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Employing pre-stress to generate finite cloaks for antiplane elastic waves
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It is shown that nonlinear elastic pre-stress of neo-Hookean hyperelastic materials can be used as a
mechanism to generate finite cloaks and thus render objects near-invisible to incoming antiplane
elastic waves. This approach appears to negate the requirement for special cloaking metamaterials
with inhomogeneous and anisotropic material properties in this case. These properties are induced
naturally by virtue of the pre-stress. This appears to provide a mechanism for broadband cloaking
since dispersive effects due to metamaterial microstructure will not arise. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4704566]

Interest in cloaking theory and its practical realization
has grown significantly since the early theoretical work of
Leonhardt' and Pendry er al.® in optics and electromagnet-
ism, respectively. Methods have been largely based on the
idea of coordinate transformations,3 which motivate the
design of cloaking metamaterials that are able to guide
waves around a specific region of space. Since the early
work, research has focused on the possibility of cloaking in
the contexts of acoustics,“*6 surface waves in ﬂuids,7 heat
transfer,® fluid flow,” and linear elastodynamicslo*13 and it is
the latter application which is the concern of the present let-
ter. In particular, it was shown in Ref. 10 that elastodynamic
cloaking is made difficult due to the lack of invariance of
Navier’s equations under general coordinate transformations
which retain the symmetries of the elastic modulus tensor. A
special case is that of flexural waves in thin plates.'* Invari-
ance of the governing equations can be achieved for a more
specific class of transformations if assumptions are relaxed
on the minor symmetries of the elastic modulus tensor as
was described for the in-plane problem in Ref. 11. Cosserat
materials were exploited in Ref. 13.

As noted in Ref. 11, another special case for elastody-
namics is the antiplane elastic wave problem, where cloak-
ing can readily be achieved from a cylindrical region
(using a cylindrical cloak) in two dimensions by virtue of
the duality between antiplane waves and acoustics in this
dimension. Consider an unbounded homogeneous elastic
material with shear modulus g, and density p, and intro-
duce a Cartesian coordinate system (X, Y, Z) and cylindri-
cal polar coordinate system (R,®,Z) with some common
origin O. Planar variables are related in the usual manner,
X = Rcos ® and Y = Rsin ®. Suppose that there is a time-
harmonic line source, polarized in the Z direction and
located at (Rg, ®), with circular frequency @ and ampli-
tude C (which is a force per unit length in the Z direction).
This generates antiplane elastic waves with the only non-
zero displacement component in the Z direction of the
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form U= R[W(X,Y)exp(—iwt)]. The displacement W is
governed by

Vx - (g VxW) + poo*W = C3(X — Xy), (1)

where Vy is the gradient operation in the “untransformed”
frame, X = (X, Y) and Xy = (Xo, Yo).

The assumed mapping for a cloak for antiplane waves
(cf. acoustics) expressed in plane cylindrical polar coordi-
nates, takes the form

r=g(R), 0=0, z=Z7Z, for O0<R<R,, (2)
and the identity mapping for all R > R, for some chosen
monotonically increasing function g(R) with g(0) =r
€ [0,R;],g(R2) = Ry € R such that R, < Ry, i.e., the line
source remains outside the cloaking region. The cloaking
region is thus defined by r € [r,r;], where r, = R,. We use
upper and lower case variables for the untransformed and
transformed problems, respectively. Under this mapping, the
form of the governing Eq. (1) remains unchanged for
R =r > R,, whereas for 0 < R < R,, corresponding to the
transformed domain r; < r < R,, the transformed equation
takes the form (in transformed cylindrical polar coordinates

r,0 =0)

10 ow\  wy(r)o*w
v () MG

where (see Eqgs. (26) and (27) in Ref. 13)
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Hence, both the shear modulus and density must be inhomo-
geneous and the shear modulus must be anisotropic. Material
properties of this form cannot be constructed exactly since
the shear modulus p, becomes unbounded as r — r; (the
inner boundary of the cloak). In this limit, the density
behaves as d = (pcr,) ' pgR* P + - - -, where p, ¢ > 0 define
the mapping in the vicinity of the inner boundary according
to r=r;+cR’+--- as R— 0. In practice, of course
approximations are required as described in, e.g., Refs. 7, 15,
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and 16. Note that, as expected,13 the total mass is conserved
since, regardless of the mapping, the integral of the density
d(r) over r € [r1,r2] is TR py.

