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Transformation theory is developed for the equations of linear anisotropic elasticity. The trans-
formed equations correspond to non-unique material properties that can be varied for a given trans-
formation by selection of the matrix relating displacements in the two descriptions. This gauge
matrix can be chosen to make the transformed density isotropic for any transformation although
the stress in the transformed material is not generally symmetric. Symmetric stress is obtained
only if the gauge matrix is identical to the transformation matrix, in agreement with Milton et al.1.
The elastic transformation theory is applied to the case of cylindrical anisotropy. The equations of
motion for the transformed material with isotropic density are expressed in Stroh format, suitable
for modeling cylindrical elastic cloaking. It is shown that there is a preferred approximate mate-
rial with symmetric stress that could be a useful candidate for making cylindrical elastic cloaking
devices.

I. INTRODUCTION

Interest in cloaking of wave motion has surged with the demonstration of the possibility of practical electromagnetic

wave cloaking2. The principle underlying the effect is the so-called transformation or change-of-variables method3,4

in which the material parameters in the physical domain are defined by a spatial transformation. The concept of

material properties defined by transformation is not restricted to electromagnetism, and has stimulated interest in

applying the same method to other wave fields. The first applications in acoustics were obtained by direct analogy

with the electromagnetic case5–7. It was quickly realized that the fundamental mathematical identity behind the

acoustic transformation is the equivalence8 of the Laplacian in the original coordinates to a differential operator

in the transformed (physical) coordinates, according to DivGrad f → J div J−1FFFFFF t grad f , where FFF = ∂xxx/∂XXX is

the deformation gradient of the transformation (see §II) and J = detFFF . This connection, plus the realization that

the tensor within the operator can be interpreted as a tensor of inertia means that the homogeneous acoustic wave

equation can be mapped to the equation for an inhomogeneous fluid with anisotropic density.

However, the material properties for acoustic cloaking do not have to be identified as a fluid with a single bulk

modulus and a tensorial inertia. There is a large degree of freedom in the choice of the cloaking material properties9,10:

a compressible fluid with anisotropic density is a special case of pentamode materials11,12 with anisotropic inertia. The

non-uniqueness of the material properties (for a given transformation) is a feature not found in the electromagnetic

case, where, for instance, the tensors of electric permittivity and magnetic permeability are necessarily proportionate

for a transformation of the vacuum. The extra freedom in the acoustic case means that either or both of the scalar pa-

rameters, density and elastic stiffness (bulk modulus), can become tensorial quantities after the transformation. While

most papers on acoustic cloaking have considered materials with scalar stiffness and tensorial inertia, e.g.5–7,13–18,

see19 for a review, there is no physical reason for such restricted material properties. Cloaking with such materials

requires very large total mass9,20, but the more general class of pentamode materials with anisotropic inertia does

not have this constraint. In fact, it is often possible to choose the material properties so that the inertia is isotropic,

in which case the total mass is simply the mass of the equivalent undeformed region10. This property can be realized

if the transformation is a pure stretch, as is the case when there is radial symmetry. This distinction between the

cloaking material properties is critical but, judging by the continued emphasis on anisotropic inertia in the literature,

does not seem to have been fully appreciated. Apart from9,10 there have been few studies21,22 of acoustic cloaking

with anisotropic stiffness.

The non-uniqueness of the transformed material properties found in the acoustic theory transfers to elastodynamics.

The first study of the transformation of the elastodynamic equations by Milton et al.1 concluded that the appropriate

class of constitutive equations for the transformed material are the Willis equations for material response. The general
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form of the Willis equations are1,23

divσσσ = ṗpp, (1a)

σσσ = CCCeff ∗ eee+SSSeff ∗ uuu, (1b)

ppp = SSSeff† ∗ eee+ ρρρeff ∗ u̇uu, (1c)

where eee = 1
2 (∇uuu + (∇uuu)t), ∗ denotes time convolution and † is the adjoint. The stress in (1b) is symmetric, and

the elastic moduli enjoy all of the symmetries for normal elasticity, viz. Ceff
klij = Ceff

ijkl and Ceff
jikl = Ceff

ijkl. Brun et

al.24 considered the transformation of isotropic elasticity in cylindrical coordinates for the particular transformation

function used by3,4 and found that the transformed material properties are those of a material with isotropic inertia

and elastic behavior of Cosserat type. The governing equations for Cosserat elastic materials25 are

divσσσ = ρeff üuu, (2a)

σσσ = CCCeff∇uuu, (2b)

with elastic moduli satisfying the major symmetry Ceff
klij = Ceff

ijkl but not the minor symmetry, Ceff
jikl 6= Ceff

ijkl. This

implies that the stress is not necessarily symmetric, σσσt 6= σσσ, and that it depends not only on the strain eee (the

symmetric part of the displacement gradient) but also upon the local rotation ωωω = 1
2 (∇uuu− (∇uuu)t). Not only are the

parameters such as CCCeff in eqs. (1) and (2) different, the constitutive theories are mutually incompatible: one has

symmetric stress, the other a non-symmetric stress. We show in this paper that both theories are possible versions

of the transformed elastodynamic equations, and that they are only two from a spectrum of possible constitutive

theories. Apart from the two references mentioned1,24, the only other example of transformation elasticity concerns

flexural waves obeying the biharmonic equation26, which is beyond the realm of the present paper.

The purpose here is to consider the transformation method for elastodynamics, and to describe the range of

constitutive theories possible. The starting point is the observation10 that the extra degrees of freedom noted for the

acoustic transformation can be ascribed to the linear relation between the displacement fields in the two coordinate

systems. This ”gauge” transformation introduces a second matrix or tensor, in addition to the deformation gradient

from the change of coordinates. As discussed in10, the variety of acoustically transformed material properties arises

from the freedom in the displacement gauge. The same freedom is also present in the elastic case, and as we will

show, it allows one to derive a broader class of constitutive properties than those suggested by Milton et al.1 and by

Brun et al.24. The material properties found in these studies correspond to specific choices of the gauge matrix.

