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Abstract

The paper provides a rigorous analysis of the dispersion spectrum of shear horizontal elastic waves in periodically
stratified solids. The problem consists of an ordinary differential wave equation with periodic coefficients, which involves
two free parameters  (the frequency) and k (the wavenumber in the direction orthogonal to the axis of periodicity).
Solutions of this equation satisfy a quasi-periodic boundary condition which yields the Floquet parameter K. The resulting
dispersion surface w(K, k) may be characterized through its cuts at constant values of K, k and w that define the passband
(real K) and stopband areas, the Floquet branches and the isofrequency curves, respectively. The paper combines
complementary approaches based on eigenvalue problems and on the monodromy matrix M. The pivotal object is the
Lyapunov function A (a)z, k2) = %traceM = cos K which is generalized as a function of two variables. Its analytical
properties, asymptotics and bounds are examined and an explicit form of its derivatives obtained. Attention is given to
the special case of a zero-width stopband. These ingredients are used to analyse the cuts of the surface w(K, k). The
derivatives of the functions w(k) at fixed K and w(K) at fixed k and of the function K(Kk) at fixed w are described in detail.
The curves w(Kk) at fixed K are shown to be monotonic for real K, while they may be looped for complex K (i.e. in the
stopband areas). The convexity of the closed (first) real isofrequency curve K(k) is proved thus ruling out low-frequency
caustics of group velocity. The results are relevant to the broad area of applicability of ordinary differential equation for
scalar waves in | D phononic (solid or fluid) and photonic crystals.
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I. Introduction

The wave equation with periodic coefficients is ubiquitous in physics and engineering. Its applications in acous-
tics of solids have gained new momentum since the introduction of artificial periodic materials such as phononic
crystals. A common mathematical framework is the Floguet—Bloch theory of partial differential equations with
periodic coefficients [1]. It does not however yield many explicit results for the general case of 2D or 3D peri-
odicity and vector waves. The notable exception allowing an explicit analysis is the case of 1D periodicity and
scalar waves which is governed by Hill’s equation [2]. The spectral properties of Hill’s equation are very well
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understood for the situation where the wave propagates along some fixed direction (parallel to the periodicity
axis or not). This case implies a single spectral parameter. The objective of the present paper is to take on a
broader perspective of arbitrary (2D) propagation of scalar waves in 1D periodic media. This setup implicates
dependence on two spectral parameters and thus leads to more elaborate wave spectral properties. The specific
problem to be addressed is described next.

Consider shear horizontal wave motion of the form u, (x,y,t) = U(y) exp [i (kx — wt)] which travels in the
symmetry plane XY of a stratified monoclinic elastic solid with periodic density p (y) = p (y + T) and stiffness
Ciji (Y) = Ciju (Y + T). The elastodynamic equation yields a second-order ordinary differential equation for the
amplitude U (y),

3J' (cijk|8|uk) = plj = (C44U/ + ikC45U)/ + ik (C45U, + ikC55U) = —pa)ZU, Q

where 9; = 9/0x, d, = d/dy, ' = d/dy and Voigt’s indices 4 = yz, 5 = xz are used [3]. It is convenient to pass
from U to u = Ue'" with ¢ (y) = ik fy (C45/C44) dy which reduces (1), to the Sturm-Liouville form

(la)U'Y)) = K a(y)uly) = —?p(y)u(y), 2)

where w1 = Caq and 112 = Cs5 —C55/Cas denote positive shear moduli. Equation (2) is the object of our study. The
coefficients w1 2(y) and p(y) are T-periodic strictly positive piecewise continuous functions of y € R, and k, w
are two real parameters (unless otherwise specified). The functions u(y) and w1 (y)u’'(y) are assumed absolutely
continuous. They satisfy the quasi-periodic boundary conditions

u(T) = e"Tu(0), pa(TU'(T) = &7 11 (O)U'(0) 3)

with the Floquet parameter K e C, which by periodicity of e'XT may be defined on the strip ReKT e [—, 7]
called the Brillouin zone. Note that Equation (2) admits equivalent representations obtained by changing the
function and/or variable. For instance, replacing the variabley = y = foy ul’l (¢) dg recasts (2) in the form of
a weighted Schrodinger equation

u' ) + 0’Z%u ) =0, with w?Z? = (0® — uok?/p) Z§, Z§ = pp. (4)

Note that this transformation does not require reinforcing the above-imposed condition of piecewise continuity
of u1(y). The coefficients Z and Zy (Z = Zy at k = 0) have the physical meaning of, respectively, impedance
and normal impedance that we will find useful for interpretations.

There exists a comprehensive spectral theory describing the eigenvalues »? (n € N) of (2), (3) as functions
of K at fixed k, e.g. [2, 4-8]. From this perspective, the spectrum for real K € R is represented by the Floquet
branches wn(K) on the (w, K)-plane. Each branch spans a finite range on the w-axis, called a passband, with a
corresponding bounded solution u,(y). Separating them are the ranges of w, called stopbands, where w € R and
KT € nZ + i (R\0). Properties of the functional dependence of w,(K) at fixed k can be described by various
analytical means. One of the key ingredients of this theory is the so-called Lyapunov real-valued function A(w?)
defined as the half trace of the monodromy matrix (the propagator over a period). By this definition, A(w?) =
cos KT determines the passbands and stopbands as the ranges |A(w?)| < 1and |A(w?)| > 1, respectively.

The present work is concerned with the more general framework in which the parameter k is considered
as an independent variable on top of w and K. Keeping w? as an eigenvalue of Equations (2)—(3) now implies
its dependence on two parameters: w, = wn(K, k). For K real, w,(K, k) is a multisheet surface whose sheets
projected on the (w, k)-plane span the passband areas bounded by the cutoff lines (|A| = 1) and separated by the
stopband areas. Cutting this surface by the planes k = constant and «w = constant produces the Floquet branches
and the isofrequency (also known as slowness) curves, respectively. Clearly, such perspective is considerably
richer than that restricted to the Floquet curves at fixed k. It is also important to note that the present study differs
from the two-parameter Sturm—-Liouville problem with Dirichlet, Neumann and Robin boundary conditions,
which has been studied elsewhere, see e.g. [9, 10].

The structure and main results of the paper are as follows. Section 2 introduces complementary approaches
based on differential operators Ak (k), Bk (w) defined by (2), (3) and on the matricant M (y, yo) of the equivalent
differential system. The operators Ak (k), Bk () are self-adjoint and have a complete orthogonal system of joint
eigenfunctions, as shown in Appendix A.1 by explicit construction of their resolvent operators. The eigenvalues
w? and k2 of Ak (k) and By (w) are then linked to the monodromy matrix M(T, 0) with eigenvalues e*KT via the
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generalized (depending on two parameters) Lyapunov function A(w?,k?) = LtraceM(T,0) = cosKT. Section
3 describes this function in some detail. It is shown in Section 3.1 that A(w?, k?) inside the passbands |A| < 1
has non-zero first derivatives in both »? and k2, and that A(w?) for fixed k? and A(k?) at fixed w? each satisfies
Laguerre’s theorem (by virtue of the estimates of A(w?,k?) given in Appendix A.2). These two fundamental
facts explain the regular structure of the passband/stopband spectrum on the (w, k)-plane. The WKB approach
[11] is used in Section 3.2 to provide an insight into the asymptotic behaviour of stopbands for continuous
and piecewise continuous periodic coefficients. Zero-width stopbands (ZWSs) are introduced and analysed in
Section 3.3. Generalizing the concept of degenerate gaps of a one-parameter spectrum (e.g. [12-14]), ZWSs
are intersections of the analytical cutoff curves |A| = 1 with the (w, k)-plane. It is shown that ZWSs may or
may not exist for an arbitrary periodic profile of p(y) and w1 2(y), are likely to exist for any profile that is even
about the period midpoint, and always exist for a periodically bilayered structure. In the model cases, ZWSs
may also form infinite lines on the (w, k)-plane. Closed-form expressions for the partial derivatives of A(w?, k?)
are obtained in Section 3.4. The derivative of any order is a multiple integral of the product of, specifically,
right off-diagonal elements M, of the matricant M taken at different points y within the period and weighted by
o(y) and/or 1, (y). An alternative representation is derived for the first-order derivatives of A(w?, k?) within the
passbands by using the eigenfunctions of Ak (k) and Bk (w). The two equivalent formulas obtained for the first
derivatives of A(w?, k?) provide an explicit meaning to their sign-definiteness and offer useful complementary
insight. In particular, it reveals some interesting attributes of the function M, (y + 1,y), whose zeros (w, k) are
y-dependent solutions of the Dirichlet problem on [y,y + T], see Section 3.5. The properties of the Lyapunov
function A(w?,k?) (= cos KT) and the expressions for its derivatives established in Section 3 are then used in
Section 4 to analyse principal cuts of the dispersion surface wn(K, k). In Section 4.1, dependence w(k) for fixed
K is studied. It is shown that if K is real then the curves w,(k) are monotonic (this may not be so for complex
K) and they tend to the same linear asymptote k minyejo 3 [112(y)/ 0 (y)] which is independent of n. In Section
4.2, the dependence w(K) at fixed Kk is discussed. For real K, the first non-zero derivative of Floquet branches
wn(K) is provided (it is a first derivative inside the passbands and a second derivative at the cutoffs); for the
stopbands, the condition on w realizing maximum of |ImK (w)| is formulated. The real isofrequency curves
K (k) at fixed w are considered in Sections 4.3 and 4.4. Particular attention is given to the closed isofrequency
curve arising for w less than the first cutoff w; (nT‘l, 0) . It is proved that, whatever the distortion of its shape
due to unidirectional periodicity may be, this isofrequency curve is always convex and hence low-frequency
caustics of the group velocity Vw are impossible. Finally, useful bounds on the first eigenvalue w;(K, k) for
KT € [—m, ] and any k are provided in Appendix A.3.

Without loss of generality, in the following we take T = 1; more precisely, this implies the redefinitions
y=Vy/T=Y,0 = ol =w, k= KT =kand K = KT = K so that the variables y and w, k, K are hereafter
non-dimensional. We also assume throughout that T = 1 is a minimal possible period.

2. Eigenvalue problem, monodromy matrix and Lyapunov function
Equation (2) with the conditions (3) can be considered in either of the equivalent forms

Aku = w?u, Bgu=ku, ueDg (5)

with the operators Ax = Ak (k) and Bx = Bk (w)
1 Y% 2 M2 1 7/ 2 P
Au=—= (uat) +k*=u, Bxu= — (uil') + o’—u. (6)
P Y 2 2%

Their common domain is

Di = {ue D n() = e*y(0)}, ()
D= u DAL ot & [o,}u}, no) = (im(y)u’()’)>’ @

where K € C and AC[0, 1] is the space of all absolutely continuous functions from [0, 1] to C (note that using
‘i’ in the definition of » and hence in (10), is a conventional option which is useful for a compact form of

(13); and similar identities). Let (-, -),, ,, and [|-][,,, ,, be a standard inner product and norm in the Hilbert space
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Hp, 1y = Lf)y 1, (0, 1) of functions with quadratically summable measure o(y)dy and p»(y)dy, respectively; so
that

1
W), = /0 POUGV ()Y, U2 = (u,u),
, ®)
V), = fo UV, U2, = (uu),,,,

where * means complex conjugation.

The operator (2) on L? (R) with eigenvalues w? (or k?) can be represented as a direct integral decomposition
®kefo.27] Ak (OF Dkepo2x1Bk) (see [6]). Therefore, the spectrum of the operator (2) is a union of all eigenvalues
of Ak (or Bg) for K € [0, 2] and, hence, for all K € R since Ax = Aky2x, Bk = Bki2-. The operators Ag
and Bk are symmetric if K € R, i.e. (Axu,v), = (U, AkV), , (Bku,v),, = (U, Bkv),, for u,v € D, and they
both have compact and self-adjoint resolvents that satisfy the Hilbert—Schmidt theorem (see Appendix A.1).
Therefore, Ax and By are self-adjoint with purely discrete spectra o (Ak) and o (Bk) containing an infinite
number of real eigenvalues w? (K, k) and k2 (K, ) (n € N), and corresponding eigenfunctions un(= un_4 and
un,5) form a complete orthogonal system in the spaces #, and H,,,, respectively. The operator Ax is positive
forany k € R (i.e. for any k? > 0),

(Aku,u), =0, (>0atk#0), 9)

so its spectrum o (Ak) consists of non-negative eigenvalues w?(K, k) (strictly positive at k # 0), which are
hereafter numbered in increasing order w; < w, < ... By contrast, Bk is not sign-definite and hence its
spectrum o (Bx) includes both positive and negative eigenvalues k2 (K, w). Note that real eigenvalues of Ax
and By are also admitted at Im K 5 0 (see Definition 4(c)).

Equation (2) can be recast as

-1
W) = Q) with Q) =i (Mkz ? o ) (10)

for y(y) introduced in (7),. Given an initial condition n (yo), Equation (10); has a unique solution

n(y) = M (Y,Yo) n (Yo) (11)

defined through the propagator matrix, or matricant,
_ (M1(y,Yo) Ma2(y,Yo) T
M = == I
w0 = (WG MG R
y y S1
=1+ [ Q(c)dai+ | Q(a)ds: [ Q(s)dse+..., (12)
Yo Yo Yo

where7 is the multiplicative integral evaluated by the Peano series [15] and | is the 2x 2 identity matrix. Note
that det M (y, Yo) = 1 due to trQ = 0, where tr means the trace. By (10) Q = —TQ™T for »?, k? € R and so

M7 (y,y0) = TMT (V,¥0) T = ImMy4(y,Yo) =0, ReMys(y,Yo) =0, (13)

where * denotes Hermitian transpose and T is the 2 x 2 matrix with zero diagonal and unit off-diagonal elements.
If Q (y) is also even about the midpoint of the interval [yo, y], then

M (Y, ¥0) = TMT (y,Yo) T = Mi(y,Yo) = Ma(y,Yo), (14)

where T denotes transpose. The properties (13); and (14); are actually valid for matrices Q and M of arbitrary
n x n size (see [10] for details; note the misprints: replace css by €44 in o3 two lines above (2), interchange
M; and My in the second line of (18) and invert the units of s in the plots.), while (13;) and (14), are attributes
of the 2x2 case which admits easy direct proofs (e.g. (13); is evident from the definition (7), of n with a real
scalar u).
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Assume a periodic Q(y) so that Q(y) = Q (y + 1) and hence M (y, o) = M (y + 1,yo + 1). The propagator
M (yo + 1, yo) over a period [yo, Yo + 1] is called the monodromy matrix. For any yo =y, denote its elements as

_ (ma(y) ima(y) M14(Y) = M1a(y + 1,),
'V'(y“y)—(imi(y) mf(y)) iM3a(y) = Mas(y + 1) (15)

where Imm;(y) = 0, j = 1...4, for w?, k? € R by (13),. The assumed periodicity with use of the chain rule
implies the identity

M(y + 1,y) = M (y + 1, 1) M(1,0)M(0, y) = M(y, 0)M(1, 0)M~(y, 0). (16)
Remark 1 The trace and eigenvalues of M (y + 1,y) are independent of y by virtue of (16).

Hereafter, unless otherwise specified, we set yo = 0 and define the monodromy matrix as M(1, 0) with respect
to the period [0, 1] (as in (7), (8)).

Bearing in mind detM = 1, denote the eigenvalues of M(1,0) by g and g~*. Introduce the generalized
Lyapunov function

A(w? K?) = %trM(l, 0) = % (9+a7), (17)

which is analytic in @ k? by (10),, (12) and real for »® k* € R by (13),. As noted above, the function
A(w?,k?) is independent of the interval on which the unlt period is defined. It is also invariant for any similarity
equivalent formulation of the system matrix Q(y) = C~Q(y)C because trM = tr (C"'MC) = trM, leaving

A(w?, k?) unchanged.

Proposition 2 For any complex numbers k, o, K, the following statements are equivalent: (i) «? is an eigen-
value of the operator Ak (k); (i) k? is an eigenvalue of the operator Bk (); (iii) k, @ and K are connected by
the equality

A(w? k?) —cosK = 0. (18)

Proof. The link (i)=(ii) follows from Equation (5). Consider (i),(ii)= (iii). According to (i) or (ii), ? or k? is
an eigenvalue of, respectively, Ak (k) or Bk (w). Then there exists u(y) € Dy that satisfies (5), hence (2), and
consequently the vector y(y), generated by u(y) according to (7), is a solution of Equation (10). So, by (11),
n(l) M(1, 0)n(0). On the other hand, as indicated in (7)1, u(y) € Dk implies that n(1) = ey (0). Hence,
e’ is an eigenvalue g of M(1, 0), and the function A defined by (17) satisfies (18) that is (iii). Now consider
(iii)=(i),(ii). From (18) and the definition (17), the eigenvalue q of M(1,0) is g = €K, and corresponding
eigenvector w exists such that M(1, 0)w = e'w. Let u(y) be the first component of the solution n(y) = M(y, O)w
of Equation (10) with the initial condition n(0) = w. From the above, u(y) belongs to Dk and satisfies Equation
(5), which implies (i),(ii). ®

Corollary 3 Each eigenfunction u of Ak and Bk is equal to the first component of the vector n(y) = M(y, O)w,
where w is the eigenvector of M(1, 0) corresponding to the eigenvalue q = 'K,

Definition 4 Passband areas, cutoffs and stopband areas are defined for w?, k? € R (and hence real A(w?, k?))
as follows:

IAl<1 (& KeR) passbands,
(0, k):{A=x1 (& KenZ) cutoffs,
Al >1 (& KenxZ+i(R\0)) stopbands.

