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I. INTRODUCTION

This study considers wave propagation through a homo-

geneous isotropic host medium containing a large number of

randomly and uniformly located spherical scatterers. It is well

known that for small enough concentrations the physical me-

dium may be replaced by an effective homogeneous medium

in which coherent waves propagate. These waves correspond

to the average, over all possible locations of the scatterers, of

the multiply-scattered field in the actual host medium. Our

concern here is to find the effective wavenumbers of the

coherent waves at low frequency and low concentration of

spheres. This was achieved some time ago by Lloyd and

Berry1 for the case of acoustic waves with P¼ 1 (P: number

of waves that propagate in the host medium). A new and clear

derivation of Lloyd and Berry’s formula was recently given

by Linton and Martin2 using a procedure developed earlier for

cylindrical scatterers in Ref. 3. They considered a uniform

concentration of scatterers satisfying the hole correction of

Fikioris and Waterman,4 and found solutions of the implicit

dispersion relation as an expansion in terms of the concentra-

tion of scatterers, up to order 2, under the low frequency

assumption. Generalization of Linton and Martin’s formula

for cylinders in a fluid3 has been given by Conoir and Norris5

for cylinders in an elastic solid with P¼ 2 (compressional and

shear waves propagate in elastic solids). The present paper is

an extension of the results of Linton and Martin2 to homoge-

neous isotropic host media supporting viscous and thermal

(damped) waves for which P¼ 3. Examples of such media

include viscous fluids6,7 with compressional and transverse

waves (P¼ 2), and thermoelastic solids8–10 in which compres-

sional, transverse and thermal waves propagate (P¼ 3). The

results obtained here can serve as a starting point to generalize

effective medium theories that include multiple wave interac-

tions, a broad frequency range, and finite concentration levels,

such as the ECAH model (Epstein, Carhart, Allegra and

Hawley).11

The analysis begins in Sec. II with a description of the

scalar potentials that are used to describe the wave propaga-

tion in the host medium. The choice of the potentials

depends on conditions of symmetries which are discussed.

Multiple scattering theory is used in Sec. III to derive the

modal equations (Lorentz-Lorenz laws) relating the ampli-

tudes of the P-wave types. In Sec. IV the modal equations

are written in matrix form which allows us to obtain a com-

pact form of the dispersion equation governing the coherent

waves. The low concentration and low frequency assump-

tions are then introduced in Sec. V and expansions of the

effective wavenumbers up to second order in concentration

are derived. The effective wavenumbers are expressed in

terms of series, and, for the faster wave, acoustic wave in

viscous fluids and compressional wave in viscoelastic solids,

the wave number is given by an integral relation that gener-

alizes the one of Lloyd and Berry.1

II. THE DIFFERENT TYPES OF COHERENT WAVES

We first define the multiple scattering problem for iden-

tical spheres in homogeneous isotropic host media in which

three type of waves are present, compressional (c), viscous

or shear (s) and thermal (th). The multiple scattering theory

used here follows the lines of that first developed by Fikioris

and Waterman4 for acoustic waves.

A. The different types of waves in the host medium

The dynamic displacement field ~u in the host medium

may always be decomposed as ~u ¼ ~rwL þ ~r� ~wR, with wL

the scalar potential for longitudinal (compressional or

a)Author to whom correspondence should be addressed. Electronic mail:

francine.luppe@univ-lehavre.fr

J. Acoust. Soc. Am. 131 (2), February 2012 VC 2012 Acoustical Society of America 11130001-4966/2012/131(2)/1113/8/$30.00

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



thermal) wave motion, and ~wR the vector potential associated

with rotational waves.9 Each wave type propagates with its

own complex wavenumber kp, with p an integer numbering

the wave (1 � p � P). The rotational wave field itself

can generally be partitioned into a shear and a transverse

wave, corresponding to the decomposition of the vector

potential ~wR as the sum of two orthogonal vectors
~wR ¼ ~r� ðwrberÞ þ ð1=kpÞ ~r� ~r� ðvrberÞ with ber the unit

vector along the radial coordinates.12 The Debye potentials

w and v are associated with the shear (s) and transverse (T)

waves, respectively. As a consequence, as many as four dis-

tinct wave types can propagate in the host medium

(p ¼ c; th; s; T).

Our objective here is to determine the dispersion rela-

tions of the coherent waves in the presence of spheres that

are randomly and uniformly located in the host medium. A
priori, there should be one coherent wave for each longitudi-

nal wave, and one for each shear and each transverse wave.

