Evaluation of the effective speed of sound in phononic crystals
by the monodromy matrix method (L)
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A scheme for evaluating the effective quasistatic speed of sound c¢ in two- and three-dimensional
periodic materials is reported. The approach uses a monodromy-matrix operator to enable direct
integration in one of the coordinates and exponentially fast convergence in others. As a result, the
solution for ¢ has a more closed form than previous formulas. It significantly improves the effi-
ciency and accuracy of evaluating ¢ for high-contrast composites as demonstrated by a two-
dimensional scalar-wave example with extreme behavior. © 2011 Acoustical Society of America.
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I. INTRODUCTION

Long-standing interest in modeling effective acoustic
properties of composites with microstructure has substan-
tially intensified with the emerging possibility of designing
periodic structures in air'* and in solids® to form phononic
crystals and other exotic metamaterials, which open up
exciting application prospects ranging from negative index
lenses to small scale multiband phononic devices.* This
new prospective brings about the need for fast and accurate
computational schemes to test ideas in silico. The most com-
mon numerical tool is the Fourier or plane-wave expansion
method (PWE). It is widely used for calculating various
spectral parameters, including the effective quasistatic speed
of sound in acoustic® and elastic’ phononic crystals. At the
same time, the PWE calculation is known to face problems
when applied to high-contrast composites,*> which are of
special interest for applications. Particularly riveting is the
case where a soft ingredient is embedded in a way that
breaks the connectivity of densely packed regions of stiff in-
gredient. Physically speaking, the speed of sound, which is
large in a homogeneously stiff medium, should fall dramati-
cally when even a small amount of soft component forms a
“quasi-insulating network.” Note that this case, which
implies strong multiple interaction effects, is particularly
unsuited for the multiple-scattering approach.'™

The purpose of the present letter is to highlight a new
method for evaluating the quasistatic effective sound speed ¢
in two-dimensional (2D) and three-dimensional (3D) pho-
nonic crystals. The idea is to recast the wave equation as a
first-order ordinary differential system (ODS) with respect to
one coordinate (say x;) and to use a monodromy-matrix op-
erator defined as a multiplicative (or path) integral in x;. By
this means, we derive a formula for ¢ [see Egs. (12) and (13)
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for 2D and Eq. (30) for 3D] whose essential advantages are
an explicit integration in x| and an exponentially small error
of truncation in other coordinate(s). Both these features of
the analytical result are shown to significantly improve the
efficiency and accuracy of its numerical implementation in
comparison with the conventional PWE calculation, as dem-
onstrated in the letter for scalar waves in a 2D steel/epoxy
square lattice. The power of the new approach is especially
apparent at high concentration f of steel inclusions, where
the effective speed c displays a steep, near vertical, depend-
ence for f ~ 1, a feature not captured by conventional tech-
niques like PWE.

Il. EFFECTIVE SPEED OF 2D ACOUSTIC WAVES
A. Governing equations and problem statement

Consider the scalar wave equation

V- (uVv) = —pa’v, (1)
for time-harmonic shear displacement v(x,?) = v(x)e ™ in
a 2D solid continuum with T-periodic density p(x) and shear
coefficient p(x). The subsequent results are equally valid for
waves in fluid-like phononic crystals under the standard
interchange of p and u for solids by K~ and p~! for fluids.
Assume a square unit cell T = {}",,a;} = [0, 1)* with unit
translation vectors a;_L a, taken as the basis for x = Zi X;a;.
Imposing the Floquet condition v(x) = u(x)e™®X, where u(x)
is periodic and k = kk (|x| = 1), Eq. (1) becomes

(Co+Ci +Co)u = po*u  with Cou = —V(uVu)
Ciu = —ik - (uVu+ V(uu)), Cou = k*pu. 2)

Regular perturbation theory applied to Eq. (2) yields the
effective speed ¢(x) = lim,, ;o w(k)/k in the following
form:®
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¢ (1) = g (k) /(p). with

2
M(K) = ZMUKin7
i,j=1

feir () = (1) — M (k)

Mi; = (Cy 'O, ) = My, (3)
where 0; = 0/0x;, spatial averages are defined by

(f) = Lf(x)dx ( () (= Jlf(x)dx,), 4)

0

and (-,-) denotes the scalar product in L?*(T) so that
(f,h) = (fh*) [the asterisk (*) means complex conjugation].
The difficulty with Eq. (3) is that it involves the inverse of a
partial differential operator Cy. One solution is to apply a
double Fourier expansion to C, ! and O;n in Eq. (3). This
leads to the PWE formula for the effective speed,® which is
expressed via infinite vectors and the inverse of the infinite
matrix of Fourier coefficients of u(x). Numerical implemen-
tation of the PWE formula requires dealing with large dense
matrices, especially in the case of high-contrast composites
for which the PWE convergence is slow (see Sec. IV). An al-
ternative “brute force” procedure of the scaling approach is
to numerically solve the partial differential equation
Coh = O;u for the l-periodic function A(x) (e.g., via the
boundary integral method).’”

