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Abstract

Theactive cloak comprises adiscrete set of multipole sourcesthat destructively
interfere with an incident time harmonic scalar wave to produce zero total field
over afinite spatial region. For agiven number of sourcesand their positionsin
two dimensions it is shown that the multipole amplitudes can be expressed as
infinite sums of the coefficients of the incident wave decomposed into regular
Bessel functions. The field generated by the active sources vanishes in the
infinite region exterior to a set of circles defined by the relative positions of
the sources. The results provide a direct solution to the inverse problem of
determining the source amplitudes. They aso define a broad class of non-
radiating discrete sources.

(Some figures may appear in colour only in the online journal)

1. Introduction

Cloaking is intended to make an object undetectable to incident waves. The approaches
proposed consist mainly of two quite distinct types of cloaking, namely passive and active.
Passive cloaking requires devising a metamaterial that can steer the wave energy around the
object regardless of theincident wave. Our interest hereiswith active cloaking, specifically in
situationswheretheactive sourcesliein theexterior of theregion containing the cloaked object.
We call this configuration active exterior cloaking in keeping with prior terminology [1].
Despitethe dominant interest in passive cloaking devices, active exterior cloaking hasbeen
investigated quite extensively [2, 1, 3-5]. Miller [2] proposed creating a cloaking region by
measuring particle motion near the surface of the cloaking zone while simultaneously exciting
appropriate surface sources where each source amplitude depends on the measurements at
al sensing points. As an active cloaking method this approach is limited because it does
not provide a unique relationship between the incident field on the one hand, and the source
amplitudes on the other. A solution to this problem was provided by Vasquez et al [1, 3] in
the context of active exterior cloaking for the 2D Helmholtz equation. They used Green's
formula and addition theorems for Bessel functions to formulate an integral equation, which
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was converted to a linear system of equations for the unknown amplitudes. Crucialy, the
integral equation provides the source amplitudes as linear functions of the incident wave field.
Vasguez et al aso showed, by construction, that active cloaking can be realized using as
few as three active sources in 2D. A more explicit form of the linear relation for the source
amplitudes as a function of the incident field was developed in [5]. Multipolar sources were
used to reproduce Miller’scloak [2], and numerical resultswere compared with SV D solutions
of the linearized system [1, 3]. The approach of [1, 3] was generalized in [4] to handle the 3D
Helmholtz equation, seeking non resonant frequencies of the cloaked object. Further analysis
and extension of the methods to the quasistatic regime relevant to Laplace's equation can be
found in [6-8]. The active source method of Vasquez et al has also been adapted to create
illusion effects so that an object outside the cloaking region can be made to appear like another
object [9, 10]. Du et al [10] showed that the order of the multipoles required decreases with
the number of sources, aresult that isimmediate from our analytical expressionsin section 5.

In this paper we demonstrate that the integral representation of Vasquez et al [5] for the
source amplitudes can be reduced to closed-form explicit formulas. This obviates the need
to reduce the integral equation of Vasquez et al [1, 3] to a system of linear equations, which
must then be solved numerically, or to evaluate line integrals, as proposed in [5]. We provide
analytical expressions for the source amplitude coefficients for general incidence as well as
plane wave incidence. The expressionsinvolve no more than sums of cylinder functionswhich
can be truncated to achieve any desired accuracy. We a so prove that the field generated by the
active sources vanishes in the infinite region exterior to a set of circles defined by the relative
positions of the sources. The active source field, by construction, cancels the incident field
in the cloaked region, which is defined by the region interior to the same circular areas. The
analytical results are verified by calculation of the farfield and the nearfield amplitudes, which
are shown to vanish when the summation is accurately evaluated.

The non-radiating nature of the active field has relevance to the inverse source problem
[11]. Although for this problem, some uniqueness results are available for restricted forms of
sources, e.g. ‘minimum energy sources [12], in general the solution to this problem is known
to be non-unique [13]. Here we devel op the solution of the active cloaking problem as a new
family of non-radiating sources, with the property that they cancel a given incident field over
afinite region.

We beginin section 2 with astatement of the problem, areview of the governing equations,
and asummary of the main results, given in equations (2a) and (7). The basic integral relation
of Vasguez et al [5] is derived in section 3, from which the main results are shown to follow.
Some exampl e applications of the new formulas are presented in section 4. Some implications
of the general results are discussed in section 5 and conclusions are given in section 6.

