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Effective Willis constitutive equations for
periodically stratified anisotropic elastic media
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A method to derive homogeneous effective constitutive equations for periodically layered
elastic media is proposed. The crucial and novel idea underlying the procedure is that the
coefficients of the dynamic effective medium can be associated with the matrix logarithm
of the propagator over a unit period. The effective homogeneous equations are shown to
have the structure of a Willis material, characterized by anisotropic inertia and coupling
between momentum and strain, in addition to effective elastic constants. Expressions are
presented for the Willis material parameters which are formally valid at any frequency
and horizontal wavenumber as long as the matrix logarithm is well defined. The general
theory is exemplified for scalar SH motion. Low frequency, long wavelength expansions of
the effective material parameters are also developed using a Magnus series, and explicit
estimates are derived for the rate of convergence.

Keywords: homogenization; periodic media; effective medium

1. Introduction

Elastic waves in periodically layered or continuous (functionally graded) elastic
media of general anisotropy have been studied extensively using different
methods. Among them is the sextic formalism of Stroh, which incorporates the
elastodynamics equations into a first-order ordinary differential equation for the
displacement-traction state vector with system matrix Q composed of material
parameters (Ting 1996). The wave-field propagator matrix along the stratification
direction y, M(y, 0), is given by the Peano series of multiple integrals of products
of Q(y) (Pease 1965). This is essentially a power series in distance-to-wavelength
ratio, which is therefore particularly well suited in tackling the problem of
approximating a periodically stratified medium by an effective homogeneous
medium. The Stroh formalism clarifies the meaning of zero-order homogenization,
or static averaging, of a periodic medium by revealing the zero-order effective
material parameters (Behrens 1968; Grimsditch & Nizzoli 1986) as nothing more
*Author for correspondence (norris@rutgers.edu).
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1750 A. L. Shuvalov et al.

than the matrix Q(y) integrated over the period T , which is the leading term of
the logarithm of the Peano series for M(T , 0) (Norris 1992). Static averaging
implies a non-dispersive effective medium. Generalization to a higher order
effective homogeneous medium, which must be dispersive, is less obvious. Its
derivation is commonly based on the long-wave dispersion of the fundamental
Bloch or Floquet branches. Their onset in arbitrary anisotropic periodically
stratified media was analysed by Norris (1992); based on this, the scalar-wave
equation for a transversely isotropic dispersive effective medium was modelled by
Norris (1992, 1993) and Norris & Santosa (1992) and in the subsequent literature
(e.g. Andrianov et al. (2008) and its bibliography). A semi-analytical approach
for general anisotropy (Wang & Rokhlin 2002; see also Potel et al. 1995) fits the
long-wave Floquet dispersion to statically averaged effective constants, such that
the effective medium is seen as a ‘continuum of non-dispersive media’ that are
different for different frequency and propagation direction.

In this paper, a new method is proposed for finding the dynamic effective
constitutive equations at finite frequencies and wavelength. This is achieved
by explicit construction of effective spatially constant material coefficients that
exactly reproduce the monodromy matrix, M(T , 0). The effective constitutive
theory is exact in the sense that it gives the correct displacement-traction field
at the unit-cell interfaces over arbitrarily long distance of propagation. Two
key steps distinguish the method advocated. First is the idea, based on the
Floquet theorem, of defining the effective medium such that the sextic system
of elastodynamics equations in this medium has the matrix of coefficients,
Qeff equal to iK, where K is the Floquet wavenumber matrix with an exact
definition iKT = ln M(T , 0). For the low-frequency long-wave range, a matrix
logarithm ln M(T , 0) admits an expansion called the Magnus series (Blanes
et al. 2009). Restricting it to the leading-order term leads to the statically
averaged effective model (see above). Taking the next-order term(s) of the
Magnus expansion for K reveals that, unless the variation of material properties
over a period is symmetric, the above-defined dispersive effective medium
cannot be fitted to the standard form of elastodynamic equations, in which
the frequency dispersion and non-locality would be fully accounted by the
dependence of effective density and elasticity on u and kx . This motivates
the second significant step in the present method, which is identifying a class
of constitutive models that does fit iK with the system matrix, Qeff of a
homogeneous medium. We demonstrate by construction that the model described
by the Willis constitutive relations with a dynamic stress-impulse coupling
tensor (Milton & Willis 2007; Willis 2009) provides such a class of materials.
Expansions of the Willis material coefficients based on the Magnus series for K
are obtained in the low-frequency long-wave range where they are analytical in
u, kx . Explicit estimates of the dependence on u, kx are found that enable closed-
form asymptotics of the Willis coefficients with a desired accuracy. At the same
time, the definition iKT = ln M(T , 0) and the fitting of the matrix, Qeff ≡ iK
to the effective Willis material is formally not restricted to the low-frequency
long-wave range.

A significant outcome of the proposed approach is that fairly explicit
expressions are obtained for the effective material parameters. This is particularly
evident for the example of SH (shear horizontal) waves discussed in detail in §4.
In this regard, the approach is distinct from that of Willis (2009) which leads to
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Dynamic effective medium theory 1751

expressions for the parameters in the (spatial) transform domain. Note also that
the results here apply to a single realization of the layered medium, no ensemble
averaging is invoked. This point is discussed further in §4.

The paper proceeds as follows. The problem is formulated in §2 where the sextic
formalism for periodically stratified media is outlined, the Floquet wavenumber
matrix K introduced and its Magnus expansion examined (see also appendix A,
electronic supplementary material). The main results of the paper are derived
in §3. It starts by observing that the matrix iK viewed as a sextic-system
matrix Qeff for a homogeneous effective medium cannot be associated with a
medium from the class of anisotropic elastic materials but it does fit the Willis
model. Using the ansatz that the sought effective medium is described by the
spatially homogeneous equations for a Willis material, the corresponding system
matrix Qeff is constructed and equated with iK. Under certain assumptions, a
prescription for unique definition of the Willis effective medium is put forward.
The remainder of §3 discusses the general properties of the Willis material
parameters. The example of SH wave motion in a periodic structure is considered
in §4. It illustrates the method for defining the effective coefficients of the Willis
model beyond the Magnus series expansion (which in its turn is detailed for SH
waves in appendix B, electronic supplementary material). The explicit expressions
obtained are used to solve a reflection–transmission problem at the interface of
the effective medium. Conclusions are presented in §5.