The new approach proposed here leads to a more effi-
cient formula for ¢ based on direct analytical integration in
one coordinate direction. There are two ways of doing so.
The first proceeds from the ODS form of the wave equation
(1) itself, which means “skipping” Eq. (3). This is conven-
ient for deriving ¢(k) in the principal directions k || a2, see
Sec. I B. The second method is more closely related to the
conventional PWE and scaling approaches in that it also
starts from Eq. (3) but treats it differently, namely, the
equation Coh = O;p is cast in ODS form and analytically
integrated in one coordinate. This is basically equivalent to
the former method, but enables an easier derivation of the
off-diagonal component M;, for the anisotropic case,
see Sec. II C.

B. Wave speed in the principal directions

The wave equation (1) may be recast as

y = Qn with A = —,(ud»)

- 0 u! (v
o= (A—pw2 0 ) ) = (/w’>’ )

where the prime () stands for ;. The solution to Eq. (5) for
initial data n(0,x;) = (0, -) at x; =0 is

n(xi,-) = Mlx;,0]9(0,-)  with

o~

Mia,b] = J:@ + Qdx), ®)

The operator M |xy, 0] is formally the matricant, or propaga-
tor, of Eq. (6) defined through the multiplicative integral |
(with Z denoting the identity operator). It is assumed for the
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moment that p(x) and p(x) are smooth to ensure the exis-
tence of M. The matricant over a period, M1, 0], is called
the monodromy matrix.

Assume the Floquet condition with the wave vector
k = (k; 0)" so that v(x) = u(x)e*™ and y(1,-) = 5(0,-)e
By Eq. (6)1, this implies the eigenproblem

M(1,0] w(ky) = e w(ky). (7

Equation (7) defines k; = kj(w) (since M depends on
®) and hence ® = w(k;), where »” is the eigenvalue of
Eq. (1) with v(x) = u(x)e’™"1. The effective speed c(a;)
= limy, 4, o w/k; can therefore be determined by applying
perturbation theory to Eq. (7) as w, k; — 0. The asymptotic
form'® of M1, 0] follows from definitions (5) and (6), as

MI1,0] = My + &* M; + O(w*) where

o~

Mo = Mo[1,0], Mola,b] = J (T + Qodv;) with
b
_ (0 u!
QO — Q(/):O - (A 0 )7
1 0 0
M, :J MOUJl]( >M0[X170}dxl- ®)
0 —p 0

Note the identities Qywo =0, QjWo = 0 [where the plus
sign (") is Hermitian conjugation] and hence

Mola, blwo = wo, M [a, b]Wo = W

01

(Va,b)
for wo(xy) = (10)7, .

Wolr) = (0 1)" ©)
By Eq. (9); wy is an eigenvector of M, with the eigenvalue
1, and it can be shown to be a single eigenvector. Therefore
w(ki) = wo + kiwi + kiw, + O(k}) and o = cki + O(k}).
Insert these expansions along with (8); in Eq. (7) and collect
the first-order terms in k; to obtain

Mow; = w; +iwg = wy = i(Mo—T) 'wo. (10)

According to Eq. (9), My — 7 has no inverse but is a one-to-
one mapping from some subspace orthogonal to w, onto the
subspace orthogonal wy; hence, w; exists and Wy - w; is
uniquely defined. The terms of second order in k; in Eq. (7)
then imply

1
M(]Wz + C2M1W0 = 7§W0 + in + W». (11)

Scalar multiplication on both sides by wy leads, with account
for Egs. (9) and (8)4, to ¢*(p) = —i(Wo - W1),, hence by Eq.
(10)2,

ay) = <p>—1<v~v0 (Mo —z)—1w0>2, (12)

where the notation (-), is explained in Eq. (4) and - is a sca-
lar product in vector space. Interchanging variables x; = x;
in the above-mentioned derivation yields a similar result for
c(ay) as follows:
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(a) = (p) ! <v~v(, (Mo — z)*lwo>l where

~

Mo = J (T + Goda),
0

- 0 -1
Qo=<~ :

L= —0,(udy). 13
i 0)7 A 1 (udh) (13)

The result for a rectangular lattice readily follows by rescal-
ing of the coordinates x;; a similar formula for an oblique lat-
tice can be obtained via the coordinate transformation from
the oblique to orthogonal basis.

