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Transformation theory is developed for the equations of linear anisotropic elasticity. The trans-
formed equations correspond to non-unique material properties that can be varied for a given trans-
formation by selection of the matrix relating displacements in the two descriptions. This gauge
matrix can be chosen to make the transformed density isotropic for any transformation although
the stress in the transformed material is not generally symmetric. Symmetric stress is obtained
only if the gauge matrix is identical to the transformation matrix, in agreement with Milton et al.’.
The elastic transformation theory is applied to the case of cylindrical anisotropy. The equations of
motion for the transformed material with isotropic density are expressed in Stroh format, suitable
for modeling cylindrical elastic cloaking. It is shown that there is a preferred approximate mate-
rial with symmetric stress that could be a useful candidate for making cylindrical elastic cloaking
devices.

I. INTRODUCTION

Interest in cloaking of wave motion has surged with the demonstration of the possibility of practical electromagnetic
wave cloaking?. The principle underlying the effect is the so-called transformation or change-of-variables method?:*
in which the material parameters in the physical domain are defined by a spatial transformation. The concept of
material properties defined by transformation is not restricted to electromagnetism, and has stimulated interest in
applying the same method to other wave fields. The first applications in acoustics were obtained by direct analogy
with the electromagnetic case® 7. It was quickly realized that the fundamental mathematical identity behind the
acoustic transformation is the equivalence® of the Laplacian in the original coordinates to a differential operator
in the transformed (physical) coordinates, according to DivGrad f — Jdiv.J 'FF'grad f, where F = 9x/0X is
the deformation gradient of the transformation (see §II) and J = det F'. This connection, plus the realization that
the tensor within the operator can be interpreted as a tensor of inertia means that the homogeneous acoustic wave
equation can be mapped to the equation for an inhomogeneous fluid with anisotropic density.

However, the material properties for acoustic cloaking do not have to be identified as a fluid with a single bulk
modulus and a tensorial inertia. There is a large degree of freedom in the choice of the cloaking material properties”1°:
a compressible fluid with anisotropic density is a special case of pentamode materials'™'? with anisotropic inertia. The
non-uniqueness of the material properties (for a given transformation) is a feature not found in the electromagnetic
case, where, for instance, the tensors of electric permittivity and magnetic permeability are necessarily proportionate
for a transformation of the vacuum. The extra freedom in the acoustic case means that either or both of the scalar pa-
rameters, density and elastic stiffness (bulk modulus), can become tensorial quantities after the transformation. While
most papers on acoustic cloaking have considered materials with scalar stiffness and tensorial inertia, e.g.> 13718,
see!? for a review, there is no physical reason for such restricted material properties. Cloaking with such materials
requires very large total mass??%, but the more general class of pentamode materials with anisotropic inertia does
not have this constraint. In fact, it is often possible to choose the material properties so that the inertia is isotropic,
in which case the total mass is simply the mass of the equivalent undeformed region'®. This property can be realized
if the transformation is a pure stretch, as is the case when there is radial symmetry. This distinction between the
cloaking material properties is critical but, judging by the continued emphasis on anisotropic inertia in the literature,

2122 of acoustic cloaking

does not seem to have been fully appreciated. Apart from?!0 there have been few studies
with anisotropic stiffness.

The non-uniqueness of the transformed material properties found in the acoustic theory transfers to elastodynamics.
The first study of the transformation of the elastodynamic equations by Milton et al.! concluded that the appropriate

class of constitutive equations for the transformed material are the Willis equations for material response. The general
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form of the Willis equations are?3
dive = p, (1a)
oc=C"xe+8Tsu, (1b)
p=5T ve+p i, (1c)

where e = (Vu + (Vu)'), * denotes time convolution and ' is the adjoint. The stress in (1b) is symmetric, and
the elastic moduli enjoy all of the symmetries for normal elasticity, wviz. C,‘jgj = fﬁgl and Cfgvl = Cfﬁd. Brun et
al.?* considered the transformation of isotropic elasticity in cylindrical coordinates for the particular transformation
function used by®* and found that the transformed material properties are those of a material with isotropic inertia

and elastic behavior of Cosserat type. The governing equations for Cosserat elastic materials?® are

dive = ptii, (2a)
o = C*"Vu, (2b)

with elastic moduli satisfying the major symmetry C’,‘égj = Cfﬁl but not the minor symmetry, C’;’ggl #+ C’fﬁcl. This
implies that the stress is not necessarily symmetric, ' # o, and that it depends not only on the strain e (the
symmetric part of the displacement gradient) but also upon the local rotation w = 2 (Vu — (Vu)'). Not only are the
parameters such as C°T in egs. (1) and (2) different, the constitutive theories are mutually incompatible: one has
symmetric stress, the other a non-symmetric stress. We show in this paper that both theories are possible versions
of the transformed elastodynamic equations, and that they are only two from a spectrum of possible constitutive
theories. Apart from the two references mentioned!2*, the only other example of transformation elasticity concerns
flexural waves obeying the biharmonic equation®®, which is beyond the realm of the present paper.