2. Background

(a) Stroh formalism and the wavenumber matrix K

We consider a Cartesian elastic medium with density r = r(y) and stiffness
tensor cijkl = cijkl(y). Basic notations used include the superscripts T, + and ∗
for transposition, Hermitian and complex conjugation, respectively, and T for
the matrix with zero diagonal and identity off-diagonal blocks.

Taking the Fourier transforms of the equilibrium and stress–strain equations

sij ,i = rüj and sij = cijkl ekl , (2.1)

in all variables except y leads to an ordinary differential problem for the quasi-
plane modes with the phase factor ei(kx x−ut), where u is the frequency and kx the
wavenumber in an arbitrarily chosen direction X orthogonal to Y (rotating X
causes all 21 elastic constants cijkl to appear). Denote the unit vectors parallel to
X and Y by m and n, so that x = m · r, y = n · r and let A(y) and F(y) be the
amplitudes of displacement u and traction ns, respectively. Then equations (2.1)
combine into the Stroh system

d
dy

h(y) = Q(y)h(y), (2.2)

for the state vector h incorporating A and F (Ting 1996). Taking it in the form
h = (A, iF)T defines the 6 × 6 system matrix as

Q(y) = i
(

kxN1 N2

k2
x N3 − ru2I kxNT

1

)
(2.3)
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via the 3 × 3 blocks NJ of the Stroh matrix

N(y) =
(

N1 N2

N3 NT
1

)
,

N1 = −(nn)−1(nm) = NT
4 ,

N2 = −(nn)−1,
N3 = (mm) − (mn)(nn)−1(nm)

⎫⎬
⎭, (2.4)

which is composed of the matrices with elements (nn)jk = nicijklnl , (nm)jk =
nicijklml = (mn)kj and (mm)jk = micijklml (note that N2 is negative-definite). The
usual indicial symmetry of cijkl used in equation (2.4) leads to a Hamiltonian
structure N = TNTT and Q = TQTT of N and Q. Since u, kx and r, cijkl are real
and hence Q(y) is imaginary, it follows that Q = −TQ+T. The latter identity on
its own suffices to ensure energy conservation. Alternative definitions of h and
hence of Q may be chosen. In general, the eigenvalues of Q(y) are first-degree
homogeneous functions of u, kx , which implies the absence of dispersion.

Given the initial condition at some y0(≡ 0), the solution to equation (2.2) is
h(y) = M(y, 0)h(0), where M(y, 0) is the 6 × 6 matricant evaluated by the Peano
series (Pease 1965)

M(y, 0) = I +
∫ y

0
Q(y1)dy1 +

∫ y

0
Q(y1)dy1

∫ y1

0
Q(y2)dy2 +

∫ y

0

∫ y1

0

∫ y2

0
· · · (2.5)

Suppose now that r, cijkl and hence Q depend on y periodically with a period T .
Denote

y = ỹ + nT , ỹ = y mod T ∈ [0, T ], 2̃ = ỹ
T

∈ [0, 1] and 〈·〉 = 1
T

∫T

0
·dỹ =

∫ 1

0
·d2̃,

(2.6)
where 〈· · · 〉 is the static average over a unit cell. It is understood hereafter that
the wave-path distance y includes a large enough number n of periods, which
is when the present development is of interest. By equation (2.5), the matricant
M(T , 0) over [0, T ], which is called the monodromy matrix, is

M(T , 0) = I +
∞∑

m=1

M(m) = I + T 〈Q〉 + T 2
∫ 1

0
Q(2̃)d2̃

∫ 2̃

0
Q(2̃1)d2̃1 + · · · (2.7)

The wavenumber matrix K is introduced by denoting the monodromy matrix as

M(T , 0) = exp(iKT ) ⇔ iKT = ln M(T , 0). (2.8)

In the following, unless otherwise specified, K is understood as defined in the
first Brillouin zone, which implies the zeroth Riemann sheet of ln z with a cut
arg z = ±p. Using equation (2.8), the matricant M(y, 0) can be written as

M(y, 0) = M(ỹ, 0)M(nT , 0) = L(ỹ) exp(iKy), (2.9)

where L(ỹ) = M(ỹ, 0) exp(−iKỹ) with L(0) = L(T ) = I. Equation (2.9)2 represents
the Floquet theorem. Denote the eigenvalues of M(T , 0) and K by eiKaT and
Ka (a = 1, . . . , 6), respectively. In the general case where M(T , 0) and K have
six linear independent eigenvectors wa, the Floquet theorem implies that the
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wave field h(y) = M(y, 0)h(0) with the initial data expanded as h(0) = ∑
a Cawa

takes the form

h(y) =
6∑

a=1

Caha(y), where ha(y) = L(ỹ)waeiKay . (2.10)

The identity Q = −TQ+T yields M−1(y, 0) = TM+(y, 0)T, which in turn leads
to L−1(ỹ) = TL+(ỹ)T and

K = TK+T =
(

K1 K2
K3 K+

1

)
with K2,3 = K+

2,3 (2.11)

for K defined in the first Brillouin zone. If the unit-cell profile is symmetric,
i.e. the variation of material properties within the period T is symmetric about
the middle point so that Q(ỹ) is even about ỹ = T/2, then the above identities
are complemented by M(T , 0) = TMT(T , 0)T and hence K = TKTT; so, with
reference to equation (2.11), K is real. Thus

K = TKTT = K∗ for a symmetric Q(ỹ). (2.12)

(b) Expansion of K in the Magnus series

The logarithm of the monodromy matrix M(T , 0) can be expanded as a Magnus
series (Blanes et al. 2009; see also Wang & Rokhlin 2004):

iK = 1
T

ln M(T , 0) = 〈Q〉 +
∞∑

m=1

iK(m) with

iK(1) = T
1
2

∫ 1

0
d2̃

∫ 2̃

0
[Q(2̃), Q(2̃1)]d2̃1

and iK(2) = T 2 1
6

∫ 1

0
d2̃

∫ 2̃

0
d2̃1

∫ 2̃1

0
([Q, [Q,Q]] + [[Q,Q], Q])d2̃2, etc.,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

where [Q(x), Q(y)] = Q(x)Q(y) − Q(y)Q(x) is a commutator of matrices
depending on successive integration variables. Each Magnus series term K(m)

is a (m + 1)-tuple integral of permutations of m nested commutators involving
products of (m + 1) matrices Q(2̃i). A commutator-based form may be anticipated
by noting that all K(m) for m > 0 must vanish in the trivial case of a homogeneous
material with a constant Q ≡ Q0 and hence with M(T , 0) = exp(Q0T ). For
practical calculations it is convenient to use the recursive formulas provided in
Blanes et al. (2009). In obvious contrast with the Peano expansion, the Magnus
series converges in a limited range: the sufficient condition for its convergence
is 〈‖Q‖2〉 < p/T , where ‖ · ‖2 is the matrix norm (Moan & Niesen 2008). This
condition implies that the eigenvalues Ka(u2, kx) of K, defined as continuous
functions such that Ka(0, 0) = 0, satisfy the inequality ‖Re Ka‖ < p/T .