Even p. For an even function u(xy,xp) = u(—xy,x;) for-
mula (12) can be simplified. The chain rule for the multipli-
cative integral (6) and the identity (9) yield

(Mo —I)_IWO = (M [1,%]./\/10[%, ] —Z)_IWO
= (Mo[3,0] = My ' [1A) 'wo. (14

Denoting

[ Mo M
1 0] — _ 01 02
MO[ZaO] _JO (I+ Qdel) = <MO3 MO4) (15)

and using the symmetry of u leads to

172

M4 =

(T — Qudxy) = ( Mo _M”).

Moy Mo
(16)

0

Combining Egs. (14)—(16) with Eq. (12) then gives

<p>_1<./\/l(;21€>2, E(Xz) =1 a7

N —

(ay) =

C. The full matrix Mj

The anisotropy of the effective speed c(k), i.e., its de-
pendence on the wave normal k = k/k, is determined by the
quadratic form M(k) = Zu | Mjjicix; [see Eq. (3)] and rep-
resented by the ellipse of (squared) slowness ¢~2(k). Equa-
tions (12) and (13);, which define c(a;) and so M;;, suffice
for the case where T is rectangular and u(x) is even in (at
least) one of x; so that the effective-slowness ellipse is
¢ (k) = >, , ¢ *(a;)x? with the principal axes parallel to
a; L a,. Otherwise c¢(x) for arbitrary x requires finding the
off-diagonal component Mi,. For this purpose, with refer-
ence to Eq. (3), consider the equation

Co]’l = 81,[1 (18)

for 1-periodic A(x). With the above-presented notations this
can be written as —(uk')’ 4+ Ah = i’ or, more conveniently,

(uh')' = Ah with h = h + x,. The latter is equivalent to
¢ =0 where g=( 1T (19)
u(h' +1)

and Q is given in Eq. (8);. The general solution to Eq. (19)
is
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C(xla ) = MO[xla 0]6(07 ')7 (20)

where Mylx;,0] is defined in Eq. (8),, and &(0, -) is the ini-
tial data at x; =0. The periodicity of /& implies
£(1,-) = &(0, ) + wo, while &(1, ) = MoE(0, ) by Eq. (16).
Hence £(0,-) = (Mo — Z)~'w and so Eq. (18) is solved by

E(x1,-) = Mo[x1,0/(Mo — T) 'w. (1)

Substituting Eq. (21) into the definition of M|, in Eq. (3)
yields

My = (Cy' Oy, Do) = (hdap) = (Dawo - &)
= <(92,UWO . M()[X],O](MO — I)ilW0>. (22)

Note that the formula (22) for M|, requires more computa-
tion than the formulas (12) and (13); for M;;. Interestingly, if
the unit cell T is square, then, for an arbitrary (periodic)
u(x), Eq. (22) can be circumvented by using the identity
My, = (M” 7M22)/2 where M;; follows from Egs. (12)
and (13), applied to the square lattice obtained from the
given one by turning it 45°.

D. Discussion

The two lines of attack outlined in Sec. II A are equiva-
lent in that the formula (12) for the effective speed c(a;) in
the principal direction can also be inferred from Eq. (3).
Inserting the solution (21) of Eq. (18) defines the component
M, as

My = (Cy' O, D) = ().

(23)

(hi') = (W'wo - &) —

Integrating by parts each term in the last identity and using
the periodicity of u(x) along with Egs. (8)3, (9), (19)—(21)
[see also the notation (4)] yields

—(uwo - &) + (u(1,2)wo - E(x2)),
— (u(0,x2)wo - £(x2)),
= —(uwo - Qo&) + (u(0,x2)wo - (&(1,x2)
—£(0,x2))),
- &) + (u(0,x2)wo - (Mo — 1)£(0,x2))),
- Mo[x1, 0](Mo — Z)"'wo) + (u(0,x2)),
0+ (Mo —Z) "'wo) + (u(0,x2)),
0+ (Mo —T) " W), + (u(0,x2)),,
= () = () = (u(1,x2)),
= () = (u(0,x2)),. (24)

Thus, My, = (i) — (Wo - (Mo — )~ 'wp),, which leads to
Eq. (12). Note that Eq. (22) is also obtainable via the mono-
dromy matrix of the wave equation (1) (the approach of
Sec. I B) with v(x) = u(x)e™** and k |/ a;, but this method
of derivation of M, is lengthier than in Sec. IT C.