The purpose here is to consider the transformation method for elastodynamics, and to describe the range of
constitutive theories possible. The starting point is the observation'® that the extra degrees of freedom noted for the
acoustic transformation can be ascribed to the linear relation between the displacement fields in the two coordinate
systems. This ”gauge” transformation introduces a second matrix or tensor, in addition to the deformation gradient
from the change of coordinates. As discussed in'?, the variety of acoustically transformed material properties arises
from the freedom in the displacement gauge. The same freedom is also present in the elastic case, and as we will
show, it allows one to derive a broader class of constitutive properties than those suggested by Milton et al.! and by
Brun et al.?*. The material properties found in these studies correspond to specific choices of the gauge matrix.

Cloaking is achieved with transformations that deform a region in such a way that the mapping is one-to-one
everywhere except at a single point, which is mapped into the cloak inner boundary. This is a singular transformation,
and in practice, the mapped region would be of finite size, e.g. a small sphere, for which the mapping is everywhere
regular. Our objective here is to understand the nature of the material necessary to produce the transformation effect,
in particular, what type of constitutive behavior is necessary: such as isotropic or anisotropic inertia.

The outline of the paper is as follows. The notation and setup of the problem are given in §II where the dis-
placement gauge matrix is introduced. The general form of the transformed equations of motion are presented in
§III. Constitutive equations resulting from specific forms of the gauge matrix are discussed in §IV, particularly the
Willis equations and Cosserat elasticity, which are shown to coincide under certain circumstances. The special case of
transformed acoustic materials is discussed in §V. The elastic transformation theory with isotropic density is applied
in §VI to radial transformation of cylindrically anisotropic solids. Based on this formulation, an elastic material with
isotropic density and standard stress-strain relations is proposed in §VIC as an approximation to the transformed
material. A summary of the main results is given in §VII.

II. NOTATION AND SETUP

Two related configurations are considered: the original €2, and the transformed region w, also called the physical
or current domain. The transformation from €2 to w is described by the point-wise deformation from X € Q to
x € w. The symbols V, Vx and div, Div indicate the gradient and divergence operators in & and X, respectively,
and the superscript ¢ denotes transpose. The component form of divE is 0E;/0x; or OF;;/0xz; when E is a vector



and a second order tensor-like quantity, respectively. Upper and lower case subscripts (I,J,...,4,7,...) are used
to distinguish between the domains, and the summation convention on repeated subscripts is assumed. It is useful
to describe the transformation using language of finite deformation in continuum mechanics. Thus, X describes a
particle position in the Lagrangian or undeformed configuration, and @ is particle location in the Eulerian or deformed
physical state. The transformation or mapping is assumed to be one-to-one and invertible. For perfect cloaking the
transformation is one-to-many at the single point X = O, but this can be avoided by always considering near-cloaks,
where, for instance, the single point is replaced by a small hole which is mapped to a much larger hole.

The deformation gradient is defined F' = V xx with inverse F 1 =-vx , or in component form F;; = dz;/0X7,
F;;' = 0X1/0x;. The Jacobian of the deformation is J = det F = |F|, or in terms of volume elements in the two
configurations, J = dv/d V. The polar decomposition implies F = VR, where R is proper orthogonal (RRt =R'R=
I, det R = 1) and the left stretch tensor V € Sym™ is the positive definite solution of V? = B where B (= FF") is
the left Cauchy-Green or Finger deformation tensor.

The infinitesimal displacement U(X,t) and stress X(X, ) satisfy the equations of linear elasticity in the original
domain:

3)

DivE = poﬁ, A
0 in Q,
2 =cYvyU,

where pg is the (scalar) mass density and the the elements of the elastic stiffness tensor satisfy the full symmetries
0 _ ~0) 0 _ ~(0)
Crike =Ciikr Crikr = Ckris (4)

The first identity expresses the symmetry of the stress and the second is the consequence of an assumed strain energy
density function. The total energy density is the sum of the strain and kinetic energy densities,

.
Eo =Wy +To where Wy = %C}?I)KL UJ’[UL’K, To = %poU U. (5)

Particle displacement in the transformed domain is u(z, t). Our objective is to find its governing equations. In order
to proceed, we need in addition to the geometrical quantity F', a kinematic relation that relates the displacements in
the two domains. We assume a linear ”gauge” change in the displacement defined by a non-singular matrix A as

U= Atu (U[ = Auui). (6)

According to its definition the matrix A is, like F', not a second order tensor because it has one ”leg” in both domains.
The choice of the transpose, A" in equation (6), means that A and F' are similar objects, although at this stage they
are not related.

The arbitrariness in the choice of A is the central theme of this paper. This approach generalizes that of'® which
was restricted to acoustic materials, and of Milton et al.! for elasticity. The point of departure with! here rests with
the assumed independence of the gauge matrix A. Milton et al. assume a similar relation between the displacement
fields; eq. (6) is identical to eq. (2.2) in'; however, the matrix A in' is assumed at the outset to be equal to the
deformation gradient (A = F). We will return to this distinction later. As noted by Milton et al.}, the relation
dX = F~ ' dz might lead one to expect A = F~" by identifying d X and dz with U and u, respectively. However, the
displacements are not associated with the coordinate transformation, unlike in the theory of finite deformation, and
hence F' and A are independent. Milton et al.! specify A = F on the basis that this is the only choice that guarantees
a symmetric stress. We will return to this point later.