The Magnus series for K is a low-frequency long-wave expansion. Actually u
and kx are two independent parameters for Q and hence for M and K. It is however
essential that the dependence of 3 × 3 blocks of Q on u and kx is homogeneous (see
equation (2.3)). Therefore, the blocks of each mth term of the Peano and Magnus
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series are homogeneous polynomials of u, kx of degree one greater than the same
block of the (m − 1)th term. This is what enables introducing a single long-
wave parameter 3 ≡ kT with a suitably defined wavenumber k (see equation (A3),
electronic supplementary material). Thus, the Magnus series (2.13) is basically
an expansion in powers of 3. Taking small enough 3 enables its approximation
by a finite number of terms. At the same time, it should be borne in mind that
the Magnus series as an expansion of logarithm may converge relatively slowly.
Explicit estimates expressed in terms of u, kx and 〈N〉 which ensure a desired
accuracy of truncating the Magnus series up to a given order are formulated in
appendix A, electronic supplementary material.

The structure of polynomial dependence of the Magnus series terms K(m) on
kx and u2 is

K(1) = i

⎛
⎝ k2

x a
(1)
1 + u2a(1)

2 kxa
(1)
3

kx(k2
x a

(1)
4 + u2a(1)

5 ) −k2
x a

(1)T
1 − u2a(1)

2

⎞
⎠,

K(2) =
⎛
⎝ kx(k2

x a
(2)
1 + u2a(2)

2 ) k2
x a

(2)
3 + u2a(2)

4

k2
x (k

2
x a

(2)
5 + u2a(2)

6 ) + u4a(2)
7 kx(k2

x a
(2)T
1 + u2a(2)T

2 )

⎞
⎠

and K(3) = i

⎛
⎜⎜⎝

k2
x (k

2
x a

(3)
1 + u2a(3)

2 ) + u4a(3)
3 kx(k2

x a
(3)
4 + u2a(3)

5 )

kx(k4
x a

(3)
6 + u2k2

x a
(3)
7 + u4a(3)

8 )
−k2

x (k
2
x a

(3)T
1

+u2a(3)T
2 ) − u4a(3)T

3

⎞
⎟⎟⎠, etc.,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.14)

where the real matrices a(m) in K(m) are (m + 1)-tuple integrals of appropriate
commutators; for instance, a(1)

i in K(1) are

{a(1)
1 , a(1)

2 , a(1)
3 , a(1)

4 , a(1)
5 } = 1

2
T

∫ 1

0
d2̃

∫ 2̃

0
d2̃1{[N1, N1] + [N2, N3], [rI, N2],

[N1, N2] + [N2, NT
1 ], [N3, N1] + [NT

1 , N3], [N1 − NT
1 , rI]}.

(2.15)

The series terms K(m) of odd and even order m are imaginary and real,
respectively, and each term K(m) on its own satisfies equation (2.11); therefore

K(m) = −K(m)∗ = −TK(m)TT for odd m

and K(m) = K(m)∗ = TK(m)TT for even m,

}
(2.16)

as taken into account in equation (2.14). According to equation (2.12),

K(m) = 0 for odd m, if Q(ỹ) is symmetric. (2.17)

Note the pure dynamic imaginary terms proportional to ±ium+1, which appear
in the diagonal blocks of the series terms K(m) of odd order m unless these are
zero for a symmetric Q(ỹ) by equation (2.17).
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(c) Dynamic homogenization

According to the Floquet theorem (2.9), the wave field variation over a large
distance y is characterized mainly by the function exp(iKy) (which is an exact
wave field at y = nT ). Formally, exp(iKy) with iKT = ln M(T , 0) is a solution
to equation (2.2) with the actual matrix of coefficients Q(y) replaced by the
constant matrix iK. This motivates the concept of an effective homogeneous
medium, whose material model admits the wave equation in the form (2.2) with a
constant system matrix Qeff ≡ iK. Confining the Magnus series (2.13) to the zero-
order term defines the statically averaged Q(0)

eff = 〈Q〉, which fits equation (2.3)
with Neff = 〈N〉 and hence yields the non-dispersive effective density and stiffness
in the well-known form r(0) = 〈r〉 and

(nn)(0) = −〈N2〉−1,

(nm)(0) = 〈N2〉−1〈N1〉
and (mm)(0) = 〈N3〉 − 〈NT

1 〉〈N2〉−1〈N1〉,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.18)

see Norris (1992). It is evident that the statically averaged Q(0)
eff = 〈Q〉 completely

ignores the dynamic effects and is inadequate to describe waves at finite frequency
over long propagation distance. Dynamic properties are realized by taking Qeff =
iK beyond the zero-order term 〈Q〉 (§3). Note that, in contrast to 〈Q〉, a dispersive
Qeff = iK generally depends on where the reference point y = 0 of the period
interval [0, T ] is chosen.

3. A dispersive effective medium with Qeff = iK

(a) The constitutive equations

Our purpose is to take into account the full nature of the wavenumber matrix
in Qeff = iK. With this in mind, compare the structure of the dispersive effective
matrix as given by the Magnus expansion, Qeff = 〈Q〉 + i

∑
m=1 K(m) with that

of Q(y) given by equation (2.3). They differ in two ways. First, Qeff (
= 〈Q〉),
is no longer imaginary, and hence the identity, Qeff = −TQ+

effT, which leads to
equation (2.11) (and ensures energy conservation), is no longer compatible with
a Hamiltonian structure for Qeff . This is a well-known feature of dispersive models
(e.g. Portigal & Burstein (1968)). The second, more significant, dissimilarity is
that, in contrast to equation (2.3), Qeff has pure dynamic terms on the diagonal,
already at the first-order iK(1) (see equation (2.14)). This means that assuming
dispersive density and elastic constants does not suffice for the constitutive
relations of the dispersive effective medium to be written in the standard form of
equations (2.1). Recalling that the upper rows of the sextic system (2.2) imply
the traction-strain law, it is seen that the latter must be complemented by a
purely dynamic term, which implies different constitutive relations than those of
the inhomogeneous medium itself.
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On this basis, following the studies of Milton & Willis (2007) and Willis (2009),
the equations of equilibrium and the constitutive relations (2.1) are replaced by
the more general form proposed by Willis

sij ,i = ṗj , sij = c(eff)
ijkl ekl + Sijr u̇r and pq = Sklqekl + r(eff)

qr u̇r . (3.1)

The vector p generalizes the normal notion of momentum density, and the
elements of the Willis coupling tensor satisfy Sijk = Sjik by assumption, ensuring
the symmetry of the stress tensor. A principal objective is to show that setting
Qeff = iK leads inevitably to dispersive effective matrix density rrr(eff) and stiffness
c(eff)
ijkl and, on top of that, to the Willis form of the effective constitutive relations

with stress-impulse coupling.