2. The problem and its solution

2.1. Problem overview

The active cloaking devices considered here operate in two dimensions, and consist of arrays
of point multipole sources located at positions X, € R?, m = 1, M, see figure 1. The active
sources liein the exterior region with respect to the cloaked region C and thistype of cloaking
may therefore be called ‘active exterior cloaking’ [1]. Objects are undetectable in the cloaked
region by virtue of the destructive interference of the sources and the incident field with the
result that the total wave amplitude vanishes in the cloaked region C. The advantages of this
type of cloaking device are: (i) the cloaked region is not completely surrounded by a single
cloaking device; (i) only a small number of active sources are needed; (iii) the procedure
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Figure 1. Insonification of the actively cloaked region C generated by M active point multipole
sources at Xm, M= 1, M. Theregion Ris defined asthe interior of the union of the dashed circular
arcs, that is, the combined area comprising C and the M circular domains. Theincident field in this
case is aplane wave with wave vector K in the direction .

works for broadband input sources; (iv) the cloaking effect is independent of the location of
the scatterer in the cloaking region. A disadvantage of the active cloaking approach isthat the
fields near the ideal sources may become uncontrollably large. Redlistically these would be
replaced by regions of finite extent and thustheir magnitude isreduced. A further disadvantage
of the method isthat the incident field must be known. However we note that with the approach
proposed in this paper, the new expressions require only the expansion of the incident field
into entire cylindrical waves, as compared with the line integrals derived in [4] which require
knowledge of the incident field and its normal derivative.

The shaded region in figure 1 denotes the cloaked zone C generated by M active point
multipole sources. Theboundary of Cisthe closed concaveunion of thecircular arcsm = 1, M,
{am @™, 3™} associated with the source at xm. In the general case {am, o™, ¢y"} are
distinct for different values of m. Note that the wave incidence shown in figure 1 is a plane
wave athough the solution derived below is for arbitrary incidence. The inverse problem to
be solved isto find the amplitudes of the active sources as afunction of theincident wave, and
to prove that the cloaked region isindeed the closed region C.

2.2. Basic equations

We assume time harmonic dependence e~'“! which is omitted hereafter and consider the scalar
Helmholtz equation in two dimensions. Thus the method proposed here is applicable to any
physical situation described as such. For ease of discussion however let us consider the case
of acoustics, so that the governing equation for the (time harmonic) pressure u(x) is

Vau+Ku=s, D

wherek = w/cisthe wavenumber, ¢ the acoustic speed, and the term s represents sources. For
agiven incident wave we assume there is an additional field resulting from the active sources
which exactly cancels the incident wave in some bounded region C. This additional wavefield
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is caused by the M multipole sources located at X, m = 1, M. The assumed form of the total
field u, the incident wave u;, and the active source field uy are, respectively

U= U + Ug, (22)

U= Y AU, (2b)
M =)

Ug=D_ D BrnaVy (X = Xm), (20)
m=1n=—00

where the wave functions U= (x) and V.= (x) are defined by
U (0 = Jn(k|x|) e"naex, Vi () = H{P (kix|) €9, ©)

Here argx € [0, 27) and arg (—X) = argx = = € [0, 27). Define the derivative functions
Ui'(a) as

Ui (@) = Jj (ka) e"92, @

In the following we write Uy and V, with obvious meaning. Note that the functions U (x)
and V. £ (x) possess the properties

U (=x) = (=D)"UF (%), Vi (=x) = (=D"VF(X). (5)

The active source field uy in (2c) is of the same form as considered by Vasquez et al [3,
equation (3)]. The three dimensional analogue is given in [4, equation (40)]. The coefficients
An, which define the incident field, include as a specia case plane wave incidence in the
direction ¢ (A, = i"e ™).

The active cloaking problem is now to find (i) the coefficients by, n such that the total field
u vanishes inside some compact region C, and (ii) to define the region C.

2.3. Summary of main results

The principal results can be summarized in two theorems. The first provides necessary and
sufficient conditions on the source amplitudes by, , in order to ensure cloaking in the region C
and anon-radiating source field uy. The second provides the explicit expressionsfor the active
source amplitudes.

