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It is shown that nonlinear elastic pre-stress of neo-Hookean hyperelastic materials can be used as a

mechanism to generate finite cloaks and thus render objects near-invisible to incoming antiplane

elastic waves. This approach appears to negate the requirement for special cloaking metamaterials

with inhomogeneous and anisotropic material properties in this case. These properties are induced

naturally by virtue of the pre-stress. This appears to provide a mechanism for broadband cloaking

since dispersive effects due to metamaterial microstructure will not arise. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4704566]

Interest in cloaking theory and its practical realization

has grown significantly since the early theoretical work of

Leonhardt1 and Pendry et al.2 in optics and electromagnet-

ism, respectively. Methods have been largely based on the

idea of coordinate transformations,3 which motivate the

design of cloaking metamaterials that are able to guide

waves around a specific region of space. Since the early

work, research has focused on the possibility of cloaking in

the contexts of acoustics,4–6 surface waves in fluids,7 heat

transfer,8 fluid flow,9 and linear elastodynamics10–13 and it is

the latter application which is the concern of the present let-

ter. In particular, it was shown in Ref. 10 that elastodynamic

cloaking is made difficult due to the lack of invariance of

Navier’s equations under general coordinate transformations

which retain the symmetries of the elastic modulus tensor. A

special case is that of flexural waves in thin plates.14 Invari-

ance of the governing equations can be achieved for a more

specific class of transformations if assumptions are relaxed

on the minor symmetries of the elastic modulus tensor as

was described for the in-plane problem in Ref. 11. Cosserat

materials were exploited in Ref. 13.

As noted in Ref. 11, another special case for elastody-

namics is the antiplane elastic wave problem, where cloak-

ing can readily be achieved from a cylindrical region

(using a cylindrical cloak) in two dimensions by virtue of

the duality between antiplane waves and acoustics in this

dimension. Consider an unbounded homogeneous elastic

material with shear modulus l0 and density q0 and intro-

duce a Cartesian coordinate system (X, Y, Z) and cylindri-

cal polar coordinate system ðR;H; ZÞ with some common

origin O. Planar variables are related in the usual manner,

X ¼ Rcos H and Y ¼ Rsin H. Suppose that there is a time-

harmonic line source, polarized in the Z direction and

located at ðR0;H0Þ, with circular frequency x and ampli-

tude C (which is a force per unit length in the Z direction).

This generates antiplane elastic waves with the only non-

zero displacement component in the Z direction of the

form U ¼ <½WðX; YÞexpð�ixtÞ�. The displacement W is

governed by

rX � ðl0rXWÞ þ q0x
2W ¼ CdðX� X0Þ; (1)

where rX is the gradient operation in the “untransformed”

frame, X¼ (X, Y) and X0 ¼ ðX0; Y0Þ:
The assumed mapping for a cloak for antiplane waves

(cf. acoustics) expressed in plane cylindrical polar coordi-

nates, takes the form

r¼ gðRÞ; h¼H; z¼ Z; for 0�R�R2; (2)

and the identity mapping for all R > R2 for some chosen

monotonically increasing function g(R) with gð0Þ � r1

2 ½0;R2�; gðR2Þ ¼ R2 2 R such that R2 < R0, i.e., the line

source remains outside the cloaking region. The cloaking

region is thus defined by r 2 ½r1; r2�, where r2 ¼ R2. We use

upper and lower case variables for the untransformed and

transformed problems, respectively. Under this mapping, the

form of the governing Eq. (1) remains unchanged for

R ¼ r > R2, whereas for 0 � R � R2, corresponding to the

transformed domain r1 � r � R2, the transformed equation

takes the form (in transformed cylindrical polar coordinates

r; h ¼ H)

1

r

@

@r
rlrðrÞ

@w

@r

� �
þ lhðrÞ

r2

@2w

@h2
þ dðrÞx2w ¼ 0; (3)

where (see Eqs. (26) and (27) in Ref. 13)

lrðrÞ ¼
l2

0

lhðrÞ
¼ l0

R

r

dg

dR
; dðrÞ ¼ q0

R

r

dg

dR

� ��1

: (4)

Hence, both the shear modulus and density must be inhomo-

geneous and the shear modulus must be anisotropic. Material

properties of this form cannot be constructed exactly since

the shear modulus lh becomes unbounded as r ! r1 (the

inner boundary of the cloak). In this limit, the density

behaves as d ¼ ðpcr1Þ�1q0R2�p þ � � �, where p; c > 0 define

the mapping in the vicinity of the inner boundary according

to r ¼ r1 þ cRp þ � � � as R! 0. In practice, of course

approximations are required as described in, e.g., Refs. 7, 15,
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and 16. Note that, as expected,13 the total mass is conserved

since, regardless of the mapping, the integral of the density

d(r) over r 2 ½r1; r2� is pR2
2q0.