Before discussing general properties of the Lyapunov function A(w?, k?), it is expedient to mention its

explicit properties at w = 0 and/or k = 0. Obviously dA /dw = 0atw = 0and dA /ok = 0 at k = 0. By (10)s,
(12) and (17),

AP K = 1+ L (17 (2) K2 — (o) 0?) + O((@? + K2)?) with ¢ / ()dy;
0A/3(0%) = =5 (p) {uy?), 9879 (K*) = 3 (u") (n2) atw =0, k=0,

(19)
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where the identity foldg o () () + () fi(s)ldst = (f1) (f) was used in (19);. Note that
A(0,k?%) > 1 fork* > 0and [9A/d(w?)], _, < O for k» > 0, whereas the bounds of A(w? 0) and the
sign of [0A /8 (k?)], _, are not fixed for w® > 0. Also note the explicit non-semisimple form of the matrix

M(y, 0) = (é =i/ “{1 (5)d§> atw=0,k=0. (20)

3. Properties of the Lyapunov function A(w?, k?)

3.1. Formation of the passband/stopband spectrum

We proceed with some observations on the analytical properties of the function A(w?,k?) that underlie the
alternating structure of the passbands and stopbands.

Lemma5Ifw ¢ Rork? ¢ R, then A ¢ [—1,1].

Proof. If A e [—1, 1], then according to Proposition 2 the identity (18) holds for K e R and, hence, »? or k? is
an eigenvalue of Ak (k) or Bk (w), respectively. It was shown (see (11) and below) that the eigenvalues of Ak (k)
are positive and the eigenvalues of By (w) are real. B

Proposition 6 The derivatives dA /d(w?) and dA /3 (kz) do not vanish within an open passband interval
A(@?, k%) € (-1,1).

Proof. By Lemma5, if A € (—1,1), then w?, k? € R. Suppose that d A /d(w?) = 0 for some real value w?. Then,
because A(w?) (= A(w?, k?) at fixed k) is an analytic function, there exists complex @? in the vicinity of w? for
which A(@?) € (-1, 1). This contradicts Lemma 5, and hence 9 A /9 (wz) = 0. The same reasoning proves that
dA /0 (k?) # 0. Consequently, Equation (18) at fixed w? > 0 (or fixed real k?) has only real and simple roots k2
(or w?) ifcosK € (—=1,1). W

Proposition 6 plays a pivotal role in explaining the origin of the Floquet stopbands by the following simple
reasoning. Consider p(y), w12(y) resulting from an arbitrary periodic perturbation of some reference constant
values pg and 110102, SO that A(w?, k?) is a perturbation of Ag(w?, k?) = cos K with K? = %wz — %kz. Since
the first derivatives of A(w?, k?) do not vanish within (—1, 1), the perturbed extreme values Ao = +1 must
either remain equal to &1 or exceed the range [—1, 1], thereby leading to complex values K € 77 + i (R\0),
i.e. to the stopbands.

Proposition 7 For »?, k? € R, the derivatives of any order n e N of the functions A(w?) and A(k?) (= A(w?, k?)
at fixed k and fixed w, respectively) have only real and simple zeros, each lying between consecutive zeros of the
(n — 1)th derivative of the same function. In particular, the first derivatives of A(w?) and A(k?) have a single
and simple zero between consecutive zeros of A(w?, k?) and do not vanish elsewhere.

Proof. It is shown in Appendix A.2 that the functions A(w?) and A(k?) are entire functions of order of growth %
Their zeros are the eigenvalues of the operators A, (k) and B,/2(w), and are therefore real and simple. Hence,
both functions satisfy the conditions of Laguerre’s theorem (e.g. [16]), implying that the derivatives of A(w?)
and of A(k?) are also entire functions with order of growth % and they have the desired properties. B

Propositions 6 and 7 define the basic form of the function A(w?,k?) at fixed w or k. It is exemplified in
Figure 1 for a piecewise continuous profile of material coefficients chosen as

ua(y) = paly) = %(1 +3y)°(2+Y), ply)=2+yforye0,1] (21)

(taking w12 in GPa and p in g/cm® implies T = @ in MHz-mm in this and subsequent figures). Note that
A(w?) has an infinite number of zeros that are strictly positive and move rightwards as k increases, whereas
A(k?) has an infinite number of negative zeros at w = 0 which move one by one on the positive semi-axis
k? > 0 as w increases.
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The properties of the function A(w?, k?) described in Propositions 6 and 7 allow us to refine the numbering
of branches wn(K, k) = \/w2(K, k) (> 0) in the passbands as follows:

0 < wi1(K,k) < wa(K,K) < ... ifK eR, K¢ nZ;
0 < w1(0,Kk) < @2(0,K) < w3(0,k) < wa(0,k) < ... ifK € 2n7; (22)
0 < wi(m, k) < wo(m,K) < w3, K) < wa(m, k) < ... ifKen +27Z.

With reference to (19) and Proposition 6, the sign of first derivatives of A(w?, k?) along w, (K, k) in the nth open
passhand |A| < 1 (see ((22;)) is

sgn[9A /8(w?)] = —sgn[aa/a (k)] = (—1)". (23)

The possibility of equality of two cutoffs (see (22),3), i.e. of a double root of the equation A(w?) = +1, implies
a ZWS addressed in detail in Section 3.3.

For the future use, let us also mention some properties of the Dirichlet and Neumann eigenvalues wZD,n and
a)ﬁyn of (2) satisfying the conditions u(0) = 0, u(1) = Oand u’ (0) = 0, u’ (1) = 0, respectively. It is known that
wpn and wy  are simple zeros of the functions M;(1, 0) and M3(1, 0) of w, which occur once per each stopband
complemented by cutoffs (except the first stopband devoid of wp ). The branches wp (k) < wp2 (k). .. and
won1(K) < wn2(K) . .. are thus related to the passband eigenvalues wy (K, k) of (22) as

wp,2j(K), on2j+1(K) € [w2j(0,K), w2j41(0,K)];  @wp2j—1(K), wn2j(K) € [waj—1(mT, k), waj(rT, K)], (24)

where j € N and wy 1(k) € [0, w1(0, k)]. Recall that the stopbands and cutoffs are invariant with respect to the
choice of the period interval [y, yo + 1] = [0, 1] (see Remark 1); however, the branches wp n(k) and wy (k)
within this area certainly depend on the choice of the point yo = 0. In other words, some fixed values w, k
realize the Dirichlet or Neumann conditions at the edges of [yo, Yo + 1] if and only if y; is a zero of the func-
tion My (y +1,y) = imy(y) or Mg (y + 1,y) = ims(y), respectively (see Section 3.5 for further discussion).
According to (14), if Q(y) is an even function about the midpoint of the period [yo, Yo + 1] for some yp, then
the Dirichlet and Neumann branches wp (k) and wy n(k) satisfying ma(yo) = 0 and ms(ys) = 0 coincide with
the cutoff curves. We note the useful identity m,(y)ms(y) > 0 for |A| < 1 which may be proved as follows: it
obviously holds for A = 0 due to det M = 1, and hence for any |A| < 1 due to the fact that m,(y) and m3(y) are
strictly non-zero inside the passbands by (24).

3.2. WKB asymptotics of A

Some insight into the high-frequency spectrum in the case of continuous and piecewise continuous period-
icity can be gained from the WKB asymptotics [11] of the Lyapunov function A(w?,k?) at fixed k. To this

Figure |. Generalized Lyapunov function A(w?, k?) for the profile (21): (a) A(w) (= A(—w)) at different fixed values of k (a fragment
of A(wz) at k = 0 for w? 2 0 is shown in the inset); (b) A(kz) at different fixed values w.
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end recall the impedance Z = Zy/1 — uyk?/pw? with Zy = /pu; introduced in (4). For any fixed k, let
w? > k®maxyepo; (142/p) so that Z(y) is real (the so-called supersonic regime). Suppose for brevity that the

overall periodic profile of Z(y) has at most one point of discontinuity per period. If so, the zero-order WKB
approximation Af,?,)KB of A takes an especially simple form

1
Aloke = %( [2]*2 + [2]7?) cos (e /O uitzdy), (25)

where Liwpu;'Z are the eigenvalues of the matrix Q defined in (10), and [Z] = Z (y;) /Z (yq) with Z (y7) =
lim._oZ (yq & ) is the relative jump of Z at the possible point y4 of its periodic discontinuity. Assume first
that Z(y) is strictly continuous for any y (not restricted to [0, 1]) and hence [Z] = 1. Then Equation (25) yields

‘A\(,?,)KB‘ < 1 and thus can estimate zeros of A but not the stopbands |A| > 1, whose widths (the frequency gaps

between cutoffs, see (19),3) may well be non-zero at finite w. Thus, if Z(y) is continuous then Equation (25)
merely implies that the stopband widths tend to zero at any fixed k as w tends to infinity. The latter conclusion
is also valid even if u,/p has periodic jumps but puy is continuous throughout, so that [Z] # 1 indicates the
existence of non-zero stopbands at finite w but [Z] — [Zo] = 1 at w — o0. On the other hand, if pu; does
have a jump and so [Zg] # 1, then Equation (25) shows that the stopband widths remain non-zero as w — oo.
Having stated this, we hasten to add that a physically sensible profile model should be related to the frequency
w in that a finite @ implies that a probing wave ‘sees’ appropriately abrupt variations of material properties
as jumps, which are of course smoothed out by the ‘infinite zoom’ of the limit @ — oo. The above WKB
conclusions on the high-frequency trends of cutoffs agree with a less general framework of, specifically, small
periodic perturbations that provides expressions for the stopband widths through the Fourier series coefficients,
see [3, 4].

As an example, consider again Figure 1, which is plotted for a piecewise continuous profile (21) that gives
[Z] = 12,/(1 — 4k2/w?) / (4 — k2/w?) (note that a ‘single periodic discontinuity y4” is located at the edges
of the period T = 1 by (21); however, similarly to Remark 1, A\(,?,)KB does not depend on the choice of the
period [0, 1] relative to yq). It is easy to check that the exact curves A shown in Figure 1(a) are well fitted
by the WKB approximation (25) (not displayed to avoid overloading the plot) when w is greater enough than
k max 4/uz/p = 2K. It is also seen from Figure 1(a) that increasing » makes the curves A for different fixed k
tend to that related to k = 0, as predicted by Equation (25).

In the case of two or more discontinuity points per period, applying the WKB asymptotics separately along
each range of continuity modifies (25) to the form with two or more phase terms corresponding to the reflection—
transmission at each discontinuity. For more examples of using the WKB approach to the periodic profile, see
[17].

3.3. Zero-width stopband

3.3.1. Complementary definitions of ZWS The following definition of a ZWS! is motivated by the possible
occurrence of the second and third cases in (22).

Definition 8 If w = wyn(0,Kk) = wn11(0,Kk) or @ = won_1(,K) = won(r, k) for some w, k € Randn € N,
then this cutoff point (w, k) is called a ZWS.

It is essential that the cutoff curves are analytic (as any w,(K, k) with fixed K € R is, see Section 4.1), hence
if two of them meet at a point they cannot conjoin to make a closed arch. Thus, an isolated ZWS implies
intersection of two cutoff curves on the (w, k)-plane and hence a saddle point |A| = 1 on the Lyapunov-function
surface A(w?, k?). For the same reason, if, exceptionally (see Section 3.3.3), a ZWS forms a line w (k) of local
extremum |A| = 1 of A(w?, k?), then such line cannot have an edge point.

A comprehensive account of the properties of ZWS is based on the next proposition.

Proposition 9 The following statements are equivalent: (i) (w,k) is a ZWS; (ii) A(w? k?) = #1 and
IA(w?, K2)/3(w?) = 0; (iii) A(w?, k?) = £1 and 9 A(w?, k2)/3(k?) = 0; (iv) M(L, 0) = +I.

Proof. The link (i)« (ii) follows from Definition 8 and Proposition 7. The link (i)=(iv) can be inferred, e.g., via
(24), which tells us that assuming (i) entails M,(1, 0) = M3(1, 0) = 0 and hence My (1, 0)My4 (1,0) = detM = 1,
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where My M, are real by (13),. Since (i) also means trM (1,0) = +2, it follows that M(1,0) = =1 as stated.
Next let us show (iv)=>(ii). Assume that M(1,0) = +I for some &,k € R. Note that A(a?,k?) = ﬂ:l by
(17). The (double) eigenvalue q = e = +1 of M(Z,0) = +I has geometrical multiplicity 2, hence @? is an
eigenvalue of Ak (k) of multiplicity 2 by Corollary 3. Now consider some K" € R arbitrary close to K that yields
cosK' = A(w?,k?) € (-1,1). Slnce @ is a double elgenvalue of AK(k) the self-adjoint operator Ag-(k) has
two distinct simple eigenvalues w (K/ k) close to @2, and, by Propositions 2 and 6, these are distinct simple

zeros of A(w?, k?) — cosK’. Therefore A(@2, k?) = il is a local extremum of A(w? k?), i.e. 9A /3(w?) = 0 at

@2, k2, which is equivalent to (ii). Note that reversing the above reasoning proves (ii)=>(iv) without appeal to
(24) and that invoking Bk (w) in place of A (k) provides a similar proof of (iii)<>(iv) (see also Proposition 16).
|

Note that the point w = 0, k = 0 which yields A = 1 is not a ZWS since it does not satisfy any of the above
statements, which is evident from (19)—(20).

Proposition 9 implies that the multiplicity of w?, k? as the roots of equation A(w?, k?)—cosK atK € R isthe
same as their multiplicity as the eigenvalues of Ak (k), Bk (w) (this multiplicity is 2 at a ZWS and 1 elsewhere).
This |s noteworthy since such a parity does not always hold inside a ‘true’ stopband K ¢ R, where a double
root w? or k? of Equation (18) is not a double eigenvalue of, respectively, Ak (k) or Bk (w) which are no longer
self-adjoint for K ¢ R. It is also pointed out that the eigenvalue q = e of M(1, 0) has an algebraic multiplicity
2 at any cutoff, while its geometrical multiplicity is 2 only at cutoffs that are ZWS.

Corollary 10 The matrix M(1, 0) is non-semisimple for any cutoff (w, k) unless it is a ZWS.

We note that the non-semisimple nature of the monodromy matrix at the cutoffs has important ramifications
for the interpretation of its matrix logarithm, which has been proposed as the basis for dynamic effective medium
models, see [18, 19].

3.3.2. Considerations of the existence of ZWSs To begin with, it is recalled that the period T = 1 is everywhere
understood as a minimal possible period, so that trivial ZWSs which turn up when T is a multiple of the minimal
period are disregarded.

Given an arbitrary periodic Q(y), the condition M(1,0) = =1 stipulating the existence of ZWSs imposes
three real constraints on two parameters w, k and hence is unlikely to hold. However, if the profile Q(y) is
symmetric (even) about the midpoint of the period [0, 1], then, by virtue of (14), the above condition on M(1, 0)
implies only two constraints and thus such profile can be expected to yield a set of ZWS points (intersections of
cutoff curves |A| = 1) on the (w, k)-plane. More precisely, since the cutoffs are independent of how the period
interval is fixed (see Remark 1), ZWSs are expected to exist if a given profile Q(y) admits such a choice of the
period interval [yo, Yo + 1] = [0, 1] within which Q(y) is symmetric.

Note that by definition any ZWS is also an intersection of Dirichlet and Neumann branches (24) while the
inverse is generally not true. Moreover, in contrast to ZWS, the Dirichlet and Neumann branches and hence their
intersections {a) k}D=N depend on the choice of the period interval. For instance, let Q(y) be symmetric with
respect to a fixed period [0, 1] . Then the Dirichlet and Neumann branches coincide with the cutoff curves and
hence any intersection {w, k}DzN isa ZWS (see e.g. figure 1 of [10]). However, if for a given Q(y) = Q(y + 1)
the period is shifted so that Q(y) is not even about its midpoint, then a new set {w k}D=N includes but generally
does not coincide with the (unchanged) set of ZWSs.

