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The dispersion relation is derived for the coherent waves in fluid or elastic media supporting vis-
cous and thermal effects and containing randomly distributed spherical scatterers. The formula
obtained is the generalization of Lloyd and Berry’s [Proc. Phys. Soc. London 91, 678-688 (1967)],
the latter being limited to fluid host media, and it is the three-dimensional counterpart of that
derived by Conoir and Norris [Wave Motion 47, 183-197 (2010)] for cylindrical scatterers in an
elastic host medium. © 2012 Acoustical Society of America. [DOI: 10.1121/1.3672690]
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I. INTRODUCTION

This study considers wave propagation through a homo-
geneous isotropic host medium containing a large number of
randomly and uniformly located spherical scatterers. It is well
known that for small enough concentrations the physical me-
dium may be replaced by an effective homogeneous medium
in which coherent waves propagate. These waves correspond
to the average, over all possible locations of the scatterers, of
the multiply-scattered field in the actual host medium. Our
concern here is to find the effective wavenumbers of the
coherent waves at low frequency and low concentration of
spheres. This was achieved some time ago by Lloyd and
Berry' for the case of acoustic waves with P =1 (P: number
of waves that propagate in the host medium). A new and clear
derivation of Lloyd and Berry’s formula was recently given
by Linton and Martin® using a procedure developed earlier for
cylindrical scatterers in Ref. 3. They considered a uniform
concentration of scatterers satisfying the hole correction of
Fikioris and Waterman,4 and found solutions of the implicit
dispersion relation as an expansion in terms of the concentra-
tion of scatterers, up to order 2, under the low frequency
assumption. Generalization of Linton and Martin’s formula
for cylinders in a fluid® has been given by Conoir and Norris’
for cylinders in an elastic solid with P =2 (compressional and
shear waves propagate in elastic solids). The present paper is
an extension of the results of Linton and Martin® to homoge-
neous isotropic host media supporting viscous and thermal
(damped) waves for which P =3. Examples of such media
include viscous fluids®’ with compressional and transverse
waves (P =2), and thermoelastic solids®'* in which compres-
sional, transverse and thermal waves propagate (P = 3). The
results obtained here can serve as a starting point to generalize
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effective medium theories that include multiple wave interac-
tions, a broad frequency range, and finite concentration levels,
such as the ECAH model (Epstein, Carhart, Allegra and
Hawley)."!

The analysis begins in Sec. II with a description of the
scalar potentials that are used to describe the wave propaga-
tion in the host medium. The choice of the potentials
depends on conditions of symmetries which are discussed.
Multiple scattering theory is used in Sec. III to derive the
modal equations (Lorentz-Lorenz laws) relating the ampli-
tudes of the P-wave types. In Sec. IV the modal equations
are written in matrix form which allows us to obtain a com-
pact form of the dispersion equation governing the coherent
waves. The low concentration and low frequency assump-
tions are then introduced in Sec. V and expansions of the
effective wavenumbers up to second order in concentration
are derived. The effective wavenumbers are expressed in
terms of series, and, for the faster wave, acoustic wave in
viscous fluids and compressional wave in viscoelastic solids,
the wave number is given by an integral relation that gener-
alizes the one of Lloyd and Berry.'

Il. THE DIFFERENT TYPES OF COHERENT WAVES

We first define the multiple scattering problem for iden-
tical spheres in homogeneous isotropic host media in which
three type of waves are present, compressional (¢), viscous
or shear (s) and thermal (¢/). The multiple scattering theory
used here follows the lines of that first developed by Fikioris
and Waterman* for acoustic waves.

A. The different types of waves in the host medium

The dynamic displacement field i in the host medium
may always be decomposed as i = Vi, + V X Vg, with i,
the scalar potential for longitudinal (compressional or
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thermal) wave motion, and l/?R the vector potential associated
with rotational waves.” Each wave type propagates with its
own complex wavenumber k,, with p an integer numbering
the wave (1 <p <P). The rotational wave field itself
can generally be partitioned into a shear and a transverse
wave, corresponding to the decomposition of the vector
potential  as the sum of two orthogonal vectors
Ve =V x (Yr&) + (1/k,)V x V x (yré;) with &, the unit
vector along the radial coordinates.'> The Debye potentials
Y and y are associated with the shear (s) and transverse (7'
waves, respectively. As a consequence, as many as four dis-
tinct wave types can propagate in the host medium
(p=c,th s, T).