This is a natural hypothesis if the scatterers are scarce, that is

of low volumetric concentration. It is important to note that

the dispersion equations are a characteristic of the effective

medium itself, and, as such, they should not depend on the

type of the incident plane wave, which will be supposed

from now on to be a compressional wave. This choice

implies symmetries on the scattering by one scatterer,9,10

which, in turn, have implications on the form of the analyti-

cal expressions for the potentials associated with the coher-

ent waves propagating in the effective medium.

B. Symmetries

The scatterers are assumed to be randomly and uniformly

located in the semi-infinite region z >0 of the host medium,

with an harmonic compressional plane wave incident on the

boundary z ¼ 0. Coherent wavenumbers do not depend on

the angle of incidence of the incident wave,2 and so with no

loss in generality we assume normal incidence. Let us first

consider scattering by a single sphere of an incident compres-

sional plane wave propagating in the z direction. Due to

the symmetry of the sphere, the scattered fields do not depend

on the azimuthal angle u, with spherical coordinates defined

by the sphere center (ðx; y; zÞ ¼ rðsin h cos u; sin h sin u;
cos hÞ).9,10 Consequently, the scattered transverse T wave

with pure azimuthal displacement is zero. The question now

is whether a transverse coherent wave can arise from the mul-

tiple scattering process. The answer is not straightforward,

because the independence of a field with respect to the azi-

muthal angle in a given spherical coordinate system does not

guarantee independence of that same field with respect to the

azimuthal angle in another spherical coordinate system. This

means that each multiply scattered field is a combination of

longitudinal, shear and transverse waves. However, if the

scatterers are uniformly distributed, the average introduces an

homogenization of the different fields in the medium, and the

effective fields exciting a given sphere should not depend on

the azimuthal angle u, and, thus, the coherent transverse T
field should vanish.

Another way of considering the symmetry is to bear in

mind that coherent waves result mainly from constructive

interferences of waves traveling from one sphere to another

along a “straight line” (the direction of propagation of the

coherent waves). The effective coherent fields maintain the

same symmetry as that for the field scattered by a single

sphere. We therefore conclude that the coherent fields do not

depend on the azimuthal direction u in the ðx; yÞ plane per-

pendicular to the direction of the incident plane wave. Math-

ematically, this result is exact up to order 2 in concentration,

as shown in Appendix A.

III. MULTIPLE SCATTERING EQUATIONS

Longitudinal fields are described by scalar potentials of

displacement, and shear fields by the only non-zero compo-

nent (azimuthal component) of the vectorial potential of dis-

placement related to shear waves. These scalar quantities are

denoted by uðpÞ, with p denoting the type of the wave

(p ¼ c; s; th). The potential function uðpÞS ð~r; ~rjÞ represents the

wave of type p scattered by a target centered at ~rj and

observed at ~r; the potential uðpÞE ð~r; ~rjÞ denotes the field of

type p that excites a scatterer centered at~rj and observed at~r.

The notation c ¼ 1, s ¼ 2 and th ¼ 3 is employed, similar to

that used in Ref. 5. Harmonic wave motion is considered with

time dependence expð�ixtÞ understood.

Our starting point is the following identity which is

arrived at by first expressing the fact that the p-wave scattered

by a given target is due to all types of exciting waves, includ-

ing the plane incident wave, and that the p-exciting wave on a

given target is the sum of all the p-waves scattered by the

other targets and of the plane incident wave (if of type p).

The fields are then averaged over all possible locations of the

scatterers, leading to equations involving a sequence of condi-

tional averages. Thus, the field defined by fixing one scatterer

and averaging the others requires knowledge of the field with

two scatterers fixed, etc. A closed system of equations is

obtained by truncating at some level, with perhaps the sim-

plest closure provided by the quasi-crystalline approximation.

This procedure leads to Eq. (2.1) of Ref. 4 in the acoustic

case (P ¼ 1), and to Eqs. (6) of Ref. 5 in the elastic case

(P ¼ 2). The identity Eq. (1) is a straight-forward generaliza-

tion of the latter to host media supporting the propagation of

P waves. This integral equation governs the coherent fields,

denoted by brackets, in the presence of a uniform and random

array of identical scatterers:

huðpÞE ð~r;~r1Þi¼dp1u
ð1Þ
incð~rÞ

þ
XP

q¼1

ð
d~rjnð~rj;~r1ÞTqpð~rjÞhuðqÞE ð~r;~rjÞi: (1)

The integration in Eq. (1) is over the semi-infinite region

ðz > 0Þ containing the spherical scatterers. The function

nð~rj; ~r1Þ is the conditional number density of spheres at ~rj if

one is known to be at ~r1, see Ref. 5. In the following we

assume a constant density n0 of scatterers of radius a, and

conditional number density given by the hole correction

nð~r; ~rjÞ ¼
n0 for ~r �~rj

�� �� > b; with b > 2a:

0 otherwise:

(
(2)
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The incident compressional wave is assumed to be a damped

plane wave

uð1Þincð~r Þ ¼ eik1z with k1 ¼ k
0

1 þ ik
00

1 ðk
00

1 > 0Þ: (3)

The potential functions are expressed as infinite series of

spherical functions that respect the underlying symmetry.