As a simple explicit example, consider a periodically bilayered structure where Q(y) takes two alternating
constant values within two layers j = 1, 2 that constitute a period [0, 1]. The monodromy matrix is given by the
standard expression

M(L,0) COS Y COS Yy — %sin Yo SiN g 7; €OS Yo SiN g + —sm Yo COS Yrq (26)
"7\ iZy cos g sinr, + iZg sin Yy COS Yy cos Yrp COS Yy — sm Yrp Sin Yy '

where Z; is the layer impedance defined in (4) and v = wZjdj/uy; with d; for the layer thickness.
The set of Dirichlet/Neumann intersections {a) k} _y Is defined by simultaneous vanishing of both off-

diagonal components of (26), which implies the foIIowmg three options: (i) {sinyy = 0, siny, = 0}, (ii)
{cosy, =0, cosyr, = 0} and (iii) {Zy = Z5, sin (Y1 + ¥») = 0}, where (iii) may or may not hold for real w, k
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(see [20]). It is seen that (i) and (iii) yield M(1,0) = =£1. Thus, (i) and maybe (iii) define ZWSs, while (ii) does
not.

Recall that an infinite periodically bilayered structure can always be considered over a three-layered period
where the same stepwise profile Q(y) is symmetric. Hence, the fact that any bilayered profile always admits
ZWSs (see e.g. Figure 2(b)) is consistent with the above conclusion that ZWS should be expected for the
profiles Q(y) that can be defined as symmetric over some interval [yo, yo + 1].

3.3.3. Model examples of regular loci of ZWSs

e Uniform normal impedance: Z§ = p(y)u1(y) = constant at any y € [0, 1].
Let k = 0. The coefficient in (4) atk = 0is Z (Y) = Z, (Y), which is constant at Zy(y) = constant.
Alternatively, note from (10), that Q(y) with k = 0 and Z, = constant has constant eigenvectors.
Either of these observations readily shows that, for k = 0, a dependence of w on K > 0 (not restricted
to K € [0, ]) is a straight line and thus all stopbands are ZWSs, that is, there are no stopbands at all.
The only difference with the case of constant p and w; is the slope of w (K, 0) which is specified as
follows:

o (K,0) = KZo/ (p) = K/Zo (u1?). (27)

e  Uniform speed: ¢® = u»(y)/p(y) = constant at any y € [0, 1] (w1(Y) is arbitrary).
The Lyapunov function is then A(w?, k?) = A(w? — ¢?k?, 0) from (10), and, consequently,

on(K, K) = /o2 (K, 0) + c2k2. (28)

Hence, if w? (wm,0) with m = 0 or 1 is a ZWS, that is, if w, (xm,0) = wny1 (M, 0), then by (28)
wn (M, k) = wni1 (Tm, K) VK, i.e. the entire line (w? (xm, k), k) for any k € R is a locus of a ZWS.
Note from (28) and (20) that the first cutoff (which is not a ZWS) is w; (0,k) = ck = wy 1(k), where
wn 1(K) is the first Neumann solution fory € [0, 1].
e Uniform normal impedance and speed: Z2 = constant and ¢? = constant at any y € [0, 1] .

Now Equations (27) and (28) together imply that all stopbands are ZWSs for any k € R. Note that
the inverse statement is true under an additional condition of absolute continuity of Zy, by the Borg
theorem [21].

3.4. Explicit expressions for the derivatives of A

Theorem 11 The derivatives of A(w?, k?) at any w?, k? e C (hence in both the passbands and the stopbands at
w?,k? € R) are given by the formula

8n+mA(a)2, k2) 1 N 1 S1 Sh+m—1
- L (= Im! d dey ... d
a(wZ)na (k2)m 2( ) rnim /0. gl_/c; §2 /0. §n+m

xF (S’la cee §n+m) M> (§n+m +1, §1) M> (§1, §2) ..My (§n+m71: §n+m) ) (29)

where M, (y;, y;) is a right off-diagonal component of the matricant M (y;, y;) , and

Fst i snem) = ) o (61) o (Sntm) s o (6) = £ (), fi () = pa (6);
oe (30)

QE{(ol,...,an+m): oi=0,1; Zai=m},

ie. Qisasetof CJ,

and their sum is m.

= (n + m) !/n'm! permutations of a set (o1, ..., 0nem), iN Which each oj is either 0 or 1
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Proof. The expression (29) follows from the following property of matricants of related systems [15]: let
QWIM (¥, Yo) = §M (¥, Yo) and Q)M (¥, Yo) = §M (¥, yo) where Q(y) = Q(y) + Qu(y); then

Y

M(y,Yo) = M(y,Yo) [ [1+M(¥o,5)Q1(s)M(s,Yo)ds]
Yo

y
=M(y,Yo) + [ M(Y,s1)Q1(s1) M(s1,Y0)dg1 + ... (31)
Yo

y Sj—1
+/ dgl.../ d6iM (¥, 1) Q1 (6) M (61, 62) Q1 (2) .- M (5, Y0) + - .
Yo Y

0

Next note that Q (y; w?, k?) = Q [w?, k?] defined by (10), is linear in both w? and k2. Denote small perturbations
of w? and k? by &, and ;. From (10),,

Q[? + 0 K2 + 8] = Q[w?, k2] + i (ot — pe) T, T = (g 8) . (32)

Equation (31) with Q; = i (126 — pe,,) T is therefore a Taylor series of M = M [w? + ¢, k? + &] about the
point &, = 0, &x = 0, and hence the derivatives of the monodromy matrix M(1, 0) with respect to w? and k? are

3n+mM(1,0) o 1 Snbm—1
W :(—l)n |mn!m!/0 dglﬁ d§n+m
x F(s1,oo i 6ntm)M (L, 61) TM (61, 62) T ... M (Gnm, 0)

with F defined in (30). Note that F = p(¢1)...p(cn)atm=0and F = u, (1) ... 2 (¢m) at n = 0. Equation
(33) and the definition A(w? k?) = 3trM(1, 0) together imply

(33)

IMMA(?, K2 19™MrM(L,0)  (—i)"i™nim! ? Sipm—
d(w?)"a(k2)m 2 d(w?)"o(k2)m 2 0 0
x F(s1,- -+ Snim) tr[M(S'n-i-m + 1, 61)TM(61, 62)T ... M(Gnim-1, §n+m)r]y

(34)

where we have used the identity tr[M (1, ¢1) ... M (¢hem, 0)] = tr[M (ghym, 0) M (1, 1) .. .] and the fact that
M (¢nim, 0) = M (gnam + 1, 1) due to periodicity. By definition of T,

M, 0 - K 0 ®)
MT = (M4 0) = tr[MOT...M®T] =M .. .M, (35)

which reduces (34) to the desired form (29). B
Corollary 12 The first-order derivatives of A(w?, k?) follow from (29) as

I
w?)

1 1
3 | omenay =3 [ omaay. (39)

where imy(y) = M, (y + 1,Y), see (15).

Interestingly, the expression (29) for any derivative of A(w?,k?) involves, apart from p(y) and/or (),
only a single, right off-diagonal, element M, (gi, g,—) of the matricant. Recall that Re M, = 0 by (13),, which
conforms that (29) is real as it must be. Next we obtain a different representation for the first derivatives of
A(w?, k?) that is expressed via an eigenfunction u(y) of (5). In contrast to (29), this representation is restricted
to the passbands |A(w? k?)| < 1 and hence to w? k? € R. We note that the components of eigenvectors of
M (1, 0), which appear in the explicit formulas below, are understood to be referred to a basis observing the
identity (13) (an obvious counterexample is the Jordan form of M(1, 0)).
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Theorem 13 The first derivatives of A(w?, k?) within the open passband intervals A e (—1,1) (and, hence,
w?, k? e R) satisfy the formulas

A sink ! IA sink !
) wiTw /0 p(y) lu(y)I dy, 300~ wiw /0 12(y) lu(y)|? dy, (37)

where w is an eigenvector of M(1, 0) corresponding to the eigenvalue q = €%, and u(y) is the first component

of the vector n(y) = M(y, 0)w = (u, i U')". At the cutoffs A = +1, Equation (37) yields zero derivatives in the
exceptional case of a ZWS, and is otherwise modified to

1 1 1 1
a?jz) = 2w Tw /0 PO) lu®)I* dy, aa(kAz) = /0 pa(y) luy)I? dy, (38)
d g d g

where wy and wy are the proper and generalized eigenvectors of M(1, 0) that realize its Jordan form (see (44)),
and u(y) is equal to the first component of the vector n(y) = M(y, 0)wy.

Proof of (37). The monodromy matrix M(1,0) at |A| # 1 has distinct eigenvalues g # g~* and hence linear
independent eigenvectors wi, w,. Specify their numbering as

M(1, 0w =qw;, M(L,0)w, =q*w, withq=eX £qt=e"K (39)
According to (31) and (32),

1
MO _ " 200

1
M(y, 0)dy = —iM(1, 0) fo P(y) dy,

3(w?) 3(w?) (40)
where P(y) = p(y) M~(y, 0)TM(y, 0), ( = trP(y) = p(WtrT = O).
Hence, the derivative of A = %trM (1,0)at |A] #1is
N 1 L 1t . !
s = 0 [ Puoyay+ ¢ [Pty = sink [ put)oy (@)

where Py; is the upper-diagonal element of P(y) in the base of vectors w; and w,. For the passband case
A € (—1,1) being considered, the identity M~ = TM™T (see (13);) implies that

Wi Tw, =0,  wiTwy,wy Twy # 0 [(w] Twy)(w; Tw,) < 0]. (42)

Using (42), the equality wi TM~! = (Mw;)™ T (following from (13)) and the definition of T given in (32), we
find that

_WITPGwW: _ o0 ()TTm(y) _ o) lu®)I®
Ae(~11) w; Tw; w; Twy wi Tw;

P11(y) (43)

where n;(y) = M(y,0)w; = (u,init’)" . Based on the numbering in (39) it follows that v, (1) = e w; and
so u is an eigenfunction of (5) (see Corollary 3). Substituting (43) into (41) and setting w; defined in (39) as
w; = w leads to (37);. The proof of (37); is the same. Note that the sign alternation (23) of both derivatives

at successive cutoffs is described in (37) by the factor (W+TW)71 sinK as follows: using K € [0, ] implies

sinK > 0 and alternating sign of w*Tw (due to switching between rightward and leftward modes at successive
cutoffs); while using unrestricted K > 0 implies wrTw < 0 (rightward mode) and alternating sign of sinK. l

Proof of (38). Consider a cutoff A = +£1 that is not a ZWS and hence implies a non-semisimple M(1, 0). Denote

M(L, 0wy = qgwg, M(L,0)wyg = gqwg +Wwy at A =0qg = £1, (44)
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which defines (not uniquely) the pair wy and wy as a basis in which M(1,0) at A = %1 has upper Jordan form.
Hence,
oA 1 oM(1,0) 1

1
m =29 z/o P21(y)dy, (45)

where Py is the left off-diagonal of P(y) at A = +1 in the vector basis of wy and wy. The identity M~! =
TM*T for a non-semisimple M(1, 0) implies that

wiTwg =0, wjiTwy#0 [RewjTwg =0 for detM = 1]. (46)
By (46) and the definition (40), of P(y),

CWITPOWa  p()ng )TTng(y) oY) luy)l®

P — — =
a() A=t1 w Twy w Twy wy Twg

(47)

where ng(y) = M(y, 0)wg = (u, iz1U)". Inserting (47) in (45) provides (38);. The proof of (38), is the same. W

Note that (38) can also be obtained directly from (37) by taking its limit as |[A| < 1tendsto |A| = +1.
To do so, proceed from (39) with g, g~ tending to qq. It is always possible to choose w;, w, so that they have
Wqg as a common limit and then (w; — w5) / (q — q*l) tends to wy, where wy and wy satisfy (44). By using this
limiting definition of wgy and the property wi Tw, = 0 (see (42),), the limit of the pre-integral factor in (37)
with w = w; corresponding to g = '€ is found to be
sinK q-—q* 1

= —_—. 48
wiTwy  2iw T (wy — wa) Ao 2iwg Twg (48)

The factor w;j Twy may also be expressed in terms of the elements M;(1,0) = M; of the matrix M(1, 0) which
satisfies (13). Using (44) yields two alternative forms of this expression as follows:

lwg |? M3 _ lwg |? M3
IM1 — qal? + IM2[> Mg — qgl? + [M3/?

If M1, My # qq, then M,, M3 # 0, and so both formulas in (49) are equivalent, which follows from trM(1, 0) =
2qq4, det[M(1,0) — gql] = 0 and (13),. If M; = qq, hence My = qq (or vice versa), then either M, = 0 or
Mz = 0, as occurs for instance if Q(y) is even about the midpoint of the period [0, 1], see the end of Section 3.1.
Simultaneous vanishing of both M,, Mjs is ruled out for a non-semisimple M(Z1, 0).

In conclusion, the combination of results (36) and (37), (38) yields the following interesting observation.

wi Twg = (49)

Corollary 14 The right-hand sides of (36) are equal to those of (37) in the passbands A € (—1, 1), and to those
of (38) at the cutoffs A = +1 (unless the cutoff is a ZWS).

3.5. Properties of the function my(y)

An important role of the function m,(y) defined in (15) is revealed by the fact that, according to (36), the first
derivative of A(w?, k?) in w? or k? is an integral of m,(y) with a positive weight factor p(y) or 2 (y). Recall also
that zeros of m,(y) are the Dirichlet solutions for the interval [y,y + 1], see Section 3.1.

Theorem 15 The continuous function m,(y) = my(y + 1) satisfies the following properties: (i) if A(w? k?) €
(-1, 1), then my(y) has no zeros for y e [0, 1]; (ii) if A(w? k?) = %1, then my(y) > 0 for any y € [0,1] or
m,(y) < 0 for any y e [0, 1]; (iii) if A(w? k?) ¢ [—1,1] and w?, k? € R, then m,(y) has only a finite number of
zeros in [0, 1].

Proof. Consider (i). Suppose that A € (—1,1) and there exists ¥ such that m, (y) = 0. Then M (Y + 1,Y)

has eigenvalues m; () and my )(= m;* () by detM = 1). Therefore, with reference to Remark 1, A =
2 [my @ + m;* ()], where my according to (15) is real (since ?, k* € R by Lemma (5)). Hence, |A| > 1,
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which contradicts the initial assumption. The statement (ii) follows from (i) and the analyticity of A(w?,k?).
Consider (iii). First note an identity

ma(y) — Ma(y)
pa(y)

where © = d/dy (if y is a point discontinuity of a piecewise continuous Q(y), then d/dy is a right or left

derivative). Since wi(y) > 0, it follows that m,(y) = 0 if and only if ms(y) = my(y). Now let us suppose the

inverse of (iii), i.e. that A ¢ [—1, 1] admits the existence of an infinite set {y,}7° for which m,(y,) = 0. Without
loss of generality we may assume that limp_ o Yo = Yo € [0, 1]. Then mz(yo) = 0 and m} (yo) = 0. As shown
above, my(yo) = 0 yields my (Yo) = my* (Yo). At the same time, mj (yo) = 0 yields my (yo) = mq (yo) from
(50),. Thus my (yo) = m;l (Yo), hence my (yo) = £1 and so A = +1 which contradicts the initial assumption
A¢[-1,1].1

The above result together with Equation (36) provides a simple criterion for a ZWS, which complements
Proposition 9.

M'(y 4+ 1,y) = QW)M(y + 1,y) — M(y + 1,y)Q(y) = mj(y) = : (50)

Proposition 16 The following statements are equivalent: (i) (w, k) is a ZWS; (ii) my(y) = 0 for any y.

Proof. Assume that (i) holds. Then M(1,0) = =1 by Proposition 9. Hence, by (16) M(y + 1,y) = =l and
so m, = 0, which is (ii). Now assume that (ii) holds. It requires that A = =+1 by Theorem 15 and yields
A /3(w?) = 0 by Equation (36);. According to Proposition 9, A(w?, k?) = %1, d A(w?, k?)/3(w?) = 0 implies
that (w, k) is a ZWS, which is (i). B

Interestingly, the function ms(y), whose zeros are the Neumann solutions for the interval [y,y + 1], shares
some, but not all, of the properties of my(y). For instance, ms(y) displays the same properties (i), (ii) stated by
Theorem 15 for my(y) but it does not have the property (iii). The dissimilarity stems from the fact that (50);
yields m5(y) = (M2k2 — ,owz) (my — my), where, in contrast to (50),, the first factor is not sign definite. Also
the derivatives of A(w?, k?) are not expressible via ms(y) as they are via my(y) in (36). As a result, Proposition
16 does not hold for ms(y) in the sense that while it is true that mz(y) = 0 for any y if (w,k) is a ZWS, the
inverse statement is not. An immediate counter-example is the point w = 0, k = 0, where mz(y) = 0 for any
y by (20) but this point is not a ZWS; moreover, the model case ,(y)/p(y) = constant = ¢° mentioned in
Section 3.3 ensures that mg = 0 on the whole cutoff line w; (0,k) = ck (see (28)) which has no ZWS points.
Thus, the Dirichlet solution wp (k) for [y, y + 1] does not depend on y only if (wpp, K) is @ ZWS, but the same
is not generally true for the Neumann solutions.