(b) The effective Willis medium

Denote by Sn and Sm the matrices with components

(Sn)jk = niSijk and (Sm)jk = miSijk . (3.2)

The same derivation that led from equation (2.1) to the sextic system (2.2)
with the coefficients (2.3) now leads from equations (3.1) to (2.2) with the
system matrix

Qeff = i

(
kxN

(eff)
1 − uN(eff)

2 Sn N(eff)
2

k2
x N

(eff)
3 − u2(r(eff) − S+

n N(eff)
2 Sn) − ukxL kxN

(eff)+
1 − uS+

n N(eff)
2

)
, (3.3)

with L = S+
n N(eff)

1 + N(eff)+
1 Sn + Sm + S+

m = L+. The identity Qeff = −TQ+
effT is

assumed in order to ensure that the effective medium is, like the inhomogeneous
periodic medium, non-dissipative (energy conserving). This implies hermiticity
constraints on the complex-valued material parameters: c(eff) = c(eff)+, rrr(eff) =
rrr(eff)+, Sn = −S∗

n, Sm = −S∗
m, where c(eff) is the 6 × 6 stiffness matrix in Voigt’s

notation. The coupling tensor Sijk is therefore purely imaginary. Note that the
blocks N(eff)

J of the effective Stroh matrix Neff = TN+
effT (
= TNT

effT) consist of sub-
matrices (nn)(eff), (nm)(eff), (mm)(eff) built from c(eff) according to the definition
(2.4) but with (mn)(eff) = (nm)(eff)+ so that N(eff)

4 = N(eff)+
1 .

Equating the matrix Qeff introduced in equation (3.3) to the matrix iK(u2, kx)
with the block structure (2.11) yields the blockwise equalities

kxN
(eff)
1 − uN(eff)

2 Sn = K1,

N(eff)
2 = K2

and k2
x N

(eff)
3 − u2(r(eff) − S+

n N(eff)
2 Sn) − ukxL = K3.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

Identification of the effective parameters based on these identities is ambiguous
given that they may depend upon both u and kx . A unique and arguably the
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simplest solution is obtained by first assuming a purely dynamic Sijk = Sijk(u).
Then (3.4)1 and (3.4)2 yield

uSn = −K−1
2 (0)K1(0),

(nn)(eff) = −K−1
2

and kx(nm)(eff) = K−1
2 K1 − K−1

2 (0)K1(0),

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

where the blocks KJ (u2, kx) of K are taken at kx = 0 as indicated by the
notation KJ (0) ≡ KJ (u2, 0) used here and subsequently. Note that the validity
of equation (3.5) requires the block K2 to be invertible, which is assumed in
the following. For K defined by the Magnus series (2.13), the conditions that
ensure existence of K−1

2 in a certain low-frequency long-wave range and the
estimates that enable truncation of its expansion are established in appendix
A, electronic supplementary material. In view of equation (3.5), the remaining
identity (3.4)3 becomes

k2
x (mm)(eff) − u2r(eff) − ukx(Sm + S+

m) = K3 − K+
1 K−1

2 K1. (3.6)

Pursuing the logical extension of the assumed dependence of the inertial coupling
tensor S on frequency alone, we assume that the inertia tensor rrr(eff) is also purely
dynamic. This leads to a unique solution of equation (3.6) since r(eff) = rrr(eff)(u)
is found by setting kx = 0,

−u(Sm + S+
m) = lim

kx→0
k−1
x {K3 − K+

1 K−1
2 K1 − (K3(0) − K+

1 (0)K−1
2 (0)K1(0))}. (3.7)

The limit may be achieved in terms of derivatives of matrices KJ at kx = 0, whose
existence is guaranteed for instance within the range of convergence of the Magnus
expansion. Accordingly, the solutions of (3.6) are

u2rrr(eff) = K+
1 (0)K−1

2 (0)K1(0) − K3(0),

u(Sm + S+
m) = −K′

3(0) − uS+
n K′

1(0) − uK+′
1 (0)Sn − u2S+

n K′
2(0)Sn

and k2
x (mm)(eff) = K3 − K+

1 K−1
2 K1 + u2rrr(eff) + ukx(Sm + S+

m).

⎫⎪⎪⎬
⎪⎪⎭ (3.8)

where K′
J (0) = vKJ (u2, kx)/vkx |kx=0.

In summary, equations (3.5) and (3.8) provide unique material properties for
the Willis model with

c(eff)(u, kx) = c(eff)+, rrr(eff)(u) = rrr(eff)+ and S(u) = −S∗, (3.9)

and Sijk = Sjik . The lack of dependence of the inertial parameters on kx means
that non-local effects are confined to the elastic moduli c(eff). The result reduces
to non-dispersive statically averaged moduli of equation (2.18) with rrr(eff) = 〈r〉I
and S = 0 when iK is restricted to the zero-order term 〈Q〉 of equation (2.13).

Regarding computation of the Willis parameters from equations (3.5) and (3.8),
it is assumed that the wavenumber matrix K(u2, kx) defined as iKT = ln M(T , 0)
is known either in the form of long-wave low-frequency series, or from the direct
definition of matrix logarithm in some neighbourhood of a given point u, kx (see
the example in §4). In particular, one may first evaluate the matricant M(T , 0)
numerically and K then follows from the matrix logarithm. The matrix K′(0),

Proc. R. Soc. A (2011)

 on June 6, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


1758 A. L. Shuvalov et al.

required for the solution of equations (3.8)2, involves evaluating the derivative of
ln M(T , 0) in kx . It may be expressed using either series or integral representation
of ln M as

ln M = −
∞∑

n=1

1
n

(I − M)n = (M − I)
∫ 1

0
[x(M − I) + I]−1 dx , (3.10)

which leads to

iK′(0)T =
∞∑

n=1

1
n

(−1)n−1
n−1∑
j=0

AjM′(0)An−1−j =
∫ 1

0
[xA + I]−1M′(0)[xA + I]−1dx ,

(3.11)
where A = M(T , 0) − I at kx = 0, and the derivative of the matricant itself is
(Pease 1965)

M′(0) ≡ vM(T , 0)
vkx

∣∣∣∣
kx=0

= i
∫T

0
M(T , 2̃)

(
N1 0
0 NT

1

)
M(2̃, 0)d2̃. (3.12)

The sufficient conditions for the range of validity of the above series and
integral definitions of K′(0) are specified in appendix A, electronic supplementary
material.