In Ref. 17, a method to generate elastic cloaks was pro-

posed which used the notion of nonlinear pre-stress. This

was possible due to the fact that the antiplane wave field

scattered from a cylindrical cavity is invariant under pre-
stress for an incompressible neo-Hookean material. Scatter-

ing coefficients in the deformed configuration depend only

on the initial cavity radius, R1, and therefore provided that

this is small compared with the incident wavelength, scatter-

ing from the inflated cavity of radius r1 will be negligible

regardless of the relative size of r1 and the incident wave-

length. Therefore, we can conclude that an object placed

inside the inflated cavity region would be near-invisible (i.e.,

cloaked) upon choosing R1 appropriately. In Ref. 17, the pre-

stress affected the entire elastic domain however, and there-

fore its influence was felt by both the source and receiver. In

this letter, we show how this theory may be adapted in order

to create a finite cloak by means of an additional deformation

taking the form of an axial stretch.

With reference to Fig. 1, let us consider an elastic mate-

rial within which is located a cylindrical cavity of radius R2.

Let us assume that the density of this medium is q0 and its

axial shear modulus (corresponding to shearing on planes par-

allel to the axis of the cylindrical cavity) is l0. Additionally,

we take a cylindrical annulus of isotropic incompressible neo-

Hookean material with associated shear modulus l and den-

sity q and with inner and outer radii R1 and R2, respectively,

with R1 � R2. The exact nature of this latter relationship will

be described shortly. We shall consider deformations of the

cylindrical annulus in order that it can act as an elastodynamic

cloak to incoming antiplane elastic waves. We deform the

material so that its inner radius is significantly increased (to

r1) but its outer radius R2 remains unchanged. The deformed

cylindrical annulus can then slot into the existing cylindrical

cavity region within the unbounded (unstressed) domain. We

choose l and q so that subsequent waves satisfy the necessary

continuity conditions on r ¼ R2.

The constitutive behaviour of an incompressible neo-

Hookean material is described by the strain energy

function18

W ¼ l
2
ðk2

r þ k2
h þ k2

z � 3Þ; (5)

where kj; j ¼ r; h; z are the radial, azimuthal, and axial prin-

cipal stretches of the large deformation. We consider the ini-

tial deformation of the cylindrical annulus domain as

depicted in Fig. 1. Since the material is incompressible and

R2 is required to be fixed, the deformation is induced either
by applying a uniform axial stretch L or a radial pressure dif-

ference po � pi, where po and pi denote the pressures applied

to the outer and inner face of the cylindrical annulus, respec-

tively. The ensuing deformation is described via the relations

R ¼ RðrÞ; H ¼ h; Z ¼ z=L; (6)

where ðR;H; ZÞ and ðr; h; zÞ are cylindrical polar coordinates

in the undeformed and deformed configurations. Note the

convention introduced in Eq. (6), i.e., that upper case varia-

bles correspond to the undeformed configuration whilst

lower case corresponds to the deformed configuration. This

is analogous to the notation used for untransformed and

transformed configurations in Eq. (2).

The principal stretches for this deformation are

kr ¼
dr

dR
¼ 1

R0ðrÞ ; kh ¼
r

RðrÞ ; kz ¼ L: (7)

For an incompressible material krkhkz ¼ 1, implying

RðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðr2 þMÞ

p
; (8)

where M ¼ R2
2ðL�1 � 1Þ is a constant determined by impos-

ing that the outer wall of the cylindrical annulus remains

fixed, i.e., RðR2Þ ¼ R2. The deformation defined by Eq. (8)

is easily inverted to obtain r(R). Given incompressibility and

the fixed outer wall of the annulus, in order to induce this de-

formation we may either (i) prescribe the axial stretch L
which then determines the deformed inner radius r1 and the

radial pressure difference required to maintain the deforma-

tion or (ii) prescribe the radial pressure difference which

then determines the deformed inner radius r1 and the axial

stretch L.

