Special transformations for pentamode acoustic cloaking
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The acoustic cloaking theory of Norris [Proc. R. Soc. London, Ser. A 464, 2411-2434 (2008)] per-
mits considerable freedom in choosing the transformation f from physical to virtual space. The stand-
ard process for defining cloak materials is to first define f and then evaluate whether the materials are
practically realizable. In this paper, this process is inverted by defining desirable material properties
and then deriving the appropriate transformations which guarantee the cloaking effect. Transforma-
tions are derived which result in acoustic cloaks with special properties such as (1) constant density,
(2) constant radial stiffness, (3) constant tangential stiffness, (4) power-law density, (5) power-law

radial stiffness, (6) power-law tangential stiffness, and (7) minimal elastic anisotropy.
© 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744938]
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. INTRODUCTION

“Acoustic cloaking” refers to making an object invisible
to sound waves. This is achieved by enclosing the object of
interest with an acoustic cloak which guides waves around
the object. The cloak leaves the wave-field outside the cloak
indistinguishable from the wave-field without the object
present. The phenomenon of cloaking is not restricted to
acoustics but can occur for different types of waves such as
electromagnetic waves,1 elastic waves,2 and in a more exotic
example, quantum mechanical systems.” We restrict our
attention here to acoustic cloaking, and specifically pentam-
ode acoustic cloaking for which the density is isotropic. The
reader is referred to the review articles by Bryan and Leise*
and Greenleaf er al.” for a comprehensive review of different
types of cloaking, its historical development and relation to
previous work in inverse problems.® A review dedicated to
acoustic cloaking and transformation acoustics is provided
by Chen and Chan.’

Initial work in acoustic cloaking® ™' was based on trans-
formation optics as developed by Cummer et al.® mapped
the 2D acoustic equations in a fluid to the single polarization
Maxwell’s equations, while Chen er al.’ mapped the 3D
acoustic equation to the direct current conductivity equation
in 3D. Cummer ez al.'® derived a formulation for 3D acous-
tic cloaking starting from scattering theory. These formula-
tions achieved acoustic cloaking using anisotropic density
and isotropic stiffness. Norris'' provided a formulation of
acoustic cloaking which using both anisotropic inertia and
stiffness, and as a special case, derived a formulation using
isotropic density and anisotropic stiffness.

The acoustic cloaking theory of Norris'' involves map-
ping the physical space to the virtual space using the trans-
formation f as illustrated in Fig. 1. The material properties of
the cloak can be obtained by choosing the transformation f
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and using Eq. (3) to compute the material properties. In prac-
tice, however, the properties obtained may not be useful
because they are unattainable. In this paper, we derive spe-
cial forms of f which may result in physically realizable
cloaking metamaterials, which are composite materials
whose macroscopic acoustic properties are controlled by en-
gineering their microstructure. The design and fabrication of
such acoustic metamaterials is possible because of recent
advances in material science and engineering. Cloaking
metamaterials may have spatially varying anisotropic den-
sity and stiffness. We restrict our attention here to spatially
varying material properties with isotropic density and aniso-
tropic stiffness because Norris'' showed that anisotropic
density implies that the acoustic cloak has infinite mass. He
presented an alternative acoustic cloaking formulation
involving pentamode materials which have isotropic density
and a special type of anisotropic stiffness. Since cloaking is
achieved with anisotropic stiffness as opposed to density, it
is expected to have frequency independent behavior in
theory. In practice, however, the behavior is expected to be
only extremely wideband or weakly frequency dependent
because of frequency limitations arising from the following.

The size of the virtual cloak radius ¢ as compared to the
wave-length of the incident acoustic wave A. Cloaking is
ineffective for incident acoustic waves whose wavelength is
of the same order as the virtual cloak radius .

The length scale of periodic structures present in the
composite material used to fabricate the pentamode material.

An intrinsic frequency dependence in the properties of
the composite material.