Theorem 1. Necessary and sufficient conditions on the active source coefficients by, in order
to ensure zero total field (u; + ug = 0) inside C and no radiated field (ug — O in the far field)
are

Mo U, (%m) =0,
eZ: > ) b x v:‘__ll(xm) A (6)

m=1l=-o00

Theseidentities provide auseful meansto quantify error in active cloaking aswill be seen
later on. We now state the explicit form for the source amplitudes, together with the shape of
the cloaked region C and the region in which the source field vanishes.

Theorem 2. Given M active sources located at X, m = 1, M, the required active source
amplitude coefficients for the general incidence (2b) are
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bmi = ) brninAy  where (7a)
N=-—00
Kam ~— -1 )
brin = =~ U p(X m) ) [Jp(kam)J| (kam) — J,(kam)Ji (kam) ]
p=—o00
« [ e il+pey™ _ —i(l+p)¢{m)]' (7h)

This ensures cloaking (zero total field) in the region C which is the closed and bounded
domain formed by taking its boundary as the closed concave union of the circular arcs defined
by {am, o\, ¢s™} and denoted as ICp, see figure 1. These coefficients also ensure that the
radiated field from ug isidentically zero in the region exterior to all of the circles centered at
the source points:

M
ug(x) =0 forx e R?/R, R=CU U{x:|x—xm|<am}. (8)
m=1
Thisisthe exterior to the union of the dashed circular arcsin figure 1.

An alternative and more concise formulation of equation (7b) isobtained using the notation
of equation (3) with a™ = amé(¢.m) (i=12),

) a(zm)

mlnz—kam Z Un+p(xm) [U (a)U (a) U (a)U (a)] a™ (9)

where &(¢™) is aunlt vector subtended at angle ¢, asillustrated in figure 1.

An important case for which the summation in (7a) can be simplified is plane wave
incidence. Assuming the incident field is aunit amplitude plane wave in direction ¥, u; = uy
defined by A, = i"e"", resultsin

kam ~— iPePY 3" plane wave
brn) = Uy () == p;m T Ve @U@ -V @V @]| o+ ncigence, (9
The form of the coefficients by, is discussed further below. Note that the termin (7b), (9) and
in (10), corresponding to p+ | = 0iszero, which follows from I' Hopital’s rule, or otherwise.

Theorems 1 and 2 are proved in the next section.

3. Proofs of theorems 1 and 2

3.1. Theorem 1: necessary and sufficient conditions on the source amplitudes

We first prove the constraints on the source coefficients by, given by theorem 1, and at the
same time show that they may be interpreted in terms of the near- and far-field of the active
sources. To this end, we express u, in two different forms using the generalized Graf addition
theorem [14, equation (9.1.79)],
o + —_
Vi—y = 3 \l_/J+(X)Un W) x> 1yl
OV (), X< Iyl

Ne—oo
Let us first consider the radiated field, assuming that uq does not radiate energy into the far
field. Thefirst of (11), for [x| > |y|, allowsusto rewrite u, asasum of multipolesat the origin:

11

= Y RV 0 for x| > max(Xm| + am), (12)

Nn=—o00
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where
M 00
Fo=Y_ Y bnU (Xm). (13)
m=1l=—0c0
Define the farfield amplitude function f (9), & = argx, such that
eik|x| 3
— -3/2
Ug(X) = f(e)(k|x|)1/2 + O((kIxD~%?), x| > oe. (14)
The farfield amplitude function follows from the asymptotic form of the Hankel functions as
> ; 2\1/2 1
_ no _ (£ i—(N+3)
f(6) = n;oo f. v, f,= (ﬂ) i~ +HE, (15)

A measure of the nondimensional total power radiated by the sources is given by the non-
negative far-field flux parameter
2 0
o= [ dIfOF=4> |RP (16)
0 N=—00

Since uy does not radiate energy into the farfield, the active sources must vanish, so
that i, = 0Vn. Imposing this in (13) ensures the necessity of (6);. The sufficiency of
(6)1 is seen immediately by substituting (6); into (13) and (12) which gives ug = 0 for
X > max([Xm| + am).

Now let us consider the near-field inside the cloaked region C where we assume that the
cloaked region contains the origin and the total field is zero inside C, i.e. u; 4+ uqg = 0. Using
the second identity in (11), the active source field u, can be expressed in aform that is valid
in the neighborhood of the origin (assuming |[Xm| > am Vm),

Uy = Z EnUF (x) for |x| < min(|Xm| — am). (17)
nN=—o0
where
M 00
En=_ Y bnVi X (18)
m=1ll=—o0

Thetotal field vanishing in some neighborhood of the origin thusimpliesthat E,, + A, vanishes
for every value of n. This gives rise to the necessary condition (6),. Sufficiency is once again
immediate by assuming the form (6), and back-substituting into the forms of ug and u; above.