In Ref. 17, a method to generate elastic cloaks was pro-
posed which used the notion of nonlinear pre-stress. This
was possible due to the fact that the antiplane wave field
scattered from a cylindrical cavity is invariant under pre-
stress for an incompressible neo-Hookean material. Scatter-
ing coefficients in the deformed configuration depend only
on the initial cavity radius, R, and therefore provided that
this is small compared with the incident wavelength, scatter-
ing from the inflated cavity of radius r; will be negligible
regardless of the relative size of r| and the incident wave-
length. Therefore, we can conclude that an object placed
inside the inflated cavity region would be near-invisible (i.e.,
cloaked) upon choosing R appropriately. In Ref. 17, the pre-
stress affected the entire elastic domain however, and there-
fore its influence was felt by both the source and receiver. In
this letter, we show how this theory may be adapted in order
to create a finite cloak by means of an additional deformation
taking the form of an axial stretch.

With reference to Fig. 1, let us consider an elastic mate-
rial within which is located a cylindrical cavity of radius R,.
Let us assume that the density of this medium is p, and its
axial shear modulus (corresponding to shearing on planes par-
allel to the axis of the cylindrical cavity) is yu,. Additionally,
we take a cylindrical annulus of isotropic incompressible neo-
Hookean material with associated shear modulus p and den-
sity p and with inner and outer radii R; and R, respectively,
with R; < R,. The exact nature of this latter relationship will
be described shortly. We shall consider deformations of the
cylindrical annulus in order that it can act as an elastodynamic
cloak to incoming antiplane elastic waves. We deform the
material so that its inner radius is significantly increased (to
r1) but its outer radius R, remains unchanged. The deformed
cylindrical annulus can then slot into the existing cylindrical
cavity region within the unbounded (unstressed) domain. We
choose p and p so that subsequent waves satisfy the necessary
continuity conditions on 7 = R,.

The constitutive behaviour of an incompressible neo-
Hookean material is described by the strain energy
function'®

Wzg(/lf+i§+if—3), )

FIG. 1. The incompressible neo-Hookean cylindrical annulus is pre-stressed
as depicted on the right. This annulus then creates a cloak when slotted into
a cylindrical cavity in an unbounded elastic medium, as illustrated on the
left.
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where /;,j = r, 0,z are the radial, azimuthal, and axial prin-
cipal stretches of the large deformation. We consider the ini-
tial deformation of the cylindrical annulus domain as
depicted in Fig. 1. Since the material is incompressible and
R, is required to be fixed, the deformation is induced either
by applying a uniform axial stretch L or a radial pressure dif-
ference p, — p;, where p, and p; denote the pressures applied
to the outer and inner face of the cylindrical annulus, respec-
tively. The ensuing deformation is described via the relations

R =R(r), ® =0, Z=7z/L, (6)
where (R, ©,Z) and (r, 0, z) are cylindrical polar coordinates
in the undeformed and deformed configurations. Note the
convention introduced in Eq. (6), i.e., that upper case varia-
bles correspond to the undeformed configuration whilst
lower case corresponds to the deformed configuration. This
is analogous to the notation used for untransformed and
transformed configurations in Eq. (2).
The principal stretches for this deformation are

_ﬂ_ 1 o
~dR  R(r)’

A, J.=L. 7

For an incompressible material 4,494, = 1, implying

R(r) = +/L(> + M), ®)

where M = R5(L~" — 1) is a constant determined by impos-
ing that the outer wall of the cylindrical annulus remains
fixed, i.e., R(R,) = R,. The deformation defined by Eq. (8)
is easily inverted to obtain r(R). Given incompressibility and
the fixed outer wall of the annulus, in order to induce this de-
formation we may either (i) prescribe the axial stretch L
which then determines the deformed inner radius r; and the
radial pressure difference required to maintain the deforma-
tion or (ii) prescribe the radial pressure difference which
then determines the deformed inner radius r; and the axial
stretch L.