Cloaking is achieved with transformations that deform a region in such a way that the mapping is one-to-one

everywhere except at a single point, which is mapped into the cloak inner boundary. This is a singular transformation,

and in practice, the mapped region would be of finite size, e.g. a small sphere, for which the mapping is everywhere

regular. Our objective here is to understand the nature of the material necessary to produce the transformation effect,

in particular, what type of constitutive behavior is necessary: such as isotropic or anisotropic inertia.

The outline of the paper is as follows. The notation and setup of the problem are given in §II where the dis-

placement gauge matrix is introduced. The general form of the transformed equations of motion are presented in

§III. Constitutive equations resulting from specific forms of the gauge matrix are discussed in §IV, particularly the

Willis equations and Cosserat elasticity, which are shown to coincide under certain circumstances. The special case of

transformed acoustic materials is discussed in §V. The elastic transformation theory with isotropic density is applied

in §VI to radial transformation of cylindrically anisotropic solids. Based on this formulation, an elastic material with

isotropic density and standard stress-strain relations is proposed in §VIC as an approximation to the transformed

material. A summary of the main results is given in §VII.

II. NOTATION AND SETUP

Two related configurations are considered: the original Ω, and the transformed region ω, also called the physical

or current domain. The transformation from Ω to ω is described by the point-wise deformation from XXX ∈ Ω to

xxx ∈ ω. The symbols ∇, ∇X and div, Div indicate the gradient and divergence operators in xxx and XXX, respectively,

and the superscript t denotes transpose. The component form of divE is ∂Ei/∂xi or ∂Eij/∂xi when E is a vector
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and a second order tensor-like quantity, respectively. Upper and lower case subscripts (I, J, . . . , i, j, . . .) are used

to distinguish between the domains, and the summation convention on repeated subscripts is assumed. It is useful

to describe the transformation using language of finite deformation in continuum mechanics. Thus, XXX describes a

particle position in the Lagrangian or undeformed configuration, and xxx is particle location in the Eulerian or deformed

physical state. The transformation or mapping is assumed to be one-to-one and invertible. For perfect cloaking the

transformation is one-to-many at the single point XXX = OOO, but this can be avoided by always considering near-cloaks,

where, for instance, the single point is replaced by a small hole which is mapped to a much larger hole.

The deformation gradient is defined FFF = ∇Xxxx with inverse FFF−1 = ∇XXX, or in component form FiI = ∂xi/∂XI ,

F−1
Ii = ∂XI/∂xi. The Jacobian of the deformation is J = detFFF = |FFF |, or in terms of volume elements in the two

configurations, J = d v/dV . The polar decomposition implies FFF = VVVRRR, where RRR is proper orthogonal (RRRRRRt = RRRtRRR =

III, detRRR = 1) and the left stretch tensor VVV ∈ Sym+ is the positive definite solution of VVV 2 = BBB where BBB (= FFFFFF t) is

the left Cauchy-Green or Finger deformation tensor.

The infinitesimal displacement UUU(XXX, t) and stress ΣΣΣ(XXX, t) satisfy the equations of linear elasticity in the original

domain:

DivΣΣΣ = ρ0ÜUU,

ΣΣΣ = CCC(0)∇XUUU,

}
in Ω, (3)

where ρ0 is the (scalar) mass density and the the elements of the elastic stiffness tensor satisfy the full symmetries

C
(0)
IJKL = C

(0)
JIKL, C

(0)
IJKL = C

(0)
KLIJ . (4)

The first identity expresses the symmetry of the stress and the second is the consequence of an assumed strain energy

density function. The total energy density is the sum of the strain and kinetic energy densities,

E0 = W0 + T0 where W0 = 1
2C

(0)
IJKL UJ,IUL,K , T0 = 1

2ρ0U̇UU
t
U̇UU. (5)

Particle displacement in the transformed domain is uuu(xxx, t). Our objective is to find its governing equations. In order

to proceed, we need in addition to the geometrical quantity FFF , a kinematic relation that relates the displacements in

the two domains. We assume a linear ”gauge” change in the displacement defined by a non-singular matrix AAA as

UUU = AAAtuuu (UI = AiIui). (6)

According to its definition the matrix AAA is, like FFF , not a second order tensor because it has one ”leg” in both domains.

The choice of the transpose, AAAt in equation (6), means that AAA and FFF are similar objects, although at this stage they

are not related.

The arbitrariness in the choice of AAA is the central theme of this paper. This approach generalizes that of10 which

was restricted to acoustic materials, and of Milton et al.1 for elasticity. The point of departure with1 here rests with

the assumed independence of the gauge matrix AAA. Milton et al. assume a similar relation between the displacement

fields; eq. (6) is identical to eq. (2.2) in1; however, the matrix AAA in1 is assumed at the outset to be equal to the

deformation gradient (AAA = FFF ). We will return to this distinction later. As noted by Milton et al.1, the relation

dXXX = FFF−1 dxxx might lead one to expect AAA = FFF−t by identifying dXXX and dxxx with UUU and uuu, respectively. However, the

displacements are not associated with the coordinate transformation, unlike in the theory of finite deformation, and

hence FFF and AAA are independent. Milton et al.1 specify AAA = FFF on the basis that this is the only choice that guarantees

a symmetric stress. We will return to this point later.

III. GENERAL FORM OF THE TRANSFORMED EQUATIONS

Under the transformation and the gauge change the energy density transforms as E0 → E = W + T according to

E dV = E0 dV0, so that

E = W + T = 1
2J

−1
{
C

(0)
IJKL

(
ujAjJ

)
,i

(
ulAlL

)
,k
FiIFkK + ρ0u̇iu̇jAiIAjI .