Further implications of this result are explored after we complete the proof of theorem 2.

3.2. Theorem 2: explicit forms for the active source amplitudes

The Green's function g(x, x’) is defined as the solution of (1) for source s = §(x — X), i.e.
gx,x') = —3Vo(x — x'). Consider a region D such as that depicted in figure 2, chosen so
that it does not contain any sources. We will determine the explicit form for the active source
amplitudes together with the form of D that ensures cloaking. The latter, already introduced
asC, istheregion depicted in figure 1.

By assumption, both u; and uy satisfy the homogeneous Helmholtz equation in D
(equation (1) withs = 0V x € D), and therefore

/3 ) dS(y) [v(yY)ng(y. X) — (Y. X)dqv(y)] = v(X), v ={u,Ug}, XD (19



Inverse Problems 28 (2012) 105002 A N Norriset al

Figure 2. A configuration of M = 4 sources, and a region D in which the integral identity (19)
holds.

where 9D is the boundary of D depicted in figure 2 as the union of the arcs 0D, m = 1, M
and it is traversed counter-clockwise. We wish to determine the cloaked region C D which
is defined by its property that the total field u; + ug vanishesinside C, so that

Ug(X) = —Ui(x) = % /a . dS(y)[Ui (¥)3nVo(y — X) — Vo(y —X)dnti(y)], x € C. (20)

Given that the boundary of C is split up, as for D into segments aC,,,, m = 1, M, we can use
(11)4, in order to write, for some Xg

Vo(y —X) =Vo(X = Xo = (Y = X0)) = Y ViF (X = Xo)Uy (¥ — Xo) (21)
N=—00

which holds for [x — Xg| > |y — Xo|. Do this for each of the contours choosing xg = Xm, On

each 9Cy,, so that

. M o0
Ua(X) = ‘1‘1 DD V= xm) fa . 05 (U )3y (Y = Xm) — Uy (Y = Xm) i ()

m=1Nn=—0o0

(22)

where we require |[X — Xm| > |y — Xm| On each contour 9C, (recall that the integral is
being considered for x € C). The minus sign in (22) arises since upon expanding about the
point xm, the counter-clockwise orientation with respect to the center x, is opposite to the
counter-clockwise traversal of 9C with respect to some origin inside C. Note that for this to
hold simultaneously for all m the contours 9C,,, must be circular arcs as depicted in figure 3.
Therefore we have proved that C is the region with boundary as the closed concave union of
the circular arcs defined by {am, ¢{™, ¢5™} and denoted as 9Cp, see figure 1. Finaly, using
the form for ug given in (2c), we find that

bm,n = _Al]./ dSn[Ui (Y)anun_ (y - Xm) - Un_ (y - Xm)anui (y)] (23)
9Cm

This agrees with [5, equation (8)] apart from a factor i/4 missing there. Equation
(23) provides a direct method for calculating the multipole source amplitudes, as has been
demonstrated numerically for different source configurations [5]. The result is not optimal,
however, as it requires evaluation of a line integral, which can be computationally time
consuming. The explicit formula for the source amplitudes follows from equation (23) by
introducing the forms for the functionsU,;” as follows

. ¢ém) )
B = —Lllkam / . o e [ui () (kam) — I (kam)K Ui ()] (24)
o™
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Figure 3. The integration curve 9C split into M = 3 portions dCr, appropriate for the integral
representation (22) of the active source field. The cloaked central (black) region, is bounded by
aCm,m=1,2,3.

We see that the cloaked region C is indeed the subdomain of D in which Graf’s theorem can
be simultaneously invoked for al of the M active sources.
Consider plane wave incidence in the direction of the unit vector &(y/), u; = uy (x) where

Uy (x) = X (A, = e ™)), (25)
Then (24) becomes, with o, = kap,

o7 _
by = U () f¢ o e[ (em) = In(@) - &) (em) Uy (Y — Xm)

¢(m> .

