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A scheme for evaluating the effective quasistatic speed of sound c in two- and three-dimensional

periodic materials is reported. The approach uses a monodromy-matrix operator to enable direct

integration in one of the coordinates and exponentially fast convergence in others. As a result, the

solution for c has a more closed form than previous formulas. It significantly improves the effi-

ciency and accuracy of evaluating c for high-contrast composites as demonstrated by a two-

dimensional scalar-wave example with extreme behavior. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

Long-standing interest in modeling effective acoustic

properties of composites with microstructure has substan-

tially intensified with the emerging possibility of designing

periodic structures in air1,2 and in solids3 to form phononic

crystals and other exotic metamaterials, which open up

exciting application prospects ranging from negative index

lenses to small scale multiband phononic devices.4,5 This

new prospective brings about the need for fast and accurate

computational schemes to test ideas in silico. The most com-

mon numerical tool is the Fourier or plane-wave expansion

method (PWE). It is widely used for calculating various

spectral parameters, including the effective quasistatic speed

of sound in acoustic6 and elastic7 phononic crystals. At the

same time, the PWE calculation is known to face problems

when applied to high-contrast composites,4,5 which are of

special interest for applications. Particularly riveting is the

case where a soft ingredient is embedded in a way that

breaks the connectivity of densely packed regions of stiff in-

gredient. Physically speaking, the speed of sound, which is

large in a homogeneously stiff medium, should fall dramati-

cally when even a small amount of soft component forms a

“quasi-insulating network.” Note that this case, which

implies strong multiple interaction effects, is particularly

unsuited for the multiple-scattering approach.1–3

The purpose of the present letter is to highlight a new

method for evaluating the quasistatic effective sound speed c
in two-dimensional (2D) and three-dimensional (3D) pho-

nonic crystals. The idea is to recast the wave equation as a

first-order ordinary differential system (ODS) with respect to

one coordinate (say x1) and to use a monodromy-matrix op-

erator defined as a multiplicative (or path) integral in x1. By

this means, we derive a formula for c [see Eqs. (12) and (13)

for 2D and Eq. (30) for 3D] whose essential advantages are

an explicit integration in x1 and an exponentially small error

of truncation in other coordinate(s). Both these features of

the analytical result are shown to significantly improve the

efficiency and accuracy of its numerical implementation in

comparison with the conventional PWE calculation, as dem-

onstrated in the letter for scalar waves in a 2D steel/epoxy

square lattice. The power of the new approach is especially

apparent at high concentration f of steel inclusions, where

the effective speed c displays a steep, near vertical, depend-

ence for f � 1, a feature not captured by conventional tech-

niques like PWE.

II. EFFECTIVE SPEED OF 2D ACOUSTIC WAVES

A. Governing equations and problem statement

Consider the scalar wave equation

$ � l$vð Þ ¼ �qx2v; (1)

for time-harmonic shear displacement vðx; tÞ ¼ vðxÞe�ixt in

a 2D solid continuum with T-periodic density qðxÞ and shear

coefficient lðxÞ. The subsequent results are equally valid for

waves in fluid-like phononic crystals under the standard

interchange of q and l for solids by K�1 and q�1 for fluids.

Assume a square unit cell T ¼ f
P

i tiaig ¼ 0; 1½ �2 with unit

translation vectors a1? a2 taken as the basis for x ¼
P

i xiai:
Imposing the Floquet condition vðxÞ ¼ uðxÞeik�x, where uðxÞ
is periodic and k ¼ kj ( jj j ¼ 1), Eq. (1) becomes

ðC0 þ C1 þ C2Þu ¼ qx2u with C0u ¼ �$ðl$uÞ
C1u ¼ �ik � ðl$uþ $ðluÞÞ; C2u ¼ k2lu: (2)

Regular perturbation theory applied to Eq. (2) yields the

effective speed cðjÞ ¼ limx;k!0 xðkÞ=k in the following

form:8
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c2ðjÞ ¼ leffðjÞ=hqi; leffðjÞ ¼ lh i �MðjÞ with

MðjÞ ¼
X2

i; j¼1

Mijjijj; Mij ¼ C�1
0 @il; @jl

� �
¼ Mji; (3)

where @i � @=@xi, spatial averages are defined by

fh i �
ð

T

f ðxÞdx ¼ fh i1
� �

2
; fh ii�

ð1

0

f ðxÞdxi

� �
; (4)

and ð�; �Þ denotes the scalar product in L2ðTÞ so that

ðf ; hÞ ¼ fh�h i [the asterisk (�) means complex conjugation].