}
(7)
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Hence,

W = 1
2J

−1C
(0)
IJKL FiIFkK

(
ujAjJ

)
,i

(
ulAlL

)
,k
, T = 1

2u̇uu
tρρρu̇uu, (8)

where the (symmetric) density tensor is

ρρρ = ρρρt = ρ0 J
−1AAAAAAt, (9)

The equations of motion in the deformed, or current material, are determined by the Euler-Lagrange equations of the

Lagrangian density L = W − T , as

AjJ

(
J−1C

(0)
IJKL FiI(ulAlL),kFkK

)
,i
− ρij üi = 0. (10)

Using the identity

(J−1FiI),i = 0, (11)

this can be written

QijIJ

(
JC

(0)
IJKL (ulQklKL),k

)
,i
− ρij üi = 0, (12)

where the fourth order quantity

QijIJ = J−1FiIAjJ , (13)

is introduced for later use.

The transformed system (12) is equivalent to the equilibrium equations

σij,i = ṗj , (14a)

and the constitutive relations

σij = Ceff
ijklul,k + Seff

ijl u̇l, pl = Seff
ijl uj,i + ρeffjl u̇k, (14b)

with parameters defined as follows in the Fourier time domain (dependence e−iωt)

Ceff
ijkl = JC

(0)
IJKLQijIJQklKL, (15a)

Seff
ijl = (−iω)−1JC

(0)
IJKLQijIJQklKL,k, (15b)

ρeffjl = ρjl + (−iω)−2JC
(0)
IJKLQijIJ,iQklKL,k, (15c)

where the density ρjl is given by (9). The elastic moduli and the density satisfy the general symmetries

Ceff
ijkl = Ceff

klij , ρeffjl = ρefflj , (16)

but not the full symmetries required for the Willis constitutive model (1). Equations (14)-(15) are the fundamental

result of the transformation theory. The remainder of the paper is concerned with their simplification and interpre-

tation.

Note that the transformed stiffness may be expressed in a form similar to the Kelvin representation for the tensor

of elastic moduli27, as

Ceff =

6∑

α=1

K(α)S(α) ⊗ S(α), K(α) = JK
(α)
0 , S(α) = J−1FP(α)At, (17)

where K
(α)
0 > 0 are the Kelvin moduli, P(α) ∈ Sym, trP(α)P(β) = δαβ , are the eigenstrains/eigenstresses, such that

the original stiffness has the unique decomposition

C(0) =

6∑

α=1

K
(α)
0 P(α) ⊗P(α). (18)

The transformed matrices S(α) do not inherit the orthogonality of the original eigenstrains/eigenstresses P(α), so

that (17) is not the exact Kelvin representation in the transformed coordinates. It does, however, illustrate that the

transformed stiffness is positive definite, even though S(α) are in general not symmetric. The representation (17) is

particularly useful in the limiting case of an acoustic fluid in the original domain for which only one of the K
(α)
0 is

non-zero, discussed later.
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IV. TRANSFORMED EQUATIONS IN SPECIFIC FORMS

A. Willis equations: AAA = FFF

The absence of the minor symmetries under the interchange of i and j in Ceff
ijkl and Seff

ijl of (15) implies that the

stress is generally not symmetric. Symmetric stress is guaranteed if QijIJ = QjiIJ (see eq. (13)), which occurs if the

gauge matrix is of the form AAA = ζFFF , for any scalar ζ 6= 0, which may be set to unity with no loss in generality. This

recovers the results of Milton et al.1 that the transformed material is of the Willis form, eq. (1). As noted in1, this is

the only choice for AAA that yields symmetric stress.

In summary, the governing equations are (14) with material parameters defined by (15) and

QijIJ = J−1FiIFjJ . (19)

The parameters now display the full symmetries expected of a Willis material:

Ceff
ijkl = Ceff

klij , Ceff
ijkl = Ceff

jikl, ρeffjl = ρefflj Seff
ijl = Seff

jil. . (20)

Note that the stiffness tensor is

Ceff
ijkl = FiIFjJFkKFlL J−1C

(0)
IJKL = ViIVjJVkKVlL J−1C̄

(0)
IJKL, where

C̄
(0)
IJKL = RIMRJNRPKRLQ C

(0)
MNPQ (21)

are the original moduli in the rotated frame. The full symmetry of the stiffness tensor also follows immediately from

the representation (17) with symmetric S(α) = J−1FP(α)Ft.

B. Cosserat elasticity: AAA = constant

1. General form

The constitutive parameters (15) simplify considerably if the fourth order quantity QQQ satisfies

QijIJ,i = 0. (22)

This differential constraint combined with (11) implies that the gaugeAmust be constant. In that case the transformed

equations of motion become

σij,i = ρij üj , σij = Ceff
ijkl ul,k, (23)

where the effective elastic moduli are defined by (13) and (15a) and the density tensor ρρρ is given in (9).

Note that the elastic moduli satisfy the symmetry (16)1 associated with the transformed energy density W =
1
2C

eff
ijkluj,iul,k. But C

eff
ijkl does not satisfy the minor symmetry (4)1 since

Ceff
ijkl − Ceff

jikl = J−1C
(0)
IJKL FkKAlL

(
FiIAjJ − FjIAiJ

)

= J−1C
(0)
IJKL FkKAlL

(
FiIAjJ − FjJAiI

)
, (24)

which is non-zero in general (note that the second form in (24) uses the minor symmetry (4)1 for the original moduli

C
(0)
IJKL). This means that the stress is not necessarily symmetric, σσσ 6= σσσt, which places the material in the framework

of Cosserat elasticity25. The number of independent elastic stiffness elements is at most 9(9+ 1)/2 = 45 as compared

with 6(6 + 1)/2 = 21 for normal linear elasticity.