= %Ulp (Xm)/ ’ dp[J (am) — i cos(¢ — ¥)Ji (am) ] gllj cos(¢—y)—1¢]
o"
o . , )
= Trinuv/ (Xm) eV [\]| (am)G(am) — I (am)G (am)], (26)
where the function G is defined as
o —y . 0 o .
G(C() = f dd) é(aCOS¢7—|¢) — Z Jn(a)ln/ d(b e_|(n+|)¢‘ (27)
oW -y oo o™y

The identity €*S"? = Y° _ J,(x) € has been used in simplifying the form of G(a).
Performing the integration in (27), we arrive at an explicit expression for the amplitude
coefficients
[0 ad ’ ’ ipéplﬂ i (m) i (m
by = Uy (Xm) = p;oo [Ip(em)d (arm) — Ty (m) (am>]m[e (p+es” _ gi(peer™],
(28)

Now consider the incident field

i—n 27
L / dyruy, () €™ =UF(X)  (Ap = 8np)- (29)
2 0

It follows from integration of (28) that the general form of the amplitude coefficients for
the general incidence (2b) is given by (7b). Finaly, we turn to the question of where the
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)
1}
=

Figure 4. Plane wave insonification of the cloaking region C generated by M = 8 active sources.

active sourcefield vanishes, noting that theintegral (20) vanishesidentically for field positions
outside C [15]

411 fa . dS(y)[ui (¥)3Vo(y — X) — Vo(y — X)dati(y)] =0, x e R*/C.  (30)
How doesthisrelateto the sourcefield ug (X)? In the course of the derivation of the coefficients
b n the field ug (X) was expressed in the form (22) for x € C. The latter restriction on x can
be removed sinceit is clear that equation (22) defines ug(x) for al x. Thisis evident from the
definition (2c) and from the identity (23) for by, n. Equation (30) therefore implies that ug (X)
vanishes at all positions outside the cloaked region for which the representation (22) holds,
e {X¢C: |[X—Xm| > |y—Xml|, Y € 3Cn, m= 1, M}. Thisis precisely the region R defined
in (8), equal to, for instance, the exterior to the colored regionsin figure 3.

This completes the proof of theorem 2.

4. Numerical examples

4.1. Active source configuration

We illustrate the results for plane wave incidence on configurations of the type shown in
figure 4. The M sources are symmetrically located on acircle, with

an=2a [Xml=b, Oh=mMm-10 m=1M, where 6y =27/M, (31
and by necessity, a > bsin . The circular arcs, which al have the same angular extent, are
then defined by

$15 =7 +0mF

b =« i1 R
— .
sin -sn— ] ——|, m=1M. 32
(25%) - @
Wetakea = bsin {; in all examples considered. Note that the cloaked region C can be formed
by aminimum of three sources. A configuration with M = 8 sourcesis shown in figure 4. All
calculations were performed for plane wave incidence on configurations of the type shown in
figure 4 with varying numbers of sources, M > 3.
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107" , : : 10°
. \/\/\_/\/\//v oob
-12
- 10 ¢
10° W
(app) -4
L |10710 |,:E1app)|1o
10—18
10712 [
10—18
k=1
-14
10t 0 — k=2
10 —_— k=3
k=4
-16
10 ¢ 10‘22 k=5
-10 -5 0 5 10 -10 5 0 5 10
n n
(a) Farfield, M=3, N=10 (b) Farfield, M=3, N=15

Figure 5. The farfield radiation amplitudes |F,§ip>| of equation (32) for different orders of Bessel
functions n = —10, 10, wavenumbers k = 1,5 and truncation values N = 10 and 15. The
configuration isM = 3 multipole sources located at the distance b = 1 from the origin, with angle

of incidence ¢ = 7°.

4.2. Near and farfield amplitudes

The efficiency of the cloaking strategy is assessed by examining the farfield and nearfield as
functions of various parameters. If al terms in the infinite sums in equations (13) and (18)
are available then the farfield isidentically zero and the nearfield exactly cancels the incident
wave, by theorems 1 and 2. We therefore consider truncated versions of the infinite sums so
that the farfield and nearfield coefficients, F, and E, of equations (13) and (18) respectively,
are approximated as

F(app) M N V= (X ,
T [ =22 2 b x {Un_'l((X:)) vneZ. (33)
n n— )

In the limit of N — oo exact cloaking is achieved. Restricting the summation to finite
vaues of N is equivalent to limiting the order of the active multipole sources. The behavior
of the approximate coefficients Fi” and E.*®” has implications on the accuracy of the
cloak regardless of the type of object to be cloaked. Thus, the farfield coefficients determine
the radiated field everywhere outside the cloak, and must necessarily be small regardless of
whether or not an object is being cloaked. Similarly, the total field in the cloaked region
C must be small in order to achieve cloaking. The two conditions correspond to F*” and
E® 4+ A, having small values. The examples in this subsection examine the sensitivity of
these quantities. The sources are located at b = 1 with plane wavesincident at v = 17°.