(W'wo - &)

—(Wo
—(Wo
—(w
—(w
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As another remark, it is instructive to recover a known
result for the case where p(x) is periodic in one coordinate
and does not depend on the other, say u(xi,xz) = u(xy).
Using Egs. (8),, (8)3, and (13); gives

)
T eny) T

’ ) (25)
= W.
li(xl) ’

(Mo —1) <
Therefore, by Eqgs. (12) and (13),, ¢*(a;) = (u');"/(p) and
c*(az) = (w),/{p) while M1, = 0 by Eq. (22) with D = 0.

Finally, we note that, while the above-presented evalua-
tion of quasistatic speed ¢ is exact, using the same
monodromy-matrix approach also provides a closed-form
approximation of ¢. For the isotropic case, it is as follows:®

¢~ <<<#1>11>2+<<u>5'>11)- 6)

lll. EFFECTIVE SPEEDS IN PRINCIPAL DIRECTIONS
FOR 3D ELASTIC WAVES

The equation for time-harmonic elastic wave motion
v(x,t) = v(x)e ' is, with repeated suffices summed,

- aj(cijklalvk) = pwzv,- (iaja ka l= 13 23 3); 27

where density p(x) and compliances c;j;(x) are T-periodic
in a 3D periodic medium. Assume a cubic unit cell
T ={X,1a;} = [0,1]’ and refer the components x;, v;, and
cjju to the orthogonal basis formed by the translation vectors
a;. Impose the condition v(x) = u(x)e®* with periodic
u(x) = (u;) and take k parallel to one of the a;, e.g., to aj.
Equation (27) may be rewritten in the form

' = Qn with n(x) = ) :
(cituOpuz)
—C'A c!
Q= ) 28
(—wzpé,j + A - AfCTTA AfCT! ) 28)

where the matrix operators A; and self-adjoint A,, C are

C=(cir), Ai(u;) = (citraOatty),
Ay (u;) = = (0u(CiarpOpur))  with a,b=2,3. (29)

Like in the 2D case, denote the monodromy matrix for
Eq. (28) at w=0 by Mo=]p(Z+ Qodx), where
Qp = Qu—0, and also introduce the 6 x 3 matrices
Wy = (65 0)" and W, = (0 5,-,-)T. Reasoning similar to that
in Sec. II C leads us to the conclusion that the effective
speeds ¢, (a1) = limg, 4o w/k («=1,2,3) of the three
waves with k = kxk parallel to a; are the eigenvalues of the
3 X 3 matrix

((Wy (Mo —7) W) ) (with (3,= (@) G30)
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IV. NUMERICAL IMPLEMENTATION

There are several ways to use the above-presented ana-
lytical results for calculating the effective speed. One
approach is to transform to Fourier space with respect to
coordinate(s) other than the coordinate of integration in the
monodromy matrix. Consider the 2D case and apply the Fou-
rier expansion f(xi,x2) = Y., 5 fu(x1)e*™™2 in x, for the
functions f = p and u~'. Then the operator of multiplying
by the function g~ !(x,-) and the differential operator
A(xy) = =02 (u(x1, -)92) become matrices

—

,U_] Hﬂ_](xl) = (/’rln—m) = (ﬁn—m)71

A A(x)) = 4n*(nmi, ), nmée7Z 31

and Eq. (12) reduces to the following form:

Har) = (p) "Wy Mo —I)"'wy  with

~

1

M—J<I+Qd> Q- [ "
0—0 0dX1), o\X1) = A 0 ’

Wy = (0 50,)", Wy = (0, 0)", (32)

where ¢(k) = ¢ = const for any & in the isotropic case. The
above-mentioned vectors and matrices are, strictly speaking,
of infinite dimension, which needs to be truncated for numer-
ical purposes. In this sense there is no loss of generality in
assuming a smooth u(x) in the course of derivations in Sec.
II. Implementation of Eq. (32); consists of two steps.