2. Cosserat elasticity with isotropic density: AAA = III

Isotropic density can be achieved by taking the constant matrix AAA proportional to the identity, AAA = ζIII, with ζ = 1

without loss of generality. In this important case we have ρρρ = ρIII, with

ρ = ρ0 J
−1, Ceff

ijkl = J−1C
(0)
IjKl FiIFkK . (25)
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C. Examples

1. Example 1: SH motion in a plane of material symmetry

The original moduli are assumed to have a plane of symmetry perpendicular to the X3-axis, and the transformation

is assumed to preserve the out of plane coordinate: x3 = X3. Consider shear horizontal motionUUU = (0, 0, U(X1, X2, t))

satisfying the scalar equation
(
C

(0)
A3B3U,B

)
,A

= ρ0Ü , (26)

with indices A,B ∈ {1, 2}. Under these circumstances, the equation for SH motion in the transformed domain,

uuu = (0, 0, u(x1, x2, t)), is the same for both the Willis constitutive equations (AAA = FFF ) and the Cosserat model with

isotropic density (AAA = III). Thus,
(
Ceff

α3β3u,β

)
,α

= ρü, (27)

where α, β ∈ {1, 2}, ρ = J−1ρ0, and Ceff
α3β3 = J−1C

(0)
A3B3FαAFβB . The equivalence may be expected since the only

relevant element of the gauge matrix, A33, is the same for both models (A33 = 1).

The above conclusion for SH motion in the presence of orthotropic moduli relies only upon the scalar nature of

the motion in the original and transformed domains. As such, the SH results also follow from those in §V for fluid

acoustics under the standard replacement of fluid density and bulk modulus with inverse shear modulus and inverse

solid density, respectively.

2. Example 2: FFF = constant

When both AAA and FFF are constant the Willis equations simplify to those of normal linear elasticity (Sijl = 0). At

the same time, the constant deformation gradient implies that AAA = FFF (=constant) is a permissible choice for the

Cosserat medium. The Willis and Cosserat materials are then coincident with density

ρρρ = ρρρt = ρ0J
−1BBB. (28)

and fully symmetric elastic moduli given by (21). Note that the density ρρρ is anisotropic unless BBB = αIII, which means

the deformation is a pure expansion, possibly with rotation. But this is a rather trivial case.

Consider an isotropic initial material with original moduli C
(0)
IJKL = λ0δIJδKL + µ0(δIKδJL + δILδJK), or equiva-

lently,

CCC(0) = λ0 III ⊗ III + 2µ0 III ⊠ III, where
(
XXX ⊠XXX

)
YYY ≡

1

2
XXX
(
YYY + YYY t)XXX. (29)

The rotated moduli of (21)2 are therefore unchanged, C̄CC
(0)

= CCC(0), and the current density and moduli are

CCC = λBBB ⊗BBB + 2µBBB ⊠BBB, ρρρ = ρBBB, where {λ, µ, ρ} = J−1 {λ0, µ0, ρ0}. (30)

It is of interest to consider plane wave motion, uuu = qqq g(nnntxxx − vt) for unit vector nnn, constant qqq, and g ∈ C2. The

equation of motion (23)1 implies that the polarization vector qqq satisfies
(
QQQ− v2ρρρ

)
qqq = 0, where QQQ = (λ+ µ)(BBBnnn)⊗ (BBBnnn) + µ(nnntBBBnnn)BBB. (31)

The solutions of (31) are of two distinct types:

longitudinal: qqq ‖ nnn, v = (nnntBBBnnn)1/2 cL, c2L =
λ+ 2µ

ρ
=

λ0 + 2µ0

ρ0
, (32a)

quasi-transverse: qqq ⊥ BBBnnn, v = (nnntBBBnnn)1/2 cT , c2T =
µ

ρ
=

µ0

ρ0
. (32b)

The slowness vector is sss = v−1nnn, and the slowness surface is the envelope of the slowness vectors for all propagation

directions nnn. The slowness surface is therefore comprised of two sheets which are similar ellipsoids: ssstBBBsss = c−2
α ,

α = L, T . Note that the polarizations do not in general form an orthogonal triad.
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V. ACOUSTICS AS A SPECIAL CASE

A. General form of transformed equations

We consider the simpler but special case of acoustics in order to further understand the structure of the elastic

transformation theory. The acoustic equations are unique in the sense that they are the single example of a pentamode

material11,12 commonly encountered in mechanics. We will demonstrate that the pentamode property introduces a

unique degree of freedom not available in the fully elastic situation.

The elastic stiffness of an acoustic fluid is

C0 = K0 I⊗ I, (33)

which is of pentamode form11, i.e. the 6×6 Voigt matrix associated with the elements C
(0)
IJKL = K0δIJδKL has five

zero eigenvalues. Equation (12) becomes, using (33),

Qij

(
JK0 (ulQkl),k

)
,i
− ρij üi = 0, (34)

with the density tensor given by (9), and

Q = J−1FAt
(
Qij = J−1FiIAjI = QijKK

)
. (35)

The general form of the governing equations are again of the form (14), with material parameters

Ceff
ijkl = K0J

−1BikAjNAlN , (36a)

Seff
ijl = (−iω)−1K0J

−1BikAjNAlN,k, (36b)

ρeffjl = ρjl + (−iω)−2K0J
−1BikAjN,iAlN,k, (36c)

recalling that BBB = FFFFFF t. The stress is again not generally symmetric, unless AAA is proportional to FFF , in which case the

transformed material is of Willis form, see §IVA.