The farfield amplitude coefficients |F*”|, n = —10, 10 are depicted in figures 5 and 6
for different values of the wavenumber k, the number of sources M, and the number of terms
insummation (33), N. It isclear from these two figuresthat the error in the farfield coefficients
decreases (i) as N increases, (ii) as M increases, and (iii) as k decreases. The convergence is

m=1l=-N

10
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107 , , , 107 ; ' '
10} ’ 1 107
app
|F2PP) IF
10715 [
10720 [
N=5
N=10
N=15 N=15
107 i i i 107 i i i
-10 -5 0 5 10 -10 -5 0 5 10
n n
(a) Farfield, M=3, k=1 (b) Farfield, M=8, k=1

Figure 6. Dependence of the farfield amplitudes |Frfapp) | on the order n of Bessel functions for
different valuesof Nin (33) (N = 5, 10, 15) and for different numbers of active sources: (&) M = 3,
and (b) M = 8. Theincident wavenumber isk = 1.

particularly fast asafunction of N. For instance, at k = 1 thefarfield coefficientsare uniformly
less than 107© for all M > 3if N > 5. Much smaller values (1025 or less) for |[F\®”| are
easily achieved for moderate values of N, e.g. N = 10.

The nearfield amplitude coefficients |A, + E\®| are shown in figures 7 to 9. In contrast
with thefarfield caserelatively large values of thetruncation size N arerequired to obtain small
nearfield coefficients. Figure 7 showsthat N on the order of 100 or moreisrequired to achieve
accuracy comparable to the farfield coefficients. However, unlike the farfield amplitudes, it is
found that the nearfield coefficients generally increase in magnitude with |n|, the order of the
Bessel functions. The relatively large values of |A, + E\®® | and their increase with the order
In| does not necessarily mean that the total field in the nearfield is divergent. For instance, the
top curve in figure 7(a) indicates Ay + E\PP| = O(10?), but this value multiplies Jio(kr),
and, for instance, |Jip(kr)| < 2 x 10~2 within C. In other words, the increasing values of
|An + EN*| with n can be balanced by the fact that J(kr) = 1 (*)" 4 ... for small kr.

Figure 8 shows the dependence of the nearfield coefficients on the number of sources. The
case of the minimum number of sources, M = 3, appearsto be strikingly different from others
(M > 4). Asfigure 8 indicates, adding one more source and taking M = 4 reduces the error
from 10° to 107° for k = 1, n = 5 and from 102 to 10~** for k = 5, n = +5. Generally,
as with the farfield coefficients, increasing the number of sources improves the accuracy of

the nearfield amplitudes ’An + E®P )

Finally, figure 9 shows the nearfield dependence on the wavenumber, k = 1, 5. The
accuracy actualy improves with increasing k, unlike the farfield case. However, it should
be borne in mind that the nearfield coefficients multiply the terms J,(kr), which increase in
magnitude with k for fixed r.
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(a) Nearfield, M=6, k=5 (b) Nearfield, M=8, k=5

Figure 7. Variation of the nearfield amplitude coefficients |A, + E,(]app) | for different values of the
truncation size N in equation (33), generated by M = 6 active sourcesin () and M = 8 sourcesin
(b). Inall casesk = 5.
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Figure 8. Dependence of the nearfield amplitude |A, + Er(\app) | on the number of multipole sources
M (M = 3,4,5,6) a wavenumber k = 1in (a) andk = 5in (b).