4. The dispersion surface w,(K, k)

In this section, we address the multisheet surface w, (K, k) = /@?Z(K, k) (> 0) which is defined by Equation
(18), and study the curves in its cuts taken at constant K, constant k and constant w.

Remark 17 If Equation (18) with either K or k or o being fixed defines a differentiable function, then its
derivative of any order can be expressed in terms of partial derivatives of A(w?, k?) given in (29).

Below we examine in detail the first non-zero derivatives. The higher-order ones are easy to obtain in a sim-
ilar fashion by differentiating (18). It is understood hereafter that w, k € R. By (18), wn(K, k) = wn (=K, k) =
wn (K, —k) which permits confining considerations to ReK > 0, k > 0.

4.1. The function w,(K) for fixed K

Consider the dependence of wn(k) = wn(K, k) for fixed K, Figure 2. By Equation (18), the branches wn(k) are
defined as level curves A(w?, k?) (= cosK) = constant, which lie in the passbands for fixed K € R < |A| <1
and in the stopbands for fixed complex K € nZ + i (R\0) < |A| > 1 (note that the branch numbering (22)
does not apply in the stopbands, see the discussion of Figure 2).

Proposition 18 If w # 0 and dA /3(w?) # 0, then
dwy, k da)ﬁ _ k 0A/0 (kz)

dk  wpd(Kd)  wp0A/0(w?)’

(51)
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Figure 2. (a) The curves wn(k) = wn(K,K) at different fixed K for the profile (21). (b) Sections of the curves for the piecewise
constant profile defined by u1 = pp =1, p=1fory € [0,1/2)and u1 = pup =12, p =2 fory € (1/2,1].

where by (36), (37) and (38)

dod _ fy ma(y)ma(y)dy _ Js 1) 1 )P dy .
d (k?) fol p(Y)ma(y) dy | KeR or fol oY) |un(y)|? dy KR
KenZ+iR
In addition,
dwl <M2> dawn _ dk _
dk (o) dk le0 T d_a)l“ﬁ;ég =0 (53)

The former equality follows from (19) or otherwise from (52) where m(y) and u;(y) are constant at w, k = 0
in view of (20). The two other equalities in (53) follow from (51) and dw/d (k?) # 0 (note that w = 0, k # 0
belongs to the stopband area where (52); applies, see Figure 2(a)).

For K e R, the excluded case dA /3(w?) = 0 in (51) is related to the ZWSs discussed in Section 3.3.
According to Proposition 9, if 9 A /d(w?) at K € R becomes zero then so does d A /9 (k?) and their simultaneous
vanishing implies a ZWS. Barring the extraordinary cases mentioned in Section 3.3.3, a ZWS is an intersection
point (w, k),,s Of two analytic curves w, (k) (as rigorously confirmed in Proposition 19), so there exist two
derivatives at (w, K),,s- Their values can be determined by continuity from either of equations (52) applied
in the vicinity of (w, k), . Note that Equation (52); is not defined strictly at (w, k),,,s (Where my(y) = 0 Vy,
see Proposition 16), while Equation (52), is, provided that u,(y) implies two different eigenfunctions from a
subspace corresponding to two intersecting curves wy, (K) at (@, K),ys-

Proposition 19 The curves w,(k) for fixed K € R are monotonically increasing at k > 0.

Proof. The function »?(k?) is analytic for any K e R since Ak (K) is a family of analytic operators of Kato’s
type A [22] Hence, if dw?/3(k?) = 0 for some real k?, then there exists complex k? in the vicinity of k? for
which @? = wz(z is real. However, this would mean that the operator Bk (w) has a complex eigenvalue k2
equal to k2, which is impossible. Thus, wn(k) at K € R is a monotonic function. It increases by virtue of (52),.
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To provide a fully self-consistent proof within the operator approach, note that (52), can also be obtained by
applying perturbation theory [5] to Ak given by (6), so that

dof _ d (AcUnn), 1 A _ Jo e )P dy
dk?) — d(?)  fugl? lugli2 A2 0 T T ) Jun(y) P dy

(54)

Consider the example plotted in Figure 2. It demonstrates the monotonicity of the curves w, (k) = wn(K, k)
at fixed K € R by tracing the cutoff curves at K = 0,7 (< |A| = 1) and the curves at K = 7/2 (& A = 0)
within the passbands. Figure 2 also shows that, by contrast, the curves w (k) = w(K, k) in the stopbands, i.e.
at fixed complex K € #7Z + i (R\0) (& the level curves |A| = constant > 1), may be not monotonic and can
take a looped shape, either semi-closed or even fully closed. Note that the numbering of such curves cannot be
defined by the rule (22) restricted to the passbands. A looped shape is due to a vertical tangent at a point where
A /3(w?) = 0 (see (51), (52)1). In any stopband except the lowest one, there exists a pair of curves weyx(k) and
Kext(w), on which |A(w? k?)| = cosh (ImK) has maxima in »? and in k? (in k at k # 0), respectively. Hence,
each stopband except the lowest must contain looped curves w (k) with a vertical tangent as they cross the curve
wext(K), unless the latter fully merges with Keyt(w) as in the model case u2(y)/p(y) = constant mentioned in
Section 3.3. The curves wex(K) and key () may intersect within a given stopband thus indicating a saddle point
or an absolute extremum of A(w?,k?) (the latter is exemplified in Figure 2(b), see the family of closed level
curves |A] > 1). At the same time, wex(k) and kext(w) cannot contact the cutoff curves except at the point of a
ZWS (see Figure 2(b)), which is always a saddle point of A(w?, k?).

It is shown in Appendix A.3 that the lower bound for the branches wn(k) at K € R is minycpo 13 v/ 12/ p-
In the remainder of this section we prove that this bound is also a common limit of wy(k). To do so, it is
convenient to introduce the velocity v, = w, /K. First, we specify the derivative of v,(k) in order to demonstrate
its monotonicity (note that it is easy to similarly obtain sign-definite derivatives at fixed K € R for any other
optional choice of the pair of spectral parameters among w, k and v or s = v1).

Lemma 20 LetK € R, n e N be fixed. Then v2(k?) = ? (k?) /k? is a decreasing function with derivative

dv2 1 [ paluy(y)12d
V; _ __4follull n(y)l y <0 (55)
dk?)  K* [ plun(y)I>dy
where u, and u;, are defined by y(y) = (u, int)T = M(y, O)w taken at w? (cf. (37)).
Proof. Multiply Equation (2) by u (= u,), integrate by parts and divide the result by k?, to yield
1 1 1 1
i [ ooy =g [niay+ [ il dy (50)

Substituting from (56) along with (54) into dew?/d(k?) = k?dv2/d(k?) +V? leads to (55). The same result follows
by applying the perturbation theory [5] similarly as in (54), whence dv2/d(k?) = —((1U})’, Un),/k* ||un||i and
integrating by parts yields (55).

Proposition 21 Let K € R be fixed. Then for any n € N

2

lim — = . 57
k—oo k2 ye[o1] p(Yy) (57)
Proof. Rewrite (2) in the form
2
—(uauy +k (2 =2 ) pu=0. (58)
p Kk

where v? = w?/k?. For any fixed v = « > min /112/p, the coefficient (u2/p) — v? changes sign on the interval
[0, 1] and hence there exist infinitely many distinct values k? > 0 which satisfy (58) (see more in [23]). The
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Figure 3. The Floquet branches on(K) = wn(K, k) at fixed k = 1. (b) Real isofrequency branches Kj(k) at fixed @ = 8. The same
profile (21) is used. The cutoff values of w in (a) and of k in (b) can be compared with Figures | and 2(a).

latter means that any curve v,(k), n € N, intersects the line «(k) = « for any o > min \/u,/p. Combining this
statement with the above-mentioned facts that all v, (k) are decreasing and have the lower bound min /u2/p
yields (57). B

It is noteworthy that there is no common limit for a finite spectrum of eigenvalues of a discrete Schrédinger
operator with a large potential [24].

4.2. Function wn(K) for fixed k

Consider the function w,(K) = w, (K, k) implicitly defined by Equation (18): A(w? k?) = cosK at fixed k.
Since wy(K) is periodic and even, it suffices to deal with one-half of the Brillouin zone ReK € [0, ], see Figure
3(a). For brevity, denote the cutoff values w, (m, k) of wy, (K, k) as

wn (T[m, k) = wn’m, m= 0, 1. (59)

Let us indicate the passbands and stopbands of wn(K,k) by ImMK = 0 and ImK = 0, respectively (the latter
being short for K = 7zm + i Im K # 7rm). Explicit expressions for the first non-zero derivative of w,(K) readily
follow by expanding both sides of (18) and invoking the formulas for d A /8(w?) obtained in Section 3.4. Note
that Equation (60) with (37), for real K (see below) can also be obtained by means of perturbation theory [5]
applied to an appropriately modified form of (2), (3) with an operator explicitly dependent upon K.

Proposition 22 If either (i) ImK = 0 and K # wm (hence, A /o # 0 by Proposition 6) or (ii) ImK # 0 and
dA /dw # 0, then
dwn, sinK
N 60
dK (0A/dw),, (60)

where sinK = /1 — A2 and 9A /0w = 2wd A /3(w?) is given by (361) or (37); for (i) and by (36); for (ii). If
K =mmanddA /dw # 0, then
do, 0 oy, (=)™t

dK — 7 dK2 T (8A/0w),,, ©Y

where wnm = wnm(K) are the roots of equation A(w? k?) = (—1)" and dA /dw is given by (36); or (38);.

Consider the special cases where A /0w = 0. Let K = wm and dA /dw = 0 at w # 0, which implies a
cutoff w, ; corresponding to a ZWS. Then

dw,,

= (Y™ )T 028 /007),,,, (62)
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Next let ImK # 0 and 0A /9w = 0, which defines the point w = wey in a stopband at which |A(w)| =
cosh (Im K) reaches its maximum |Agq| > 1 (see Figure 2 and its discussion in Section 4.1). The function
Im K(w) satisfies (d ImK/dw),,, . = 0and

&2 ImK 02A /0w?
m =(—1)mM (< 0forImK > 0). (63)

do? A% Agxt -1

The explicit form of 82 A /dw?, which appears in (62), (63) and is negative at m = 0 and positive at m = 1, is
defined by (29). It can be written in the following equivalent forms
32A , 92A

b2 ¢ 3 (w?)?

1 y+1
= —20? / dy / oY) (y1) Mz (y + 1, y1) Ma(y1, y)dy; (64)
0 y

1 y
4 /O dy /0 P)p (1) Moy + 1,Y)Ms (v, 1) dys

1 1
_ 27 /O dy fo PP+ y2) M2 (Y + 1,y + y2) Moy + v, V)i,

where 9A /dw = 0 and w # 0 (i.e. A /d(w?) = 0) have been used. Finally, consider the case w = 0, which
implies 0A /0w = 0, 32A /dw® = 20A /3(w?). If both w = 0 and k = 0 (= K = 0), then referring to (19), the

derivative (62) for m = 1 reduces to

dwl 1

G = YV e ) (65)
Ifo=0andk > 0 (= K =ilmK # 0), then (d ImK/dw),,_, = 0 and (63) becomes

?ImK _ 2[8A/8(?)],
dw? — /AZ(0,k))—1'

where [0A /3(w?)], _, < Ois given by (36).

It is evident from Equation (60) that the Floquet branches w,(K) for any fixed real k are monotonic in
K € [0, 7r]. For completeness, let us also mention two important results from the general theory of Schrédinger
equation [5, 12, 25] that extend to the case of Equation (2) with fixed k. These results state that Im K(w) is a
convex function and that each branch wn(K) has one and only one inflection point in K € [0, ], unless it is
the lowest branch wy(K) at k = 0 or a branch bounded by a ZWS at either or both cutoffs K = 7m, in which
case there is no inflection points. Note in conclusion that Equations (61) and (62) provide an explicit definition
for the near-cutoff asymptotics of branches wn(K) that were analysed in [26] by a different means (the scaling
approach, also extended in [26] to 2D periodicity).

(66)

4.3. The function K(K) for fixed w

Consider the dependence of K (k) = arccos A(w?, k?) onk > 0 at fixed w. Let the branches K;(k) € [0, ] for real
K be numbered in the order of increasing k. Since wy, (k) = wn (K, K) is strictly increasing in k (see Figure 2), the
number of real branches K;j(k) at any fixed value w is fully defined by its position with respect to the frequency-
cutoff points at k = 0: there is a single real branch Ky (k) for a fixed w in the interval 0 < w < w; (7, 0) ; two
real branches Ky (k), K (k) for w in w, (7,0) < w < w3 (0,0), etc. In addition, the first real branch K; (k) starts
at k = 0 and spans a range [0, =) or (0, ] if and only if |A(w?, 0)| < 1, i.e. if and only if the given w is fixed
within the passband at k = 0. For example, the value @ = 8 € (w3(0, 0), w4(7r, 0)) in Figures 2 yields three real
branches K;(k) with Ky (k) € [0, ), see Figures 3(b).
Denote by
kj'm(a)) = kj,m, m=0,1, (67)

the roots of the equation A(w? k?) = (—1)™ which define the points at which Kj(k) = =m and the given w is
the cutoff; these points k;j,, are separated by the stopband intervals |[A] > 1 where ImK 7 0. The explicit form
of the first derivative of K (k) for real or complex K follows from (18) and the formulas for 8 A /3 (k?) in exactly
the same way as that wn (k) in Section 4.2.
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Proposition 23 If K # wm and k # 0, then
dK  9A/ok
dk  sinK '
where A /ok # 0 for real K. If Kj (k) = 7m at k # 0 and (A /9k),,  +# 0, then the locally defined inverse
function k (K) satisfies

(68)

dk d2k —1)m+t
ko Ox_ CD (69)
If k =0, then
dK; 0, dj% = _sinZKl [04/3(k?)],_, atKyzmm, (70)

ak \/2 (—)™ [9A/0 (K], at Ky = rm.

Consider the implication of possibly existing ZWSs. Assume that a fixed w is a ZWS for some k £ 0. This
means that K; (kjm) = 7zm and (3 A /oK)y, , = 0 where kjmm # 0. Then (69) is altered to

R N IO )

Now assume that a fixed w isa ZWS atk = 0, i.e. let K; = wmand [0A /3(k?)],_, = 0. Then dK;/dk = 0 by
(70), and

d’K

del _ \/2 (—1)™ [02A /0022, _,. (72)
The second-order derivative of A in (71), (72) can be obtained by differentiating (36), in the same way as in
(64). Note that 3° A /3 (k?)? also appears in the formula analogous to (63) for d? Im K /dk? at the point key; Where
dimK/dk = 0.

Thus, by (69) and (71), all real branches K;(k) at fixed « have vertical tangents at the edge points K; (kj’m) =
mm, Kjm # 0 (see Figure 1(b)), unless the cutoff @ = w, (nm, kj,m) isa ZWS in which case K;(k) does not make
a right angle with the line K = zm. In turn, by (70) and (72), the real branch K{(k) has a horizontal tangent at
k = 0, K # 7 and a non-zero first derivative at k = 0, K = 7, unless w = wy (77, 0) is a ZWS in which case
the slope of K;(k) vanishesatk =0, K = 7.

Remark 24 If the cutoff ® = wy (77, 0) is not a ZWS, then (i) the curve K;(k) = Ky (—k) has a kink at k = 0;
(ii) Vo(K, k) = 0 at k = 0 by virtue of (53) and (61).

4.4. Convexity of the closed isofrequency branch K; (k)

The normal to real isofrequency branches K;(k) defines the direction of group velocity Vo (K, k) which makes
their shape relevant to many physical applications. In particular, negative curvature of an isofrequency curve
is known to give rise to rich physical phenomena related to wave-energy focusing. Since the function K(k) =
arccos A with |A| < 1 defines a unique K € [0, ], no vertical line can cross twice the curve K(k); however,
this by itself does certainly not preclude a negative curvature. In fact, any real branch K;(k), which extends from
K; = 0to Kj = m, has vertical tangents at those edge points and hence must have at least one inflection between
them (apart from the exceptional case of a ZWS, see Section 4.3). This simple argument, however, does not
apply to the first branch Ky (k) if the reference w is taken within the passband range at k = 0 and hence Ky (k)
does not reach one of the edge points 0 or . In other words, the situation in question is when K (k) extended
by symmetry to any real K, k < 0 forms a closed curve.