The paper is organized as follows. Section II provides
a short review of the pentamode acoustic cloaking theory.''
Next, in Sec. III, we derive transformations f which yield
specialized spatial distributions of material properties,
namely, (1) constant density, (2) constant radial stiffness,
(3) constant tangential stiffness, and explain the wave-
propagation with ray-tracing. Such distributions may be
simple to manufacture and may also help in evaluating the
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FIG. 1. (Color online) The transformation f from physical space (right) to
virtual space (left). The particular mapping shown is the linear mapping of
Eq. (2).

feasibility of manufacturing material properties on Ashby
charts, as in Ref. 12. We note that in related work,
Cummer'? has derived transformations for electromagnetic
cloaking which yield constant magnetic permittivity €,. In
Sec. IV we derive transformations which yield (1) power-
law density, (2) power-law radial stiffness, and (3) power-
law tangential stiffness. In Sec. V, we derive a distribution
of elastic properties that minimizes the elastic anisotropy.

Il. REVIEW OF ACOUSTIC CLOAKING USING
PENTAMODE MATERIALS

Acoustic cloaking relies on a transformation from an
undeformed or original domain Q to a current (deformed)
domain w which is given by the point-wise deformation X
€ Q — x € . Using notation from the theory of finite elas-
ticity, the deformation gradient is defined F = Vxx, or in
component form F;; = Ox;/0X;. The Jacobian of the deforma-
tion is J =det F, or in terms of volume elements in the two
configurations, J=dv/dV. The polar decomposition is
F =VR, where R is proper orthogonal (RR'=R'R=1, det
R = 1) and the left stretch tensor V is the positive definite so-
lution of V=B where B is the left Cauchy—Green or Finger
tensor B=FF".

For a given transformation the cloaking material is not
unique.11 For instance, the inertial cloak [Eq. Q2" is
defined by the density tensor p=po/B~"' and bulk modulus
K =KJ. At the other end of the spectrum of possible materi-
als is the pentamode cloak with isotropic density, which can
be chosen if the deformation satisfies the property'' (Lemma
4.3) that there is a function A(x) for which div 2V =0. This
is the case for radially symmetric deformations in 2D and
3D, the cylinder and sphere, respectively. The pentamode
material is then [Eq. (4.8)]"" p=po/ ', K=KoJ, S=J"'V,
where the fourth order elasticity tensor is C=KS ® S.

Radially symmetric deformations in 2D and 3D are
defined by R™'X=r""x where R=|X|, r=|x|. If we let
R =f(r), then the inverse mapping is defined as X =f(r)r 'x.

In this case we can identify a “radial bulk modulus” and
an orthogonal bulk modulus
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K, = Cpryr = KoJ "'Byy, K1 = KoJ "By, (1

where 0 denotes a direction orthogonal to the radial
direction.

The requirements on the transformation generator f(r)
admit an infinity of functions. In this paper, we will take
advantage of this fact to design transformations which result
in desirable material properties. One familiar transformation,
used frequently in acoustic cloaking work, is shown in
Fig. 1. Some examples from the infinite family of permissi-
ble transformations are

R=f(r)

=a)—(=2) 2

p In(b/5) /in(b/a)
_ b(—)
b

; (2b)

b — 5 a =\ 1"
G=a)-G=a)] - e

where b, a, and ¢ are the outer radius of the cloak, the inner
radius of the cloak, and the virtual cloak radius, as shown in
Fig. 1. The linear transformation (2a) is known as the
KSVW mapping from Ref. 14 in which it was first used
extensively in this form. Figure 2(a) shows rays passing
through a KSVW cloak. The power law mapping (2b) yields
constant p, for the inertial cloak and constant K, for the pen-
tamode cloak in 2D. As we will see below, the transforma-
tion (2c) yields constant K for the inertial cloak or constant p
for the pentamode cloak (see Figs. 3-5).

lll. TRANSFORMATIONS YIELDING CONSTANT
MATERIAL PROPERTY DISTRIBUTIONS

In this section we determine the transformations f that
yield constant spatial distributions of material properties.
We consider a constant distribution of p in Sec. III A, con-
stant K, in Sec. III B, and constant K, in Sec. III C, respec-
tively. Both 2D and 3D cases are considered. The conditions
for feasibility are summarized in Table I.