Our objective here is to determine the dispersion rela-
tions of the coherent waves in the presence of spheres that
are randomly and uniformly located in the host medium. A
priori, there should be one coherent wave for each longitudi-
nal wave, and one for each shear and each transverse wave.
This is a natural hypothesis if the scatterers are scarce, that is
of low volumetric concentration. It is important to note that
the dispersion equations are a characteristic of the effective
medium itself, and, as such, they should not depend on the
type of the incident plane wave, which will be supposed
from now on to be a compressional wave. This choice
implies symmetries on the scattering by one scatterer,”'”
which, in turn, have implications on the form of the analyti-
cal expressions for the potentials associated with the coher-
ent waves propagating in the effective medium.

B. Symmetries

The scatterers are assumed to be randomly and uniformly
located in the semi-infinite region z >0 of the host medium,
with an harmonic compressional plane wave incident on the
boundary z = 0. Coherent wavenumbers do not depend on
the angle of incidence of the incident wave,2 and so with no
loss in generality we assume normal incidence. Let us first
consider scattering by a single sphere of an incident compres-
sional plane wave propagating in the z direction. Due to
the symmetry of the sphere, the scattered fields do not depend
on the azimuthal angle ¢, with spherical coordinates defined
by the sphere center ((x,y,z) = r(sinfcos ¢, sin0sin @,
cos 0)).9’10 Consequently, the scattered transverse T wave
with pure azimuthal displacement is zero. The question now
is whether a transverse coherent wave can arise from the mul-
tiple scattering process. The answer is not straightforward,
because the independence of a field with respect to the azi-
muthal angle in a given spherical coordinate system does not
guarantee independence of that same field with respect to the
azimuthal angle in another spherical coordinate system. This
means that each multiply scattered field is a combination of
longitudinal, shear and transverse waves. However, if the
scatterers are uniformly distributed, the average introduces an
homogenization of the different fields in the medium, and the
effective fields exciting a given sphere should not depend on
the azimuthal angle ¢, and, thus, the coherent transverse T
field should vanish.

Another way of considering the symmetry is to bear in
mind that coherent waves result mainly from constructive
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interferences of waves traveling from one sphere to another
along a “straight line” (the direction of propagation of the
coherent waves). The effective coherent fields maintain the
same symmetry as that for the field scattered by a single
sphere. We therefore conclude that the coherent fields do not
depend on the azimuthal direction ¢ in the (x, y) plane per-
pendicular to the direction of the incident plane wave. Math-
ematically, this result is exact up to order 2 in concentration,
as shown in Appendix A.

lll. MULTIPLE SCATTERING EQUATIONS

Longitudinal fields are described by scalar potentials of
displacement, and shear fields by the only non-zero compo-
nent (azimuthal component) of the vectorial potential of dis-
placement related to shear waves. These scalar quantities are
denoted by ), with p denoting the type of the wave
(p = ¢, s, th). The potential function (pg’) (7 77) represents the
wave of type p scattered by a target centered at /7 and
observed at 7 the potential (pg’) (75 77) denotes the field of
type p that excites a scatterer centered at 7 and observed at 7.
The notation ¢ = 1, s = 2 and th = 3 is employed, similar to
that used in Ref. 5. Harmonic wave motion is considered with
time dependence exp(—iwt) understood.

Our starting point is the following identity which is
arrived at by first expressing the fact that the p-wave scattered
by a given target is due to all types of exciting waves, includ-
ing the plane incident wave, and that the p-exciting wave on a
given target is the sum of all the p-waves scattered by the
other targets and of the plane incident wave (if of type p).
The fields are then averaged over all possible locations of the
scatterers, leading to equations involving a sequence of condi-
tional averages. Thus, the field defined by fixing one scatterer
and averaging the others requires knowledge of the field with
two scatterers fixed, etc. A closed system of equations is
obtained by truncating at some level, with perhaps the sim-
plest closure provided by the quasi-crystalline approximation.
This procedure leads to Eq. (2.1) of Ref. 4 in the acoustic
case (P =1), and to Egs. (6) of Ref. 5 in the elastic case
(P = 2). The identity Eq. (1) is a straight-forward generaliza-
tion of the latter to host media supporting the propagation of
P waves. This integral equation governs the coherent fields,
denoted by brackets, in the presence of a uniform and random
array of identical scatterers:

(G2 (7:71)) = 0,1 9 (7)

P
0 [ AT @) ). )
q=1

The integration in Eq. (1) is over the semi-infinite region
(z > 0) containing the spherical scatterers. The function
n(#j, 1) is the conditional number density of spheres at 7; if
one is known to be at 7|, see Ref. 5. In the following we
assume a constant density ng of scatterers of radius a, and
conditional number density given by the hole correction

. ny for |F—7| >b, with b> 2a.
n(r, r;) =

0 otherwise.
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The incident compressional wave is assumed to be a damped
plane wave

PN(F) = &7 with ky = K, + ik, (k; > 0). 3)

The potential functions are expressed as infinite series of
spherical functions that respect the underlying symmetry.
For the reasons described before, they do not depend on the
azimuthal direction ¢, and so

(o (7, 7)) = > AP (7)jn(kpp;)Palcos 0(7;))
n=0

with g, =7 —7}. “)

It proves useful to introduce shorthand notation for the prod-
ucts of Bessel functions with Legendre polynomials (not to be
confused with ordinary Bessel and Hankel function notation)

Ju(kp, ;) = ju(kpp;)Pn(cos 0(p;)),
H (kpv pj) h;(1>(kppj) (COS 0(5]))7 (5)

plus the following definition for the action of the transition
operators T on a spherical harmonic®'°

T () u(kp, p;) = TP Hu(kp, pj)- ©)

The modal coefficients T in Eq. (6) can be numerically cal-
culated following the procedures of Refs. 9 and 10. Equation
(1) can now be expressed, using Egs. (3) and (4),

+00
> AP FE N (ky, 1)
n=0

+

P
= bt 3 S [ FAY BT, 7).

n g=1

2

Il
o

@)

Decomposition of the damped incident plane wave into
spherical harmonics in the coordinate system centered at 7
leads to

+00

S AP () — Spi"2n + 1) (K, 7))

n=0
too P
=33 [arnte, AAY TP 7). 8
=0 g=1

The addition theorem'® allows us to write the series in the
right hand side of Eq. (8) as a function of the coordinates
centered on 7,

+oo v +oo

k) => D D (=1

v=0 u=—v (=0

H U+l — n 2V+1)

x G(0, n; —p, V;K)ei"‘/’(ﬁl)e_"‘(” 7ij) h (1) (k r1;j)
x P, *(cos0(71)))j (kpp1)

x Pl(cos0(py)) with 7 =7 — 77, )
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where the Gaunt coefficients G(0, n; —pu, v; m) are defined

by14

P7(cos 0)P(cos 0) = Y G(m, n; i, v; )P} #(cos 0). (10)
=0

By assumption, the incident damped plane wave impinges
on the (z = 0) interface at normal incidence, and gives rise
to damped coherent waves that propagate and are attenuated
in the same direction z. Accordingly, we seek coherent plane
wave solutions obeying the Snell-Descartes laws of refrac-
tion. We thus search for the solutions of Eq. (8) in the form

P
"(2n+1) ZquP)eiinZf. (11)

p=1

A7) =

Substituting from Egs. (9) and (11) into Eq. (8), making the
change of variables of integration 7 = 7'y — 7;, and noting
that the integration over do,; =dp(fy;) with dr;
= IIISIH 01;dr1jd0yjde; gives rise to zero except for u =0
because of the term exp[—iue(7);)], yields

P +oo +o00

A’(fk)eigkzl _ 5pleikpzl + ZZZ’/ v+ 1 quA’(/qm

qg=1 v=0 (=0

(992 12)

s

x G(0, v; 0, n; 0)

where the quantity I;‘") is

(&) = Jd; n(7, 7)) (ko) Po(cos 0(7))). (13)

Taking into account the hole correction (2), and following
the analysis of Ref. 4, we obtain