The numerical resultsin figures 5 through 9 show that greater accuracy is achieved using
more sources, which is not unexpected. For the case of M = 3, the minimum number required,
the nearfield coefficients could be large enough to significantly diminish the cloaking effect.
This suggests taking M = 4 might be preferable.
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Figure 9. Variation of the nearfield amplitude coefficients with number of active sources
(M = 4, 6, 8, 10) and with wavenumber (k = 1, 5). In all casesN = 130.
4.3. Total field

Thetotal field for unit amplitude plane wave incidence on configurations of active sources of
the type defined in section 4.1 isillustrated through several examples. In all casesb = 1 and
¥ = 17°. Figure 10 shows the absolute value of the field for four active sources: the subplots
provide different perspectives, indicating that thefield isindeed essentially zero in the cloaked
region C, and that the radiated field uy is zero outside the region R. The major variation in
the source field is within the circular regions centered on the active sources. It is found that
the field in these regions can take very large values, and therefore, for the sake of visibility
we truncate the plot at an arbitrary value (here = 2). Note also that the cloaked region spills
over dlightly into the circular regions. This effect is perhaps easier to see in the subsequent
examples.

Figure 11 considersthe same M = 4 configuration of active sources at a higher frequency
k = 10. The plots in this case show the real part of the total field, clearly illustrating the
plane wave field in the exterior of R. The subplot on the right clearly shows that the cloaked
region is somewhat larger than C, extending partly into the circular regions. The number of
modes used in figure 11 (N = 60) is more than adequate to ensure convergence and accurate
cloaking. It is more instructive to consider the effect of fewer modes, asin figures 12 to 14.
In figure 12 the number of modes used is on the order of the frequency, and good accuracy is
still observed. Notice the smaller footprints of the active sources, as compared with figure 11,
indicating that the higher modes *fill out’ the regions where ug is highly variable. Only N = 5
modes are used in figure 13, and one can see the deterioration of the cloaking effect expected
with an inadequate number of multipoles. The planewaveis clearly evident inside the cloaked
region C, as is some scattering effects in the ‘shadow’ zone. it is interesting to note that the
active source footprints are reduced in size as compared with figure 12. Finally, in figure 14,
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Figure 10. Absolute value of total pressure field with 4 active sources, b = 1, angle of incidence
¥ = 17°, wave number k = 2, and N = 60. Values above 2 in magnitude are clipped to make the
plotsvisible.

Figure 11. Real part of total pressure field with 4 active sources, b = 1, ¥ = 17°, wave number
k =10, and N = 60.

we consider the effect of alarger number of active sources combined with a small number of
modes. Comparison of figures 13 and 14 indicates the tendency observed from the results of
section 4.2 that more active sources improves the cloaking effect. Thisis also to be expected
from the discussion below in section 5 which showsthat for large numbers of sources only the
lowest order multipoles play asignificant role.

14
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Figure 12. Real part of total pressure field with 4 active sources, ¢ = 17°, k = 10. The number of
modes used in the truncated sumis here limited by N = 10.

Figure 13. The same asin figure 12 except now N = 5.

4.4. Scattering examples

Finally, we illustrate the effect of active exterior cloaking on plane wave scattering from rigid
and soft cylinders (Neumann and Dirichlet boundary conditions, respectively). In each case
the cylinder is circular of radius ag = 1 centered at the origin, five active sourceswithb = 4
are used, the frequency isk = 5, and the incident wave strikes at angle ¢ = 17°.
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Figure 14. The same asin figure 13 except now M = 7.

Figure 15. Absolute value of total pressure field when cloaking devices are inactive (left) and
active (right) for scattering from the hard cylinder. Calculations are performed for a hard cylinder
with M = 5 active sources, angle of incidence ¢ = 17°, and wave number ka = 5.

Figures 15 and 16 compare the response from a rigid cylinder with the active cloaking
turned on and turned off. The absolute value is shown in figure 15 while figure 16 considers
only the real part of the complex field, which clearly indicates the plane wave propagating
undisturbed when the cloak is active. The comparison for a soft cylinder is shown in
figure 17.
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Bessel functions J,(kan) (note kb is not necessarily small). Thisimplies that to leading order
in ka the coefficientsin (7b) reduce to

(=2U (xm), 1=0,
Brnin = 21ka x 1l e MUt (xm), | =+1, (34)
0, | #0,+1.