The density p (isotropic), the radial stiffness K,, and the
tangential stiffness K| for a pentamode cloak surrounded by
an isotropic fluid with density py and bulk modulus K sat-
isfy the following relations:

K,(r) = Ko%, (Jj)d_l, K. (r) =Kof' (f>d_3,

r r

o) =o' (1) )

r

Our procedure to determine f consists of treating Eq. (3) as
differential equations for f with the material properties
(p, K,, K ) known. Having determined f we will prove that it
satisfies the necessary conditions />0, /' > 0 for r € [a, b],
the existence of b such that f(b) =b, and the existence of
such that f{a) = 0 < a.
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FIG. 2. (Color online) Rays for KSVW, constant density, constant stiffness, and optimal anisotropy cloaks in 2D, a =1, b=3.

We remark that Eq. (3) is consistent with the connection
between the three parameters which is independent of the
transformation:

Ky KK = (p/po)* . (4)

Equation (3) also implies that at the edge of the cloak, the
cloak is impedance matched in the radial direction but not in
the tangential direction:

Z,(r) = \/K.p = Z,(b) = \/Kopo = Zo,
ZJ_(I‘)E \/Kj_p:>ZJ_(b>:ZQfl(b) (5)
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In contrast, at the edge of the cloak, the wave speeds are
matched in the tangential direction, but not in the radial
direction:

cr(r) = VK /p = cx(b) = co/f' (D),
c1(r) =K. /p=ci(b)=co. (6)

A. Transformations yielding constant cloak density p

We assume that we are given the cloak geometry
b>a>0, and using Eq. (3) and p(r)=p., a constant, we
determine f and prove that /> 0, f/ > 0 for € (a, b). Solving
(3) for fyields
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FIG. 3. (Color online) Rays for power law K,, with parameters a =1, b =3,
a=3.

1/d
f= {b" + 2 - b")] , ()
o

and differentiating implies f’ > 0 for p.. >0, showing that f is
monotonically increasing. Since fla)=90>0, >0 € (a, b).
Enforcing 6 =f(a) <a yields p.> po. This result makes
physical sense because the deformation /' compresses the
volume of fluid into a smaller volume. K,, K | are determined
by using fin Eq. (3) and are given by

0o (f 2(d—1) p. (T 2
K,:KO—O(—) , K| =Ko~ —) : (8)
.0(,' r pO
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FIG. 4. (Color online) Rays for power law p, with parameters a=1, b =3,
o=3.

Similarly 0 and its sensitivity can be determined by

% -

_yd  Pcyoa d e
0= |b"+—(a"-b)| ,
Po

Finally, note that, K, o< 6°“"" and K, o 62 In 3D this
implies a very strong decrease in K, with o.

We note that rays in the cloak are straight lines in
deformed space.'" This allows us to trace the rays for the con-
stant density cloak by deforming the straight rays correspond-
ing to a plane wave traveling through a homogeneous
medium by the inverse transformation f~'. Ray-tracing results
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FIG. 5. (Color online) Rays for power law p, with parameters a=1, b=3,
o=-3.

are shown in Fig. 2(b), from which we can see that the rays
curve gently in the outer region of the cloak and sharply close
to the inner radius. In our experience, the smooth nature of
this propagation makes it easy for this to be simulated with
standard linear finite elements. '
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TABLE I. Feasibility of constant material properties in 2D (d=2) and 3D
(d=3).