2ngmit 2b A
ff’l()Tfl N(P (é ) i&zy +L2€lkp“ (143.)
,k_

17 (&) = E .
P

with
NP (&) = Ebjy(Eib)nL (kyb)

— kobje(Ec)A (kyb). (14b)

Inserting Eq. (14) into Eq. (12), and equating the coefficients
of exp(i&;z1) to zero gives what is known as the Lorentz-
Lorenz law (equating the coefficients of exp(ik,z;) to zero
gives the extinction theorem). Finally, we obtain the equa-
tions for the amplitudes AE{”"),

4ngmh X X ¢ ’
APR — Z > (=D 2w+ TrAl®

5k p q=1 v=0 (=0

x NP(£)G(0, v; 0, n;0), (15)

withl <p<Pandl1 <k <P.
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IV. MATRIX FORM OF THE MODAL EQUATION

We now seek to write Eq. (15) in matrix form in the
same way as in Refs. 5 and 15. With no loss of generality,
consider a given effective wave number &, (k = c, s, th).
Equation (15) can therefore be written in simplified form by
dropping the index k (&, = ). Define the parameters

Yo =& — k> and & = —4ing, (16)

and the use of the relation'*
(—1)[’G(07 v; 0, m;0) = (=1)"7"G(0, v; 0, n;£)  (17)
implies (1 <p < P)
P 400 +00

lSTCb Z Z Z l/+n

Yp g=1 v=0 (=0
xG(0, v; 0, n;£) = 0. (18)

1)T‘”’A< )N(I’ Q)

In order to reach our objective, we define the infinitely long
vectors |e), (e| = |¢)" and square matrices T%, Q%' from
their components, ¢, = (—1)" and

T® = §,,,(2v+ 1T,

0%)(&) :%[fkpbzwy’)@m(o, v; 0, n56) — 1](le) e])
PP =0

19)

We also introduce the unknown vectors |a,) with compo-
nents Af{’), the vectors |e,) consisting in the combination of
P zero vectors except at the pth place where their compo-

nents are equal to \/m/k, |e), the |a) vector that is a collec-
tion of the |a,) vectors, and the block matrices
I 00 T T T
Ir=|0 I 0, T=|T? T2 T®
0 0 I Tl3 T23 T33
_Q(l) 0 0
Q=0 Q% o | (20)

Using these definitions the system of equations (18) can be
replaced by the equivalent condition

»
{IP—sQT—gZWT}m) = |0). (21)
=1

The matrices and vectors as defined are based on the assump-
tion P = 3. For smaller values of P, or equivalently, no
coupling between the wave types (T =T%d,,), Eq. (21)
decouples into separate equations for each wave type, each
analogous to the acoustic (P = 1) case.

Equation (21) embodies the multiple scattering of the P
wave types in a single consistency relation. Its structure has
been specifically chosen so that it is the same for spherical
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and cylindrical geometries® whatever the number of waves
(P=1,2,3). We can therefore follow the procedures as
developed in Ref. 5 and 15 for the cylindrical case. After
multiplication on the left hand side by T'/? and introduction
of the following quantities

(e[ T, [B)

15) =T le), (fol = =T'"?a)

and Q = T'/2QT'/?, (22)

we get

{1 3 } =10). (23)

The modal equation is obtained by setting to zero the deter-
minant associated with the infinite homogeneous system of
equations Eq. (21).*'® This can be written in a much simpler
form by writing Eq. (23) in the form

I+ lep) (1} 1B) = 10),
p=1

where |g,) = —sy;l(lp — Q)7 ') (24)

Noting that the matrix in (24) is the sum of the infinite
dimensional identity plus a matrix of rank P, the determinant
can therefore be reduced to one for a P-dimensional matrix
through the use of the identity

P
det (Ip + Z |gp><f};|> = det(ip + m)

p=1

(8qlfp), (25)

where mg, =

and ip is the identity matrix of dimension P. Setting the de-
terminant in Eq. (25) to zero yields