For the reasons described before, they do not depend on the

azimuthal direction u, and so

huðpÞE ð~r; ~rjÞi ¼
Xþ1
n¼0

AðpÞn ð~rjÞjnðkpqjÞPnðcos hð~qjÞÞ

with ~qj �~r �~rj: (4)

It proves useful to introduce shorthand notation for the prod-

ucts of Bessel functions with Legendre polynomials (not to be

confused with ordinary Bessel and Hankel function notation)

Jnðkp; ~qjÞ ¼ jnðkpqjÞPnðcos hð~qjÞÞ;

Hnðkp; ~qjÞ ¼ hð1Þn ðkpqjÞPnðcos hð~qjÞÞ; (5)

plus the following definition for the action of the transition

operators Tqp on a spherical harmonic9,10

Tqpð~rjÞJnðkp; ~qjÞ ¼ Tqp
n Hnðkp; ~qjÞ: (6)

The modal coefficients Tqp
n in Eq. (6) can be numerically cal-

culated following the procedures of Refs. 9 and 10. Equation

(1) can now be expressed, using Eqs. (3) and (4),

Xþ1
n¼0

AðpÞn ð~r1ÞJnðkp; ~q1Þ

¼ dp1eikpz1 þ
Xþ1
n¼0

XP

q¼1

ð
d~rjnð~rj; ~r1ÞAðqÞn ð~rjÞTqp

n Hnðkp; ~qjÞ:

(7)

Decomposition of the damped incident plane wave into

spherical harmonics in the coordinate system centered at ~r1

leads toXþ1
n¼0

½AðpÞn ð~r1Þ � dp1inð2nþ 1Þeikpz1 �Jnðkp; ~q1Þ

¼
Xþ1
n¼0

XP

q¼1

ð
d~rjnð~rj; ~r1ÞAðqÞn ð~rjÞTqp

n Hnðkp; ~qjÞ: (8)

The addition theorem13 allows us to write the series in the

right hand side of Eq. (8) as a function of the coordinates

centered on~r1,

Hnðkp; ~qjÞ¼
Xþ1
�¼0

Xþ�
l¼��

Xþ1
‘¼0

ð�1Þli�þ‘�nð2�þ1Þ

�Gð0; n;�l; �;‘Þeiluð~q1Þe�iluð~r1jÞhð1Þn ðkpr1jÞ
�P�l

‘ ðcoshð~r1jÞÞj�ðkpq1Þ
�Pl

nðcoshð~q1ÞÞ with ~r1j¼~r1�~rj; (9)

where the Gaunt coefficients Gð0; n;�l; �; mÞ are defined

by14

Pm
n ðcos hÞPl

�ðcos hÞ ¼
X1
‘¼0

Gðm; n; l; �; ‘ÞPmþl
‘ ðcos hÞ: (10)

By assumption, the incident damped plane wave impinges

on the (z ¼ 0) interface at normal incidence, and gives rise

to damped coherent waves that propagate and are attenuated

in the same direction z. Accordingly, we seek coherent plane

wave solutions obeying the Snell-Descartes laws of refrac-

tion. We thus search for the solutions of Eq. (8) in the form

AðqÞn ð~rjÞ ¼ inð2nþ 1Þ
XP

p¼1

AðqpÞ
n einpzj : (11)

Substituting from Eqs. (9) and (11) into Eq. (8), making the

change of variables of integration ~rj ¼~r1 �~r1j, and noting

that the integration over du1j ¼ duð~r1jÞ with d~r1j

¼ r2
1j sin h1jdr1jdh1jdu1j gives rise to zero except for l ¼ 0

because of the term exp½�iluð~r1jÞ�, yields

AðpkÞ
n einkz1 ¼ dp1eikpz1 þ

XP

q¼1

Xþ1
�¼0

Xþ1
‘¼0

i‘ð2� þ 1ÞTqp
� AðqkÞ

�

� Gð0; �; 0; n; ‘ÞIðpÞ‘ ðnkÞ; (12)

where the quantity I
ðpÞ
‘ is

I
ðpÞ
‘ ðnkÞ¼

ð
d~rjnð~rj;~r1Þeinkzj h

ð1Þ
‘ ðkpr1jÞP‘ðcoshð~r1jÞÞ: (13)