Constant d=2 d=3 Conditions other than po, Ko >0

P 4 4 pe>pPo
K, v/ v Conditional in 3D, K, < %% K, >0
K, v v Conditional in 3D, Ko < K|

B. Transformations yielding constant radial stiffness
K;

We formulate the problem by assuming that we are
given a >0 >0 and K, constant. As before, start with the
expression for K, from Eq. (3), and treat it as an ordinary dif-
ferential equation for f and get

7 Ky [ dr
Jfﬂfldr::«%?J;ng. (10)

The solution is different for 2D and 3D and is determined
separately in the next two subsections

1. Transformation yielding constant K, in 2D

The transformation f'in 2D can be determined by solving
Eq. (10) to get

Kok , Kof
ffh&) >0, f=2 >0 (11)

rr

The cloak parameters then follow from Eq. (3) as

Ko (1’)2(1%/1(,-71) _K§  Ina/b
p_pOK,- b ) TR Olné/b’
a\Ko/K=1 06 9 b

We prove that given a > ¢ >0, it is possible to find b such
that b >a > 0 > OVK, = const > 0, K,#K,. Since J/a
<1 and a<b, the exponent Ko/K, — 1 in Eq. (12) must
be positive to ensure b>a, ie., 0<K,<Ky must hold
for constant K, cloaks in 2D. This shows that the cloak
outer radius is greater than the inner radius, making the
cloak physically realistic.

This case is of interest because the only parameter that
varies with r 1is the density. At the outer radius
p(b) = po(Ko/K,) > py, and the value at the inner radius is
pa) = p(b)(3/a)”.

The rays for a constant K, cloak in 2D are shown in Fig.
2(c). Unlike the rays for the constant density cloak shown in
Fig. 2(b), the rays for constant stiffness curve sharply at the
outer surface of the cloak. In our experience, the propagation
of waves near the surface is extremely hard to capture with
standard linear, time-domain, finite elements, possibly due to
sharp change in the direction of propagation. The required
element density is in the order of hundreds of elements per
shortest wavelength. This is contrast to the rule of thumb in
transient, explicit finite element analysis in which typically
sixteen elements per shortest wavelength are used.
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2. Transformation yielding constant K, in 3D

Treating Eq. (10) with d=3 as a differential equation
for f with K, known and constant, gives

1Ko /1 1\ . Ko (F\°
=) mr=2() -0

13)
Using the above definition of fin Eq. (3) we get
Ko bK, !

= po— 14

p PoKr (bKoH(Kr —Ko)> ; (14a)
bK :
K, =K, , 14b
- (bKO +r(K, — Ko)) (14b)
bK,

6 =f(a) 2 (14¢)

" bKo + a(K, — Ko)

We now prove that under certain conditions it is possible to
find b such that b > a > 6 > 0, meaning that the cloak outer ra-
dius is greater than the cloak inner radius. As a consequence
we prove that f> 0. We start by rewriting Eq. (14c¢) as

b_ K() K(J a
- (2-)/(-)

To ensure b/a > 1, we require K, < Ko(d/a). Since, f >0 €
(a, b) and fla)=9 >0, it follows that f is monotonic in the
interval (a, b) and therefore f>0 € (a, b). Note that, if § < a
= K, < K. Since K| = Ké/Kr, this means K| > K,.. Thus,
to ensure a small scattering cross section we need a material
which is very stiff in one direction (L) as compared to the other
(). We expect that such a material will require careful engi-
neering, and such practical constraints may restrict the amount
of reduction in the scattering cross section that can be achieved.

C. Transformations with constant tangential
stiffness K|

1. Transformations yielding constant K, in 2D

In two dimensions, constant K | is the same as constant K.
(which was previously considered), because K, K| = K(z) in 2D.