B. Cosserat and related forms of the transformed equations

The simplified form of the elasticity in the acoustic fluid implies that the condition (22), which is required to simplify

the form of the transformed equations, itself simplifies to the condition that Q be divergence free:

divQ = 0
(
Qij,i = 0

)
. (37)

Note that this is a necessary but not sufficient condition for the more general elasticity version (22). Assuming that

(37) holds, the transformed equations (34) have the simplified Cosserat structure (23), with

ρ = ρ0J QtB−1Q, Ceff = K0J Q⊗Q, divQ = 0. (38)

We note the symmetries ρρρ = ρρρt, Ceff
ijkl = Ceff

klij , but the minor symmetry Ceff
ijkl = Ceff

jikl does not in general hold unless

Q is symmetric10. Thus, the transformed acoustic equations are those of a pentamode material of Cosserat type with

anisotropic density. All previous studies of transformation acoustics assumed a priori that the transformed materials

must have symmetric stress. The present results show that the more general structure of the transformed properties is

that of a material with stress not necessarily symmetric. The pentamode structure of Ceff implies that the equations

of motion (23) can be expressed in a form that is clearly related to acoustics9 by using a scalar ”pseudo-pressure” p

and ”bulk modulus” K = K0J ,

ρv̇ = −Q∇p, ṗ = −K tr(Q∇v). (39)

The condition (37) can be achieved, as in the elastic case, with constant gauge AAA. For instance, taking AAA = III,

yields material properties (see (25))

ρ = ρ0J
−1, Ceff = K0J

−1 F⊗ F. (40)
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This describes a material with isotropic density of general pentamode/Cosserat form. That is, the stiffness is pen-

tamode (a single nonzero eigenstiffness27) and a single eigenstress of generally non-symmetric form, hence Cosserat.

As discussed in9, isotropic density with symmetric stress can be achieved if div hV = 0 for some function h(x).

One important case is when the deformation is a pure stretch F = V (with h = J−1, see eq. (11)), for which the

transformed material is pure pentamode with isotropic density:

ρ = ρ0J
−1 I, C = K0J

−1 V ⊗V, pure stretch. (41)

More general conditions under which pure pentamode material with isotropic density can be achieved are discussed

in10.

Condition (37) may also be satisfied by non-constant gauge matrices. For instance, A = JF−t gives Q = I which

clearly satisfies (37). In this case the transformed medium has the properties

ρ = ρ0J B−1, Ceff = K0J I⊗ I. (42)

This corresponds to a fluid with isotropic (hydrostatic) stress, bulk modulus K = K0J , and anisotropic density ρ.

This type of material was the first to be considered for acoustic cloaking5–7 yet it is remarkable that it does not

possess a generalization to elasticity. Rather, it is made possible by the simple structure of the second order quantity

QQQ as compared with its fourth order elasticity analog QQQ. The condition (22) for QQQ is only satisfied by constant A,

but the analogous condition (37) for QQQ has at least one non-constant solution for AAA. The one noted here, A = JF−t,

yields the class of acoustic cloaking materials that use anisotropic inertia as the active mechanism.

The transformed acoustic material can also be understood as the special case in which five of the Kelvin moduli K
(α)
0

vanish (see (18)), say α = 2, 3, . . . , 6, and the remaining single eigenvector is the identity, P(1) = I. The transformed

material has a single non-zero eigen-stiffnesses with associated eigen-tensor (see eq. (35))

S(1) = J−1FAt. (43)

The inertial transformed material (42) results from the choice of A that makes S(1) = I, that is A = JF−t.

VI. APPLICATIONS IN CYLINDRICAL ELASTICITY

The non-uniqueness in the form of the transformed equations of elasticity provides the designer of elastic cloaking

devices with a wide variety of possible materials from which to choose. These range from materials with Willis

constitutive behavior (1), to Cosserat materials (25), each special cases of the general constitutive relations (14)-(15).

The same non-uniqueness exist for acoustic cloaking, where designs based on inertial cloaking on the one hand, and

pentamode materials on the other, reflect the choice of completely different material properties. One aspect common

to all of these materials is their exotic nature. In the absence of available materials with exactly the right properties

it is reasonable to ask what can be achieved using ”normal” materials, i.e. those with isotropic density and standard

linear elastic response, including a symmetric stress.

With that goal in mind we examine in this section cloaking in the context of the Cosserat materials described by

(25). This class of metamaterials is chosen as the starting point because of its property of isotropic density and the

fact that the constitutive behavior is local. That is, the stress depends on the displacement gradient alone, and not on

displacement as in (14)-(15). The goal is to find if there is a material with symmetric stress that provides an optimal,

in some sense, approximation. We consider transformations in cylindrical coordinates, starting with the formulation

of the Cosserat constitutive equations in cylindrical coordinates. Thus, for the remainder of the paper A is assumed

to be a constant, and we use CCC instead of CCCeff.

A. General theory for Cosserat materials

1. Cosserat notation in cylindrical coordinates

The cylindrical coordinates are referred to by the indices 1, 2, 3 for r, θ, z, respectively. The usual Voigt notation,

which means {1, 2, 3, 4, 5, 6} = {11, 22, 33, 23, 31, 12}, is augmented with three additional indices to describe Cosserat
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elasticity: {4̄, 5̄, 6̄} = {32, 13, 21}, so that the elastic stiffness tensor becomes in the 9-index Voigt-Cosserat notation,

CCC =




c11 c12 c13 c14 c14̄ c15 c15̄ c16 c16̄
c22 c23 c24 c24̄ c25 c25̄ c26 c26̄

c33 c34 c34̄ c35 c35̄ c36 c36̄
c44 c44̄ c45 c45̄ c46 c46̄

c4̄4̄ c4̄5 c4̄5̄ c4̄6 c4̄6̄
c55 c55̄ c56 c56̄

c5̄5̄ c5̄6 c5̄6̄
S Y M c66 c66̄

c6̄6̄




⇔




1
2
3
4
4̄
5
5̄
6
6̄




. (44)

Following28, the traction vectors ti = ti(x, t), i = r, θ, z, are defined by the orthonormal basis vectors {er, eθ, ez}
of the cylindrical coordinates {r, θ, z} according to ti = eiσσσ (i = r, θ, z), where σσσ(x, t) is the stress, and a comma
denotes partial differentiation. With the same basis vectors, and assuming the summation convention on repeated
indices, the elements of stress are σij = Cijklεkl where εεε = 1