(c) Discussion

(i) The Willis equation and its inertial quantities

Consider the above results (3.5) and (3.8) in more detail. Anisotropic
density and the coupling coefficients that relate particle momentum and stress
are unknown in ‘standard’ models of solids. Here they appear as inevitable
ingredients of a model that replaces periodic spatial inhomogeneity with a
spatially homogeneous but dispersive and non-local theory. The departure from
normal elasticity is evident from the equations of motion for the displacement
that follows from equation (3.1),

c(eff)
ijkl ul ,ik + (Sijl − Silj)u̇l ,i − r

(eff)
jl ül = 0. (3.13)

This in turn leads to an energy conservation equation of the form U̇ + div f = 0,
where the real-valued energy density and flux vector are

U = 1
2
c(eff)
ijkl ul ,ku∗

j ,i + 1
2

r
(eff)
jl u̇l u̇∗

j and fi = −1
2
(Sijl − Silj)u̇l u̇∗

j − Re(c(eff)
ijkl ul ,k u̇∗

j ).

(3.14)
In order to gain some insight into these new dynamic terms, consider a layered

transversely isotropic medium with the principal axis along n identified as the
2-direction. The effective density is of the form rrr(eff) = diag(r(eff)

11 , r
(eff)
22 , r

(eff)
11 ) and

the only non-zero elements of the coupling tensor (up to symmetries Sijk = Sjik) are
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S112 = S332, S211 = S233 and S222. Only one combination of the three independent
coupling elements has impact on the equations of motion,

c(eff)
ijkl ul ,ik + (S112 − S211)u̇2,j − r

(eff)
11 üj = 0, j = 1, 3

and c(eff)
i2kl ul ,ik + (S211 − S112)(u̇1,1 + u̇3,3) − r

(eff)
22 ü2 = 0

⎫⎬
⎭, (3.15)

and it has no influence on pure SH wave motion (polarized in the plane orthogonal
to n). Long-wave expansions of r

(eff)
jj and Sijk are presented in equation (3.16).

Further detailed discussion for SH waves is provided in §4.
More generally, the absence of generating functions for Sm − S+

m means that
some elements of the Willis coupling tensor Sijk should be set to zero in order to
complete its definition. The relevant elements are necessary to determine stress
and momentum but do not enter into the equation of motion (3.13) and the sextic
system (2.2) with (3.3) because the purely imaginary property of the coupling
tensor means that mi(Sijl − Silj) are the elements of Sm + S+

m. Consider the two-
dimensional situation with indices taking only two values so that, on account of
the symmetry Sijk = Sjik , there are at most six independent elements. Four of these
may be found from equation (3.5)1, and one more follows from equation (3.8)2
using the symmetry property. The single element m · Smm is undefined and may
be set equal to zero. In the three-dimensional situation all but four combinations
of the 18 independent elements of Sijk are obtainable. Taking an orthonormal
triad {m1, n, m2}, the following elements of the coupling tensor are not defined
by the effective medium equations and are therefore set to zero: ma · Sma

mb +
mb · Sma

ma, a, b ∈ {1, 2}. To be explicit, let n lie in the 2-direction, then the Sn
equation (3.5)1 defines the nine elements S2jk ; these combined with the Sm + S+

m
equations (3.8)2 yield S112, S132, S32, and the Sm + S+

m equations with the above
prescriptions give S113 = −S131, S313 = −S331, S111 = 0, S333 = 0.

(ii) Expansion of the Willis parameters

Explicit insight into the structure of the Willis parameters can be gained from
their expansion obtained via the Magnus series for the wavenumber matrix K. In
view of equations (2.14) and (2.16), K1(0) is imaginary and expands as K1(0) =∑

m K(m)
1 (0) with odd m and K(m)

1 (0) ∼ ium+1, while K2(0) is real and expands
as K2(0) = 〈N2〉 + ∑

m K(m)
2 (0) with even m and K(m)

2 (0) ∼ um . This confirms that
Sn is imaginary and vanishes at u = 0. It is easy to check that the right-hand sides
of equations (3.5)3 and (3.6) are zero at kx = 0 and at u, kx = 0, respectively. Based
on the forms of KJ (u2, kx) as generated by the Magnus expansion, and evident
from equation (2.14) for the leading order contributions, it may be demonstrated
that equation (3.8)2 is consistent with imaginary Sm that is zero at u = 0. It is
noteworthy that keeping the density rrr(eff) as 〈r〉 or as any other scalar is generally
not possible as this would contradict the pure dynamic term on the right-hand side
of equation (3.6). Finally, it is emphasized that, by virtue of equation (2.17), the
stress-impulse tensor defined as a pure dynamic quantity Sijk = Sijk(u) vanishes in
the case of a unit cell with any symmetric heterogeneity profile Q(ỹ) (regarding
the ‘inaccessible’ part Sm − S+

m, see §3c(i)).
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Equations (3.5) and (3.8) with polynomials KJ (u2, kx) given by the Magnus
series (2.13) imply that the elastic moduli c(eff)

ijkl are rational functions of u2, kx

while the density and coupling terms rrr(eff), uSijk are functions of u2, defined by
the series

{c(eff)(u2, kx),rrr(eff)(u2), S(u)} = {c(0), 〈r〉I, 0} +
∑

m=1,2,...