IIT. GENERAL FORM OF THE TRANSFORMED EQUATIONS

Under the transformation and the gauge change the energy density transforms as & — & = W + T according to
EAV = &ydVj, so that

&= W+ T - %J71{0§0J)KL (ujAjJ)7i(ulAlL) kFiIFkK + poﬁiﬂin]Ajl.} (7)



Hence,

W = 17710, FirFrxc (ujAjs) ,(wAir) ,, T = gi'pa, 8)

i
where the (symmetric) density tensor is
p=p"=poJ "AA", (9)

The equations of motion in the deformed, or current material, are determined by the Euler-Lagrange equations of the
Lagrangian density L =W — T, as

Ay (71 Fir(wAi) wFir) , — pijii = 0. (10)
Using the identity
(J7'Fir), =0, (11)
this can be written
Qij1J (JC}S)KL (w leKL),k)’i — pijli; = 0, (12)
where the fourth order quantity
Qijry = J 'Fi1A;y, (13)

is introduced for later use.
The transformed system (12) is equivalent to the equilibrium equations

Tiji = Djs (14a)
and the constitutive relations
Oij = Cfﬁclul,k + Sfﬁ u,  pr= Sfﬁ Uji+ P;?llk, (14b)
with parameters defined as follows in the Fourier time domain (dependence e =)
Cifla = IO 1, Qijr Ok, (15a)
Sfﬁ = (_iw)iljcﬁ)])KLQijIJleKL,k; (15b)
P51 = pji + (—iw) "2 IO e Qisr i Quirc s (15¢)
where the density p;; is given by (9). The elastic moduli and the density satisfy the general symmetries
Cii = Citiys P51 = Pl (16)

but not the full symmetries required for the Willis constitutive model (1). Equations (14)-(15) are the fundamental
result of the transformation theory. The remainder of the paper is concerned with their simplification and interpre-
tation.

Note that the transformed stiffness may be expressed in a form similar to the Kelvin representation for the tensor
of elastic moduli?’, as

6
Cc =Y KWs@ 8@ K@= k(™ s = 'FP@A", (17)

a=1

where Kéa) > 0 are the Kelvin moduli, P ¢ Sym, tr P@p®) — 0ap, are the eigenstrains/eigenstresses, such that
the original stiffness has the unique decomposition
6
c@ =3 K{P@ g P, (18)

a=1

The transformed matrices S do not inherit the orthogonality of the original eigenstrains/eigenstresses P(o‘), SO
that (17) is not the exact Kelvin representation in the transformed coordinates. It does, however, illustrate that the
transformed stiffness is positive definite, even though S are in general not symmetric. The representation (172 is
particularly useful in the limiting case of an acoustic fluid in the original domain for which only one of the K(()a is
non-zero, discussed later.



IV. TRANSFORMED EQUATIONS IN SPECIFIC FORMS
A. Willis equations: A =F

The absence of the minor symmetries under the interchange of ¢« and j in C Skl and S¢ff Pl of (15) implies that the
stress is generally not symmetric. Symmetric stress is guaranteed if Q,;7; = Qjiry (see eq. (13)), which occurs if the
gauge matrix is of the form A = (F', for any scalar ¢ # 0, which may be set to unity with no loss in generality. This
recovers the results of Milton et al.! that the transformed material is of the Willis form, eq. (1). As noted in!, this is
the only choice for A that yields symmetric stress.

In summary, the governing equations are (14) with material parameters defined by (15) and

Qijry = J 'F; Fjy. (19)
The parameters now display the full symmetries expected of a Willis material:
Czykl Cklzp Cz]kl lekl’ p?l:f = plejff Szyl szl . (20)
Note that the stiffness tensor is
kal FirFy FugFip J- C%)KL =VirViiVixVir J_lc}?y)KD where
Cixcr = R Byn Rpc R Cliy pg (21)

are the original moduli in the rotated frame. The full symmetry of the stiffness tensor also follows immediately from
the representation (17) with symmetric $(*) = J=IFP®F?*,

B. Cosserat elasticity: A = constant

1.  General form

The constitutive parameters (15) simplify considerably if the fourth order quantity Q satisfies
Qijri = 0. (22)
This differential constraint combined with (11) implies that the gauge A must be constant. In that case the transformed
equations of motion become
0iji = pij iy, 05 = Cffia une, (23)

where the effective elastic moduli are defined by (13) and (15a) and the density tensor p is given in (9).
Note that the elastic moduli satisfy the symmetry (16); associated with the transformed energy density W =

;c,ﬁduj iu . But C_]kl does not satisfy the minor symmetry (4); since

Cmcz C]ml ICIJKL Frx AL (FirAjy — FirAqig)
=J- 1CUKL Frx i (FirAjy — FigAip), (24)

which is non-zero in general (note that the second form in (24) uses the minor symmetry (4); for the original moduli
C}g)K ). This means that the stress is not necessarily symmetric, o # o, which places the material in the framework
of Cosserat elasticity?®. The number of independent elastic stiffness elements is at most 9(9 + 1)/2 = 45 as compared
with 6(6 + 1)/2 = 21 for normal linear elasticity.