In the present subsection we address an important case of a relatively low frequency » which is restricted
to the passband below the first cutoff w; (7, 0) at the edge of the Brillouin zone K = 7 at k = 0. For any fixed
w < wy (1, 0), there is a single real isofrequency branch K (k) = arccos A(w?, k?) € [0, ) that is continuous in
the definition domain k € [—ky o, ki,o]| , Where kg is the least root of the equation A = 1 (see (67)). According

to (91),
oy (p) [ (n2) < kio(w) < wmaxyepy v/ oY)/ ma(y). (73)

We will show that Ky (k) is strictly convex. The proof is preceded by a lemma.
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K K
s s
—2 0 —2 ka —2 0 —2 ki
@ (b)

Figure 4. (a) The approximate and (b) the exact first isofrequency curve K1 (k) = arccos [%trM(l, O)] at fixed (= 3.4) < w1 (,0)
for a periodically piecewise constant profile defined by 1 = 1, up = 035, p = 0.2 aty € [0,1/2) and u1 = 0.95, up = 0.4,
p =0.19aty € (1/2,1]. The monodromy matrix (12), which in this case is M (1, 0) = (exp Q2) (exp Q1) with Qj defined by (10)y, is
computed via the series of the co-factor exponentials, keeping four terms for each of them in the case (a) and 30 terms in the case

().

Lemma 25 For fixed w < w1 (i, 0), derivatives of the function A(w?, k?) of any order in k? are strictly positive
atk? > 0.

Proof. Let @ = 0. Then A(0,k?) > 0 for k? > 0 by (84) and so dA(0, k?)/d(k?) > 0 for k? > 0 because A(k?)
at fixed w? satisfies the conditions of the Laguerre theorem (see Proposition 7). In other words, all zeros of
dA(0,k?)/3(k?) lieink? < 0 (see Figure 1(b)). Now let0 < w < @y (1, 0). Thismeansthat —1 < A(w?,0) < 1
and so the first zero of 9 A(w?, k?)/3(k?), which is where A < —1, still lies in k? < 0. Thus, if < w1 (,0),
then 9 A(w?, k?)/8(k?) > 0 for k? > 0 and hence, again by the Laguerre theorem, 3P A /3(k?)P > 0 for k? > 0
and foranyp> 1.1

Theorem 26 The curve Ky (k) is convex at any fixed w such that w < w; (,0).

Proof. The second derivative of Ky (k) is

92A

IAN2 2) 224
K2’

K/(K)=— (1—A2)"*?h,  h(k) = A(W) +(1-A (74)

where —1 < A? < 1fork € (—kyo, ki), see (67). Note that 9A /ok = 0 atk = 0. Let w < wy (7, 0). Then
h(0) = (1 — A?) 3%2A/9k? > 0 and h'(k) = (94 /3k)® + (1 — A?) 33A /9k® > 0 according to Lemma 25. Due
toh(0) > 0Oand h’ (k) > Oatk > 0, it follows that h(k) > O atk > 0. Hence, K{'(k) < 0 in its definition domain
[—kKi10, ki0]. Thus, Ky (k) is convex. B

The obtained result sets an important benchmark against any artefacts of approximate analytical and/or
numerical modelling of the first isofrequency curve Ky (k) = arccos A, which are possible as a result of truncat-
ing series for arccos or for A = %trM(l, 0) (see (12)). Figure 4 demonstrates an example where an approximate
computation of K, (k) produces a spurious concavity. In this regard we note that figure 1 of [27], which is sketch
of the generic relation between K and k for fixed but small w, incorrectly gives the suggestion that concavities
can occur.

In conclusion, a remark is in order concerning the high-frequency case where the first isofrequency branch
Ki(k) defined ink e [—kl,o, klyo] is accompanied by the higher-order branches Kj-» (k). In general, Ky (k) should
stay convex and Kj>2(k) should have no more than a single inflection point. However, it seems possible to
construct a theoretical example, although quite peculiar, of a periodic profile, for which the above is not true.
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Appendix
A.l. Properties of the operators Ay and By
It is evident that the operator Ak defined in (6) is symmetric for k?, K € R, i.e.

1 1 1 1
(AKU, V)p = — / (/Llu/)/v*dy + k2 / ,uZUV*dy — / MlU/V/*dy + kZ/ /J«ZUV*dy
0 0 0 0

1 1
=- /O (av')" udy + k> /0 pauvdy = (u, Akv), , (75)

using the identities piU'v* [3= p1v'u* [3= 0 which follow from the boundary condition (7) on u,v € D if and
only if K is real. The proof of the symmetry of By for w?, K € R is the same.

We now demonstrate that Ax and Bk are self-adjoint with discrete spectra o (Ax) = {wﬁ}io and o (Bk) =

{kﬁ}io corresponding to complete sets of eigenfunctions (as stated in Section 2). This is achieved by explicit

construction of the resolvent of each operator, Rk, = (Ax — a)z)_l or Re. = (B — kz)_l, where A implies
w? or k2. In order to do so consider the equivalent equations

—w?)u= 2¢ o .
e usd G Lo i wihu) e Do a0 e L, 0,11 (76)
which can be recast as
) - QU = it y0) = (1)) 1) = a0 @

where f = —ipg for Ax, f = iu,g for Bk, and , Q are defined in (7), (10), respectively. The solution to (77)
is a superposition of its partial solution n, with the solution y, of the corresponding homogeneous equation:

y
n(y) = np(y) +no(y),  mp(y) = /O M(y, )y () dg, mg(y) = M(y, 0)no(0). (78)

The vector 1,(0) is found from the quasi-periodic boundary condition that yields n, (1) + no (1) = e'no(0).
Thus,

1
") = /0 G(y.<)y(c)ds with

G(y,c) =My, )H (y — ¢) — M(y,0) [M(L,0) — e¥1] "M (L, ¢),

where H (y — ¢) is the Heaviside function and e'¥ is not an eigenvalue of M(1, 0) for the given w? ¢ o (Ax),
k? ¢ o (Bg). It can be checked that the Green-function tensor G (y, ¢) satisfies the identity G(y,¢) =
—TG™(s,y)T, so that its right off-diagonal component satisfies G2 (y, ¢) = —G3, (v, ). By (79),

(79)

1
U= R,g = /O Gy, ci1)f () ds, where G (y, i) = iG1z (v, ). (80)

It is seen that the resolvent Rk ; is an integral (bounded) self-adjoint operator generated by a piecewise con-
tinuous kernel. The symmetry (R ,.9,v) = (9, Rk,.V) follows for any v € Dk from G (y, s; 1) = G*(5,Y; )
or else from the symmetry of Ak, Bk. Thus, R, satisfies the Hilbert-Schmidt theorem and Ak, By therefore
possess the above-mentioned properties.

A.2. Bounds of the function A(w?,k?)

The far-reaching properties of the analytic function A(w?, k?) stated in Proposition 7 follow by applying
Laguerre’s theorem to A(w?) at any fixed k? and to A(k?) at any fixed w?. A function satisfying Laguerre’s
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theorem must be an entire function of order of growth less than 2. Verification of this condition for A(w?, k?)
requires its uniform estimation in C. The WKB asymptotic expansion (see Section 3.2) is not well suited for
the task in hand. Here we derive explicit bounds which show that A(w?) and A (k?) for, respectively, any k? and
w? are entire functions of order of growth % The derivation consists of two Lemmas in which the following
auxiliary notation is used: fnax = maxf(y), fmin = minf (y) for f (y) = p(y), n12(y) andy € [0, 1].

Lemma 27 For any w, k € C,

M@ K)] < cosh /g (12max K + prax [0])- (81)
Proof. For any 2x2 matrix A with the entries (a; .. .as), define |A] as
_ (laal &g
A= <|a3| |a4|> (%2
and note that ]]‘[n An| < [, Al where the entrywise inequality is understood. Recall that T appearing in (12)

implies a product integral and is an exponential when the integrand matrix is constant. Hence, it follows from
(10),, (12) and (17) that

i e _ 0 ()
A@2 )] =} [o]o 0+ Qu) oyl = 4 ] °[I1+'(uz(y>k2—p(y)“’2 b )dy]' (83)

~1 . 0 o 2 2
< ltr |:| =+ 1 < V‘lmm) d ] — cosh 142 max|K|~+pmax|@| H
-2 fO MZmax|k|2+,Omax|a)|2 0 y M1 min

The inequality (83) confirms that A(w?) and A(k?) are entire functions with order of growth not greater
than % in each argument. Next we demonstrate that A for certain »?, k? grows no slower than an exponential

of power $ of w? and/or k2. This will enable us to conclude that the order of growth of A(w?) and A(K?) is
precisely .

Lemma 28 For »?, k? € R,

|A(a)2, k2)| > cosh \V/lul_rlnax(IuZmink2 - pmaxwz) for k? > Mz_:ﬁnpmaxwz- (84)

Proof. First introduce a class M of 2x2 matrices such that

_Jfa —ia ) -
M_Kias a >} a>0j=1...4 (89)

For two matrices A and B from M, we say that A >, Bifand only ifa; > bj foranyj=1...4.If A € M and
B € M then AB € M also. Therefore, if Ai, By € M and Ay > By foranyk =1...n,then A;... Ay >
Bi...Bpandtr(A;...A,) > tr(B;...By) (which is easy to check for n = 2 and is therefore valid for any n).
We note from (10); that /4o mink? > pmaxw? implies 1 + Q(y) dy € M for any y € [0, 1] and dy > 0; moreover,

. 0 —/L_l
I dy > 1+ 1max ) d 86
cQudyza 1, o0 L gy (#6)

and consequently

~1 1 —u
1 1 +i 0 im
A (2, k2 __t/ I +Q(y)d t/ | 1max | d
(o ) 2 ' 0[ Wyl = 2 ' 0 ! MZmink2 - ,Omaxa)2 0 g

12 2
— cosh M2 min Pmax@ . - 87)
41 max
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A.3. Bounds of the first eigenvalue ?(K, k)
We have the following result.

Proposition 29 For K € [—r, 7] and k € R, the first eigenvalue »?(K, k) is bounded as follows

<@ min 129 _ 2 iy < Py Ha)ye (88)

yelo1l p(y) — (p) (o)

Proof. Let u; € Dk with the unit norm |luil|, = 1 be the eigenfunction vector of Ak corresponding to the
eigenvalue w?. Then

1 1 1
of = (Acunu), = [l ay 16 [P oy = [ 22ty =i min 2 (89)
0 0 o P yelod]l p

An equivalent proof of the lower bound (89) follows by noting that the initial equation (2) yields zero as the
sum of the positive operator — (11u")" and the operator multiplying u by (k?u, — w?p) , implying that the latter
factor must be negative. In order to obtain the upper bound, introduce the function v(y) = (p) e such that
v(y) € Dk and |v||, = 1. Hence, w? as a minimal eigenvalue of Ay satisfies

) (m1) (u2)
wi - ueDKI,r\]IEszl (AKUL UI)p = (AKV, V)p - (,‘Tl>K2 - (/’%kz. " (90)

Corollary 30 The bounds of the first cutoff at the centre and the edge of the Brillouin zone are, respectively,

[ pa(y) (r2) (1) {(142)
kyrerg(l)q] /—,o(y) <w1(0,k) <k /m, w1 (0,K) < w1 (7,k) < \/(,OTT[Z + (,.T)kz' (91)

As stated in Proposition 21, the lower bound (88) of w; (K, k) and hence of all curves w, (K, k) for K € R is
also their limit at kK — oo. Note that w; (0, k) > wy1(K) by (24), where wy 1(K) is the lowest branch of solutions
of the Neumann problem for y € [0, 1]. It has the same bounds and the same limit at k — oo as w; (0, k). In this
regard, recall the model example 112(y)/p(y) = constant = c? (see Section 3.2), where w; (0,K) = wn1(K) = ck
merge together with their upper and lower bounds. By (91),, unless w; (0, k) is a straight line, it has an inflection
point (and so does wy 1(k)). Furthermore, the case of constant p, w1 is an elementary example of the equality
of the upper bound in (88) and (91),.

Note

1 It is understood that a ZWS is actually not a ‘stopband’ (in the sense of Definition 4). Note that a similar notion of ‘zero-width
passband’ is inconceivable due to Proposition 7.

Acknowledgements

The authors thank Professor E Korotyaev for helpful discussions.

Funding
This work was supported by the University Bordeaux 1 (project AP-2011).

Conflict of interest

None declared.

Downloaded from mms.sagepub.com at RUTGERS UNIV on July 5, 2012


http://mms.sagepub.com/

24 Mathematics and Mechanics of Solids

References

[1]  Kuchment, P. Floquet Theory for Partial Differential Equations. Basel: Birkhduser Verlag, 1993.

[2]  Magnus, W, and Winkler, S. Hill’s Equation. New York: Interscience, 1966.

[3] Auld, BA. Acoustic Fields and Waves in Solids, Vol. I. New York: Wiley Interscience, 1973.

[4]  Brillouin, L. Wave Propagation in Periodic Structures. New York: Dover, 1953.

[5] Krein, M. The fundamental propositions of the theory of A-zones of stability of a canonical system of linear differential equations
with periodic coefficients. In In Memory of A. A. Andronov. Moscow: Izd. Akad. Nauk SSSR, 1955, pp. 413-498.

[6] Reed, M, and Simon, B. Methods of Modern Mathematical Physics. IV. Analysis of Operators. New York: Academic Press, 1978.

[71  Marchenko, VA. Sturm-Liouville Operators and their Applications. Basel: Birkh&user, 1986.

[8] Allaire, G, and Orive, R. On the band gap structure of Hill’s equation. J Math Anal Appl 2005; 306: 462-480.

[9]1 Binding, P, and Volkmer, H. Eigencurves for two-parameter Sturm-Liouville equations. SIAM Rev 1996; 38: 27-48.

[10] Shuvalov, AL, Poncelet, O, and Kiselev, A. Shear horizontal waves in transversely inhomogeneous plates. Wave Motion 2008; 45:
605-615.

[11] Heading, J. An Introduction to Phase Integral Methods. New York: Wiley-Methuen, 1962.

[12] Marchenko, VA, and Ostrovskii, I. V. Approximation of periodic potentials by finite-zone potentials. Sel Math Sovietica 1987; 6:
101-136.

[13] Korotyaev, E. Inverse problem and the trace formula for the Hill operator, 1. Math Z 1999; 231: 345-368.

[14] Gatignol, P, Potel, C, and de Belleval, J-F. Two families of modal waves for periodic structures with two field functions: a
Cayleigh—Hamilton approach. Acta Acust Acust 2007; 93: 959-975.

[15] Pease, MC. Methods of Matrix Algebra. New York: Academic Press, 1965.

[16] Titchmarsh, E. The Theory of Functions. Oxford: Oxford University Press, 1976.

[17] Shuvalov, AL, Poncelet, O, and Golkin, SV. Existence and spectral properties of shear horizontal surface acoustic waves in
vertically periodic half-spaces. Proc R Soc A 2009; 465: 1489-1511.

[18] Shuvalov, AL, Kutsenko, AA, and Norris, AN. Divergence of the logarithm of a unimodular monodromy matrix near the edges
of the Brillouin zone. Wave Motion 2010; 47: 370-382.

[19] Shuvalov, AL, Kutsenko, AA, Norris, AN, and Poncelet, O. Effective Willis constitutive equations for periodically stratified
anisotropic elastic media. Proc R Soc A 2011; 467: 1749-1769.

[20] Al’shits, VI, Deschamps, M, and Lyubimov, VN. Dispersion anomalies of shear horizontal guided waves in two- and three-layered
plates. J Acoust Soc Am 2005; 118: 2850-28509.

[21] Borg, G. Uniqueness theorems in the spectral theory of y” + (A — q(x))y = 0. In Proceedings 11th Scandinavian Congress of
Mathematicians, Johan Grundt Tanums Forlag, Oslo, 1952, pp. 276-287.

[22] Kato, T. Perturbation Theory For Linear Operators. Berlin: Springer Verlag, 1995.

[23] Glazman, I. Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators. Moscow: Fizmatgiz, 1963
(in Russian).

[24] Korotyaey, E, and Kutsenko, AA. Inverse problem for the discrete 1D Schrédinger operator with small periodic potentials. Comm
Math Phys 2006; 261: 673-692. ,

[25] Kargaev, P, and Korotyaev, E. Effective masses and conformal mappings. Comm Math Phys 1995; 169: 597-625.

[26] Craster, RV, Kaplunov, J, and Pichugin, AV. High-frequency homogenization for periodic media. Proc R Soc A 2010; 466:
2341-2362.

[27] Norris, AN, and Santosa, F. Shear wave propagation in a periodically layered medium - an asymptotic theory. Wave Motion 1992;

16: 35-55.