Taking into account the hole correction (2), and following

the analysis of Ref. 4, we obtain

I
ðpÞ
‘ ðnkÞ¼

2n0pi‘

nk� kp

2b

nkþ kp
N
ðpÞ
‘ ðnkÞeinkz1 þ i

k2
p

eikpz1

" #
(14a)

with

N
ðpÞ
‘ ðnkÞ ¼ nkbj

0

‘ðnkbÞhð1Þ‘ ðkpbÞ

� kpbj‘ðnkbÞhð1Þ
0

‘ ðkpbÞ: (14b)

Inserting Eq. (14) into Eq. (12), and equating the coefficients

of expðinkz1Þ to zero gives what is known as the Lorentz-

Lorenz law (equating the coefficients of expðikpz1Þ to zero

gives the extinction theorem). Finally, we obtain the equa-

tions for the amplitudes AðpkÞ
n ,

AðpkÞ
n ¼ 4n0pb

n2
k � k2

p

XP

q¼1

Xþ1
�¼0

Xþ1
‘¼0

ð�1Þ‘ð2� þ 1ÞTqp
� AðqkÞ

�

� N
ðpÞ
‘ ðnkÞGð0; �; 0; n; ‘Þ; (15)

with 1 � p � P and 1 � k � P.
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IV. MATRIX FORM OF THE MODAL EQUATION

We now seek to write Eq. (15) in matrix form in the

same way as in Refs. 5 and 15. With no loss of generality,

consider a given effective wave number nk (k ¼ c; s; th).

Equation (15) can therefore be written in simplified form by

dropping the index k (nk ¼ n). Define the parameters

yp ¼ n2 � k2
p and e ¼ �4in0; (16)

and the use of the relation14

ð�1Þ‘Gð0; �; 0; n; ‘Þ ¼ ð�1Þ�þnGð0; �; 0; n; ‘Þ (17)

implies (1 � p � P)

AðpÞn �
iepb

yp

XP

q¼1

Xþ1
�¼0

Xþ1
‘¼0

ð�1Þ�þnð2� þ 1ÞTqp
� AðqÞ� N

ðpÞ
‘ ðnÞ

�Gð0; �; 0; n; ‘Þ ¼ 0: (18)

In order to reach our objective, we define the infinitely long

vectors jei, hej ¼ jeit and square matrices Tqp, �Q
ðpÞ

from

their components, en ¼ ð�1Þn and

Tqp
n� ¼ dn�ð2�þ 1ÞTqp

� ;

�QðpÞn� ðnÞ ¼
p

kpyp
½ikpb

Xþ1
‘¼0

N
ðpÞ
‘ ðnÞGð0; �; 0; n;‘Þ� 1�ðjeihejÞn�:

(19)

We also introduce the unknown vectors japi with compo-

nents AðpÞn , the vectors jepi consisting in the combination of

P zero vectors except at the pth place where their compo-

nents are equal to
ffiffiffiffiffiffiffiffiffiffi
p=kp

p
jei, the jai vector that is a collec-

tion of the japi vectors, and the block matrices

IP ¼
I 0 0

0 I 0

0 0 I

264
375; T ¼

T11 T21 T31

T12 T22 T32

T13 T23 T33

264
375;

�Q ¼

�Q
ð1Þ

0 0

0 �Q
ð2Þ

0

0 0 �Q
ð3Þ

2664
3775: (20)

Using these definitions the system of equations (18) can be

replaced by the equivalent condition�
IP � e�QT� e

XP

p¼1

jepihepj
yp

T

�
jai ¼ j0i: (21)

The matrices and vectors as defined are based on the assump-

tion P ¼ 3. For smaller values of P, or equivalently, no

coupling between the wave types ðTqp ¼ TqqdqpÞ, Eq. (21)

decouples into separate equations for each wave type, each

analogous to the acoustic ðP ¼ 1Þ case.

