical anisotropy, which is a physically natural model of spherical anisotropy
since it ensures invariance of material properties with respect to any orientation
of the polar axis.

The separable of variables solution u(r , q, f) for the transverse isotropic
case does not explicitly depend on the azimuthal order m. At the same time,
dependence on m reveals itself in that the solution of the form u(r , q) (i.e. with
m = 0) admits separation of variables via spherical harmonics not only for TI but
also for lower symmetry—but only ‘up to’ tetragonal with er along the fourfold
axis and with c24, c34 = 0. Note that the solutions u(r , q, f) for TI and u(r , q) for
the above tetragonal symmetry uncouple the shear modes parallel to the vector
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harmonic C (‖ ef at m = 0) from the in-plane modes orthogonal to C. Moreover,
shear modes of the form u(r , q) are uncoupled also for orthorhombic symmetry
but not for trigonal symmetry nor for tetragonal if c24, c34 �= 0.

The establishment of the Stroh format for the elastodynamic equations in
spherical coordinates opens the door for applications to various boundary value
and scattering problems. For instance, solutions for acoustic and elastic wave
scattering from solid spheres and shells, which have been limited to isotropic
materials (see Martin 2006, §4.10 for a review) or transversely isotropic shells with
m = 0 (Hasheminejad & Maleki 2009), can be generated for arbitrarily layered
shells and solids using standard solution techniques outlined in §6b. Other possible
approaches that can be explored with the Stroh formalism include impedance
matrices for spherical shells and solids, the use of which simplifies the formulation
of boundary value problems, such as determining modal frequencies, solving
radiation and scattering problems. By analogy with the cylindrical situation
(Norris & Shuvalov 2010) it should be possible to formulate a matrix Riccati
ordinary differential equation for the impedance matrix as a function of the
spherical radius r , with a unique solution at the origin that depends only on the
elastic constants at r = 0. The Stroh formalism is particularly suited to solution
of elastodynamic problems with forcing, for example, from thermal expansion via
laser excitation with application to non-destructive testing. More exotic issues
could be addressed with the Stroh system, such as modelling and simulation of
fully elastic three-dimensional ‘radial wave crystals’ (Torrent & Sánchez-Dehesa
2009), i.e. shells of radially periodic materials that exhibit Bloch wave effects
normally associated with rectangular periodic crystals.
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