Downloaded from mms.sagepub.com at RUTGERS UNIV on July 5, 2012


http://mms.sagepub.com/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ACaslon-Bold
    /ACaslon-BoldItalic
    /ACaslon-Italic
    /ACaslon-Ornaments
    /ACaslon-Regular
    /ACaslon-Semibold
    /ACaslon-SemiboldItalic
    /AdobeCorpID-Acrobat
    /AdobeCorpID-Adobe
    /AdobeCorpID-Bullet
    /AdobeCorpID-MinionBd
    /AdobeCorpID-MinionBdIt
    /AdobeCorpID-MinionRg
    /AdobeCorpID-MinionRgIt
    /AdobeCorpID-MinionSb
    /AdobeCorpID-MinionSbIt
    /AdobeCorpID-MyriadBd
    /AdobeCorpID-MyriadBdIt
    /AdobeCorpID-MyriadBdScn
    /AdobeCorpID-MyriadBdScnIt
    /AdobeCorpID-MyriadBl
    /AdobeCorpID-MyriadBlIt
    /AdobeCorpID-MyriadLt
    /AdobeCorpID-MyriadLtIt
    /AdobeCorpID-MyriadPkg
    /AdobeCorpID-MyriadRg
    /AdobeCorpID-MyriadRgIt
    /AdobeCorpID-MyriadRgScn
    /AdobeCorpID-MyriadRgScnIt
    /AdobeCorpID-MyriadSb
    /AdobeCorpID-MyriadSbIt
    /AdobeCorpID-MyriadSbScn
    /AdobeCorpID-MyriadSbScnIt
    /AdobeCorpID-PScript
    /AGaramond-BoldScaps
    /AGaramond-Italic
    /AGaramond-Regular
    /AGaramond-RomanScaps
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /AGar-Special
    /AkzidenzGroteskBE-Bold
    /AkzidenzGroteskBE-BoldEx
    /AkzidenzGroteskBE-BoldExIt
    /AkzidenzGroteskBE-BoldIt
    /AkzidenzGroteskBE-Ex
    /AkzidenzGroteskBE-It
    /AkzidenzGroteskBE-Light
    /AkzidenzGroteskBE-LightEx
    /AkzidenzGroteskBE-LightOsF
    /AkzidenzGroteskBE-Md
    /AkzidenzGroteskBE-MdEx
    /AkzidenzGroteskBE-MdIt
    /AkzidenzGroteskBE-Regular
    /AkzidenzGroteskBE-Super
    /AlbertusMT
    /AlbertusMT-Italic
    /AlbertusMT-Light
    /Aldine401BT-BoldA
    /Aldine401BT-BoldItalicA
    /Aldine401BT-ItalicA
    /Aldine401BT-RomanA
    /Aldine401BTSPL-RomanA
    /Aldine721BT-Bold
    /Aldine721BT-BoldItalic
    /Aldine721BT-Italic
    /Aldine721BT-Light
    /Aldine721BT-LightItalic
    /Aldine721BT-Roman
    /Aldus-Italic
    /Aldus-ItalicOsF
    /Aldus-Roman
    /Aldus-RomanSC
    /AlternateGothicNo2BT-Regular
    /AmazoneBT-Regular
    /AmericanTypewriter-Bold
    /AmericanTypewriter-BoldA
    /AmericanTypewriter-BoldCond
    /AmericanTypewriter-BoldCondA
    /AmericanTypewriter-Cond
    /AmericanTypewriter-CondA
    /AmericanTypewriter-Light
    /AmericanTypewriter-LightA
    /AmericanTypewriter-LightCond
    /AmericanTypewriter-LightCondA
    /AmericanTypewriter-Medium
    /AmericanTypewriter-MediumA
    /Anna
    /AntiqueOlive-Bold
    /AntiqueOlive-Compact
    /AntiqueOlive-Italic
    /AntiqueOlive-Roman
    /Arcadia
    /Arcadia-A
    /Arkona-Medium
    /Arkona-Regular
    /ArrusBT-Black
    /ArrusBT-BlackItalic
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /AssemblyLightSSK
    /AuroraBT-BoldCondensed
    /AuroraBT-RomanCondensed
    /AuroraOpti-Condensed
    /AvantGarde-Book
    /AvantGarde-BookOblique
    /AvantGarde-Demi
    /AvantGarde-DemiOblique
    /Avenir-Black
    /Avenir-BlackOblique
    /Avenir-Book
    /Avenir-BookOblique
    /Avenir-Heavy
    /Avenir-HeavyOblique
    /Avenir-Light
    /Avenir-LightOblique
    /Avenir-Medium
    /Avenir-MediumOblique
    /Avenir-Oblique
    /Avenir-Roman
    /BaileySansITC-Bold
    /BaileySansITC-BoldItalic
    /BaileySansITC-Book
    /BaileySansITC-BookItalic
    /BakerSignetBT-Roman
    /BaskervilleBE-Italic
    /BaskervilleBE-Medium
    /BaskervilleBE-MediumItalic
    /BaskervilleBE-Regular
    /Baskerville-Bold
    /BaskervilleBook-Italic
    /BaskervilleBook-MedItalic
    /BaskervilleBook-Medium
    /BaskervilleBook-Regular
    /BaskervilleBT-Bold
    /BaskervilleBT-BoldItalic
    /BaskervilleBT-Italic
    /BaskervilleBT-Roman
    /BaskervilleMT
    /BaskervilleMT-Bold
    /BaskervilleMT-BoldItalic
    /BaskervilleMT-Italic
    /BaskervilleMT-SemiBold
    /BaskervilleMT-SemiBoldItalic
    /BaskervilleNo2BT-Bold
    /BaskervilleNo2BT-BoldItalic
    /BaskervilleNo2BT-Italic
    /BaskervilleNo2BT-Roman
    /Baskerville-Normal-Italic
    /BauerBodoni-Black
    /BauerBodoni-BlackCond
    /BauerBodoni-BlackItalic
    /BauerBodoni-Bold
    /BauerBodoni-BoldCond
    /BauerBodoni-BoldItalic
    /BauerBodoni-BoldItalicOsF
    /BauerBodoni-BoldOsF
    /BauerBodoni-Italic
    /BauerBodoni-ItalicOsF
    /BauerBodoni-Roman
    /BauerBodoni-RomanSC
    /Bauhaus-Bold
    /Bauhaus-Demi
    /Bauhaus-Heavy
    /BauhausITCbyBT-Bold
    /BauhausITCbyBT-Heavy
    /BauhausITCbyBT-Light
    /BauhausITCbyBT-Medium
    /Bauhaus-Light
    /Bauhaus-Medium
    /BellCentennial-Address
    /BellGothic-Black
    /BellGothic-Bold
    /Bell-GothicBoldItalicBT
    /BellGothicBT-Bold
    /BellGothicBT-Roman
    /BellGothic-Light
    /Bembo
    /Bembo-Bold
    /Bembo-BoldExpert
    /Bembo-BoldItalic
    /Bembo-BoldItalicExpert
    /Bembo-Expert
    /Bembo-ExtraBoldItalic
    /Bembo-Italic
    /Bembo-ItalicExpert
    /Bembo-Semibold
    /Bembo-SemiboldItalic
    /Benguiat-Bold
    /Benguiat-BoldItalic
    /Benguiat-Book
    /Benguiat-BookItalic
    /BenguiatGothicITCbyBT-Bold
    /BenguiatGothicITCbyBT-BoldItal
    /BenguiatGothicITCbyBT-Book
    /BenguiatGothicITCbyBT-BookItal
    /BenguiatITCbyBT-Bold
    /BenguiatITCbyBT-BoldItalic
    /BenguiatITCbyBT-Book
    /BenguiatITCbyBT-BookItalic
    /Benguiat-Medium
    /Benguiat-MediumItalic
    /Berkeley-Black
    /Berkeley-BlackItalic
    /Berkeley-Bold
    /Berkeley-BoldItalic
    /Berkeley-Book
    /Berkeley-BookItalic
    /Berkeley-Italic
    /Berkeley-Medium
    /Berling-Bold
    /Berling-BoldItalic
    /Berling-Italic
    /Berling-Roman
    /BernhardBoldCondensedBT-Regular
    /BernhardFashionBT-Regular
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /BernhardTangoBT-Regular
    /BlockBE-Condensed
    /BlockBE-ExtraCn
    /BlockBE-ExtraCnIt
    /BlockBE-Heavy
    /BlockBE-Italic
    /BlockBE-Regular
    /Bodoni
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /Bodoni-Italic
    /Bodoni-Poster
    /Bodoni-PosterCompressed
    /Bookman-Demi
    /Bookman-DemiItalic
    /Bookman-Light
    /Bookman-LightItalic
    /Boton-Italic
    /Boton-Medium
    /Boton-MediumItalic
    /Boton-Regular
    /Boulevard
    /BremenBT-Black
    /BremenBT-Bold
    /BroadwayBT-Regular
    /CaflischScript-Bold
    /CaflischScript-Regular
    /Caliban
    /CarminaBT-Bold
    /CarminaBT-BoldItalic
    /CarminaBT-Light
    /CarminaBT-LightItalic
    /CarminaBT-Medium
    /CarminaBT-MediumItalic
    /Carta
    /Caslon224ITCbyBT-Bold
    /Caslon224ITCbyBT-BoldItalic
    /Caslon224ITCbyBT-Book
    /Caslon224ITCbyBT-BookItalic
    /Caslon540BT-Italic
    /Caslon540BT-Roman
    /CaslonBT-Bold
    /CaslonBT-BoldItalic
    /CaslonOpenFace
    /CaslonTwoTwentyFour-Black
    /CaslonTwoTwentyFour-BlackIt
    /CaslonTwoTwentyFour-Bold
    /CaslonTwoTwentyFour-BoldIt
    /CaslonTwoTwentyFour-Book
    /CaslonTwoTwentyFour-BookIt
    /CaslonTwoTwentyFour-Medium
    /CaslonTwoTwentyFour-MediumIt
    /CastleT-Bold
    /CastleT-Book
    /Caxton-Bold
    /Caxton-BoldItalic
    /Caxton-Book
    /Caxton-BookItalic
    /CaxtonBT-Bold
    /CaxtonBT-BoldItalic
    /CaxtonBT-Book
    /CaxtonBT-BookItalic
    /Caxton-Light
    /Caxton-LightItalic
    /CelestiaAntiqua-Ornaments
    /Centennial-BlackItalicOsF
    /Centennial-BlackOsF
    /Centennial-BoldItalicOsF
    /Centennial-BoldOsF
    /Centennial-ItalicOsF
    /Centennial-LightItalicOsF
    /Centennial-LightSC
    /Centennial-RomanSC
    /Century-Bold
    /Century-BoldItalic
    /Century-Book
    /Century-BookItalic
    /CenturyExpandedBT-Bold
    /CenturyExpandedBT-BoldItalic
    /CenturyExpandedBT-Italic
    /CenturyExpandedBT-Roman
    /Century-HandtooledBold
    /Century-HandtooledBoldItalic
    /Century-Light
    /Century-LightItalic
    /CenturyOldStyle-Bold
    /CenturyOldStyle-Italic
    /CenturyOldStyle-Regular
    /CenturySchoolbookBT-Bold
    /CenturySchoolbookBT-BoldCond
    /CenturySchoolbookBT-BoldItalic
    /CenturySchoolbookBT-Italic
    /CenturySchoolbookBT-Roman
    /Century-Ultra
    /Century-UltraItalic
    /CharterBT-Black
    /CharterBT-BlackItalic
    /CharterBT-Bold
    /CharterBT-BoldItalic
    /CharterBT-Italic
    /CharterBT-Roman
    /CheltenhamBT-Bold
    /CheltenhamBT-BoldCondItalic
    /CheltenhamBT-BoldExtraCondensed
    /CheltenhamBT-BoldHeadline
    /CheltenhamBT-BoldItalic
    /CheltenhamBT-BoldItalicHeadline
    /CheltenhamBT-Italic
    /CheltenhamBT-Roman
    /Cheltenham-HandtooledBdIt
    /Cheltenham-HandtooledBold
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /Christiana-Bold
    /Christiana-BoldItalic
    /Christiana-Italic
    /Christiana-Medium
    /Christiana-MediumItalic
    /Christiana-Regular
    /Christiana-RegularExpert
    /Christiana-RegularSC
    /Clarendon
    /Clarendon-Bold
    /Clarendon-Light
    /ClassicalGaramondBT-Bold
    /ClassicalGaramondBT-BoldItalic
    /ClassicalGaramondBT-Italic
    /ClassicalGaramondBT-Roman
    /CMR10
    /CMR8
    /CMSY10
    /CMSY8
    /CMTI10
    /CommonBullets
    /ConduitITC-Bold
    /ConduitITC-BoldItalic
    /ConduitITC-Light
    /ConduitITC-LightItalic
    /ConduitITC-Medium
    /ConduitITC-MediumItalic
    /CooperBlack
    /CooperBlack-Italic
    /CooperBT-Bold
    /CooperBT-BoldItalic
    /CooperBT-Light
    /CooperBT-LightItalic
    /CopperplateGothicBT-Bold
    /CopperplateGothicBT-BoldCond
    /CopperplateGothicBT-Heavy
    /CopperplateGothicBT-Roman
    /CopperplateGothicBT-RomanCond
    /Copperplate-ThirtyThreeBC
    /Copperplate-ThirtyTwoBC
    /Coronet-Regular
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Critter
    /CS-Special-font
    /DellaRobbiaBT-Bold
    /DellaRobbiaBT-Roman
    /Della-RobbiaItalicBT
    /Della-RobbiaSCaps
    /Del-NormalSmallCaps
    /Delphin-IA
    /Delphin-IIA
    /Delta-Bold
    /Delta-BoldItalic
    /Delta-Book
    /Delta-BookItalic
    /Delta-Light
    /Delta-LightItalic
    /Delta-Medium
    /Delta-MediumItalic
    /Delta-Outline
    /DextorD
    /DextorOutD
    /DidotLH-OrnamentsOne
    /DidotLH-OrnamentsTwo
    /DINEngschrift
    /DINEngschrift-Alternate
    /DINMittelschrift
    /DINMittelschrift-Alternate
    /DINNeuzeitGrotesk-BoldCond
    /DINNeuzeitGrotesk-Light
    /Dom-CasItalic
    /DomCasual
    /DomCasual-Bold
    /Dom-CasualBT
    /Ehrhard-Italic
    /Ehrhard-Regular
    /EhrhardSemi-Italic
    /EhrhardtMT
    /EhrhardtMT-Italic
    /EhrhardtMT-SemiBold
    /EhrhardtMT-SemiBoldItalic
    /EhrharSemi
    /ELANGO-IB-A03
    /ELANGO-IB-A75
    /ELANGO-IB-A99
    /ElectraLH-Bold
    /ElectraLH-BoldCursive
    /ElectraLH-Cursive
    /ElectraLH-Regular
    /ElGreco
    /EnglischeSchT-Bold
    /EnglischeSchT-Regu
    /ErasContour
    /ErasITCbyBT-Bold
    /ErasITCbyBT-Book
    /ErasITCbyBT-Demi
    /ErasITCbyBT-Light
    /ErasITCbyBT-Medium
    /ErasITCbyBT-Ultra
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EUEX10
    /EUFB10
    /EUFB5
    /EUFB7
    /EUFM10
    /EUFM5
    /EUFM7
    /EURB10
    /EURB5
    /EURB7
    /EURM10
    /EURM5
    /EURM7
    /EuropeanPi-Four
    /EuropeanPi-One
    /EuropeanPi-Three
    /EuropeanPi-Two
    /EuroSans-Bold
    /EuroSans-BoldItalic
    /EuroSans-Italic
    /EuroSans-Regular
    /EuroSerif-Bold
    /EuroSerif-BoldItalic
    /EuroSerif-Italic
    /EuroSerif-Regular
    /Eurostile
    /Eurostile-Bold
    /Eurostile-BoldCondensed
    /Eurostile-BoldExtendedTwo
    /Eurostile-BoldOblique
    /Eurostile-Condensed
    /Eurostile-Demi
    /Eurostile-DemiOblique
    /Eurostile-ExtendedTwo
    /EurostileLTStd-Demi
    /EurostileLTStd-DemiOblique
    /Eurostile-Oblique
    /EUSB10
    /EUSB5
    /EUSB7
    /EUSM10
    /EUSM5
    /EUSM7
    /ExPonto-Regular
    /FairfieldLH-Bold
    /FairfieldLH-BoldItalic
    /FairfieldLH-BoldSC
    /FairfieldLH-CaptionBold
    /FairfieldLH-CaptionHeavy
    /FairfieldLH-CaptionLight
    /FairfieldLH-CaptionMedium
    /FairfieldLH-Heavy
    /FairfieldLH-HeavyItalic
    /FairfieldLH-HeavySC
    /FairfieldLH-Light
    /FairfieldLH-LightItalic
    /FairfieldLH-LightSC
    /FairfieldLH-Medium
    /FairfieldLH-MediumItalic
    /FairfieldLH-MediumSC
    /FairfieldLH-SwBoldItalicOsF
    /FairfieldLH-SwHeavyItalicOsF
    /FairfieldLH-SwLightItalicOsF
    /FairfieldLH-SwMediumItalicOsF
    /Fences
    /Fenice-Bold
    /Fenice-BoldOblique
    /FeniceITCbyBT-Bold
    /FeniceITCbyBT-BoldItalic
    /FeniceITCbyBT-Regular
    /FeniceITCbyBT-RegularItalic
    /Fenice-Light