2. Cosserat elasticity with isotropic density: A =1

Isotropic density can be achieved by taking the constant matrix A proportional to the identity, A = (I, with ( =1
without loss of generality. In this important case we have p = pI, with

P = pPo Jﬁla CEH =J" 10]7[{[ FirFrk. (25)



C. Examples

1. Ezample 1: SH motion in a plane of material symmetry

The original moduli are assumed to have a plane of symmetry perpendicular to the X3-axis, and the transformation
is assumed to preserve the out of plane coordinate: x3 = X35. Consider shear horizontal motion U = (0,0, U (X1, X»,t))
satisfying the scalar equation

(Cﬁiofi)BSU,B),A = pUUa (26)

with indices A, B € {1,2}. Under these circumstances, the equation for SH motion in the transformed domain,
u = (0,0, u(x1,xa,t)), is the same for both the Willis constitutive equations (A = F') and the Cosserat model with
isotropic density (A = I). Thus,

(CBpsus) , = piis (27)
where a, 3 € {1,2}, p = J 1pg, and ngfﬁS = ’1Cf§B3FaAF55. The equivalence may be expected since the only

relevant element of the gauge matrix, Ass, is the same for both models (433 = 1).

The above conclusion for SH motion in the presence of orthotropic moduli relies only upon the scalar nature of
the motion in the original and transformed domains. As such, the SH results also follow from those in §V for fluid
acoustics under the standard replacement of fluid density and bulk modulus with inverse shear modulus and inverse
solid density, respectively.

2.  Ezample 2: F = constant

When both A and F are constant the Willis equations simplify to those of normal linear elasticity (S;;; = 0). At
the same time, the constant deformation gradient implies that A = F (=constant) is a permissible choice for the
Cosserat medium. The Willis and Cosserat materials are then coincident with density

p=p"=poJ ' B. (28)

and fully symmetric elastic moduli given by (21). Note that the density p is anisotropic unless B = al, which means
the deformation is a pure expansion, possibly with rotation. But this is a rather trivial case.

Consider an isotropic initial material with original moduli C}?,)KL = X010k + o(drkdyr + drdsK), or equiva-
lently,

CO =X\I@T+2uIRI, where (XRKX)Y =-X(Y +Y")X. (29)

[N

The rotated moduli of (21)y are therefore unchanged, C'(O) = C(O), and the current density and moduli are
C:AB®B+2N’B|X37 P:PBv where {A,ﬂvp}zjil{AOaIU'OapO} (30)

It is of interest to consider plane wave motion, u = g g(n‘x — vt) for unit vector n, constant g, and g € C2. The
equation of motion (23); implies that the polarization vector g satisfies

(Q —v*p)g=0, where Q= (\+ p)(Bn)® (Bn)+ pu(n'Bn)B. (31)

The solutions of (31) are of two distinct types:

A+2 Ao+ 2
longitudinal: ¢ ||n, v= (@n'Bn)"?c;, & = o _Jof fo. (32a)
p Po
quasi-transverse: q L Bn, v = (ntBn)l/2 cr, = H_Ho (32Db)
p Po

The slowness vector is 8 = v~ 'n, and the slowness surface is the envelope of the slowness vectors for all propagation

directions n. The slowness surface is therefore comprised of two sheets which are similar ellipsoids: s'Bs = c;?,

a = L, T. Note that the polarizations do not in general form an orthogonal triad.



V. ACOUSTICS AS A SPECIAL CASE

A. General form of transformed equations

We consider the simpler but special case of acoustics in order to further understand the structure of the elastic
transformation theory. The acoustic equations are unique in the sense that they are the single example of a pentamode
material'*'?2 commonly encountered in mechanics. We will demonstrate that the pentamode property introduces a
unique degree of freedom not available in the fully elastic situation.

The elastic stiffness of an acoustic fluid is

Co=KpI®I, (33)

1

which is of pentamode form'!, i.e. the 6x6 Voigt matrix associated with the elements C’}?])KL = K670k, has five

zero eigenvalues. Equation (12) becomes, using (33),
Qij (JKo (wQu) x) ; — pisiis = 0, (34)
with the density tensor given by (9), and
Q=J"'"FA" (Qi=J "FiAj = Qijkk). (35)

The general form of the governing equations are again of the form (14), with material parameters

Cfy = KoJ "By Ajn A, (36a)
Sfﬁ = (—iw) ' KoJ ' Bir AjN ANk, (36b)
P?iz:f = pji + (—iw) 2 Ko "' Bi Ajn i Ain s (36¢)

recalling that B = FF". The stress is again not generally symmetric, unless A is proportional to F, in which case the
transformed material is of Willis form, see §IV A.