Equation (21) embodies the multiple scattering of the P
wave types in a single consistency relation. Its structure has

been specifically chosen so that it is the same for spherical

and cylindrical geometries5 whatever the number of waves

(P ¼ 1; 2; 3). We can therefore follow the procedures as

developed in Ref. 5 and 15 for the cylindrical case. After

multiplication on the left hand side by T1=2 and introduction

of the following quantities

j fpi ¼ T1=2jepi; h fpj ¼ hepjT1=2; jbi ¼ T1=2jai

and Q ¼ T1=2 �QT1=2; (22)

we get�
IP � eðIP � �QÞ�1

XP

p¼1

j fpih fpj
yp

�
jbi ¼ j0i: (23)

The modal equation is obtained by setting to zero the deter-

minant associated with the infinite homogeneous system of

equations Eq. (21).4,16 This can be written in a much simpler

form by writing Eq. (23) in the form

fIP þ
XP

p¼1

jgpihfpjgjbi ¼ j0i;

where jgpi � �ey�1
p ðIP � �QÞ�1jfpi: (24)

Noting that the matrix in (24) is the sum of the infinite

dimensional identity plus a matrix of rank P, the determinant

can therefore be reduced to one for a P-dimensional matrix

through the use of the identity

det

�
IP þ

XP

p¼1

jgpih fpj
�
¼ detðiP þmÞ

where mqp ¼ hgqj fpi; (25)

and iP is the identity matrix of dimension P. Setting the de-

terminant in Eq. (25) to zero yields

1� �M11

y1

��M21

y2

��M31

y3

��M12

y1

1� �M22

y2

��M32

y3

��M13

y1

��M23

y2

1� �M33

y3

������������

������������
¼ 0; (26)

or equivalently

y1 � �M11 ��M21 ��M31

��M12 y2 � �M22 ��M32

��M13 ��M23 y3 � �M33

������
������ ¼ 0; (27)

where the matrix elements are

MqpðnÞ ¼ h fqjðIP � �QÞ�1jfpi

¼ heqjTjepi þ
Xþ1
n¼1

heqjðT �QTÞnjepien

¼ Mð0Þqp þ
Xþ1
n¼1

MðnÞqp en: (28)

1116 J. Acoust. Soc. Am., Vol. 131, No. 2, February 2012 Luppé et al.: Coherent waves in thermo-viscoelastic media
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This indicates that the elements of the modal equation Eq.

(27) can be calculated without evaluation of the square root

matrix T1=2. It is also evident that the above reduction in the

size of the system determinant is valid as long as the matrix

IP � �Q is non-singular, which is certainly valid for small �.
Equation (27) is the fundamental equation for determining

the coherent wavenumbers np.

V. ASYMPTOTIC SOLUTIONS OF THE WAVENUMBER
EQUATION

This section considers asymptotic expansions of the sol-

utions, valid in different limits: first for low concentration

and then for low frequency.

A. Low concentration expansion

Rather than working with the wavenumber directly it is

more convenient to expand the solutions of Eq. (27) about

one of the three leading order solutions yp ¼ 0 (n ¼ kp). The

magnitude of the parameter e is small at low concentration,

and we therefore assume a formal asymptotic expansion in �:

yp ¼ eyð1Þp þ e2yð2Þp þ � � � : (29)

Inserting the asymptotic expansion into the modal equation

(27) provides (cf. Appendix B)

yð1Þp ¼ Mð0Þpp ðkpÞ; (30a)

yð2Þp ¼ Mð1Þpp ðkpÞ þ
X
q6¼p

M
ð0Þ
pq ðkpÞMð0Þqp ðkpÞ

k2
p � k2

q

: (30b)

It follows from Eqs. (19) and (28) that

Mð0Þqp ¼
pffiffiffiffiffiffiffiffiffi
kqkp

p X1
n¼0

ð2nþ 1ÞTqp
n ; (31a)

Mð1Þpp ðkpÞ ¼
p
kp

X3

q¼1

X1
n¼0

X1
�¼0

ð�1Þnþ�ð2nþ 1Þð2� þ 1Þ

� Tqp
n

�QðqÞn� ðkpÞTpq
� ; (31b)

with

�QðqÞn� ðkpÞ¼
ipb

k2
p�k2

q

ð�1Þnþ�
�

i

kqb
þ
Xþ1
‘¼0

Gð0; �;0;n;‘Þ

�½kpbj
0

‘ðkpbÞhð1Þ‘ ðkqbÞ�kqbj‘ðkpbÞhð1Þ
0

‘ ðkqbÞ�
�
;

q 6¼p; (32a)

�QðpÞn� ðkpÞ¼ �
ipb2

2kp
ð�1Þnþ�

Xþ1
‘¼0

Gð0; �; 0; n;‘Þ

�
n

j0‘ðkpbÞðhð1Þ‘ ðkpbÞþ kpbh
ð1Þ0
‘ ðkqbÞÞ

þ 1

kpb
½ðkpbÞ2� ‘ð‘þ1Þ�j‘ðkpbÞhð1Þ‘ ðkpbÞg; (32b)

where the following relation has been taken into account,

Xþ1
‘¼0

Gð0; �; 0; n; ‘Þ ¼ 1: (33)