2. Transformations yielding constant tangential
stiffness in 3D

We formulate the problem as follows. We consider that
we are given a > 0 > 0. We need to find a /> 0, /' > 0 satisfy-
ing fla) =0, f(b) =b, b > a. We treat Eq. (3) as a differential
equation for f and obtain after using the boundary condition
fla)=9,

f =6+ 0 —ay>0 ad =550 (g

Ko Ko

for r>a. Using b=f(b) > a yields the condition K, > K.
The constant K| cloak in three dimensions is characterized
by fof Eq. (16) and

J. Acoust. Soc. Am., Vol. 132, No. 4, Pt. 2, October 2012

r 1Ky
K} K
K=_0L  5=p-"Lb-a). 17)
K7 po Ko

Note that this is the same transformation as the KSVW trans-
formation in Eq. (2)

IV. TRANSFORMATIONS YIELDING POWER LAW
PROPERTY VARIATION IN 2D

We now consider more complicated spatial distributions
for the material properties, namely, power law variations of
density, radial stiffness tangential stiffness, and a case in
which density is proportional to stiffness. This treatment is
restricted to two dimensions.

A. Transformations yielding power law density

Consider the following strategy: Given b>a>d >0,
o0, we determine p(a) = p, that ensures f{b)= b and prove
that p, > 0. The power law for density we consider is as follows:

o1

p(r) = pa(2)’ $1Mw=zyﬂm, (18)

where the latter is a consequence of Eq. (3). The cases
o#—2 and o=—2 need to be considered separately. To
summarize, the power law density cloak in two dimensions
is characterized by Eq. (18), with

2 2 Pa (”Hz -
Pyl Td )
! PCES)

(0 +2) a*(h* — %)

aa+2)

, foro# -2,

Pa = Po D) (b“+2 _ aa+2> ) (19)
and
2=+ 2a2&ln(£), for oo = =2,
Po Na
b2 _ 52
o= E=2), (20)
2a%In—
a
and in both cases,
rm+1p p aafZ
=— K =K~—"—5. 1)
fa*pg Pal

Note that the « =0 corresponds to the special case of con-
stant density in 2D, considered in Sec. II A. To prove p, >0
for o # —2, consider the two cases o> —2 and o« < —2. In
the first case we have, b*™> > "2, and therefore p,> 0. In
the second case, we have, b*"2 < a*2. In addition, & +2 < 0
and therefore (x4 2)/(b* * *—a” * %) >0. Hence p,>0 in
this case as well. The same argument, substituting r for b
can be used to prove /> >0, and choosing the positive root,
we get f> 0. The positivity of f follows. A similar analysis
can be performed for o« = —2. The rays resulting from this
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power law density transformation are shown in Figures 4
and 5, respectively.

B. Transformations yielding power law radial stiffness
K:
Here, we consider the following power law for K,
I\ %

K.(r) = K. (E) . 2 A0. 22)

The case o=0 (constant K,) was considered in Sec. III B.
Given b >a > 9, o.# 0, we find what value of K, ensures that
fib)=>b. We then prove this K, > 0. Using Egs. (3) and (22)
plus the boundary conditions f{a) = ¢ and f{(b) = b, we get

F= 5exp{[§loa (1 - (?)“) } (23a)

KO a*
!
f :fK_am’ (23b)
K o
Ki=—5 (1= () ). 230
aln (—)
_ LK@ (23d)
p_pO r Kara+17

each of which is clearly positive. The rays resulting from
this power law radial stiffness transformation are shown in
Figure 6.

C. An acoustic concentrator

Motivated by the form of Eq. (23a), we consider the trans-
formation r = b(R/b)(10) or equivalently, R = f(r) = b(r/b)"/*°,
yielding the rays shown in Fig. 6. The focus of the rays can
be made arbitrarily tight. The process can also be reversed:
one can place a source at the focus and convert a cylindrical
wavefront generated by a point source into a plane wave-
front. Similar work on designing acoustic concentrators
using transformation acoustics has been recently reported in
Wang ef al.'® Previously, Rahm ez al.'” reported the design
of electromagnetic concentrators.