B. Cosserat and related forms of the transformed equations

The simplified form of the elasticity in the acoustic fluid implies that the condition (22), which is required to simplify
the form of the transformed equations, itself simplifies to the condition that Q be divergence free:

divQ =0 (Qi;; =0). (37)

Note that this is a necessary but not sufficient condition for the more general elasticity version (22). Assuming that
(37) holds, the transformed equations (34) have the simplified Cosserat structure (23), with

pP=pJQB'Q CT"=KJQ®Q, divQ=0. (38)

We note the symmetries p = p, Cfﬁl = C¢fE ., but the minor symmetry fﬁd = C¢ft, does not in general hold unless

lig»

Q is symmetric'®. Thus, the transformed acoujstic equations are those of a pentam(ide material of Cosserat type with
anisotropic density. All previous studies of transformation acoustics assumed a priori that the transformed materials
must have symmetric stress. The present results show that the more general structure of the transformed properties is
that of a material with stress not necessarily symmetric. The pentamode structure of C°! implies that the equations
of motion (23) can be expressed in a form that is clearly related to acoustics” by using a scalar ”pseudo-pressure” p

and ”bulk modulus” K = Ky.J,

pv=-QVp, p=—-Ktr(QVv). (39)

The condition (37) can be achieved, as in the elastic case, with constant gauge A. For instance, taking A = I,
yields material properties (see (25))

p=poJ ', CT=KJ'FaF. (40)



This describes a material with isotropic density of general pentamode/Cosserat form. That is, the stiffness is pen-
tamode (a single nonzero eigenstiffness?”) and a single eigenstress of generally non-symmetric form, hence Cosserat.
As discussed in?; isotropic density with symmetric stress can be achieved if divhV = 0 for some function h(x).
One important case is when the deformation is a pure stretch F = V (with h = J~!, see eq. (11)), for which the
transformed material is pure pentamode with isotropic density:

p=poJ I, C=KyJ 'V®V, pure stretch. (41)

More general conditions under which pure pentamode material with isotropic density can be achieved are discussed
int?.

Condition (37) may also be satisfied by non-constant gauge matrices. For instance, A = JF ! gives Q = I which
clearly satisfies (37). In this case the transformed medium has the properties

p=pJB, CT=FK,JIa1 (42)

This corresponds to a fluid with isotropic (hydrostatic) stress, bulk modulus K = KyJ, and anisotropic density p.
This type of material was the first to be considered for acoustic cloaking®” yet it is remarkable that it does not
possess a generalization to elasticity. Rather, it is made possible by the simple structure of the second order quantity
Q@ as compared with its fourth order elasticity analog @. The condition (22) for @ is only satisfied by constant A,
but the analogous condition (37) for @ has at least one non-constant solution for A. The one noted here, A = JF ™,
yields the class of acoustic cloaking materials that use anisotropic inertia as the active mechanism.

The transformed acoustic material can also be understood as the special case in which five of the Kelvin moduli K(()O‘)
vanish (see (18)), say e = 2,3,...,6, and the remaining single eigenvector is the identity, P =I. The transformed
material has a single non-zero eigen-stiffnesses with associated eigen-tensor (see eq. (35))

s = JlFAL (43)

The inertial transformed material (42) results from the choice of A that makes SW =1, that is A = JF~*.

VI. APPLICATIONS IN CYLINDRICAL ELASTICITY

The non-uniqueness in the form of the transformed equations of elasticity provides the designer of elastic cloaking
devices with a wide variety of possible materials from which to choose. These range from materials with Willis
constitutive behavior (1), to Cosserat materials (25), each special cases of the general constitutive relations (14)-(15).
The same non-uniqueness exist for acoustic cloaking, where designs based on inertial cloaking on the one hand, and
pentamode materials on the other, reflect the choice of completely different material properties. One aspect common
to all of these materials is their exotic nature. In the absence of available materials with exactly the right properties
it is reasonable to ask what can be achieved using "normal” materials, i.e. those with isotropic density and standard
linear elastic response, including a symmetric stress.

With that goal in mind we examine in this section cloaking in the context of the Cosserat materials described by
(25). This class of metamaterials is chosen as the starting point because of its property of isotropic density and the
fact that the constitutive behavior is local. That is, the stress depends on the displacement gradient alone, and not on
displacement as in (14)-(15). The goal is to find if there is a material with symmetric stress that provides an optimal,
in some sense, approximation. We consider transformations in cylindrical coordinates, starting with the formulation
of the Cosserat constitutive equations in cylindrical coordinates. Thus, for the remainder of the paper A is assumed
to be a constant, and we use C instead of C°M.