Theidentity Jn_1(X) — Jnr1(X) = 2J;,(X) has been used to simplify the| = 0termin (34). The
source field follows from equation (2c) and the identity V™, (x) = =V, (Xm) as

. 00 M
|
b=z Y A
2
N=—00 m=1
x [UF ()m)HLP (1 — Xml) €OS (@rg(X — Xm) — 6m) — U ) HE® (X = Xm) |-
(39)

The field of the active sources is therefore composed of monopoles and dipoles only, with
no contribution from higher multipoles. This agrees with what one might expect from the
continuous limit of M — o0, i.e. a closed contour of monopoles and dipoles, but here it is
obtained from the discrete solution. In fact, equation (35) is

. M
Ug = %a;[ui (Xm) Vo (X — Xm) — Vo(X — Xm) dnbi (Xm)], (36)

which can be seen to be the discretized version of the fundamental integral identity equation
(20) with the correspondence [ dS — 2a)" .. While equation (34) is thus the natural first
approximation for uy based on the integral equation (20), it should be realized that it was
obtained here as afirst order approximation of the exact expression (7b). The latter therefore
provides the basis for a multipole expansion of the exact source field obtained by including
higher powers of ka than considered in equation (34). This possibility goes beyond our present
interests but will be examined in a separate study dealing with approximations to the exact
results of theorem 2.

5.2. Zero scattering matrix

The exact source field ug(x) of equation (2c) exhibits some interesting features. This field
is, by design, equal to the negative of the incident field in the cloaking region C, and it also
vanishes identically outside the concave region R defined in (8). The non-radiating property
of ug isasimportant as the fact that it exactly cancels the incident wave in C. Let us examine
this more closely. Define the infinite matrix S with elements S,y such that

=) M [}
Fo= Z Safq = Sy= Z Z bm,Iqui|(Xm), (37)
g=—00 m=1l=—oc0
or, using (9),
M ki e —_D" , , (m)
Sa=1, %m > U, (Xm)UrJ.S,.q(Xm)% [Uy @V, (@ - U, @uU @] :fm) .
m=1 l,n=—00 il
(38)

The matrix Sis, formally at least, like a scattering matrix. For instance, by inspection, Sis
Hermitian (Sq = §;,). However, by design and based ontheorem 1, S = 0, and assuchit could
be called a zero-scattering matrix. Alternatively, it can be viewed as aformulafor generating
non-radiating fields. This has relevance to the inverse source problem [11]. It is known that
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solutionsto the inverse source problem are non-unique[13], athough some uniqueness results
are availablefor restricted forms of sources, e.g. ‘ minimum energy sources' [12]. The solution
of the active cloaking problem as devel oped here has generated a new family of non-radiating
sources, with the property that they cancel a given incident field over afinite region.

6. Conclusions

By definition, an active source cloaking strategy requires solution of an inverse problem:
find the active source amplitudes associated with a given incident field in order to exactly
cancel the latter in some finite region. The results given in theorem 2 provide closed-form
solutions for the inverse problem for an arbitrary time harmonic incident wave field. These
new expressions require only the expansion of the incident field into entire cylindrical waves
and can be evaluated to any degree of accuracy by increasing the truncation parameter N
associated with the number of modes of the active source. Simultaneously the fact that the
active source field has been shown to vanish identically outside the region R defined in (8)
meansthat the activefield isnon-radiating. Thislatter property isjust asimportant asits ability
to nullify the incident wave in the region C.

The necessary and sufficient conditions on the active source coefficients, given in
theorem 1 provide a means to quantify the error in active cloaking when the number of
modes is finite. These errors have been analyzed here in some specific scenarios. It has been
shown that the error in the far-field amplitude decreases as N increases, M increases and k
decreases. In particular there is a great sensitivity to theincrease in N; relatively small errors
can be attained in the far-field amplitudes for moderate N, say N ~ 10. On the other hand for
small errorsinthe near-field amplitudes, relatively large values of N arerequired. Furthermore,
thereisastriking reduction in error when moving from the caseof M = 3to M = 4 motivating
the latter as a preference. In contrast to the far-field case, errors decrease for increasing k.

Numerical results were given which illustrate the cloaking effect in various instances,
including the presence of a sound-soft and sound-hard circular cylinder. In the appropriate
limits, perfect theoretical active cloaking is achieved. The availability of closed-form active
source amplitudes opensthe door for possible studies on practical realization of active cloaking
devices. The case of many sources, where the active field degenerates to one involving a sum
of monopole and dipole sources is worthy of further, separate study relating to the multipole
expansion associated with the activefield. Finally, the non-radiating nature of the active source
field is especialy noteworthy. The associated scattering matrix, defined in (38) (which is zero
by design) is therefore associated with a new family of non-radiating source solutions which
would appear to be useful in the so-called inverse source problem.
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