The difficulty with Eq. (3) is that it involves the inverse of a

partial differential operator C0. One solution is to apply a

double Fourier expansion to C�1
0 and @il in Eq. (3). This

leads to the PWE formula for the effective speed,6 which is

expressed via infinite vectors and the inverse of the infinite

matrix of Fourier coefficients of lðxÞ. Numerical implemen-

tation of the PWE formula requires dealing with large dense

matrices, especially in the case of high-contrast composites

for which the PWE convergence is slow (see Sec. IV). An al-

ternative “brute force” procedure of the scaling approach is

to numerically solve the partial differential equation

C0h ¼ @il for the 1-periodic function hðxÞ (e.g., via the

boundary integral method).9

The new approach proposed here leads to a more effi-

cient formula for c based on direct analytical integration in

one coordinate direction. There are two ways of doing so.

The first proceeds from the ODS form of the wave equation

(1) itself, which means “skipping” Eq. (3). This is conven-

ient for deriving cðjÞ in the principal directions j k a1;2; see

Sec. II B. The second method is more closely related to the

conventional PWE and scaling approaches in that it also

starts from Eq. (3) but treats it differently, namely, the

equation C0h ¼ @il is cast in ODS form and analytically

integrated in one coordinate. This is basically equivalent to

the former method, but enables an easier derivation of the

off-diagonal component M12 for the anisotropic case,

see Sec. II C.

B. Wave speed in the principal directions

The wave equation (1) may be recast as

g0 ¼ Qg with A ¼ �@2ðl@2Þ

Q ¼ 0 l�1

A� qx2 0

� �
; gðxÞ ¼

v

lv0

� �
; (5)

where the prime (0) stands for @1. The solution to Eq. (5) for

initial data gð0; x2Þ � gð0; �Þ at x1 ¼ 0 is

gðx1; �Þ ¼ M x1; 0½ �gð0; �Þ with

M a; b½ � ¼
bða

b

ðI þ Qdx1Þ: (6)

The operatorM x1; 0½ � is formally the matricant, or propaga-

tor, of Eq. (6) defined through the multiplicative integral bÐ
(with I denoting the identity operator). It is assumed for the

moment that qðxÞ and lðxÞ are smooth to ensure the exis-

tence of M. The matricant over a period, M 1; 0½ �, is called

the monodromy matrix.

Assume the Floquet condition with the wave vector

k ¼ ðk1 0ÞT so that vðxÞ ¼ uðxÞeik1x1 and gð1; �Þ ¼ gð0; �Þeik1

By Eq. (6)1, this implies the eigenproblem

M 1; 0½ � wðk1Þ ¼ eik1 wðk1Þ: (7)

Equation (7) defines k1 ¼ k1ðxÞ (since M depends on

x) and hence x ¼ xðk1Þ, where x2 is the eigenvalue of

Eq. (1) with vðxÞ ¼ uðxÞeik1x1 . The effective speed cða1Þ
¼ limx;k1!0 x=k1 can therefore be determined by applying

perturbation theory to Eq. (7) as x; k1 ! 0. The asymptotic

form10 ofM 1; 0½ � follows from definitions (5) and (6)2 as

M 1; 0½ � ¼ M0 þ x2M1 þ Oðx4Þ where

M0 �M0 1; 0½ �; M0 a; b½ � ¼
bða

b

ðI þ Q0dx1Þ with

Q0 � Qx¼0 ¼
0 l�1

A 0

 !
;

M1 ¼
ð1

0

M0 1; x1½ �
0 0

�q 0

 !
M0 x1; 0½ �dx1: (8)

Note the identities Q0w0 ¼ 0; Qþ0 ~w0 ¼ 0 [where the plus

sign (þ ) is Hermitian conjugation] and hence

M0 a; b½ �w0 ¼ w0; Mþ
0 a; b½ �~w0 ¼ ~w0 ð8a; bÞ

for w0ðx2Þ ¼ ð1 0ÞT; ~w0ðx2Þ ¼ ð0 1ÞT: (9)

By Eq. (9)1 w0 is an eigenvector ofM0 with the eigenvalue

1, and it can be shown to be a single eigenvector. Therefore

wðk1Þ ¼ w0 þ k1w1 þ k2
1w2 þ Oðk3

1Þ and x ¼ ck1 þ Oðk2
1Þ.

Insert these expansions along with (8)1 in Eq. (7) and collect

the first-order terms in k1 to obtain

M0w1 ¼ w1 þ iw0 ) w1 ¼ iðM0 � IÞ�1
w0: (10)

According to Eq. (9), M0 � I has no inverse but is a one-to-

one mapping from some subspace orthogonal to w0 onto the

subspace orthogonal ~w0; hence, w1 exists and ~w0 � w1 is

uniquely defined. The terms of second order in k1 in Eq. (7)

then imply

M0w2 þ c2M1w0 ¼ �
1

2
w0 þ iw1 þ w2: (11)

Scalar multiplication on both sides by ~w0 leads, with account

for Eqs. (9) and (8)4, to c2hqi ¼ �i ~w0 � w1h i2, hence by Eq.