{c(m),rrr(2m), S(2m−1)}, (3.16)

with real rrr(m) and imaginary S (m)
ijk proportional to um , c(m)

ijkl real or imaginary
depending on whether m is odd or even, respectively. These series are similar
to equation (2.13) in that they are majorized by the power series in long-wave
parameter 3. The Magnus series with M terms enables finding M terms of the
series (3.16). It is apparent from equations (3.5)1, (3.8)1 and (2.3) that Sn and
rrr(eff) depend only upon N2 and r, thus

Sn(u) = −iu〈N2〉−1{a(1)
2 + u2(a(3)

3 − a(2)
4 〈N2〉−1a(1)

2 ) + · · · }
and rrr(eff)(u) = 〈r〉I − u2(a(2)

7 − a(1)
2 〈N2〉−1a(1)

2 ) + · · · ,

⎫⎬
⎭ (3.17)

with

a(1)
2 = T

2

∫ 1

0

∫ 2̃

0
(rN2 − N2r)(= a(1)T

2 ),

a(2)
4 = T 2

6

∫ 1

0

∫ 2̃

0

∫ 2̃1

0
(2N2rN2 − N2N2r − rN2N2),

a(2)
7 = T 2

6

∫ 1

0

∫ 2̃

0

∫ 2̃1

0
(rrN2 + N2rr − 2rN2r)(= a(2)T

7 )

and a(3)
3 = T 3

6

∫ 1

0

∫ 2̃

0

∫ 2̃1

0

∫ 2̃2

0
(2rN2rN2 − 2N2rN2r + N2N2rr − rrN2N2),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.18)

in which d2̃, d2̃1, . . . , are suppressed (as kept tacit hereafter) and dependence of
co-factors on the successive integration variables 2̃, 2̃1, . . . , is understood. The
remaining part of the coupling tensor is only obtainable through the combination
of Sm + S+

m, and it depends upon N1, N2 and r, with

Sm + S+
m = iu(〈N1〉T〈N2〉−1a(1)

2 − a(1)
2 〈N2〉−1〈N1〉T − a(1)

5 ) + O(u3),

where a(1)
5 = 1

2
T

∫ 1

0

∫ 2̃

0
((N1 − NT

1 )r − r(N1 − NT
1 ))(= −a(1)T

5 ).

⎫⎪⎪⎬
⎪⎪⎭ (3.19)
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For example, the expansions of the inertial quantities for the transversely
isotropic layered medium discussed in §3c(ii) are rrr(eff) = 〈r〉I + rrr(2) + · · ·

r
(2)
22 = (uT )2

{
1
6

∫ 1

0

∫ 2̃

0

∫ 2̃1

0
(rrc−1

22 + c−1
22 rr − 2rc−1

22 r)

−〈c−1
22 〉−1

(
1
2

∫ 1

0

∫ 2̃

0
(c−1

22 r − rc−1
22 )

)2
⎫⎬
⎭,

S (1)
222 = i

2
uT 〈c−1

22 〉−1
∫ 1

0

∫ 2̃

0
(c−1

22 r − rc−1
22 )

and S (1)
112 = i

2
uT

{〈
c12

c22

〉−1

〈c−1
22 〉−1

∫ 1

0

∫ 2̃

0
(c−1

22 r − rc−1
22 )

+
∫ 1

0

∫ 2̃

0

((
1 − c12

c22

)
r − r

(
1 − c12

c22

))}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.20)

and r
(2)
11 , S (1)

211 = S (1)
233 have, respectively, the same form as r

(2)
22 , S (1)

222 with c22 replaced
by c66 in equation (3.20)1,2.

(iii) Effective medium defined from the Floquet dispersion

Modelling a dispersive effective medium may be based on a more relaxed
approach that abandons fitting the matrix iK to the coefficients of sextic system
of wave equations and deals instead with the asymptotic secular equation for
the eigenvalues iKa or eiKaT of iK or M(T , 0), which is a dispersion equation for
the onset of fundamental Floquet branches Ka(u, kx) or ua(kx , K ) analysed in
Norris (1992, 1993) and Norris & Santosa (1992). This gives the same secular
equation as that for the iK matrices, and hence preserves the long-wave Floquet
dispersion but not the displacement-traction vector wa at the period edges (see
equation (2.10)). By not fitting all of the physical properties, this type of approach
to homogenization modelling introduces extra degrees of freedom. In particular,
a ‘modified’ effective medium may be defined that is asymptotically similar to
iK but the matrix Q̃eff has no pure dynamic terms in the diagonal blocks, and
hence matches the Stroh-like forms (2.3) and (2.4) (though now with (3.9)1),
i.e. satisfies the standard form of the governing equations (2.1) with dispersive
effective coefficients.

For instance, in the one-dimensional case kx = 0, the matrix

Qeff = 〈Q〉 + iK(1) + iK(2) = i

⎛
⎝ iu2a(1)

2 〈N2〉 + u2a(2)
4

−〈r〉u2I + u4a(2)
7 −iu2a(1)

2

⎞
⎠ (3.21)
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has asymptotically (to the order of this matrix itself) the same secular equation
as the matrix

Q̃eff = i

⎛
⎝ 0 〈N2〉 + u2a(2)

4

− 〈r〉 u2I + u4(a(2)
7 − a(1)2

2 〈N2〉−1) 0

⎞
⎠. (3.22)

The latter ‘skips’ (by construction) the Willis coupling tensor and leads to the
same definition of the matrix of second-order elastic coefficients (nn)(2) as in
equation (3.5), while the second-order density matrix r̃rr

(2) = u2(a(1)2
2 〈N2〉−1 − a(2)

7 )
following from equation (3.22) is generally different from rrr(2) in equation (3.17)
owing to non-commutativity of 〈N2〉 and a(1)

2 . See also the SH example in
appendix B, electronic supplementary material.

4. Effective medium coefficients for SH waves

(a) The wavenumber matrix

Consider SH waves in an isotropic medium with periodic density r(y) and shear
modulus m(y). The SH state vector h(y) = (A, iF)T, where A and F are the
amplitudes of u = u3 and s23 (the indices correspond to u ‖ X3, n ‖ X2, m ‖ X1),
satisfies equation (2.2) with the system matrix

Q(y) = i
(

0 −m−1

mk2
x − ru2 0

)
. (4.1)

The 2 × 2 case leads to some simplifications not available for higher algebraic
dimensions. In particular, the two eigenvalues of the monodromy matrix M(T , 0),
which are the inverse of one other (since det M = 1 due to the isotropy), are defined
by the single quantity tr M(T , 0). The implications are explored in Shuvalov et al.
(2010) and only the necessary equations are cited here. The main result is that
the wavenumber matrix, and hence the effective system matrix Qeff (u) = iK has
semi-explicit form,

Qeff = i
(

K1 K2
K3 −K1

)
= K

sin KT
[M(T , 0) − I cos KT ]

and

KT = cos−1
(

1
2
tr M(T , 0)

)
, (4.2)

where Re cos−1 ∈ [0, p], Im cos−1 ≥ 0, and ±K (no subscript) are the eigenvalues
of K.