B. Low frequency expansion

The long wavelength limit is defined as kpb! 0, in

which case Eqs. (32) reduce to [see Eq. (33)]

�QðqÞn� ðkpÞ ¼
p

kqðk2
p � k2

qÞ
ð�1Þnþ�

Xþ1
‘¼0

Gð0; �; 0; n; ‘Þ

�
��

kp

kq

�‘
� 1

	
; q 6¼ p; (34a)

�QðpÞn� ðkpÞ ¼
p

2k3
p

ð�1Þnþ�
Xþ1
‘¼0

‘Gð0; �; 0; n; ‘Þ: (34b)

The low frequency version of Eq. (31b) is

Mð1Þpp ðkpÞ ¼
p2

2k4
p

Xþ1
n¼0

Xþ1
�¼0

Xþ1
‘¼0

ð2nþ 1Þð2� þ 1ÞGð0; �; 0; n; ‘Þ

� ‘Tpp
n Tpp

� þ
X
q 6¼p

2k3
p

kqðk2
p � k2

qÞ
½ðkp

kq
Þ‘ � 1�Tqp

n Tpq
�

( )
;

(35)

and hence the low frequency expansion of the effective

wavenumber is

n2
p

k2
p

¼1�4ip
n0

k3
p

X1
n¼0

ð2nþ1ÞTpp
n

�8p2n2
0

k6
p

Xþ1
n¼0

Xþ1
�¼0

Xþ1
‘¼0

ð2nþ1Þð2�þ1ÞGð0; �; 0; n;‘Þ

� ‘Tpp
n Tpp

� þ
X
q 6¼p

2k3
p

kqðk2
p� k2

qÞ
ðkp

kq
Þ‘Tqp

n Tpq
�

( )
: (36)

If the host medium is an ideal fluid, i.e., P ¼ 1 as in Ref. 2,

Eq. (36) simplifies to

n2
p

k2
p

¼ 1� 4ip
n0

k3
p

X1
n¼0

ð2nþ 1ÞTpp
n

� 8p2n2
0

k6
p

Xþ1
n¼0

Xþ1
�¼0

Xþ1
‘¼0

ð2nþ 1Þð2� þ 1Þ

� Gð0; �; 0; n; ‘Þ‘Tpp
n Tpp

� ; (37)

which is exactly the same relation as that obtained by com-

bining Eqs. (1.2), (4.29), (4.33), and (C.4) from Ref. 2.

Equation (36) contains additional terms which are not in

Eq. (37) and are clearly connected to the coupling between

the compressional, shear and thermal waves (q 6¼ p). These

coupling terms are neglected in the ECAH model (Epstein,
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Carhart, Allegra and Hawley).11 Equation (36) can therefore

serve as the starting point for further developments, such as

the calculation of the Rayleigh limit, for example, and is the

principal result of the paper.

C. Generalization of the Lloyd and Berry formula

The advantage of the Lloyd and Berry formula is that it

expresses the wavenumber at low concentration in terms

of the far-field scattering function only, rather than the

T-matrix elements. In the present context, this requires that

we express series in (36) as integrals of the far-field scatter-

ing functions defined as follows

f qpðhÞ ¼
Xþ1
n¼0

ð2nþ 1ÞTqp
n Pnðcos hÞ: (38)

The analogous acoustic problem involves only the terms in

Eq. (37) which have been shown to be equivalent to the fol-

lowing expansion in the concentration2

n2
p ¼ k2

p þ d1n0 þ d2n2
0; (39)

with

d1 ¼ �
4ip
kp

f ppð0Þ; (40a)

d2¼
4p2

k4
p

�
½ f ppð0Þ�2�½ f ppðpÞ�2þ

ðp

0

dh

sinðh
2
Þ

d

dh
½ f ppðhÞ�2

�
;

(40b)

where d2 in Eq. (40b) is the formula initially given by Lloyd

and Berry.1 In order to express the general coupled wave

problem in a similar form it is necessary to represent the

final series in Eq. (36) (q 6¼ p) as integrals of the far-field

scattering functions.