2 (∇u+∇ut) is the strain, Cijkl = Cijkl(x) are elements

of the fourth order (anisotropic) elastic stiffness tensor. The traction vectors are29











tr

tθ

tz











=











Q R P

Rt T S

Pt St M





















u, r

1

r
(u, θ +Ku)

u, z











,











Q R P

Rt T S

Pt St M











=











(erer) (ereθ) (erez)

(eθeθ) (eθez)

(ezez)











,

where K = eθ ⊗ er − er ⊗ eθ, and in notation similar to that of30, the matrix (ab) has components (ab)jl = aiCijklbk
for arbitrary vectors a and b. The explicit form of the various matrices is apparent with the use of Voigt’s notation

Q =



c11 c16 c15̄
c16 c66 c5̄6
c15̄ c5̄6 c5̄5̄


 , T =



c6̄6̄ c26̄ c46̄
c26̄ c22 c24
c46̄ c24 c44


 , M =



c55 c4̄5 c35
c4̄5 c4̄4̄ c34̄
c35 c34̄ c33


 ,

(45)

S =



c56̄ c4̄6̄ c36̄
c25 c24̄ c23
c45 c44̄ c34


 , P =



c15 c14̄ c13
c56 c4̄6 c36
c55̄ c4̄5̄ c35̄


 , R =



c16̄ c12 c14
c66̄ c26 c46
c5̄6̄ c25̄ c45̄


 .

Note that the six elements in each of the symmetric matrices Q, T, M and the nine in each of S, P, R, are

independent. That is, there is one-to-one correspondence between the elements of the six matrices and the 45

independent components of the Cosserat elasticity tensor (44).

2. Cylindrically anisotropic materials

We consider materials with no axial dependence whose density and the elasticity tensor may depend upon r, i.e.

ρ = ρ(r) and Cijkl = Cijkl(r). We seek solutions in the form of time-harmonic cylindrical waves of azimuthal order

n = 0, 1, 2, . . . and axial wavenumber kz, such that the displacement-traction 6-vector is of the form




u(r, θ, z, t)

irtr(r, θ, z, t)


 = ηηη(r) ei(nθ+kzz−ωt), (46)

where ηηη depends only on the radial coordinate r. Accordingly, the governing equations of motion reduce to an ordinary

differential equation for this 6× 1 vector29:

dηηη

d r
−

i

r
G(r)ηηη(r) = 0, (47)
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with 6× 6 system matrix G, where

iG(r) =




−Q−1R̃ −iQ−1

i
(
T̃− R̃+Q−1R̃− ρω2r2

)
R̃+Q−1




+ ikzr




−Q−1P 0

i
[
PtQ−1R̃− S̃−

(
PtQ−1R̃− S̃

)+
+ ikzr

(
PtQ−1P−M

)]
−PtQ−1


 ,

(48)

R̃ = Rκκκ, S̃ = κκκS, T̃ = κκκ+Tκκκ = T̃+, κκκ = K+ inI = −κκκ+.

Note the symmetry G = JG+J for real-valued material constants and ω, kz, where J has block structure with zero

submatrices on the diagonal and off-diagonal identity matrices. This hermiticity-like property has important physical

consequences such as conservation of energy28.

3. Transformation in cylindrical coordinates

Let R = (X2
1 +X2

2 )
1/2, r = (x2

1+x2
2)

1/2, and consider the reverse deformation R = R(r), X3 = x3. The deformation

gradient is then

FFF = αIIIr + βIIIθ + IIIz, with α =
d r

dR
, β =

r

R
, (49)

where IIIr = eeer ⊗ eeer, IIIθ = eeeθ ⊗ eeeθ, IIIz = eeez ⊗ eeez. Taking the (assumed constant) gauge matrix as AAA = III gives isotropic

density, ρρρ = ρIII and Cosserat elastic stiffness CCC, where according to eq. (25),

ρ =
1

αβ
ρ0, (50a)

CCC =
1

αβ




α2c
(0)
11 αβc

(0)
12 αc

(0)
13 αβc

(0)
14 αc

(0)
14 αc

(0)
15 α2c

(0)
15 α2c

(0)
16 αβc

(0)
16

β2c
(0)
22 βc

(0)
23 β2c

(0)
24 βc

(0)
24 βc

(0)
25 αβc

(0)
25 αβc

(0)
26 β2c

(0)
26

c
(0)
33 βc

(0)
34 c

(0)
34 c

(0)
35 αc

(0)
35 αc

(0)
36 βc

(0)
36

β2c
(0)
44 βc

(0)
44 βc

(0)
45 αβc

(0)
45 αβc

(0)
46 β2c

(0)
46

c
(0)
44 c

(0)
45 αc

(0)
45 αc

(0)
46 βc

(0)
46

c
(0)
55 αc

(0)
55 αc

(0)
56 βc

(0)
56

α2c
(0)
55 α2c

(0)
56 αβc

(0)
56

S Y M α2c
(0)
66 αβc

(0)
66

β2c
(0)
66




. (50b)

Equivalently, the six matrices of (45) that are in one-to-one correspondence with CCC are

Q =
α

β
Q(0), T =

β

α
T(0), M =

1

αβ
M(0),

S =
1

α
S(0), P =

1

β
P(0), R = R(0). (51)
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These results are consistent with the system equation (47) in the current coordinates and the analogous equation

in the original coordinates,

dηηη

dR
=

i

R
G(0)(R)ηηη, (52)

with G(0)(R) defined in the same way as (48) using Q(0), . . ., R(0). Note that the transformed version of (52) may

be obtained directly by multiplication with the factor dR/d r,

dηηη

d r
=

i

R

dR

d r
G(0)(R)ηηη. (53)

Comparison of eqs. (47) and (53) implies that the transformed system matrix is

G(r) =
r

R

dR

d r
G(0)(R). (54)

This relation, combined with the block structure of G in (48) and the analogous form for G(0), implies the matrix

relations (51).