- LM11 _Lle M,
Y1 Y2 Y3
Mo M Ma (26)
Y1 Y2 )3
_CM13 _CM23 1 — CM33
Y1 Y2 Y3

or equivalently

yi — €My —€eM>) —eM3,
—6M12 Y2 — €M22 —€M32 = 0, (27)
—eMi3 —€eMy;  y3 — eM33

where the matrix elements are

Myp(E) = (fol(Ip — Q)11

= (elTlep) + Y (e (TQTY )

+00
=MO) +> M (28)
n=1
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This indicates that the elements of the modal equation Eq.
(27) can be calculated without evaluation of the square root
matrix T'/2. It is also evident that the above reduction in the
size of the system determinant is valid as long as the matrix
Ip — €Q is non-singular, which is certainly valid for small e.
Equation (27) is the fundamental equation for determining
the coherent wavenumbers é,,.

V. ASYMPTOTIC SOLUTIONS OF THE WAVENUMBER
EQUATION

This section considers asymptotic expansions of the sol-
utions, valid in different limits: first for low concentration
and then for low frequency.

A. Low concentration expansion

Rather than working with the wavenumber directly it is
more convenient to expand the solutions of Eq. (27) about
one of the three leading order solutions y, = 0 (¢ = k). The
magnitude of the parameter ¢ is small at low concentration,
and we therefore assume a formal asymptotic expansion in €:

Vp ay,(,)—i—«s y,(,)+ (29)

Inserting the asymptotic expansion into the modal equation
(27) provides (cf. Appendix B)

y = MO (k,), (30a)

(0) 9 (k,)
y( ) + Z pq k2 k2 14 . (30b)
q7#p

It follows from Egs. (19) and (28) that

(31a)

)" (2n41)(2v 4 1)

M) (k) = 5222

P g=1 n=0 v=0
x TP QW) (k,) T, (31b)
with
0D (k,) = inb ( 1)"”{ i +§G(O v;0,n;0)
nv \"*p) — - T sy Uy Iy
k/%_kg kqb (=0
s kb (kb (k) — kb)Y (k)] }
q9#p, (32a)
) +00
50)(p ) — DT 0
Qm/ (k[’) - 2kp ( 1) ;G(Oa Vv 07 }’l,é)
{71 ) (1" (kpb) + kb (k)
1 .
5 (b)? = £+ 1ie(kpb)A (o)}, (320)
4
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where the following relation has been taken into account,

+00
> G0, ;0,3 0) = 1. (33)

=0

B. Low frequency expansion

The long wavelength limit is defined as k,b — 0, in
which case Egs. (32) reduce to [see Eq. (33)]

+00

0D (ky) = (= 1) " G(0, v; 0, ms f
Qm/( P) kq(k]% o kg)( ) ; ( v n )
k 14
X |:<_P> _1:|7 Q#pa (343)
kfi
A(p) n n+v « . .
0V (k,) :27;(—1) ;EG(O, v; 0, n; 0). (34b)

The low frequency version of Eq. (31b) is

M) (k) = = 5 (2n+ 1)(2v + DG(0, v; 0, n; ()
P n=0 v=0 (=0
x L (TPPTPP 2kl3’ [(k ) rered
TV k(K — k) kg

(35)

and hence the low frequency expansion of the effective
wavenumber is

& =
——1 —4l7rn—[3)

k!7 k[’ n=0
+oo +

(2n+1)T77

8
8

+
(2n+1)2v+1)G(0, v; 0, n;¢)

k6

Il
S

Iz

Il
=}

n=0 v

x {fTﬁ”T”“Zk K2 —k2) k )[T‘”jT”"}- (36)

q#p

If the host medium is an ideal fluid, i.e., P = 1 as in Ref. 2,
Eq. (36) simplifies to

g 00
kl —1—4in2 Z(2n + 1)1

2 3
14 kl’ n=0
8 2.2 +00 +00 +00
- 7;{6”0 2n+1)(2v+ 1)
P n=0 v=0 0

(=
x G(0, v; 0, n; O)LTPPTYP

P, (37)
which is exactly the same relation as that obtained by com-
bining Eqgs. (1.2), (4.29), (4.33), and (C.4) from Ref. 2.
Equation (36) contains additional terms which are not in
Eq. (37) and are clearly connected to the coupling between
the compressional, shear and thermal waves (¢ # p). These
coupling terms are neglected in the ECAH model (Epstein,
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Carhart, Allegra and Hawley).!' Equation (36) can therefore
serve as the starting point for further developments, such as
the calculation of the Rayleigh limit, for example, and is the
principal result of the paper.