The relevant series that appears in the multi-wave sys-

tem is [see Eq. (36)]

SðjÞ ¼
Xþ1
n¼0

Xþ1
�¼0

Xþ1
‘¼0

ð2nþ 1Þð2� þ 1ÞTqp
n Tpq

� j‘

� Gð0; �; 0; n; ‘Þ; where j ¼ kp

kq
: (41)

Two cases need to be considered depending upon whether

jjj < 1 or jjj > 1. For the case in which jjj < 1, we can

define the function

gðj; hÞ ¼
Xþ1
m¼0

jmð2mþ 1ÞPmðcos hÞ: (42)

The use of the two relations17

ðp

0

Pnðcos hÞPmðcos hÞ sin h d h ¼ 2

2nþ 1
dnm; (43a)

Xþ1
n¼0

jnPnðcos hÞ ¼ 1

ð1� 2j cos hþ j2Þ
1
2

with jjj < 1;

(43b)

then provides, respectively,

jn ¼ 1

2

ðp

0

gðj; hÞPnðcos hÞ sin h d h; (44a)

gðj; hÞ ¼
�

1þ 2j
d

dj

	
1

ð1� 2j cos hþ j2Þ1=2
: (44b)

The product of the far-field functions follows from the defi-

nition (38) as

f qpðhÞf pqðhÞ ¼
Xþ1
n¼0

Xþ1
�¼0

X1
‘¼0

ð2nþ 1Þð2� þ 1ÞTqp
n Tpq

�

� P‘ðcos hÞGð0; �; 0; n; ‘Þ: (45)

Combining the above results and performing the differentia-

tion in (44b) gives

SðjÞ ¼ 1

2
ð1� j2Þ

ðp

0

f qpðhÞ f pqðhÞ

� ð1� 2j cos hþ j2Þ�3=2
sin h d h: (46)

The series SðjÞ is therefore convergent since it can be

expressed as the integration of a continuous function over

the compact interval ½0; p�. Although we did not manage to

express the remaining series in Eq. (36) in terms of the form

functions when jjj>1, the series are always convergent

because there is only a limited number of significant values

of the Tqp
n coefficients, see the discussion on this point in

Ref. 5. It is also easy to show that the Gaunt coefficients

decrease much more quickly that the function jjj‘ increases

with ‘! þ1 even for jjj>1.

If p indicates the faster wave propagating in the me-

dium, then it is always true that jjj ¼ jkp=kqj<1 whatever

the value of q 6¼ p This is the case for acoustic waves in vis-

cous fluids and compressional waves in viscoelastic solids.

So, in such cases, if np is the wave number of the acoustic or

compressional wave, it follows in a straightforward manner

from Eqs. (36) to (46) that

n2
p ¼ k2

p þ d1n0 þ d2n2
0 þ dðcÞ2 n2

0 (47)

with

dðcÞ2 ¼
X
q 6¼p

16p2

kpkqðk2
q � k2

pÞ
S

�
kp

kq

�

¼ 8p2

kp

X
q 6¼p

ðp

0

f qpðhÞf pqðhÞ sin h d h

ðk2
p þ k2

q � 2kpkq cos hÞ3=2
: (48)

The additional term dðcÞ2 indicates the coupling between the

compressional (p), shear and thermal waves (q 6¼ p). The
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formula given by Eqs. (47) combined with (48) generalizes

the identity for acoustic waves derived by Lloyd and Berry1

for which dðcÞ2 ¼ 0. It is of interest to compare the structure of

dðcÞ2 with that of the corresponding term for the effective qua-

silongitudinal wave in the presence of cylinders in an elastic

host medium5 (Theorem 1). The coefficient for the latter

case is obtained from (48) by removing sin h in the numera-

tor and replacing the power 3
2

in the denominator with 1, that

is, by making the obvious changes one would expect for 2D

as compared with 3D.

APPENDIX A: AZIMUTHAL WAVES AT SECOND
ORDER

The aim of this appendix is to show that the coherent

fields do not depend on the azimuthal direction u up to sec-

ond order in concentration. We refer here to equations in the

paper of Linton and Martin.2 The fact that it only considers

compressional or acoustic waves (P ¼ 1) is not important

for the present demonstration, which is the same for one or

for several waves (P ¼ 3). We begin with the modal equa-

tion for oblique incidence (cf. Ref. 2 [Eq. (4.20)])

Fm
n þ

in0ð4pÞ2ð�1Þm

kðk2 � K2Þ
Xþ1
�¼0

Xþ�
l¼��

Xþ1
q¼0

Z�F
l
�Yl�m

q ðbKÞNqðKbÞ

�Gðn; m; �;�l; qÞ ¼ 0; (A1)

with the spherical harmonics and the Gaunt coefficients

defined by, respectively,

Ym
n ðbrÞ¼Ym

n ðh;uÞ¼ð�1Þm
ffiffiffiffiffiffiffiffiffiffiffiffi
2nþ1

4p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�mÞ!
ðnþmÞ!

s
�Pm

n ðcoshÞeimu; (A2a)

Ym
n ðbrÞYl

� ðbrÞ ¼X1
q¼0

Ymþl
q ðbrÞGðn; m; �; l; qÞ: (A2b)