B. Example: a cylindrically orthotropic material

1. Transformed elastic moduli

The initial material is assumed to be cylindrically orthotropic, with stiffness in the usual Voigt notation

({1, 2, 3, 4, 5, 6} ↔ {11, 22, 33, 23, 31, 12}) given by

CCC(0) =




c
(0)
11 c

(0)
12 c

(0)
13 0 0 0

c
(0)
12 c

(0)
22 c

(0)
23 0 0 0

c
(0)
13 c

(0)
23 c

(0)
33 0 0 0

0 0 0 c
(0)
44 0 0

0 0 0 0 c
(0)
55 0

0 0 0 0 0 c
(0)
66




. (55)

Hence, using (50b), the transformed elastic stiffness tensor becomes in the 9-index Cosserat notation,

CCC =
1

αβ




α2c
(0)
11 αβc

(0)
12 αc

(0)
13 0 0 0 0 0 0

β2c
(0)
22 βc

(0)
23 0 0 0 0 0 0

c
(0)
33 0 0 0 0 0 0

β2c
(0)
44 βc

(0)
44 0 0 0 0

c
(0)
44 0 0 0 0

c
(0)
55 αc

(0)
55 0 0

α2c
(0)
55 0 0

S Y M α2c
(0)
66 αβc

(0)
66

β2c
(0)
66




. (56)

2. SH motion

The equation of motion in the undeformed coordinates for UUU = (0, 0, U(r, θ, t)),

1

R

(
Rc

(0)
55 U,R

)
,R

+
1

R2

(
c
(0)
44 U,θ

)
,θ
− ρ0Ü = 0, (57)

transforms to the following equation for uuu = (0, 0, u(r, θ, t)),

1

r
(rc5̄5̄u,r),r +

1

r2
(c44u,θ),θ − ρü = 0, (58)
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where

ρ = ρ0
R

r

dR

d r
, c44 = c

(0)
44

r

R

dR

d r
, c5̄5̄ = c

(0)
55

R

r

dR

d r
. (59)

This is an example of the general result in §IVC1 for SH motion in a plane of symmetry .

3. In-plane motion

The displacement is assumed to have the form uuu = (ur(r, θ, t), uθ(r, θ, t), 0). The density is again isotropic given by

eq. (59)1 and the relevant moduli are, from eq. (50b),

c11 = c
(0)
11

R

r

dR

d r
, c22 = c

(0)
22

r

R

dR

d r
, c12 = c

(0)
12 , (60a)

c66 = c
(0)
66

R

r

d r

dR
, c6̄6̄ = c

(0)
66

r

R

dR

d r
, c66̄ = c

(0)
66 . (60b)

For isotropic initial stiffness tensor, these expressions agree with the Cosserat elastic moduli found by24, where only

the particular transformation of3,4 was considered, i.e., R = r1(r − r0)/(r1 − r0) for r ∈ (r0, r1].

C. A symmetric approximation for kz = 0

The example in §VIB achieves cloaking of in-plane elastic wave motion using elastic moduli of Cosserat form, (60),

generalizing the findings of24. The existence of three distinct in-plane shear moduli, c1212, c2121, c1221 = c2112, is a

property of the Cosserat model, but one that is difficult if not impossible to realize in practice. We now show that

there is a preferred approximation with only a single shear modulus.

Consider the transformed system matrix G with kz = 0 for the initial cylindrically orthotropic material (55), which

follows from (54) as

iG =
β

α




−



0 c

(0)
11

−1
c
(0)
12 0

1 0 0
0 0 0


κκκ −i



c
(0)
11

−1
0 0

0 c
(0)
66

−1
0

0 0 c
(0)
55

−1




iκκκ+



0 0 0

0 c
(0)
22 − c

(0)
11

−1
c
(0)
12

2
0

0 0 c
(0)
44


κκκ− iω2R2ρ0III −κκκ




0 1 0

c
(0)
11

−1
c
(0)
12 0 0

0 0 0







. (61)

Let Cijkl be a set of moduli in the transformed coordinates, corresponding to a normal elastic solid (symmetric stress)

of cylindrically orthotropic symmetry, with moduli (in the standard Voigt notation),

CCC =




c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66




. (62)

Assuming the density is isotropic and equal to the transformed density of eq. (50a), the system matrix associated

with the stiffness Cijkl becomes

iG =




−



0 c11

−1c12 0
1 0 0
0 0 0


κκκ −i



c11

−1 0 0
0 c66

−1 0
0 0 c55

−1




iκκκ+



0 0 0
0 c22 − c11

−1c12
2 0

0 0 c44


κκκ− iω2r2ρIII −κκκ




0 1 0
c11

−1c12 0 0
0 0 0







. (63)
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Comparison of (61) and (63) suggests the identification

c11 =
α

β
c
(0)
11 , c22 =

β

α
c
(0)
22 , c12 = c

(0)
12 , (64a)

c44 =
β

α
c
(0)
44 , c55 =

β

α
c
(0)
55 , c66 =

α

β
c
(0)
66 . (64b)

This set of moduli has the property that they correspond to a normal elastic material, as compared with the Cosserat

material required for the exact solution. Comparing the latter, given by (56), with the proposed moduli (64) shows

that

c11 = c11, c22 = c22, c12 = c12, c44 = c44, c55 = c5̄5̄, c66 = c66. (65)

Let ηηη(r) be the solution for the approximate but symmetric moduli (62),

dηηη

d r
−

i

r
G(r)ηηη(r) = 0. (66)

It is evident that the exact and approximate systems (47) and (66) have identical SH solutions. The approximate

solution defined by the moduli Cijkl possesses a further interesting property related to in-plane wave motion. Thus,

the difference between the system matrices of the exact transformed medium and that of the approximate material

follows as

i

r
G−

i

r
G = f(r)D ≡ ∆, (67)

where f(r) =
1

R

dR

dr
−

1

r
, D =

(
D1 0

0 −D+
1

)
, D1 =




0 0 0
−in 1 0
0 0 0


 . (68)

The difference is independent of the material properties, a function of only the transformation function through f(r)

and of the azimuthal index n through D which is rank two and has the property Dk = D or D2 for any odd or even

k. This suggests that the choice (64) of the approximate material parameters is in some sense preferred over others.