D. Transformations yielding power law tangential
stiffness

In two dimensions, this is equivalent to power law K,,
because K| = K%/Kr.
E. Transformations yielding proportional density
and radial stiffness

Since density is usually associated with stiffness, we
consider a power law linking density with stiffness in the ra-
dial direction. This power law is defined as

K, = B, 24)

for o, f(> 0) constant. Using the pentamode relations (3) for K,

and p in the above equation, we get a differential equation for f
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FIG. 6. (Color online) Rays for an acoustic concentration f{r) = b(r/b)'°,
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When 1+ 0, Eq. (25) yields

1/2

) = (6 + o' =) . @7

This equation is not consistent with the constraint that
fiby=b>a if A<0, in general. For 4> 0, setting f(b)=>b
yields

5= (b* - ai));ﬂ (28)

Requiring that 0 < < a implies the a range of possible val-
ues for f5. The special case of 1=0, i.e., & = (d — 2)/3, needs
to be distinguished. In 2D, this means o« =0 and therefore
K,=const, and is therefore not interesting. In 3D, this
implies, o = 1/3, and Eq. (25) can be integrated to give a
power law solution for f(r),

—p()" = (Ko 3/4d—3 _ ! 29
f= (E)’M_W <—,0€—§>~ (29)

In this case, & = b(a/b)", which is clearly positive, satisfies
the constramt 0<a only if p>1 or, equivalently,
p <Ko/ p0 , setting an upper limit on f3.

In summary, Eq. (24) has cloak-like solutions for o >0
in 2D, and o > 1/3 in 3D, with associated limits on the pos-
sible range in value of the parameter f3.

V. TRANSFORMATIONS YIELDING MINIMAL ELASTIC
ANISOTROPY

Here, we consider acoustic cloaks which have minimal
elastic anisotropy in a certain sense. We are motivated by
the fact that extremely anisotropic materials are hard to
design and manufacture. Minimizing anisotropy therefore
may lead to a practical cloak. We begin by defining two
measures of anisotropy in equation (31) and prove that only
one of them yields physically meaningful transformations.

A. Optimal transformations in cylindrical cloaks

We define the following parameter to be a local measure
of the anisotropy in the cloak:

where o = i. 30)
cL

1
)=« +- )
o
This is the same anisotropy parameter introduced in Ref. 18.
It can be shown that the minimum value of Eq. (30) is 2 and
it occurs for o =1, i.e., when there is no anisotropy. Based
on Eq. (30) we introduce two global measures of cloak
anisotropy,

= V;'J ydVv, 9, = VE;'J ydo, (€29)
Q [0}

where V,,, Vq, are the volumes (areas) in the physical and
virtual domains, respectively. It follows from Eq. (1) and the
identity (4) ford=2 (K2 = K,K ) that
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K K K
I trB———&-—L—q/ /% L—y (32)
Similarly,
g R (33)
k \Vk — 7"

Based on the identities (32) and (33), it follows that

1Ko | Ko
JuB ' =—"4 ==
r Kr+

oX; 0X;
=V 'l B 'dv=V, —d 34
=t [ 2 P
ox;  Ox;
v, =Va'| tr Bd :V*lj ! Lav. 4b
/2 ngr v=val| S v (34b)

The parameter ), is therefore the average in the current con-
figuration of the sum of the principal stretches of the map-
ping from the original (virtual) domain. Conversely, 7y, is the
average in the original configuration of the sum of the princi-
pal stretches of the inverse mapping from the current (spa-
tial) domain.

The global anisotropy measures y; and ), are minimized
by the Euler-Lagrange equations. Consider 7y;, then assum-
ing o is fixed, we have

OX; . (0X;
Sy =2V, = “)d
: ”J Ox; <5xj> '

2 OX; 02X,
Ve, <Lw Ox; oX;njds — L) Ox;0x; 0 )

The surface integral vanishes because, by assumption, the
value of X on the boundary of V,, is constant (in fact X =x
is required on dw), and therefore we deduce

miny, <= V’X=0ino, (35a)

miny, <= Vix=0inQ. (35b)
It is interesting to note that these equations are satisfied by
conformal transformations, a large class of potential trans-
formations. Here, however, we restrict attention to purely ra-
dial transformations.