C. Generalization of the Lloyd and Berry formula

The advantage of the Lloyd and Berry formula is that it
expresses the wavenumber at low concentration in terms
of the far-field scattering function only, rather than the
T-matrix elements. In the present context, this requires that
we express series in (36) as integrals of the far-field scatter-
ing functions defined as follows

+00
£7(0) = (20 + 1)TPP,(cos 0). (38)

n=0

The analogous acoustic problem involves only the terms in
Eq. (37) which have been shown to be equivalent to the fol-
lowing expansion in the concentration”

& =k + d1ng + S, (39)
with

4din

:——f””( ), (40a)

:4k_’;;{[fw<0)12—[f""(n)f JZSIE(;);QVW( ) }

(40b)

where d, in Eq. (40b) is the formula initially given by Lloyd
and Berry.! In order to express the general coupled wave
problem in a similar form it is necessary to represent the
final series in Eq. (36) (¢ # p) as integrals of the far-field
scattering functions.

The relevant series that appears in the multi-wave sys-
tem is [see Eq. (36)]

+00 +00 +00
= (2n+1)(2v + D)TP %"
n=0 v=0 (=0
k
x G(0, v; 0, n;£), where Kk = k_p 41)
q

Two cases need to be considered depending upon whether
|k| <1 or |x| > 1. For the case in which |k| < 1, we can
define the function

+00
0) = Z K" (2m + 1)Pp(cos 0). 42)
m=0
The use of the two relations'’
Jn P,(cos 0)P,,(cos 0) sin(d 0 2 0 (43a)
n m 1 e O )
0 2n =+ 1
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+00 1
ZK”Pn(cos 0) = T with |k| <1,
n=0 (1 — 2Kk cos 0 + k?)2
(43b)
then provides, respectively,

(" .

K" = EJ g(x, 0)P,(cos0)sin0d 0, (44a)
0
o, 0) = [1 +2Kd] ! (44b)
’ di | (1 —2kcos 0+ x2)/?

The product of the far-field functions follows from the defi-
nition (38) as

+00 +oo 0
FrOF0) = (2n +1)(2v 4 1)T®TP4
n=0 v=0 (=0
X Py(cos 0)G(0, v; 0, n; 0). (45)

Combining the above results and performing the differentia-
tion in (44b) gives

1 T
) = 51 =) | (0710
x (1 —2KCOS@—|—K2)_3/ZSin9 do. (46)

The series S(k) is therefore convergent since it can be
expressed as the integration of a continuous function over
the compact interval [0, n]. Although we did not manage to
express the remaining series in Eq. (36) in terms of the form
functions when |k|>1, the series are always convergent
because there is only a limited number of significant values
of the T coefficients, see the discussion on this point in
Ref. 5. It is also easy to show that the Gaunt coefficients
decrease much more quickly that the function |K|l increases
with £ — 400 even for |k|> 1.

If p indicates the faster wave propagating in the me-
dium, then it is always true that |«| = |k,/k,| <1 whatever
the value of ¢ # p This is the case for acoustic waves in vis-
cous fluids and compressional waves in viscoelastic solids.
So, in such cases, if ép is the wave number of the acoustic or
compressional wave, it follows in a straightforward manner
from Egs. (36) to (46) that

512) = klg + d1np + 521’13 + 5&0)1’1(2) 47
with
. 1672 k
5 = s(-”)
: ; kqu(ka, - kﬁ) kq

8 J £ (0)f74(0) sin0d 0
kS )0 (k2 4 k2 — 2k, cos 0)

(48)
Pog#p

The additional term 8\ indicates the coupling between the
compressional (p), shear and thermal waves (¢ # p). The
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formula given by Eqgs. (47) combined with (48) generalizes
the 1dent1ty for acoustic waves derived by Lloyd and Berry'
for which 5 =0. It is of interest to compare the structure of
5 with that of the corresponding term for the effective qua-
s1long1tud1na1 wave in the presence of cylinders in an elastic
host medium’ (Theorem 1). The coefficient for the latter
case is obtained from (48) by removing sin 0 in the numera-
tor and replacing the power % in the denominator with 1, that
is, by making the obvious changes one would expect for 2D
as compared with 3D.