(b) Willis equations and effective coefficients

Following the general formalism of §3, the effective material is assumed to have
constitutive equations described by the Willis model, which in this case has only
a single momentum component p3 and the usual stress components for SH waves
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in elasticity. Noting that S53 = 0, on account of the transversely isotropic axis n,
we have ⎛

⎜⎝
s13

s23

p3

⎞
⎟⎠ =

⎛
⎜⎜⎝

c(eff)
55 c(eff)

54 0

c(eff)
45 c(eff)

44 S43

0 S43 r(eff)

⎞
⎟⎟⎠

⎛
⎜⎝

u,1

u,2

u̇

⎞
⎟⎠. (4.3)

These constitutive relations imply, using equation (3.1)1, that the governing
equation for the SH displacement is of the form

c(eff)
44 u′′ + (u2r(eff) − k2

x c
(eff)
55 )u = 0, (4.4)

where ′ means d/dy. The coupling term S43 is absent from the equation of motion,
as expected from the Willis equations (3.1) for a scalar problem. At the same time,
equation (4.3) leads to the state-vector system matrix in the form

Qeff = i

⎛
⎝ −c(eff)

44

−1
(kxc

(eff)
45 − uS43) −c(eff)

44

−1

k2
x c

(eff)
55 − u2r(eff) + c(eff)

44

−1
(kxc

(eff)
45 − uS43)2 c(eff)

44

−1
(kxc

(eff)
45 − uS43)

⎞
⎠,

(4.5)
where c(eff)+

45 = c(eff)
54 = −c(eff)

45 has been used.
Setting Qeff of the Willis model equal to that of equation (4.2) gives the material

parameters

c(eff)
44 = −K−1

2 ,

r(eff) = −u−2(K3(0) + K−1
2 (0)K 2

1 (0)),

S43 = −u−1K−1
2 (0)K1(0),

c(eff)
55 = k−2

x

(
K3 + K−1

2 K 2
1 + u2r(eff))

and c(eff)
45 = k−1

x (K−1
2 K1 − K−1

2 (0)K1(0)),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

with KJ (0) = KJ (u, 0). These may be expressed directly in terms of the elements
of the monodromy matrix, using the form (4.2) along with det K = −K 2,

c(eff)
44 = sin KT

iKM2
,

r(eff) = K 2(0)
u2

c(eff)
44 (0),

S43 = M4(0) − M1(0)
2uM2(0)

,

c(eff)
55 = k−2

x (u2r(eff) − K 2c(eff)
44 )

and c(eff)
45 = k−1

x

(
uS43 + M1 − M4

2M2

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)
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where MJ = MJ (T , 0) are functions of u and kx , and (0) means evaluated at
kx = 0. Note that the expressions for r(eff) and c(eff)

55 also follow from the equation
of motion (4.4) and its solution u(y) = u(0)eiKy , using kx = 0 for r(eff)(u).

Explicit expressions for the low-frequency long-wave expansion of the material
parameters may be found in the same manner as in §3c(ii) for the general case.
The starting point is the Magnus expansion Qeff = 〈Q〉 + iK(1) + iK(2) for the SH
wavenumber matrix. Details of the analysis and a summary of the results are
presented in appendix B, electronic supplementary material.

(c) Examples and discussion

(i) A bilayered unit cell

The general formulation is illustrated by the case of a two-component piecewise
constant unit cell. Specifically, consider a periodic structure of homogeneous
isotropic layers j = 1, 2, each with constant density rj , shear modulus mj and
thickness dj . The monodromy matrix M(T , 0) = eQ2d2eQ1d1 ≡ M(u, kx) has the
well-known form

M(u, kx ) =

⎛
⎜⎜⎝

cos j2 cos j1 − g1

g2
sin j2 sin j1 − i

g1
cos j2 sin j1 − i

g2
sin j2 cos j1

−ig1 cos j2 sin j1 − ig2 sin j2 cos j1 cos j2 cos j1 − g2

g1
sin j2 sin j1

⎞
⎟⎟⎠,

(4.8)

where jj = dj

√
m−1

j rju2 − k2
x is the phase shift over a layer and gj = mjjj/dj (see

Shuvalov et al. (2010)). Figures 1 and 2 show the computed parameters for
the case of layers of equal thickness, d1 = d2 = 1/2, with r1 = 1, c1 = 1; r2 = 2,
c2 = 2, where cj is the shear wave speed (c2 = m/r). Figure 1 shows the effective
parameters for propagation normal to the layers (kx = 0). The vanishing of both
c(eff)
44 and r(eff) at the band edge at u = u1 ≈ 2.6 is expected on the basis of the fact

that Qeff is singular at the band edge and scales as (u − u1)−1/2 near it (Shuvalov
et al. 2010). Referring to the 12-element in equation (4.5), this implies first that
c(eff)
44 ∝ (u − u1)1/2 and then, from the 21-element and the finite value of det Qeff ,

that r(eff) ∝ (u − u1)1/2. The square root decay of both c(eff)
44 and r(eff) is apparent

in figure 1.
The wavenumber is finite, kx = 1, in figure 2. This has the effect of increasing

the frequency of the band edge, and introducing a range of frequency from u = 0
up to the cut-on at u ≈ 1.7 in which the effective wave is non-propagating.
Note that r(eff) and S43 are unchanged from figure 1 while the elastic modulus
c(eff)
44 is different, and tends to zero at the new band edge as expected. The

non-zero kx leads to non-zero c(eff)
45 , and the parameter c(eff)

55 becomes complex-
valued at the kx = 0 band edge. Only the real parts of the quantities are
shown in both figures. No attempt is made here to discuss their imaginary
components, which requires careful analysis of the branch cuts and is a topic for
separate study.
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Figure 1. The effective material properties of the bilayered SH case for kx = 0: elastic moduli,
inertial parameters and the effective wavenumber are plotted in blue, black and red, respectively.
The frequency range includes the first band edge which is at the frequency where Re K = p first
occurs. Only the real parts of the quantities indicated are plotted. For frequencies in the stop band
the imaginary parts of c(eff)

44 , r(eff) and K are non-zero but not shown. (Online version in colour.)
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Figure 2. The same as in figure 1 but for kx = 1.0. The additional parameters c(eff)
55 and c(eff)

45 are
relevant to kx 
= 0. Only the real parts of the quantities are plotted. (Online version in colour.)