A. General theory for Cosserat materials

1. Cosserat notation in cylindrical coordinates

The cylindrical coordinates are referred to by the indices 1,2, 3 for 7,8, z, respectively. The usual Voigt notation,
which means {1,2,3,4,5,6} = {11,22,33,23,31,12}, is augmented with three additional indices to describe Cosserat



elasticity: {4,5,6} = {32,13,21}, so that the elastic stiffness tensor becomes in the 9-index Voigt-Cosserat notation,

Ci1 C12 €13 C14 C13 C15 C15 Ci6 C16 1
C22 C23 C24 Ca1 C25 Cop C26 Cop 2
C33 C34 C33 C35 C35 C36 C3p 3
C44 C43 C45 C45 C46 C46 4
C= cii Cis Ci5 Cig Cig | o |4 (44)
Cs55 Cs55 C56 Cs6 §
C55 C56 C56 5
S'Y M Ceé6 Cgg 6
6

C66

Following?®, the traction vectors t; = t;(x,t), i = r,0, z, are defined by the orthonormal basis vectors {e,,eq, e}
of the cylindrical coordinates {r,#, 2z} according to t; = e;0 (i = r,0, z), where o(x,t) is the stress, and a comma

denotes partial differentiation. With the same basis vectors, and assuming the summation convention on repeated
indices, the elements of stress are 0;; = Cj;pier Where € = %(Vu + Vu') is the strain, Cjp = Cyjri(x) are elements
of the fourth order (anisotropic) elastic stiffness tensor. The traction vectors are

t, QR P u, - QR P (erer) (ereg) (ere:)
to|=|R" T S 1(u,6+Knu) |, RET S| = (eoen) (egez) |,
t. P! St M u, P! St M (eze€2)

where K = eg @ e, — e, ® ey, and in notation similar to that of?’, the matrix (ab) has components (ab)jl = a;Cyjrbu
for arbitrary vectors a and b. The explicit form of the various matrices is apparent with the use of Voigt’s notation

C11 Ci16 C15 €66 C26 C46 Cs5 Ci5 €35
Q= |ci6 66 c56|, T =|cCop Co2 Coa|, M= |ca5 caz cs1 |,
C15 Cs6 Cs5 Cq6 C24 C44 C35 C31 C33
(45)
Cs6 Ci6 C36 C15 €11 C13 C16 C12 Ci4
S=|ca5 cag 23], P=|cs6 ca6 36|, R=|ces a6 cas
Ca5 C4i C34 Cs5 Ci5 (35 C56 C25 C45

Note that the six elements in each of the symmetric matrices Q, T, M and the nine in each of S, P, R, are
independent. That is, there is one-to-one correspondence between the elements of the six matrices and the 45
independent components of the Cosserat elasticity tensor (44).

2. Cylindrically anisotropic materials

We consider materials with no axial dependence whose density and the elasticity tensor may depend upon r, i.e.
p = p(r) and Cijip = Cijri(r). We seek solutions in the form of time-harmonic cylindrical waves of azimuthal order
n=0,1,2,... and axial wavenumber k,, such that the displacement-traction 6-vector is of the form

u(r,0,z,t)
— n(r) ei(n@—&-kzz—wt)’ (46)
irt.(r,0,z,t)

where 1 depends only on the radial coordinate r. Accordingly, the governing equations of motion reduce to an ordinary
differential equation for this 6 x 1 vector?®:

41 7 G =o, (47)

dr r
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with 6 x 6 system matrix G, where

-Q 'R —iQ!
1G(r) =
z('i‘ ~R'Q R - pw?r?) RTQ!
-Q'pP 0
+ ik, r

i[P'Q'R-S - (P'Q"'R-S)" +ik.r(P'Q™'P —M)] —P'Q"!
(48)

R = Rx, S = &S, T =TTk =TT, k=K+inl = —k™.

Note the symmetry G = JGTJ for real-valued material constants and w, k., where J has block structure with zero

submatrices on the diagonal and off-diagonal identity matrices. This hermiticity-like property has important physical
consequences such as conservation of energy?®

3. Transformation in cylindrical coordinates

Let R = (X?+X2)Y/2, r = (23 +22)'/2, and consider the reverse deformation R = R(r), X3 = x3. The deformation
gradient is then

dr

F=ol +p8lg+1,, with « iR

r

where I, = e, ®e,, [g =egReg, [. =e. ®e,. Taking the (assumed constant) gauge matrix as A = I gives isotropic
density, p = pI and Cosserat elastic stiffness C, where according to eq. (25),

= (50n)
P = Olﬂ Po, a
a?d) afel) acly aBel] acl) acl) a2y o’y apcly
By pely Pes) Bell Pely) aBel apel el
0 0 0 0 0 0 0
ng) Cg4) Cg4) C:(s5) O‘C:(ss) ach) 50( .
g pey By apdl apely B
1 0 0 0 0 0
C= af ) oY add adl B |- (50b)

o) ol 4y

W) a2lg ap)

S Y M azcé%) af cé%)
B2 ‘366

Equivalently, the six matrices of (45) that are in one-to-one correspondence with C are

B

Q= %Q(O), T=27TO, M=—_MO
o

1 1
S = ES(O)’ P= BP(O), R=R. (51)
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These results are consistent with the system equation (47) in the current coordinates and the analogous equation
in the original coordinates,

dn i
1T _ " cgO 2
with G()(R) defined in the same way as (48) using Q, ..., R(). Note that the transformed version of (52) may
be obtained directly by multiplication with the factor d R/ dr,

i Rar ¢ o (53)
Comparison of eqs. (47) and (53) implies that the transformed system matrix is

rdR
G(r)= =— GO(R). 54
(=15 GOR) (54)

This relation, combined with the block structure of G in (48) and the analogous form for G implies the matrix
relations (51).