    /Fenice-LightOblique
    /Fenice-Regular
    /Fenice-RegularOblique
    /Fenice-Ultra
    /Fenice-UltraOblique
    /FlashD-Ligh
    /Flood
    /Folio-Bold
    /Folio-BoldCondensed
    /Folio-ExtraBold
    /Folio-Light
    /Folio-Medium
    /FontanaNDAaOsF
    /FontanaNDAaOsF-Italic
    /FontanaNDCcOsF-Semibold
    /FontanaNDCcOsF-SemiboldIta
    /FontanaNDEeOsF
    /FontanaNDEeOsF-Bold
    /FontanaNDEeOsF-BoldItalic
    /FontanaNDEeOsF-Light
    /FontanaNDEeOsF-Semibold
    /FormalScript421BT-Regular
    /Formata-Bold
    /Formata-MediumCondensed
    /ForteMT
    /FournierMT-Ornaments
    /FrakturBT-Regular
    /FrankfurterHigD
    /FranklinGothic-Book
    /FranklinGothic-BookItal
    /FranklinGothic-BookOblique
    /FranklinGothic-Condensed
    /FranklinGothic-Demi
    /FranklinGothic-DemiItal
    /FranklinGothic-DemiOblique
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItal
    /FranklinGothic-HeavyOblique
    /FranklinGothicITCbyBT-BookItal
    /FranklinGothicITCbyBT-Demi
    /FranklinGothicITCbyBT-DemiItal
    /FranklinGothicITCbyBT-Heavy
    /FranklinGothicITCbyBT-HeavyItal
    /FranklinGothic-Medium
    /FranklinGothic-MediumItal
    /FranklinGothic-Roman
    /Freeform721BT-Bold
    /Freeform721BT-BoldItalic
    /Freeform721BT-Italic
    /Freeform721BT-Roman
    /FreestyleScrD
    /Freestylescript
    /FreestyleScript
    /FrizQuadrataITCbyBT-Bold
    /FrizQuadrataITCbyBT-Roman
    /Frutiger-Black
    /Frutiger-BlackCn
    /Frutiger-BlackItalic
    /Frutiger-Bold
    /Frutiger-BoldCn
    /Frutiger-BoldItalic
    /Frutiger-Cn
    /Frutiger-ExtraBlackCn
    /Frutiger-Italic
    /Frutiger-Light
    /Frutiger-LightCn
    /Frutiger-LightItalic
    /Frutiger-Roman
    /Frutiger-UltraBlack
    /Futura
    /FuturaBlackBT-Regular
    /Futura-Bold
    /Futura-BoldOblique
    /Futura-Book
    /Futura-BookOblique
    /FuturaBT-Bold
    /FuturaBT-BoldCondensed
    /FuturaBT-BoldCondensedItalic
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-ExtraBlack
    /FuturaBT-ExtraBlackCondensed
    /FuturaBT-ExtraBlackCondItalic
    /FuturaBT-ExtraBlackItalic
    /FuturaBT-Heavy
    /FuturaBT-HeavyItalic
    /FuturaBT-Light
    /FuturaBT-LightCondensed
    /FuturaBT-LightItalic
    /FuturaBT-Medium
    /FuturaBT-MediumCondensed
    /FuturaBT-MediumItalic
    /Futura-CondensedLight
    /Futura-CondensedLightOblique
    /Futura-ExtraBold
    /Futura-ExtraBoldOblique
    /Futura-Heavy
    /Futura-HeavyOblique
    /Futura-Light
    /Futura-LightOblique
    /Futura-Oblique
    /Futura-Thin
    /Galliard-Black
    /Galliard-BlackItalic
    /Galliard-Bold
    /Galliard-BoldItalic
    /Galliard-Italic
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Galliard-Roman
    /Galliard-Ultra
    /Galliard-UltraItalic
    /Garamond-Antiqua
    /GaramondBE-Bold
    /GaramondBE-BoldExpert
    /GaramondBE-BoldOsF
    /GaramondBE-CnExpert
    /GaramondBE-Condensed
    /GaramondBE-CondensedSC
    /GaramondBE-Italic
    /GaramondBE-ItalicExpert
    /GaramondBE-ItalicOsF
    /GaramondBE-Medium
    /GaramondBE-MediumCn
    /GaramondBE-MediumCnExpert
    /GaramondBE-MediumCnOsF
    /GaramondBE-MediumExpert
    /GaramondBE-MediumItalic
    /GaramondBE-MediumItalicExpert
    /GaramondBE-MediumItalicOsF
    /GaramondBE-MediumSC
    /GaramondBE-Regular
    /GaramondBE-RegularExpert
    /GaramondBE-RegularSC
    /GaramondBE-SwashItalic
    /Garamond-Bold
    /Garamond-BoldCondensed
    /Garamond-BoldCondensedItalic
    /Garamond-BoldItalic
    /Garamond-Book
    /Garamond-BookCondensed
    /Garamond-BookCondensedItalic
    /Garamond-BookItalic
    /Garamond-Halbfett
    /Garamond-HandtooledBold
    /Garamond-HandtooledBoldItalic
    /GaramondITCbyBT-Bold
    /GaramondITCbyBT-BoldCondensed
    /GaramondITCbyBT-BoldCondItalic
    /GaramondITCbyBT-BoldItalic
    /GaramondITCbyBT-BoldNarrow
    /GaramondITCbyBT-BoldNarrowItal
    /GaramondITCbyBT-Book
    /GaramondITCbyBT-BookCondensed
    /GaramondITCbyBT-BookCondItalic
    /GaramondITCbyBT-BookItalic
    /GaramondITCbyBT-BookNarrow
    /GaramondITCbyBT-BookNarrowItal
    /GaramondITCbyBT-Light
    /GaramondITCbyBT-LightCondensed
    /GaramondITCbyBT-LightCondItalic
    /GaramondITCbyBT-LightItalic
    /GaramondITCbyBT-LightNarrow
    /GaramondITCbyBT-LightNarrowItal
    /GaramondITCbyBT-Ultra
    /GaramondITCbyBT-UltraCondensed
    /GaramondITCbyBT-UltraCondItalic
    /GaramondITCbyBT-UltraItalic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Garamond-Light
    /Garamond-LightCondensed
    /Garamond-LightCondensedItalic
    /Garamond-LightItalic
    /GaramondNo4CyrTCY-Ligh
    /GaramondNo4CyrTCY-LighItal
    /GaramondThree
    /GaramondThree-Bold
    /GaramondThree-BoldItalic
    /GaramondThree-BoldItalicOsF
    /GaramondThree-BoldSC
    /GaramondThree-Italic
    /GaramondThree-ItalicOsF
    /GaramondThree-SC
    /GaramondThreeSMSIISpl-Italic
    /GaramondThreeSMSitalicSpl-Italic
    /GaramondThreeSMSspl
    /GaramondThreespl
    /GaramondThreeSpl-Bold
    /GaramondThreeSpl-Italic
    /Garamond-Ultra
    /Garamond-UltraCondensed
    /Garamond-UltraCondensedItalic
    /Garamond-UltraItalic
    /GarthGraphic
    /GarthGraphic-Black
    /GarthGraphic-Bold
    /GarthGraphic-BoldCondensed
    /GarthGraphic-BoldItalic
    /GarthGraphic-Condensed
    /GarthGraphic-ExtraBold
    /GarthGraphic-Italic
    /Geometric231BT-HeavyC
    /GeometricSlab712BT-BoldA
    /GeometricSlab712BT-ExtraBoldA
    /GeometricSlab712BT-LightA
    /GeometricSlab712BT-LightItalicA
    /GeometricSlab712BT-MediumA
    /GeometricSlab712BT-MediumItalA
    /Giddyup
    /Giddyup-Thangs
    /GillSans
    /GillSans-Bold
    /GillSans-BoldCondensed
    /GillSans-BoldExtraCondensed
    /GillSans-BoldItalic
    /GillSans-Condensed
    /GillSans-ExtraBold
    /GillSans-ExtraBoldDisplay
    /GillSans-Italic
    /GillSans-Light
    /GillSans-LightItalic
    /GillSans-LightShadowed
    /GillSans-Shadowed
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /Gill-Special
    /Giovanni-Bold
    /Giovanni-BoldItalic
    /Giovanni-Book
    /Giovanni-BookItalic
    /Glypha
    /Glypha-Bold
    /Glypha-BoldOblique
    /Glypha-Oblique
    /Gothic-Thirteen
    /Goudy
    /Goudy-Bold
    /Goudy-BoldItalic
    /GoudyCatalogueBT-Regular
    /Goudy-ExtraBold
    /GoudyHandtooledBT-Regular
    /GoudyHeavyfaceBT-Regular
    /GoudyHeavyfaceBT-RegularCond
    /Goudy-Italic
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-ExtraBold
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudySans-Black
    /GoudySans-BlackItalic
    /GoudySans-Bold
    /GoudySans-BoldItalic
    /GoudySans-Book
    /GoudySans-BookItalic
    /GoudySansITCbyBT-Black
    /GoudySansITCbyBT-BlackItalic
    /GoudySansITCbyBT-Bold
    /GoudySansITCbyBT-BoldItalic
    /GoudySansITCbyBT-Light
    /GoudySansITCbyBT-LightItalic
    /GoudySansITCbyBT-Medium
    /GoudySansITCbyBT-MediumItalic
    /GoudySans-Medium
    /GoudySans-MediumItalic
    /Granjon
    /Granjon-Bold
    /Granjon-BoldOsF
    /Granjon-Italic
    /Granjon-ItalicOsF
    /Granjon-SC
    /GreymantleMVB-Ornaments
    /Helvetica
    /Helvetica-Black
    /Helvetica-BlackOblique
    /Helvetica-Black-SemiBold
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Compressed
    /Helvetica-Condensed
    /Helvetica-Condensed-Black
    /Helvetica-Condensed-BlackObl
    /Helvetica-Condensed-Bold
    /Helvetica-Condensed-BoldObl
    /Helvetica-Condensed-Light
    /Helvetica-Condensed-Light-Light
    /Helvetica-Condensed-LightObl
    /Helvetica-Condensed-Oblique
    /Helvetica-Condensed-Thin
    /Helvetica-ExtraCompressed
    /Helvetica-Fraction
    /Helvetica-FractionBold
    /HelveticaInserat-Roman
    /HelveticaInserat-Roman-SemiBold
    /Helvetica-Light
    /Helvetica-LightOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /HelveticaNeue-Black
    /HelveticaNeue-BlackCond
    /HelveticaNeue-BlackCondObl
    /HelveticaNeue-BlackExt
    /HelveticaNeue-BlackExtObl
    /HelveticaNeue-BlackItalic
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldCond
    /HelveticaNeue-BoldCondObl
    /HelveticaNeue-BoldExt
    /HelveticaNeue-BoldExtObl
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-ExtBlackCond
    /HelveticaNeue-ExtBlackCondObl
    /HelveticaNeue-Extended
    /HelveticaNeue-ExtendedObl
    /HelveticaNeue-Heavy
    /HelveticaNeue-HeavyCond
    /HelveticaNeue-HeavyCondObl
    /HelveticaNeue-HeavyExt
    /HelveticaNeue-HeavyExtObl
    /HelveticaNeue-HeavyItalic
    /HelveticaNeue-Italic
    /HelveticaNeue-Light
    /HelveticaNeue-LightCond
    /HelveticaNeue-LightCondObl
    /HelveticaNeue-LightExt
    /HelveticaNeue-LightExtObl
    /HelveticaNeue-LightItalic
    /HelveticaNeueLTStd-Md
    /HelveticaNeueLTStd-MdIt
    /HelveticaNeue-Medium
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-MediumExt
    /HelveticaNeue-MediumExtObl
    /HelveticaNeue-MediumItalic
    /HelveticaNeue-Roman
    /HelveticaNeue-Thin
    /HelveticaNeue-ThinCond
    /HelveticaNeue-ThinCondObl
    /HelveticaNeue-ThinItalic
    /HelveticaNeue-UltraLigCond
    /HelveticaNeue-UltraLigCondObl
    /HelveticaNeue-UltraLigExt
    /HelveticaNeue-UltraLigExtObl
    /HelveticaNeue-UltraLight
    /HelveticaNeue-UltraLightItal
    /Helvetica-Oblique
    /Helvetica-UltraCompressed
    /HelvExtCompressed
    /HelvLight
    /HelvUltCompressed
    /Humanist521BT-Bold
    /Humanist521BT-BoldCondensed
    /Humanist521BT-BoldItalic
    /Humanist521BT-ExtraBold
    /Humanist521BT-Italic
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-Roman
    /Humanist521BT-RomanCondensed
    /Humanist521BT-UltraBold
    /Humanist521BT-XtraBoldCondensed
    /Humanist531BT-BlackA
    /Humanist531BT-BoldA
    /Humanist531BT-RomanA
    /Humanist531BT-UltraBlackA
    /Humanist777BT-BlackB
    /Humanist777BT-BlackCondensedB
    /Humanist777BT-BlackItalicB
    /Humanist777BT-BoldB
    /Humanist777BT-BoldCondensedB
    /Humanist777BT-BoldItalicB
    /Humanist777BT-ExtraBlackB
    /Humanist777BT-ExtraBlackCondB
    /Humanist777BT-ItalicB
    /Humanist777BT-LightB
    /Humanist777BT-LightCondensedB
    /Humanist777BT-LightItalicB
    /Humanist777BT-RomanB
    /Humanist777BT-RomanCondensedB
    /Humanist970BT-BoldC
    /Humanist970BT-RomanC
    /HumanistSlabserif712BT-Black
    /HumanistSlabserif712BT-Bold
    /HumanistSlabserif712BT-Italic
    /HumanistSlabserif712BT-Roman
    /ICMEX10
    /ICMMI8
    /ICMSY8
    /ICMTT8
    /Iglesia-Light
    /ILASY8
    /ILCMSS8
    /ILCMSSB8
    /ILCMSSI8
    /Imago-Book
    /Imago-BookItalic
    /Imago-ExtraBold
    /Imago-ExtraBoldItalic
    /Imago-Light
    /Imago-LightItalic
    /Imago-Medium
    /Imago-MediumItalic
    /Industria-Inline
    /Industria-InlineA
    /Industria-Solid
    /Industria-SolidA
    /Insignia
    /Insignia-A
    /IPAExtras
    /IPAHighLow
    /IPAKiel
    /IPAKielSeven
    /IPAsans
    /ITCGaramondMM
    /ITCGaramondMM-It
    /JAKEOpti-Regular
    /JansonText-Bold
    /JansonText-BoldItalic
    /JansonText-Italic
    /JansonText-Roman
    /JansonText-RomanSC
    /JoannaMT
    /JoannaMT-Bold
    /JoannaMT-BoldItalic
    /JoannaMT-Italic
    /Juniper
    /KabelITCbyBT-Book
    /KabelITCbyBT-Demi
    /KabelITCbyBT-Medium
    /KabelITCbyBT-Ultra
    /Kaufmann
    /Kaufmann-Bold
    /KeplMM-Or2
    /KisBT-Italic
    /KisBT-Roman
    /KlangMT
    /Kuenstler480BT-Black
    /Kuenstler480BT-Bold
    /Kuenstler480BT-BoldItalic
    /Kuenstler480BT-Italic
    /Kuenstler480BT-Roman
    /KunstlerschreibschD-Bold
    /KunstlerschreibschD-Medi
    /Lapidary333BT-Black
    /Lapidary333BT-Bold
    /Lapidary333BT-BoldItalic
    /Lapidary333BT-Italic
    /Lapidary333BT-Roman
    /LASY10
    /LASY5
    /LASY6
    /LASY7
    /LASY8
    /LASY9
    /LASYB10
    /LatinMT-Condensed
    /LCIRCLE10
    /LCIRCLEW10
    /LCMSS8
    /LCMSSB8
    /LCMSSI8
    /LDecorationPi-One
    /LDecorationPi-Two
    /Leawood-Black
    /Leawood-BlackItalic
    /Leawood-Bold
    /Leawood-BoldItalic
    /Leawood-Book
    /Leawood-BookItalic
    /Leawood-Medium
    /Leawood-MediumItalic
    /LegacySans-Bold
    /LegacySans-BoldItalic
    /LegacySans-Book
    /LegacySans-BookItalic
    /LegacySans-Medium
    /LegacySans-MediumItalic
    /LegacySans-Ultra
    /LegacySerif-Bold
    /LegacySerif-BoldItalic
    /LegacySerif-Book
    /LegacySerif-BookItalic
    /LegacySerif-Medium
    /LegacySerif-MediumItalic