(ii) Reflection and transmission of a half-space of effective material

As an example of the type of boundary problem that can be solved using
the effective medium equations, consider reflection–transmission of SH waves
at a bonded interface y = 0 between the half-space of the periodically stratified
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Figure 3. The magnitude of the reflection and transmission coefficients of equation (4.11) for normal
incidence (q = 0). (Online version in colour.)

medium (y > 0) and a uniform half-space (y < 0) of isotropic material with r0, m0
and c0 = √

m0/r0. An SH plane wave is incident from the uniform half-space with
propagation direction at angle q from the interface normal. The total solution is
taken as

u(x , y) = eikx x

{[eikyy + Re−ikyy], y ≤ 0,

TeiK (u,kx )y , y > 0,
with (kx , ky) = u

c0
(sin q, cos q). (4.9)

The reflection and transmission coefficients R and T follow from the continuity
conditions for particle velocity and traction at the interface. They may be
expressed in the standard form using SH impedances defined as Z± = −s23/u̇|y=0± .
The impedance in the uniform half-space is Z− = r0c0 cos q. The impedance Z+
for the effective medium follows from equation (4.3) as

Z+ = u−1(Kc(eff)
44 + kxc

(eff)
45 − uS43). (4.10)

This is identical to the impedance of the periodically stratified half-space because
they both imply a ratio of components of the outgoing eigenvector w, which
is common to M(T , 0) and K. In these terms, the continuity conditions for
displacement and traction yield the exact result

1 + R = T , Z−(1 − R) = Z+T , ⇒ R = Z− − Z+
Z− + Z+

, T = 2Z−
Z− + Z+

. (4.11)

Figure 3 shows |R(u)| and |T (u)| calculated for normal incidence from a uniform
half-space with r1 = 1, c1 = 1 on a periodic structure of two layers with r1 = 1,
c1 = 1, r2 = 2, c2 = 2, which was used in figures 1 and 2. As expected, |R| ≤ 1 with
total reflection in the stopband.
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The explicit dependence of the reflection coefficient on the effective medium
parameters c(eff)

44 , c(eff)
45 and S43 means that, in principle, measurement of R via

experiment can provide useful knowledge for their determination.

(iii) Uniform normal impedance

It is instructive to consider the particular case of kx = 0 with z = √
r(y)m(y) =

r(y)c(y) independent of y, i.e. z ≡ z0. The 2 × 2 matrix Q(y) is then a scalar
multiple of a constant matrix, and M1(0) = M4(0), M2(0) = (iuz0)−1 sin KT
(where (0) stands for kx = 0). As a result, by equation (4.6), the effective
parameters at any u retain their values obtained from static averaging: S43 = 0,
c(eff)
44 (u, 0) = 〈m−1〉−1 and r(eff)(u) = 〈r〉. This simplification is a consequence of the

fact that constant z implies constant eigenvectors of the SH matricant M(y, 0)
and hence no reflection of SH waves normally propagating through a periodic
structure, which is in accordance with the physical meaning of the impedance z .
Consistency is also observed in that the effective impedance z (eff) defined through
the above effective parameters is equal to z0,

z (eff) =
√

r(eff)c(eff)
44 = r(eff)c(eff) =

√
〈r〉〈m−1〉−1 = z0. (4.12)

The only effect of the inhomogeneity is to speed up or retard the advancing waves
according to the effective speed c(eff) = z (eff)/r(eff), which in the present case follows
from equation (4.12) as c(eff) = z0/r(eff) = 〈c−1〉−1.

(iv) Discussion

In the case of purely unidimensional motion, kx = 0, the system (4.3) involves
only the first three parameters of equation (4.7): c(eff)

44 , r(eff) and S43. Willis
(2009) derived expressions for the same quantities for a laminated medium.
His coefficients (Willis 2009, eqn. (3.30)) relate weighted means of strain and
velocity (〈we〉, 〈wu̇〉) to ensemble the means of stress and momentum density
(〈s〉, 〈p〉), where w is a general weighting function first introduced in Milton &
Willis (2007), such that the ensemble means correspond to w = 1. The Willis
parameters derived here, e.g. equation (4.3), concern strain and velocity at the
single point y = 0 in the unit period, and therefore correspond to the specific
weight function w(x) = 2Ld(x) in the notation of Willis (2009). It is important to
note, however, that the stress and momentum density used here are not ensemble
averages but are quantities associated with the same point in the unit period. This
identification, for instance, means that the solution of the reflection–transmission
problem of §4c(ii) is in fact the deterministic solution. In summary, while the
governing equations are the same in both cases, the Willis parameters developed
here do not bear a one-to-one correspondence with those in Willis (2009).

5. Conclusion

A fully dynamic homogenization scheme has been developed for periodically
layered anisotropic elastic solids. In the process, the dispersive and non-local
Willis model has been shown to provide an optimal constitutive setting for the
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effective medium. The crucial point of the present method is the insistence that
the matrix of coefficients Qeff of the sextic system of elastodynamics equations,
for whatever homogeneous effective medium is considered, must exactly match
the Floquet wavenumber matrix K of the periodic system. This is not a low-
frequency long-wave approach, so long as K is defined at the given frequency
u and horizontal wavenumber kx . The wavenumber matrix K = K(u, kx) is an
analytical function of u and kx , which may be explicitly defined via the Magnus
series expansion that is guaranteed to converge below the first Floquet stopband
at the edge of the Brillouin zone. The choice of constitutive model for the effective
medium is critical. We have demonstrated that the standard anisotropic elasticity
theory does not suffice as it cannot provide a Qeff to properly account for dynamic
terms appearing in the wavenumber matrix, K(u, kx). On the other hand, the
Willis model for the effective medium, which includes coupling effects, can allow
us to associate elements of the effective system matrix Qeff with elements in K.
The main results are contained in equations (3.5) and (3.8), which infer the
material parameters of the effective Willis medium from K. Invoking the Magnus
series, explicit expressions for the low-frequency long-wave expansion of these
effective Willis parameters have been found, and the accuracy for their truncated
asymptotics has been estimated.

The example of SH plane wave reflection and transmission considered in §4c(ii)
indicates the type of application possible using the Willis effective medium. The
point is not so much to provide new solutions for layered media, although it is
simpler to formulate and solve such problems using equations for a homogeneous
model. The potential power of the dynamic effective medium model is that
it is possible to relate the effective properties of the Willis material to the
measurable dynamic quantities. Thus, the reflection and transmission problem
illustrates how the reflection coefficient R depends on a certain combination
of the Willis parameters. Measurements of R = R(u, kx) provide a means to
characterize periodic layered systems as equivalent homogeneous but dispersive
materials. Other problems that may be considered are, for instance, surface wave
propagation in a periodically layered half-space, waveguides comprised of periodic
layers and point forces.
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