We shall discuss the radial pressure difference shortly
but either way we can obtain L and thus feed this into Eq.
(8). Imposing the requirement that R(r;) = Ry and using the
form of M gives rise to the useful relation

R3 — R}
L=——. 9
R ®
The Cauchy stress for an incompressible material is'®
ow
T=F—_— 1 10
o5 T (10)

where W is the neo-Hookean strain energy function intro-
duced in Eq. (5), F is the deformation gradient, I is the iden-
tity tensor, and (@ 1is the scalar Lagrange multiplier
associated with the incompressibility constraint.

Only diagonal components of the Cauchy stress are non-
zero, being given by (no sum on the indices)

T/f:ﬂj(r)+Q7 (11)

forj =r, 0, z, where
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The second and third of the static equations of equilibrium
divT = 0 (where div signifies the divergence operator in the
deformed configuration) merely yield Q = Q(r). The remain-
ing equation

T, 1 -
al‘ + ; (Trr - T@f)) - 07 (13)

can be integrated using Egs. (11) and (12) to obtain Q(r).
Writing T, |,_ R —Pos Trrl, _,, = —pi, we find

L(p,‘—po) 1 R% r
U L2 1——) +log(—). 14

Given L and thus ry via Eq. (9), this equation prescribes the
required pressure difference.

Now assume that the cylindrical annulus has been pre-
stressed in an appropriate manner and slotted into the
unbounded elastic material with perfect bonding at r = R;.
We consider wave propagation in this medium given a time-
harmonic antiplane line source located at (R, ®g) with
Ry > R,. In r > R;, the antiplane wave with corresponding
displacement which we shall denote by w(r, 0), is again gov-
erned by Eq. (1). In the region r; < r < R,, the wave satisfies
a different equation since this annulus region has been pre-
stressed according to the deformation defined by Egs. (6) and
(8). We can obtain the governing equation using the theory of
small-on-large.'® It was shown in Ref. 17 that the wave in this
region satisfies Eq. (3) but now where p,.(r) and py(r) are
defined in Eq. (12) and d(r) = p, and note that we have made
the necessary corrections in order to include the axial stretch
L which was not considered in Ref. 17. Note, in particular,
that the density is homogeneous inside the cloak region.

Let us introduce the identity mapping for r > R, and

R*=L(P+M), ©=0, for ri<r<R, (15

which corresponds to the actual physical deformation Eq.
(8). Finally, define W(R,®) =w(r(R),0(®)). It is then
straightforward to show that the equation governing wave
propagation in the entire domain R > R is Eq. (1), provided
that we choose u = Ly and p = Lp,. These relations ensure
that the wavenumbers in the exterior and cloak regions are
the same and they also maintain continuity of traction on
R = R,. Furthermore, since Eq. (15) corresponds to the
actual deformation, the inner radius r; maps back to R;.
Therefore, with the appropriate choice of cloak material
properties, the scattering problem in the undeformed and
deformed configurations is equivalent. We can therefore
solve the equation in the undeformed configuration and then
map back to the deformed configuration to find the physical
solution. Decomposing the solution into incident and scat-
tered parts W = Wi + W, we have Wi = 7 C_Ho(KS), where

we have defined the wavenumber K via K> = p,m?/p, and
§ = /(X — X + (¥ — Yo)*. Here, H, = H{") is the Hankel

function of the first kind of order n. The scattered field is
written in the form'”
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[o¢]