    /LegacySerif-Ultra
    /LetterGothic
    /LetterGothic-Bold
    /LetterGothic-BoldSlanted
    /LetterGothic-Slanted
    /Life-Bold
    /Life-Italic
    /Life-Roman
    /LINE10
    /LINEW10
    /Linotext
    /Lithos-Black
    /LithosBold
    /Lithos-Bold
    /Lithos-Regular
    /LOGO10
    /LOGO8
    /LOGO9
    /LOGOBF10
    /LOGOSL10
    /LOMD-Normal
    /LubalinGraph-Book
    /LubalinGraph-BookOblique
    /LubalinGraph-Demi
    /LubalinGraph-DemiOblique
    /LucidaHandwritingItalic
    /LucidaMath-Symbol
    /LucidaSansTypewriter
    /LucidaSansTypewriter-Bd
    /LucidaSansTypewriter-BdObl
    /LucidaSansTypewriter-Obl
    /LucidaTypewriter
    /LucidaTypewriter-Bold
    /LucidaTypewriter-BoldObl
    /LucidaTypewriter-Obl
    /LydianBT-Bold
    /LydianBT-BoldItalic
    /LydianBT-Italic
    /LydianBT-Roman
    /LydianCursiveBT-Regular
    /Machine
    /Machine-Bold
    /Marigold
    /MathematicalPi-Five
    /MathematicalPi-Four
    /MathematicalPi-One
    /MathematicalPi-Six
    /MathematicalPi-Three
    /MathematicalPi-Two
    /MatrixScriptBold
    /MatrixScriptBoldLin
    /MatrixScriptBook
    /MatrixScriptBookLin
    /MatrixScriptRegular
    /MatrixScriptRegularLin
    /Melior
    /Melior-Bold
    /Melior-BoldItalic
    /Melior-Italic
    /MercuriusCT-Black
    /MercuriusCT-BlackItalic
    /MercuriusCT-Light
    /MercuriusCT-LightItalic
    /MercuriusCT-Medium
    /MercuriusCT-MediumItalic
    /MercuriusMT-BoldScript
    /Meridien-Bold
    /Meridien-BoldItalic
    /Meridien-Italic
    /Meridien-Medium
    /Meridien-MediumItalic
    /Meridien-Roman
    /Minion-Black
    /Minion-Bold
    /Minion-BoldCondensed
    /Minion-BoldCondensedItalic
    /Minion-BoldItalic
    /Minion-Condensed
    /Minion-CondensedItalic
    /Minion-DisplayItalic
    /Minion-DisplayRegular
    /MinionExp-Italic
    /MinionExp-Semibold
    /MinionExp-SemiboldItalic
    /Minion-Italic
    /Minion-Ornaments
    /Minion-Regular
    /Minion-Semibold
    /Minion-SemiboldItalic
    /MonaLisa-Recut
    /MrsEavesAllPetiteCaps
    /MrsEavesAllSmallCaps
    /MrsEavesBold
    /MrsEavesFractions
    /MrsEavesItalic
    /MrsEavesPetiteCaps
    /MrsEavesRoman
    /MrsEavesRomanLining
    /MrsEavesSmallCaps
    /MSAM10
    /MSAM10A
    /MSAM5
    /MSAM6
    /MSAM7
    /MSAM8
    /MSAM9
    /MSBM10
    /MSBM10A
    /MSBM5
    /MSBM6
    /MSBM7
    /MSBM8
    /MSBM9
    /MTEX
    /MTEXB
    /MTEXH
    /MTGU
    /MTGUB
    /MTMI
    /MTMIB
    /MTMIH
    /MTMS
    /MTMSB
    /MTMUB
    /MTMUH
    /MTSY
    /MTSYB
    /MTSYH
    /MTSYN
    /MusicalSymbols-Normal
    /Myriad-Bold
    /Myriad-BoldItalic
    /Myriad-CnBold
    /Myriad-CnBoldItalic
    /Myriad-CnItalic
    /Myriad-CnSemibold
    /Myriad-CnSemiboldItalic
    /Myriad-Condensed
    /Myriad-Italic
    /MyriadMM
    /MyriadMM-It
    /Myriad-Roman
    /Myriad-Sketch
    /Myriad-Tilt
    /NeuzeitS-Book
    /NeuzeitS-BookHeavy
    /NewBaskerville-Bold
    /NewBaskerville-BoldItalic
    /NewBaskerville-Italic
    /NewBaskervilleITCbyBT-Bold
    /NewBaskervilleITCbyBT-BoldItal
    /NewBaskervilleITCbyBT-Italic
    /NewBaskervilleITCbyBT-Roman
    /NewBaskerville-Roman
    /NewCaledonia
    /NewCaledonia-Black
    /NewCaledonia-BlackItalic
    /NewCaledonia-Bold
    /NewCaledonia-BoldItalic
    /NewCaledonia-BoldItalicOsF
    /NewCaledonia-BoldSC
    /NewCaledonia-Italic
    /NewCaledonia-ItalicOsF
    /NewCaledonia-SC
    /NewCaledonia-SemiBold
    /NewCaledonia-SemiBoldItalic
    /NewCenturySchlbk-Bold
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /NewsGothic
    /NewsGothic-Bold
    /NewsGothic-BoldOblique
    /NewsGothicBT-Bold
    /NewsGothicBT-BoldCondensed
    /NewsGothicBT-BoldCondItalic
    /NewsGothicBT-BoldExtraCondensed
    /NewsGothicBT-BoldItalic
    /NewsGothicBT-Demi
    /NewsGothicBT-DemiItalic
    /NewsGothicBT-ExtraCondensed
    /NewsGothicBT-Italic
    /NewsGothicBT-ItalicCondensed
    /NewsGothicBT-Light
    /NewsGothicBT-LightItalic
    /NewsGothicBT-Roman
    /NewsGothicBT-RomanCondensed
    /NewsGothic-Oblique
    /New-Symbol
    /NovareseITCbyBT-Bold
    /NovareseITCbyBT-BoldItalic
    /NovareseITCbyBT-Book
    /NovareseITCbyBT-BookItalic
    /Nueva-BoldExtended
    /Nueva-Roman
    /NuptialScript
    /OceanSansMM
    /OceanSansMM-It
    /OfficinaSans-Bold
    /OfficinaSans-BoldItalic
    /OfficinaSans-Book
    /OfficinaSans-BookItalic
    /OfficinaSerif-Bold
    /OfficinaSerif-BoldItalic
    /OfficinaSerif-Book
    /OfficinaSerif-BookItalic
    /OnyxMT
    /Optima
    /Optima-Bold
    /Optima-BoldItalic
    /Optima-BoldOblique
    /Optima-ExtraBlack
    /Optima-ExtraBlackItalic
    /Optima-Italic
    /Optima-Oblique
    /OSPIRE-Plain
    /OttaIA
    /Otta-wa
    /Ottawa-BoldA
    /OttawaPSMT
    /Oxford
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /Palatino-Roman
    /Parisian
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PhotinaMT
    /PhotinaMT-Bold
    /PhotinaMT-BoldItalic
    /PhotinaMT-Italic
    /PhotinaMT-SemiBold
    /PhotinaMT-SemiBoldItalic
    /PhotinaMT-UltraBold
    /PhotinaMT-UltraBoldItalic
    /Plantin
    /Plantin-Bold
    /Plantin-BoldItalic
    /Plantin-Italic
    /Plantin-Light
    /Plantin-LightItalic
    /Plantin-Semibold
    /Plantin-SemiboldItalic
    /Poetica-ChanceryI
    /Poetica-SuppLowercaseEndI
    /PopplLaudatio-Italic
    /PopplLaudatio-Medium
    /PopplLaudatio-MediumItalic
    /PopplLaudatio-Regular
    /ProseAntique-Bold
    /ProseAntique-Normal
    /QuaySansEF-Black
    /QuaySansEF-BlackItalic
    /QuaySansEF-Book
    /QuaySansEF-BookItalic
    /QuaySansEF-Medium
    /QuaySansEF-MediumItalic
    /Quorum-Black
    /Quorum-Bold
    /Quorum-Book
    /Quorum-Light
    /Quorum-Medium
    /Raleigh
    /Raleigh-Bold
    /Raleigh-DemiBold
    /Raleigh-Medium
    /Revival565BT-Bold
    /Revival565BT-BoldItalic
    /Revival565BT-Italic
    /Revival565BT-Roman
    /Ribbon131BT-Bold
    /Ribbon131BT-Regular
    /RMTMI
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Italic
    /Rockwell-Light
    /Rockwell-LightItalic
    /RotisSansSerif
    /RotisSansSerif-Bold
    /RotisSansSerif-ExtraBold
    /RotisSansSerif-Italic
    /RotisSansSerif-Light
    /RotisSansSerif-LightItalic
    /RotisSemiSans
    /RotisSemiSans-Bold
    /RotisSemiSans-ExtraBold
    /RotisSemiSans-Italic
    /RotisSemiSans-Light
    /RotisSemiSans-LightItalic
    /RotisSemiSerif
    /RotisSemiSerif-Bold
    /RotisSerif
    /RotisSerif-Bold
    /RotisSerif-Italic
    /RunicMT-Condensed
    /Sabon-Bold
    /Sabon-BoldItalic
    /Sabon-Italic
    /Sabon-Roman
    /SackersGothicLight
    /SackersGothicLightAlt
    /SackersItalianScript
    /SackersItalianScriptAlt
    /Sam
    /Sanvito-Light
    /SanvitoMM
    /Sanvito-Roman
    /Semitica
    /Semitica-Italic
    /SIVAMATH
    /Siva-Special
    /SMS-SPELA
    /Souvenir-Demi
    /Souvenir-DemiItalic
    /SouvenirITCbyBT-Demi
    /SouvenirITCbyBT-DemiItalic
    /SouvenirITCbyBT-Light
    /SouvenirITCbyBT-LightItalic
    /Souvenir-Light
    /Souvenir-LightItalic
    /SpecialAA
    /Special-Gali
    /Sp-Sym
    /StempelGaramond-Bold
    /StempelGaramond-BoldItalic
    /StempelGaramond-Italic
    /StempelGaramond-Roman
    /StoneSans
    /StoneSans-Bold
    /StoneSans-BoldItalic
    /StoneSans-Italic
    /StoneSans-PhoneticAlternate
    /StoneSans-PhoneticIPA
    /StoneSans-Semibold
    /StoneSans-SemiboldItalic
    /StoneSerif
    /StoneSerif-Italic
    /StoneSerif-PhoneticAlternate
    /StoneSerif-PhoneticIPA
    /StoneSerif-Semibold
    /StoneSerif-SemiboldItalic
    /Swiss721BT-Black
    /Swiss721BT-BlackCondensed
    /Swiss721BT-BlackCondensedItalic
    /Swiss721BT-BlackExtended
    /Swiss721BT-BlackItalic
    /Swiss721BT-BlackOutline
    /Swiss721BT-BlackRounded
    /Swiss721BT-Bold
    /Swiss721BT-BoldCondensed
    /Swiss721BT-BoldCondensedItalic
    /Swiss721BT-BoldCondensedOutline
    /Swiss721BT-BoldExtended
    /Swiss721BT-BoldItalic
    /Swiss721BT-BoldOutline
    /Swiss721BT-BoldRounded
    /Swiss721BT-Heavy
    /Swiss721BT-HeavyItalic
    /Swiss721BT-Italic
    /Swiss721BT-ItalicCondensed
    /Swiss721BT-Light
    /Swiss721BT-LightCondensed
    /Swiss721BT-LightCondensedItalic
    /Swiss721BT-LightExtended
    /Swiss721BT-LightItalic
    /Swiss721BT-Medium
    /Swiss721BT-MediumItalic
    /Swiss721BT-Roman
    /Swiss721BT-RomanCondensed
    /Swiss721BT-RomanExtended
    /Swiss721BT-Thin
    /Swiss721BT-ThinItalic
    /Swiss921BT-RegularA
    /Symbol
    /Syntax-Black
    /Syntax-Bold
    /Syntax-Italic
    /Syntax-Roman
    /Syntax-UltraBlack
    /Tekton
    /Times-Bold
    /Times-BoldA
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Italic
    /Times-NewRoman
    /Times-NewRomanBold
    /Times-Oblique
    /Times-PhoneticAlternate
    /Times-PhoneticIPA
    /Times-Roman
    /Times-RomanSmallCaps
    /Times-Sc
    /Times-SCB
    /Times-special
    /TimesTenGreekP-Upright
    /TradeGothic
    /TradeGothic-Bold
    /TradeGothic-BoldCondTwenty
    /TradeGothic-BoldCondTwentyObl
    /TradeGothic-BoldOblique
    /TradeGothic-BoldTwo
    /TradeGothic-BoldTwoOblique
    /TradeGothic-CondEighteen
    /TradeGothic-CondEighteenObl
    /TradeGothicLH-BoldExtended
    /TradeGothicLH-Extended
    /TradeGothic-Light
    /TradeGothic-LightOblique
    /TradeGothic-Oblique
    /Trajan-Bold
    /TrajanPro-Bold
    /TrajanPro-Regular
    /Trajan-Regular
    /Transitional521BT-BoldA
    /Transitional521BT-CursiveA
    /Transitional521BT-RomanA
    /Transitional551BT-MediumB
    /Transitional551BT-MediumItalicB
    /Univers
    /Universal-GreekwithMathPi
    /Universal-NewswithCommPi
    /Univers-BlackExt
    /Univers-BlackExtObl
    /Univers-Bold
    /Univers-BoldExt
    /Univers-BoldExtObl
    /Univers-BoldOblique
    /Univers-Condensed
    /Univers-CondensedBold
    /Univers-CondensedBoldOblique
    /Univers-CondensedOblique
    /Univers-Extended
    /Univers-ExtendedObl
    /Univers-ExtraBlackExt
    /Univers-ExtraBlackExtObl
    /Univers-Light
    /Univers-LightOblique
    /UniversLTStd-Black
    /UniversLTStd-BlackObl
    /Univers-Oblique
    /Utopia-Black
    /Utopia-BlackOsF
    /Utopia-Bold
    /Utopia-BoldItalic
    /Utopia-Italic
    /Utopia-Ornaments
    /Utopia-Regular
    /Utopia-Semibold
    /Utopia-SemiboldItalic
    /VAGRounded-Black
    /VAGRounded-Bold
    /VAGRounded-Light
    /VAGRounded-Thin
    /Viva-BoldExtraExtended
    /Viva-Regular
    /Weidemann-Black
    /Weidemann-BlackItalic
    /Weidemann-Bold
    /Weidemann-BoldItalic
    /Weidemann-Book
    /Weidemann-BookItalic
    /Weidemann-Medium
    /Weidemann-MediumItalic
    /WindsorBT-Elongated
    /WindsorBT-Light
    /WindsorBT-LightCondensed
    /WindsorBT-Roman
    /Wingdings-Regular
    /WNCYB10
    /WNCYI10
    /WNCYR10
    /WNCYSC10
    /WNCYSS10
    /WoodtypeOrnaments-One
    /WoodtypeOrnaments-Two
    /ZapfCalligraphic801BT-Bold
    /ZapfCalligraphic801BT-BoldItal
    /ZapfCalligraphic801BT-Italic
    /ZapfCalligraphic801BT-Roman
    /ZapfChanceryITCbyBT-Bold
    /ZapfChanceryITCbyBT-Demi
    /ZapfChanceryITCbyBT-Medium
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZapfDingbatsITCbyBT-Regular
    /ZapfElliptical711BT-Bold
    /ZapfElliptical711BT-BoldItalic
    /ZapfElliptical711BT-Italic
    /ZapfElliptical711BT-Roman
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Demi
    /ZapfHumanist601BT-DemiItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZapfHumanist601BT-Ultra
    /ZapfHumanist601BT-UltraItalic
    /ZurichBT-Black
    /ZurichBT-BlackExtended
    /ZurichBT-BlackItalic
    /ZurichBT-Bold
    /ZurichBT-BoldCondensed
    /ZurichBT-BoldCondensedItalic
    /ZurichBT-BoldExtended
    /ZurichBT-BoldExtraCondensed
    /ZurichBT-BoldItalic
    /ZurichBT-ExtraBlack
    /ZurichBT-ExtraCondensed
    /ZurichBT-Italic
    /ZurichBT-ItalicCondensed
    /ZurichBT-Light
    /ZurichBT-LightCondensed
    /ZurichBT-LightCondensedItalic
    /ZurichBT-LightExtraCondensed
    /ZurichBT-LightItalic
    /ZurichBT-Roman
    /ZurichBT-RomanCondensed
    /ZurichBT-RomanExtended
    /ZurichBT-UltraBlackExtended
  ]
  /NeverEmbed [ true
    /TimesNewRomanPS
    /TimesNewRomanPS-Bold
    /TimesNewRomanPS-BoldItalic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-Italic
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /NLD <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