Consider (35a) first. Assuming the inverse mapping
X= f(r)r_lx then it is straightforward to show that
VX =[r(fY — A1) 'X, and Eq. (35a) is satisfied if
f= Ar+Br‘1, for constants A and B. As before, we assume
the cloak occupies R € [0, b], r € [a, b] with0 < d<a <b.
The constants are then found from the conditions fla) =0
and f(b) = b, yielding

F0) = (0 — @) (8? — ad)r — (a — 5)p? j—l} . (36)

The same result can be found by noting that the anisotropy
parameter of Eq. (34a) reduces for radially symmetric trans-
formations to
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d b
-
Ppd —ad ),

for d=2 or d=3. The minimizer satisfies the Euler—
Lagrange equation r~ “(*"'fY —(d — 1)f=0, which for
d=2 gives Eq. (36). In the same way, we find that Eq. (35b)
is satisfied if r=AR + BR ™!, for constants A and B. The end
conditions 7(6) =a and r(b)=>b imply that the transforma-
tion which minimizes 7y, is

(F)+(d—-1) (?) 2] L NG Y))

r= b —8)"|(b* — ad)R + (a — 5)b21ée . (38)

However, this transformation function is generally not one-
to-one. The problem is illustrated in Fig. 7, and comes from
the fact that dr/dR = 0 at some value of R € (0, b).

This cannot occur for the mapping function (36). Conse-
quently equation (36) is a valid transformation for acoustic
cloaking while equation (38) is not.

B. Optimal transformation for spherical cloaks

We now take Egs. (34a) and (34b) as the definition of the
global anisotropy measures. Using again the inverse mapping
X =f(r)r 'x it follows that V2X = [(*f) — 2/1(fi*)'X. The
transformation which minimizes ), is therefore

2

for)y=@® )" {(lf — &) — (a— )b ‘;—2] (39)

The transformation which minimizes y, is

2

0

-1

r= (-8 {(zﬁ —ad*)R + (a — O)b° F} . (40
but this again has the unphysical nature found for the 2D
case. We conclude that minimization of y, using a single val-
ued function does not appear to have a single or unique
solution.
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01F

r
FIG. 7. (Color online) The solid curve shows the transformation defined by

Eq. (36) for {J, a, b} ={0.1, 0.8, 1.0}. The dashed curve is the mapping
(38) for the same cloak parameters.
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FIG. 8. (Color online) The relative value of the global anisotropy parameter
for the three transformations defined by Eq. (2) for {a, b} ={0.8, 1.0}. The
curves show log(I'y — 1) where I'1 =91/91 min» With y1min given by Eq. (42)
and y; calculated based on the mappings in Eq. (2).

C. Numerical examples
The minimizing value of y; may be found by integrating

Eq. (34a) by parts, and using Eq. (35a),

2nrff’) 2D,

b (41)

b
’
a

1
=)

q s = 1
7 1min (4nr2ﬂ./)

3D.
gn(b3 —a)

Thus,

[ 207 )0~ asf + (@670, 2D,
1T 300 - @) P8 - @0 + (a6, 3D.
(42)

The relative value of the anisotropy parameter y, is shown in
Fig. 8 for the three mappings of Eq. (2). In all cases, the
value of y; exceeds the minimum 7y, for the optimal trans-
formations in Egs. (36) and (39). The KSVW mapping in 2D
has anisotropy.
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VI. CONCLUSION AND DISCUSSION

Transformation acoustics, like its close analog transfor-
mation optics, possesses a huge freedom in the way that the
transformation can be chosen. This paper sheds some light
on potential choices. We have shown that is possible to
always fix at least one of the three material parameters rele-
vant to radially symmetric deformations. Starting from the
theory of Norris,"' we have derived several forms of the
transformation f which yield specialized distributions of ma-
terial properties such as constant and power law density, ra-
dial stiffness, and tangential stiffness. This was achieved by
reinterpreting the governing equations for the material prop-
erties as differential equations for the transformations. We
derived a functional form of f that minimizes elastic anisot-
ropy in a certain sense.
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