Consequently, it is necessary to prove that the unknown

coefficients Fm
n are zero except for m ¼ 0, at least up to order

2 in concentration. We use the following result for the

expansion of Fm
n up to and including the second order in con-

centration (cf. Ref. 2 [Eq. (4.20)] and its preceding equation)

Fm
n ¼ Y

m
n ðbKÞ ~Fþ n0fY

m
n ðbKÞV þ ð4pÞ2b

2k2
ð�1Þm

� ~F
Xþ1
�¼0

Xþ�
l¼��

Z�Y
l
�ðbKÞXml

n� g (A3)

with2 [Eq. (4.27)]

Xml
n� ¼

Xþ1
q¼0

Yl�m
q ðbKÞGðn; m; �;�l; qÞdqðkbÞ; (A4)

where ~F is a constant and where V2 [Eq. (4.31)] and dqðkbÞ2
[Eq. (4.23)] are functions which do not depend on the indices

n and m. Since the coherent wavenumbers do not depend

upon the angle of incidence,2 we may consider the case of nor-

mal incidence for which bK ¼ ð0; 0; 1Þ (Ref. 2 [Eq. (3.15)]),

so that

Yl�m
q ðbKÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qþ 1

4p

r
dlm: (A5)

Equation (A3) therefore reduces to

Fm
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p

r
dm0ð ~Fþ n0VÞ þ n0

~F
4pb

2k2
ð�1Þm

�
Xþ1
�¼0

Xþ�
l¼��

Xþ1
q¼0

Z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� þ 1Þð2qþ 1Þ

p
dl0dlm

�Gðn; 0; �; 0; qÞdqðkbÞ; (A6)

which proves that Fm
n ¼ 0 if m 6¼ 0 up to second order in

concentration.

Consequently, at normal incidence and up to order 2 in

concentration, Eq. (A1) becomes

F0
n þ

in0ð4pÞ2

kðk2 � K2Þ
Xþ1
�¼0

Xþ1
q¼0

Z�F
0
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qþ 1

4p

r
NqðKbÞGðn; 0; �; 0; qÞ ¼ 0: (A7)

Our results correspond exactly to those of Ref. 2 Indeed, we

can easily show that Eq. (A7) and Eq. (18) with P ¼ 1 are

exactly the same if we make the following identifications:

k ¼ k1, K ¼ n1 ¼ n, Z� ¼ �T11
� , NqðKbÞ ¼ ik1bNð1Þn ðnÞ and

F0
n ¼ ð�1Þn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p

r
Að1Þn ;

Gðn; 0; �; 0; qÞ ¼ Gð0; �; 0; n; qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þð2� þ 1Þ

4pð2qþ 1Þ

s
:

(A8)

APPENDIX B: SOME ASYMPTOTIC EXPANSIONS

With no loss of generality we consider the first root y1.

It follows from Eqs. (16), (29), and (30) that the asymptotic

expansion of the 11 element of the matrix in Eq. (27) is

y1 � eM11 ¼ ½ yð1Þ1 �M
ð0Þ
11 ðkpÞ�e

þ ½ yð2Þ1 �M
ð1Þ
11 ðkpÞ�e2 þ � � � : (B1)

Hence, to leading order Eq. (27) becomes

y
ð1Þ
1 �M

ð0Þ
11 ðkpÞ 0 0

�M
ð0Þ
12 ðkpÞ k2

1 � k2
2 0

�M
ð0Þ
13 ðkpÞ 0 k2

1 � k2
3

���������

��������� ¼ 0; (B2)

which implies the identity (30a). Inserting the latter into

Eq. (B1) and Eq. (27) then gives, at the leading order,
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y
ð2Þ
1 �M

ð1Þ
11 ðkpÞ �M

ð0Þ
21 ðkpÞ �M

ð0Þ
31 ðkpÞ

�M
ð0Þ
12 ðkpÞ k2

1� k2
2 0

�M
ð0Þ
13 ðkpÞ 0 k2

1� k2
3

��������
��������¼ 0; (B3)

from which Eq. (30b) follows.
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16P. Y. Le Bas, F. Luppé, and J. M. Conoir, “Reflection and transmission by

randomly spaced elastic cylinders in a fluid slab-like region,” J. Acoust.

Soc. Am. 117(3), 1088–1097 (2005).
17P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 1

(McGraw-Hill, New York, 1953), pp. 782–783.

1120 J. Acoust. Soc. Am., Vol. 131, No. 2, February 2012 Luppé et al.: Coherent waves in thermo-viscoelastic media
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