(10)2,

c2ða1Þ ¼ hqi�1 ~w0 � ðM0 � IÞ�1
w0

D E
2
; (12)

where the notation �h i2 is explained in Eq. (4) and � is a sca-

lar product in vector space. Interchanging variables x1 ! x2

in the above-mentioned derivation yields a similar result for

cða2Þ as follows:
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c2ða2Þ ¼ qh i�1 ~w0 � ð fM0 � IÞ�1
w0

D E
1

where

fM0 ¼
bð 1

0

ðI þ ~Q0dx2Þ;

~Q0 ¼
0 l�1

~A 0

� �
; ~A ¼ �@1ðl@1Þ: (13)

The result for a rectangular lattice readily follows by rescal-

ing of the coordinates xi; a similar formula for an oblique lat-

tice can be obtained via the coordinate transformation from

the oblique to orthogonal basis.

Even l. For an even function lðx1; x2Þ ¼ lð�x1; x2Þ for-

mula (12) can be simplified. The chain rule for the multipli-

cative integral (6) and the identity (9) yield

ðM0 � IÞ�1
w0 ¼ ðM0½1; 1

2
�M0½12; 0� � IÞ

�1
w0

¼ ðM0½12; 0� �M
�1
0 ½1; 1

2
�Þ�1

w0: (14)

Denoting

M0½12; 0� ¼
bð 1=2

0

ðI þ Q0dx1Þ �
M01 M02

M03 M04

� �
(15)

and using the symmetry of l leads to

M�1
0 ½1; 1

2
� ¼

bð 1=2

0

ðI � Q0dx1Þ ¼
M01 �M02

�M03 M04

� �
:

(16)

Combining Eqs. (14)–(16) with Eq. (12) then gives

c2ða1Þ ¼
1

2
hqi�1 M�1

02 e
� �

2
; eðx2Þ � 1: (17)

C. The full matrix Mij

The anisotropy of the effective speed cðjÞ; i.e., its de-

pendence on the wave normal j � k=k, is determined by the

quadratic form MðjÞ ¼
P2

i;j¼1 Mijjijj [see Eq. (3)], and rep-

resented by the ellipse of (squared) slowness c�2ðjÞ. Equa-

tions (12) and (13)1, which define cðaiÞ and so Mii, suffice

for the case where T is rectangular and lðxÞ is even in (at

least) one of xi so that the effective-slowness ellipse is

c�2ðjÞ ¼
P

i¼1;2 c�2ðaiÞj2
i with the principal axes parallel to

a1? a2. Otherwise cðjÞ for arbitrary j requires finding the

off-diagonal component M12. For this purpose, with refer-

ence to Eq. (3), consider the equation

C0h ¼ @1l (18)

for 1-periodic hðxÞ. With the above-presented notations this

can be written as �ðlh0Þ0 þ Ah ¼ l0 or, more conveniently,

ðl~h0Þ0 ¼ A~h with ~h ¼ hþ x1. The latter is equivalent to

n0 ¼ Q0n where n ¼ hþ x1

lðh0 þ 1Þ

� �
(19)

and Q0 is given in Eq. (8)3. The general solution to Eq. (19)

is

nðx1; �Þ ¼ M0 x1; 0½ �nð0; �Þ; (20)

whereM0 x1; 0½ � is defined in Eq. (8)2, and nð0; �Þ is the ini-

tial data at x1 ¼ 0. The periodicity of h implies

nð1; �Þ ¼ nð0; �Þ þ w0, while nð1; �Þ ¼ M0nð0; �Þ by Eq. (16).

Hence nð0; �Þ ¼ ðM0 � IÞ�1
w0 and so Eq. (18) is solved by

nðx1; �Þ ¼ M0 x1; 0½ �ðM0 � IÞ�1
w0: (21)

Substituting Eq. (21) into the definition of M12 in Eq. (3)

yields

M12 ¼ ðC�1
0 @1l; @2lÞ ¼ hh@2li ¼ @2lw0 � nh i

¼ @2lw0 � M0½x1; 0�ðM0 � IÞ�1
w0

D E
: (22)

Note that the formula (22) for M12 requires more computa-

tion than the formulas (12) and (13)1 for Mii. Interestingly, if

the unit cell T is square, then, for an arbitrary (periodic)

lðxÞ, Eq. (22) can be circumvented by using the identity

M12 ¼ ð eM11 � eM22Þ=2, where eMii follows from Eqs. (12)

and (13)1 applied to the square lattice obtained from the

given one by turning it 45�.