APPENDIX A: AZIMUTHAL WAVES AT SECOND
ORDER

The aim of this appendix is to show that the coherent
fields do not depend on the azimuthal direction ¢ up to sec-
ond order in concentration. We refer here to equations in the
paper of Linton and Martin.” The fact that it only considers
compressional or acoustic waves (P = 1) is not important
for the present demonstration, which is the same for one or
for several waves (P = 3). We begin with the modal equa-
tion for oblique incidence (cf. Ref. 2 [Eq. (4.20)])

m +o0o 4v +o0

TN S5 S o
v=0 u=—v g=0
xG(n, m; v, —; q) =0, (A1)

with the spherical harmonics and the Gaunt coefficients
defined by, respectively,

e um o _qm, [2nt1 (n—m)!
x P (cos0)e™?" (A2a)
Yy(E)YAE) =Y Y HEG(n, mi v, g q). (A2b)
q=0

Consequently, it is necessary to prove that the unknown
coefficients I are zero except for m = 0, at least up to order
2 in concentration. We use the following result for the
expansion of ' up to and including the second order in con-
centration (cf. Ref. 2 [Eq. (4.20)] and its preceding equation)

m M N T 1 (47‘[)2b m
Fn = Yn (K)F + nO{Yn (K)V + 2—k2 (_1)
_too 4w o
xFY N Z, Y (K)xm (A3)
v=0 pu=—v

with? [Eq. (4.27)]
+00 =N
Xt =Y Vi (K)G(
q=0

where F is a constant and where V? [Eq. (4.31)] and ciq(kb)2
[Eq. (4.23)] are functions which do not depend on the indices
n and m. Since the coherent wavenumbers do not depend

n, m; v, —; q)dgy(kb), (Ad)
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upon the angle of incidence,2 we may consider the case of nor-
mal incidence for which K = (0, 0, 1) (Ref. 2 [Eq. (3.15)]),
so that

_ 2g +1
n—m
Yy (K) 1/ ypm ———Oum (A5)

Equation (A3) therefore reduces to

2n+ 1 ~47nth
m __ (=T m
Fn = i 5,,10(1: + I’l()V) + I’l()F Y ( 1)

+oo 4v +00

<SS 2,/ 2r D24+ 1)d00m

v=0 u=—v g=0
x G(n, 0; v, 0; q)d,(kb), (A6)

which proves that ' =0 if m # 0 up to second order in
concentration.

Consequently, at normal incidence and up to order 2 in
concentration, Eq. (A1) becomes

FS 17104712 ZZZF

2g+1
4

N, (Kb)G(n, 0; v, 0; ¢) = 0. (A7)

Our results correspond exactly to those of Ref. 2 Indeed, we
can easily show that Eq. (A7) and Eq. (18) with P =1 are
exactly the same if we make the following identifications:
k=k,K=¢ =¢&27,=—T",N,(Kb) = ikipN'D () and

R = (-1 22 a0,
4n
2n+1)2v+1)
G(n, 0; v, 0; g) = G(0, v; 0, n; RS A el
(l’l, y UV, U 5]) ( , V3 U, ng C]) 47T(2q+ 1)
(A8)

APPENDIX B: SOME ASYMPTOTIC EXPANSIONS

With no loss of generality we consider the first root y;.
It follows from Egs. (16), (29), and (30) that the asymptotic
expansion of the 11 element of the matrix in Eq. (27) is

v —eMyy = [\ = Mk, )]e
+ P MY k)2 (B1)

Hence, to leading order Eq. (27) becomes

(
W -Mk) 0 0
~MYk,) B-B 0o |=0, (B2)
0
-M3 (k) 0 K-8

which implies the identity (30a). Inserting the latter into
Eq. (B1) and Eq. (27) then gives, at the leading order,
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y(IZ) - Msll) (kp) _Mg:) (kp) _Mg?) (kp)
M) K=K 0 =0 (B
M) 0 KR
from which Eq. (30b) follows.
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