We shall discuss the radial pressure difference shortly

but either way we can obtain L and thus feed this into Eq.

(8). Imposing the requirement that Rðr1Þ ¼ R1 and using the

form of M gives rise to the useful relation

L ¼ R2
2 � R2

1

R2
2 � r2

1

: (9)

The Cauchy stress for an incompressible material is18

T ¼ F
@W
@F
þ QI; (10)

where W is the neo-Hookean strain energy function intro-

duced in Eq. (5), F is the deformation gradient, I is the iden-

tity tensor, and Q is the scalar Lagrange multiplier

associated with the incompressibility constraint.

Only diagonal components of the Cauchy stress are non-

zero, being given by (no sum on the indices)

Tjj ¼ ljðrÞ þ Q; (11)

for j ¼ r; h; z, where

FIG. 1. The incompressible neo-Hookean cylindrical annulus is pre-stressed

as depicted on the right. This annulus then creates a cloak when slotted into

a cylindrical cavity in an unbounded elastic medium, as illustrated on the

left.
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lrðrÞ ¼
l2

L2

1

lhðrÞ
¼ l

L

r2 þM

r2

� �
; lz ¼ L2l: (12)

The second and third of the static equations of equilibrium

div T ¼ 0 (where div signifies the divergence operator in the

deformed configuration) merely yield Q¼Q(r). The remain-

ing equation

@Trr

@r
þ 1

r
ðTrr � ThhÞ ¼ 0; (13)

can be integrated using Eqs. (11) and (12) to obtain Q(r).

Writing Trrjr¼R2
¼ �po; Trrjr¼r1

¼ �pi; we find

Lðpi � poÞ
l

¼ 1

2L
1� R2

1

r2
1

� �
þ log

r1

R1

� �
: (14)

Given L and thus r1 via Eq. (9), this equation prescribes the

required pressure difference.

Now assume that the cylindrical annulus has been pre-

stressed in an appropriate manner and slotted into the

unbounded elastic material with perfect bonding at r ¼ R2.

We consider wave propagation in this medium given a time-

harmonic antiplane line source located at ðR0;H0Þ with

R0 > R2. In r > R2, the antiplane wave with corresponding

displacement which we shall denote by wðr; hÞ, is again gov-

erned by Eq. (1). In the region r1 � r � R2, the wave satisfies

a different equation since this annulus region has been pre-

stressed according to the deformation defined by Eqs. (6) and

(8). We can obtain the governing equation using the theory of

small-on-large.18 It was shown in Ref. 17 that the wave in this

region satisfies Eq. (3) but now where lrðrÞ and lhðrÞ are

defined in Eq. (12) and dðrÞ ¼ q, and note that we have made

the necessary corrections in order to include the axial stretch

L which was not considered in Ref. 17. Note, in particular,

that the density is homogeneous inside the cloak region.

Let us introduce the identity mapping for r > R2 and

R2 ¼ Lðr2 þMÞ; H ¼ h; for r1 � r � R2; (15)

which corresponds to the actual physical deformation Eq.

(8). Finally, define WðR;HÞ ¼ wðrðRÞ; hðHÞÞ. It is then

straightforward to show that the equation governing wave

propagation in the entire domain R � R1 is Eq. (1), provided
that we choose l ¼ Ll0 and q ¼ Lq0. These relations ensure

that the wavenumbers in the exterior and cloak regions are

the same and they also maintain continuity of traction on

R ¼ R2. Furthermore, since Eq. (15) corresponds to the

actual deformation, the inner radius r1 maps back to R1.