> (—i)'a,Hy(KR)e™ ) (16)

n=—0o0

Ws(R,0) =

Satisfaction of the traction free boundary condition on R
=R, gives a,. We want the wave field with respect to the
deformed configuration, so we map back in order to find
w = w; + wy. The incident wave is most conveniently deter-
mined by using Graf’s addition theorem in order to distin-
guish between the regions r <Ry and r > Ry, as was
described in Ref. 17. The incident and scattered fields are
then, respectively,

C o0

(. 0) = - in(6-60)
wi(r, 0) T n:,ooe
(KR()) n(K L(l‘2 + M)), ry S r S Rz,
H, (KRo)J(Kr), Ry <r <Ry,
n( ) n( R0)7 r >R07
(17)
C & . 1,/ (KR
wi(r,0) = ——— > e’"<0—UO>MHn(KRO)
diny H,'(KR)
o J Hu(K L(r2+M)), r <r <R, (18)
H, (Kr), r>R.

The key to cloaking is to ensure that the scattered field is
small compared with the incident field, i.e., a, < 1. Note
from Eq. (18) that @, are solely dependent on the initial
annulus inner radius Ry (and source distance Rj) but are in-
dependent of the deformed inner radius r;. Therefore, we
must choose R such that KR; < 1 which will ensure negli-
gible scattering regardless of the size of r;. We illustrate

FIG. 2. Cloaking of antiplane shear waves. Line source is located at
Kr = KRy = 81,0, = 0, shown as a white circle. Total displacement field
is plotted. Upper left: a region of (nondimensionalized) radius Kr; = 27 is
cloaked using a classic linear elastic cloak g(R) =ri +R(®=2) in
271 < Kr < 4z Upper right: scattering from a cavity of radius KR = 27/20
in an unstressed medium. Lower left: a “pre-stress” cloak in 27 < Kr < 4n
generated from an annulus with initial inner radius KR, = 2n/20. Lower
right: scattering from a cavity with radius KR, = 27 in an unstressed me-
dium. Scattering and the shadow region presence in the latter is significant,
as compared with that for an equivalent sized cavity for the “pre-stress”
cloak.

-0.25
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with some examples in Fig. 2, showing that the “pre-stress”
cloak appears to work well.

In conclusion, we have shown how a finite cloak for
antiplane elastic waves can be generated by employing non-
linear pre-stress of an incompressible neo-Hookean hypere-
lastic material. The performance of the cloak is limited only
by the size of the initial radius of the cylindrical cavity inside
the annulus region. The anisotropic, inhomogeneous material
moduli in the cloaking region, defined by Eq. (12), are
induced naturally by the pre-stress and therefore exotic
metamaterials are not required. Dispersive effects, which
naturally arise in metamaterials due to their inherent inhomo-
geneity at some length scale, will not be present in the pre-
stress context and we also note that the density of the cloak
is homogeneous. In order to achieve the required pre-stress,
a radial pressure difference is required across the cylindrical
annulus. It would be inconvenient to prescribe p, on the
outer face. However, since we only need a pressure differ-
ence we can prescribe p; with p, =0, ensuring the pre-
scribed deformation and eliminating this difficulty. The
incompressible neo-Hookean model is an approximation to
reality, holding in general for rubber-like materials and mod-
erate deformations. If the material is not neo-Hookean,
invariance of the scattering coefficients is not guaranteed in
general and therefore similar exact results will not hold.
However, it would be of interest to ascertain whether scatter-
ing from inflated cavities in other hyperelastic pre-stressed
media is still significantly reduced as compared with an
equivalent sized cavity in an unstressed medium.

In closing, we remark that one of the fundamental
advantages of the pre-stress approach is that pre-stress gener-
ates equations with incremental moduli (analogies of the

Appl. Phys. Lett. 100, 171907 (2012)

elastic moduli) which do not possess the minor symmetries.
Therefore, this approach can be used for cloaking in the
more general elastodynamic setting, where classical linear
elastic materials cannot be used."”
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