B. Example: a cylindrically orthotropic material

1. Transformed elastic moduli

The initial material is assumed to be cylindrically orthotropic, with stiffness in the usual Voigt notation
({1,2,3,4,5,6} « {11,22,33,23,31,12}) given by

cgq) cgg) c%%) 0 0 0
0 (0) (0
3
c© _ | 13 C23 Ca3 00 0 (55)
0 0 0% 0o o
0
0 0 0 0 &2 o
0 0 0 0 0 &2
Hence, using (50b), the transformed elastic stiffness tensor becomes in the 9-index Cosserat notation,
a2cﬁ) aﬁcgg) acgg) 0 0 0 0 0 0
B2 Bl 0 0 0 0 0 0
A0 0 0 0 0 0
1 w0 0 0
C=— 0o 0 0 (56)
op A9 acld 0 0
55 55
azcé%) 0 0
S Y M a%é%) aﬂcé%)
et
2. SH motion
The equation of motion in the undeformed coordinates for U = (0,0,U(r, 6,t)),
1 0 1 0 ..
= (RefJUR) , + 7 (c49U0) 5 = poll =0, (57)
transforms to the following equation for u = (0,0, u(r, 0,t)),
1 1 ..
;(TC;?,U,T)W + 72(644%0),9 — pti =0, (58)
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where

_, BdR _ordio o oftdR
p_pordr7 cas = C44Rd C55_c55rdr'

This is an example of the general result in §IV C1 for SH motion in a plane of symmetry .

3. In-plane motion

The displacement is assumed to have the form w = (u,.(r,0,t),us(r,0,t),0). The density is again isotropic given by
eq. (59); and the relevant moduli are, from eq. (50b),

0) RdR o) T dR 0

C11 — C(ll , dT’ Coo — 22)R d?” C12 = 052), (60&)
0) Rdr © rdR 0

Co6 = iy — CqR %= s Ry C66= e (60Db)

For isotropic initial stiffness tensor, these expressions agree with the Cosserat elastic moduli found by?*, where only
the particular transformation of*>* was considered, i.e., R = r1(r —19)/(r1 — ro) for r € (ro, r1].

C. A symmetric approximation for k. =0

The example in §VIB achieves cloaking of in-plane elastic wave motion using elastic moduli of Cosserat form, (60),
generalizing the findings of?*. The existence of three distinct in-plane shear moduli, c1212, 2121, C1221 = Co112, IS &
property of the Cosserat model, but one that is difficult if not impossible to realize in practice. We now show that
there is a preferred approximation with only a single shear modulus.

Consider the transformed system matrix G with k. = 0 for the initial cylindrically orthotropic material (55), which
follows from (54) as

Ok

0 C(O) ng) 0 Ciq 0_1 0
-1 0 0|k =il o Y 0

0 0 0 0)~1

ic=" 0 o &9 )| (61)
o 0 0 0 0 10
1 2

ikt [0 cé) cﬁ) 52) 0 | &—iw?R%*pel —k cgq) cgg) 00
0 0 A0 0 00

Let 6ijkl be a set of moduli in the transformed coordinates, corresponding to a normal elastic solid (symmetric stress)
of cylindrically orthotropic symmetry, with moduli (in the standard Voigt notation),

¢ip ci2 i3 0 0 O
Cip C2 C23 0 0 O
~ |3 33 0 0 O
C=10 0 0e 0 0] (62)
0 0 0 0 e5 O
0 0 0 0 0 ¢cg

Assuming the density is isotropic and equal to the transformed density of eq. (50a), the system matrix associated

with the stiffness éijkl becomes

0 611_1512 0 C11 0 0
— 11 0 0|k —1 0 66671 0
— 0 0 0 0 Css
iG= 0 0 0 10 (63)
kT 10 Cog — 611_16122 0 | k— inTQpI 612 00
0 0 C44 00
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Comparison of (61) and (63) suggests the identification

e () (1) B (0) 64

C11 BCH , €22 aczz ,  Ci12 Cig, ( a)

_ B ) B o a (o)

Caa = —Cuf, ©C55= —Cie, C66= —Cpc - 55 should be alpha/beta, (64Db)
a M a B o the same as for 66.

This set of moduli has the property that they correspond to a normal elastic material, as compared with the Cosserat
material required for the exact solution. Comparing the latter, given by (56), with the proposed moduli (64) shows
that

C11 = C11, Cz2 = C22, C12 = C12, C44 = C44, C55 = C55, C66 = C66- (65)
Let () be the solution for the approximate but symmetric moduli (62),

41 _ ¢ Giyaen) = o. (66)

ar v

It is evident that the exact and approximate systems (47) and (66) have identical SH solutions. The approximate

solution defined by the moduli C};1; possesses a further interesting property related to in-plane wave motion. Thus,
the difference between the system matrices of the exact transformed medium and that of the approximate material

follows as
%G - ié — f(r)D = A, (67)
0 00
1dR 1 D, 0 .