Therefore, with the appropriate choice of cloak material

properties, the scattering problem in the undeformed and

deformed configurations is equivalent. We can therefore

solve the equation in the undeformed configuration and then

map back to the deformed configuration to find the physical

solution. Decomposing the solution into incident and scat-

tered parts W ¼ Wi þWs, we have Wi ¼ C
4il0

H0ðKSÞ, where

we have defined the wavenumber K via K2 ¼ q0x
2=l0 and

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � X0Þ2 þ ðY � Y0Þ2

q
. Here, Hn ¼ Hð1Þn is the Hankel

function of the first kind of order n. The scattered field is

written in the form17

WsðR;HÞ ¼
X1

n¼�1
ð�iÞnanHnðKRÞeinðH�H0Þ: (16)

Satisfaction of the traction free boundary condition on R
¼ R1 gives an. We want the wave field with respect to the

deformed configuration, so we map back in order to find

w ¼ wi þ ws. The incident wave is most conveniently deter-

mined by using Graf’s addition theorem in order to distin-

guish between the regions r < R0 and r > R0, as was

described in Ref. 17. The incident and scattered fields are

then, respectively,

wiðr; hÞ ¼
C

4il0

X1
n¼�1

einðh�h0Þ

	
(

HnðKR0ÞJnðK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðr2 þMÞ

p
Þ; r1 � r � R2;

HnðKR0ÞJnðKrÞ; R2 � r < R0;
HnðKrÞJnðKR0Þ; r > R0;

(17)

wsðr; hÞ ¼ �
C

4il0

X1
n¼�1

einðh�h0Þ Jn
0ðKR1Þ

Hn
0ðKR1Þ

HnðKR0Þ

	
(

HnðK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðr2 þMÞ

p
Þ; r1 � r � R2;

HnðKrÞ; r � R2:
(18)

The key to cloaking is to ensure that the scattered field is

small compared with the incident field, i.e., an � 1. Note

from Eq. (18) that an are solely dependent on the initial

annulus inner radius R1 (and source distance R0) but are in-
dependent of the deformed inner radius r1. Therefore, we

must choose R1 such that KR1 � 1 which will ensure negli-

gible scattering regardless of the size of r1. We illustrate

FIG. 2. Cloaking of antiplane shear waves. Line source is located at

Kr ¼ KR0 ¼ 8p;H0 ¼ 0, shown as a white circle. Total displacement field

is plotted. Upper left: a region of (nondimensionalized) radius Kr1 ¼ 2p is

cloaked using a classic linear elastic cloak gðRÞ ¼ r1 þ RðR2�r1

R2
Þ in

2p � Kr � 4p. Upper right: scattering from a cavity of radius KR1 ¼ 2p=20

in an unstressed medium. Lower left: a “pre-stress” cloak in 2p � Kr � 4p
generated from an annulus with initial inner radius KR1 ¼ 2p=20. Lower

right: scattering from a cavity with radius KR1 ¼ 2p in an unstressed me-

dium. Scattering and the shadow region presence in the latter is significant,

as compared with that for an equivalent sized cavity for the “pre-stress”

cloak.
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with some examples in Fig. 2, showing that the “pre-stress”

cloak appears to work well.

In conclusion, we have shown how a finite cloak for

antiplane elastic waves can be generated by employing non-

linear pre-stress of an incompressible neo-Hookean hypere-

lastic material. The performance of the cloak is limited only

by the size of the initial radius of the cylindrical cavity inside

the annulus region. The anisotropic, inhomogeneous material

moduli in the cloaking region, defined by Eq. (12), are

induced naturally by the pre-stress and therefore exotic

metamaterials are not required. Dispersive effects, which

naturally arise in metamaterials due to their inherent inhomo-

geneity at some length scale, will not be present in the pre-

stress context and we also note that the density of the cloak

is homogeneous. In order to achieve the required pre-stress,

a radial pressure difference is required across the cylindrical

annulus. It would be inconvenient to prescribe po on the

outer face. However, since we only need a pressure differ-
ence we can prescribe pi with po ¼ 0, ensuring the pre-

scribed deformation and eliminating this difficulty. The

incompressible neo-Hookean model is an approximation to

reality, holding in general for rubber-like materials and mod-

erate deformations. If the material is not neo-Hookean,

invariance of the scattering coefficients is not guaranteed in

general and therefore similar exact results will not hold.

However, it would be of interest to ascertain whether scatter-

ing from inflated cavities in other hyperelastic pre-stressed

media is still significantly reduced as compared with an

equivalent sized cavity in an unstressed medium.

In closing, we remark that one of the fundamental

advantages of the pre-stress approach is that pre-stress gener-

ates equations with incremental moduli (analogies of the

elastic moduli) which do not possess the minor symmetries.

Therefore, this approach can be used for cloaking in the

more general elastodynamic setting, where classical linear

elastic materials cannot be used.19
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