Step 1. Calculate the multiplicative integral (32); defin-
ing My. For an arbitrary u(x), one way is to use a discretiza-
tion scheme. Divide the segment x; € [0, 1] into N; intervals

A= [xgi),xgiH)), i =1,...,Ny, of small enough length. Cal-
culate 2N+ 1 Fourier coefficients ,a,,(xgi)), n=-N,...,.N

and the (2N + 1) x (2N + 1) matrices Qo(x(li)) for each
i=1,...,N;, and then use the approximate formula

M, = H}:Nl exp[\A,-|Q0(x(1i))]. Recall that f satisfies the

chain rule and [;' = exp[(a — b)Q,] for a,b € A if u(x) does
not depend on x; within A. Therefore the calculation is much
simpler in the common case of a piecewise homogeneous
unit cell with only a few inclusions of simple shape (see the
example to follow).

Step 2. Solve the system (My—I)w; =iw; for
unknown wj. First remove one zero row and one zero col-
umn in the matrix My — I [see the remark following Eq.
(10)]. Then the vector w; is uniquely defined and may be
found by any standard method. Note that only a single com-
ponent of w; is needed to evaluate Wy - wy. Finally dividing
by (p) yields the desired result (32);. Note that the case of
even u admits a simpler formula (17), which implies

Cz(al) = <p>71(5n0) 'm_1(5'10)> (33)

N —

where m A1isz the upper right block of the matrix
Mo[L, 0] = [0/ (1 + Qqdxy).
As an example, we calculate the effective shear-wave

speed ¢ versus the volume fraction f of square rods
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CSt . St D Ep
CvM Dum.:
N=1
N =10
— N =20
CpWE NuI.:
¢ N=1
cEp o N = 10
—o— N =20
CMIM ~ (26)2
0 rf

FIG. 1. (Color online) Effective speed ¢ versus concentration f of square
rods for 2D St/Ep and Ep/St lattices (see details in the text).

periodically embedded in a matrix material to form a 2D
square lattice with translations parallel to the inclusion edges.
A high-contrast pair of materials is chosen such as steel (= St,
with p = 7.8 x 10° kg/m?, u = 80 GPa) and epoxy (= Ep,
with p = 1.14 x 103 kg/mS, 1= 1.48 GPa). We consider
two conjugated St/Ep and Ep/St configurations, where the ma-
trix and rod materials are either St and Ep or Ep and St,
respectively. The results are displayed in Fig. 1. The curves
cemm(f) are computed by the present monodromy-matrix
(MM) method, Eq. (33); they are complemented by the
approximation (26). Also shown for comparison are the
curves cpwg(f) computed from the truncated formula® of the
conventional PWE method based on a 2D Fourier transform
of Eq. (3). Calculations are performed for a different fixed
number 2N + 1 =d of the one-dimensional (1D) Fourier
coefficients of u(x), which implies a d X d matrix m in Eq.
(33) and, by contrast, a d* x d* matrix in the PWE formula.®
Apart from this advantage of the MM calculation, it is also
seen to be remarkably more stable—with a reasonable fit pro-
vided already at N = 1. The difference between the MM and
PWE numerical curves is especially notable for the case of
densely packed steel rods. Interestingly, the MM computation
and estimate both predict a steep fall for ¢(f) when a small
concentration 1 — f of epoxy forms a quasi-insulating net-
work. The PWE fails to capture this important physical fea-
ture for reasons described next.

J. Acoust. Soc. Am., Vol. 130, No. 6, December 2011

The far superior stability and accuracy of the MM
method demonstrated in Fig. 1 can be explained as
follows. The PWE formula® implies calculating M,
s Zlg‘<ng|g|72(|g2| +1)724+0(d"") with bounded coef-
ficients By, where g are the 2D reciprocal lattice vectors
[we use here that the components of the vector du for
piecewise constant u(x) are of order (|g,| + 1), and that
the matrix corresponding to C, 'is close to diagonally
dominant and hence its eigenvalues are of order \g|_2].
Thus the accuracy of the PWE method is expected to be of
order d~!'. In contrast, the accuracy of the MM method,
where the 1D Fourier expansion is performed inside a mul-
tiplicative integral that is “close” to exponential, is
expected to be on the order e~“. This can be understood
from the MM equation (32);, where the 2d x 2d matrix
(Mo —I)~" can be replaced by 2(My — M)~ with eigen-
values of ordere ™, n=1,...,d.
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