The difference is independent of the material properties, a function of only the transformation function through f(r)
and of the azimuthal index n through D which is rank two and has the property D*¥ = D or D? for any odd or even
k. This suggests that the choice (64) of the approximate material parameters is in some sense preferred over others.
Some consequences are discussed next.

The matricant solutions M(r,r,) and M(r, ;) of, respectively, the exact and approximate systems (47) and (66),
are defined?! such that n = Mc and 7 = Mc where c is the arbitrary initial data vector at r = r;. The matricants
therefore satisfy differential equations similar to the state vectors with initial conditions M(ry,71) = I, M(ry,r) = L
According to®! (§3 of Ch.VII), the matricant (47) and (66) on an interval [ry, 7] are related as M = MP through
the matrix P satisfying P’ = M 'AMP. Noting that R’ = AR with initial condition R(ry,7;) = I has a simple
explicit solution

. Ri\+1 TRy F1
R =T1+d FMhEL py, (BT D 69
g[GR! o, ()7 o). )
it follows that

M = MRT where T = AT, T(r;,r) =1, (70)

and A; = (MR)"'(AM — MA)R. The latter vanishes at r = r1, which suggests that the convergent Peano series
T=Ty+T;+Te+... with To =1, T; =AT;_1,j=1,2,..., forms a natural and regular perturbation solution.

Note that in cylindrical cloaks the original domain [R; < r1, Ry = r2] is mapped to the smaller one [ry, 73] so that
the elements of R in (69) are sign definite.

VII. DISCUSSION

A complete transformation theory has been developed for elasticity. The material properties after transformation
of the elastodynamic equations are given by eqs. (13) through (15). The constitutive parameters depend on both the
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transformation and gauge matrices, F and A, and do not necessarily have symmetric stress. It was shown in §IV that a
priorirequiring stress to be symmetric implies that the material must be of Willis form (1), with A = F as Milton et al.!
found. The emphasis here has been on exploring the consequences of relaxing the constraint of symmetric stress. There
are several reasons for doing so. First is the fact that the transformation of the acoustic equation in its simplest form,
i.e. by identifying an inertial tensor p = J~'FF" from the differential identity Div Grad f — Jdiv.J 'FF"grad f,
does not follow from the transformed Willis material, even though the inertial fluid has symmetric stress. Other
types of transformed acoustic fluids are possible (e.g. pentamode materials), again with symmetric stress and not
contained within the framework of egs. (1). A second and more practical reason for considering the general material
as defined by eqgs. (13) through (15) with F and A distinct is to broaden the class of materials available for design of
elastodynamic cloaks.

Allowing A to be independent of F' leads to constitutive models that differ markedly from the Willis material model.
In this paper we have emphasized solutions corresponding to time-independent material parameters obtained when
A is assumed constant (see egs. (9), (13) and (15a)),

P = Po J_11414t7 Cijkl = J‘lC%)KL FiIAj.]FkKAlL- (71)

These transformed quantities correspond to a material with anisotropic density tensor and stress-strain relation of
Cosserat type (non-symmetric stress). Setting A = I ensures that the transformed density is isotropic (see eq. (25))

p=J" po, Cshy=J7'C 0 FirF. (72)

However, there is no general choice of the gauge matrix A that will make the stress symmetric for a given transfor-
mation. This feature distinguishes the elastic transformation problem from the acoustic case, for which it is always
possible to achieve symmetric, even isotropic (hydrostatic), stress. If the transformation is homogeneous, correspond-
ing to constant F, it is possible to make the elastic stress symmetric, although at the price of anisotropic inertia (see

eq. (28)).
Materials displaying non-symmetric stress of the type necessary to achieve elastodynamic cloaking while difficult
to envisage, are not ruled out. Effective moduli with the major symmetry Cjji; = Chi; that do not display the

minor symmetry Cjjr; = Cjip are found in the theory of incremental motion superimposed on finite deformation>2.
The similarity with the transformation problem is intriguing: small-on-large motion in the presence of finite prestress
corresponds to a transformation of an actual material via a deformation. The deformation in the small-on-large theory
is however quite distinct from F' in the present context. The formal equivalence of the constitutive parameters (72)
with the density and moduli for incremental motion after finite prestress offers the possibility for achieving Cosserat
elasticity of the desired form. The crucial quantity is the finite (hyperelastic) strain energy function of the material,
which after prestress should have the desired Cosserat incremental moduli. Future work will examine this connection
and the types of strain energy functions required.

Another approach is to seek materials with normal elastic behavior that approximate, in some sense, the Cosserat
material. Preliminary work in this direction has been considered here. The general theory has been applied to the
case of cylindrical anisotropy for arbitrary radial transformation R — r. The equations of motion for the transformed
Cosserat material have been expressed in Stroh format, eq. (47), suitable for numerical implementation. The material
required for cloaking of in-plane elastic waves is of Cosserat type with isotropic density. A normal elastic material
with density (50a) and elastic moduli defined by egs. (62) and (64) appears to provide a natural approximation. The
properties of this type of approximate material is the subject for planned further study, analytical and numerical.
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