Some consequences are discussed next.

The matricant solutions M(r, r1) and M(r, r1) of, respectively, the exact and approximate systems (47) and (66),

are defined31 such that η = Mc and η = Mc where c is the arbitrary initial data vector at r = r1. The matricants

therefore satisfy differential equations similar to the state vectors with initial conditions M(r1, r1) = I, M(r1, r1) = I.

According to31 (§3 of Ch.VII), the matricant (47) and (66) on an interval [r1, r2] are related as M = MP through

the matrix P satisfying P′ = M
−1

∆MP. Noting that R′ = ∆R with initial condition R(r1, r1) = I has a simple

explicit solution

R±1 = I+ diag

([(rR1

Rr1

)±1
− 1

]
D1,

[(rR1

Rr1

)∓1
− 1

]
D+

1

)
, (69)

it follows that

M = MRT where T′ = ∆1T, T(r1, r1) = I, (70)

and ∆1 = (MR)−1(∆M −M∆)R. The latter vanishes at r = r1, which suggests that the convergent Peano series

T = T0 +T1 +T2 + . . . with T0 = I, T′
j = ∆1Tj−1, j = 1, 2, . . ., forms a natural and regular perturbation solution.

Note that in cylindrical cloaks the original domain [R1 < r1, R2 = r2] is mapped to the smaller one [r1, r2] so that

the elements of R in (69) are sign definite.

VII. DISCUSSION

A complete transformation theory has been developed for elasticity. The material properties after transformation

of the elastodynamic equations are given by eqs. (13) through (15). The constitutive parameters depend on both the

Andy
Highlight

Andy
Typewriter
55 should be alpha/beta, 
the same as for 66.

Andy
Typewriter

Andy
Highlight



14

transformation and gauge matrices, FFF andAAA, and do not necessarily have symmetric stress. It was shown in §IV that a

priori requiring stress to be symmetric implies that the material must be of Willis form (1), withAAA = FFF as Milton et al.1

found. The emphasis here has been on exploring the consequences of relaxing the constraint of symmetric stress. There

are several reasons for doing so. First is the fact that the transformation of the acoustic equation in its simplest form,

i.e. by identifying an inertial tensor ρρρ = J−1FFFFFF t from the differential identity DivGrad f → J div J−1FFFFFF t grad f ,

does not follow from the transformed Willis material, even though the inertial fluid has symmetric stress. Other

types of transformed acoustic fluids are possible (e.g. pentamode materials), again with symmetric stress and not

contained within the framework of eqs. (1). A second and more practical reason for considering the general material

as defined by eqs. (13) through (15) with FFF and AAA distinct is to broaden the class of materials available for design of

elastodynamic cloaks.

AllowingAAA to be independent of FFF leads to constitutive models that differ markedly from the Willis material model.

In this paper we have emphasized solutions corresponding to time-independent material parameters obtained when

AAA is assumed constant (see eqs. (9), (13) and (15a)),

ρρρ = ρ0 J
−1AAAAAAt, Cijkl = J−1C

(0)
IJKL FiIAjJFkKAlL. (71)

These transformed quantities correspond to a material with anisotropic density tensor and stress-strain relation of

Cosserat type (non-symmetric stress). Setting AAA = III ensures that the transformed density is isotropic (see eq. (25))

ρ = J−1 ρ0, Ceff
ijkl = J−1C

(0)
IjKl FiIFkK . (72)

However, there is no general choice of the gauge matrix AAA that will make the stress symmetric for a given transfor-

mation. This feature distinguishes the elastic transformation problem from the acoustic case, for which it is always

possible to achieve symmetric, even isotropic (hydrostatic), stress. If the transformation is homogeneous, correspond-

ing to constant FFF , it is possible to make the elastic stress symmetric, although at the price of anisotropic inertia (see

eq. (28)).

Materials displaying non-symmetric stress of the type necessary to achieve elastodynamic cloaking while difficult

to envisage, are not ruled out. Effective moduli with the major symmetry Cijkl = Cklij that do not display the

minor symmetry Cijkl = Cjikl are found in the theory of incremental motion superimposed on finite deformation32.

The similarity with the transformation problem is intriguing: small-on-large motion in the presence of finite prestress

corresponds to a transformation of an actual material via a deformation. The deformation in the small-on-large theory

is however quite distinct from FFF in the present context. The formal equivalence of the constitutive parameters (72)

with the density and moduli for incremental motion after finite prestress offers the possibility for achieving Cosserat

elasticity of the desired form. The crucial quantity is the finite (hyperelastic) strain energy function of the material,

which after prestress should have the desired Cosserat incremental moduli. Future work will examine this connection

and the types of strain energy functions required.

Another approach is to seek materials with normal elastic behavior that approximate, in some sense, the Cosserat

material. Preliminary work in this direction has been considered here. The general theory has been applied to the

case of cylindrical anisotropy for arbitrary radial transformation R → r. The equations of motion for the transformed

Cosserat material have been expressed in Stroh format, eq. (47), suitable for numerical implementation. The material

required for cloaking of in-plane elastic waves is of Cosserat type with isotropic density. A normal elastic material

with density (50a) and elastic moduli defined by eqs. (62) and (64) appears to provide a natural approximation. The

properties of this type of approximate material is the subject for planned further study, analytical and numerical.
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