D. Discussion

The two lines of attack outlined in Sec. II A are equiva-

lent in that the formula (12) for the effective speed cða1Þ in

the principal direction can also be inferred from Eq. (3).

Inserting the solution (21) of Eq. (18) defines the component

M11 as

M11 ¼ ðC�1
0 @1l; @1lÞ ¼ hhl0i ¼ hl0w0 � ni � hx1l

0i:
(23)

Integrating by parts each term in the last identity and using

the periodicity of lðxÞ along with Eqs. (8)3, (9), (19)–(21)

[see also the notation (4)] yields

hl0w0 � ni ¼ �hlw0 � n0i þ hlð1; x2Þw0 � nðx2Þi2
� hlð0; x2Þw0 � nðx2Þi2
¼ �hlw0 � Q0ni þ hlð0; x2Þw0 � ðnð1; x2Þ
� nð0; x2ÞÞi2
¼ �h~w0 � ni þ hlð0; x2Þw0 � ðM0 � IÞnð0; x2ÞÞi2
¼ �h~w0 � M0½x1; 0�ðM0 � IÞ�1

w0i þ hlð0; x2Þi2
¼ �h~w0 � ðM0 � IÞ�1

w0i þ hlð0; x2Þi2
¼ �h~w0 � ðM0 � IÞ�1

w0i2 þ hlð0; x2Þi2;
� hx1l

0i ¼ hli � hlð1; x2Þi2
¼ hli � hlð0; x2Þi2: (24)

Thus, M11 ¼ hli � h~w0 � ðM0 � IÞ�1
w0i2, which leads to

Eq. (12). Note that Eq. (22) is also obtainable via the mono-

dromy matrix of the wave equation (1) (the approach of

Sec. II B) with vðxÞ ¼ uðxÞeik�x and k 6k ai; but this method

of derivation of M12 is lengthier than in Sec. II C.
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As another remark, it is instructive to recover a known

result for the case where lðxÞ is periodic in one coordinate

and does not depend on the other, say lðx1; x2Þ ¼ lðx1Þ.
Using Eqs. (8)2, (8)3, and (13)3 gives

ðM0 � IÞ
0

hl�1i�1
1

 !
¼ w0;

ð fM0 � IÞ
0

lðx1Þ

 !
¼ w0: (25)

Therefore, by Eqs. (12) and (13)1, c2ða1Þ ¼ hl�1i�1
1 = qh i and

c2ða2Þ ¼ hli1= qh i while M12 ¼ 0 by Eq. (22) with @2l ¼ 0.

Finally, we note that, while the above-presented evalua-

tion of quasistatic speed c is exact, using the same

monodromy-matrix approach also provides a closed-form

approximation of c: For the isotropic case, it is as follows:8

c2 � 1

2 qh i l�1
� ��1

1

D E
2
þ lh i�1

2

D E�1

1

� �
: (26)

III. EFFECTIVE SPEEDS IN PRINCIPAL DIRECTIONS
FOR 3D ELASTIC WAVES

The equation for time-harmonic elastic wave motion

vðx; tÞ ¼ vðxÞe�ixt is, with repeated suffices summed,

� @jðcijkl@lvkÞ ¼ qx2vi ði; j; k; l ¼ 1; 2; 3Þ; (27)

where density qðxÞ and compliances cijklðxÞ are T-periodic

in a 3D periodic medium. Assume a cubic unit cell

T ¼ f
P

i tiaig ¼ 0; 1½ �3 and refer the components xi, vi, and

cijkl to the orthogonal basis formed by the translation vectors

ai. Impose the condition vðxÞ ¼ uðxÞeik�x with periodic

uðxÞ ¼ ðuiÞ and take k parallel to one of the ai, e.g., to a1.

Equation (27) may be rewritten in the form

g0 ¼ Qg with gðxÞ ¼
ðuiÞ

ðci1kl@lukÞ

 !
;

Q ¼
�C�1A1 C�1

�x2qdij þA2 �Aþ1 C�1A1 Aþ1 C�1

 !
; (28)

where the matrix operators A1 and self-adjoint A2, C are

C ¼ ðci1k1Þ; A1ðuiÞ ¼ ðci1ka@aukÞ;
A2 uið Þ ¼ � @aðciakb@bukÞð Þ with a; b ¼ 2; 3: (29)

Like in the 2D case, denote the monodromy matrix for

Eq. (28) at x ¼ 0 by M0 ¼ bÐ 1

0
ðI þ Q0dx1Þ, where

Q0 ¼ Qx¼0, and also introduce the 6	 3 matrices

W0 ¼ ðdij 0ÞT and fW0 ¼ ð0 dijÞT. Reasoning similar to that

in Sec. II C leads us to the conclusion that the effective

speeds caða1Þ ¼ limx;k1!0 x=k1 ða ¼ 1; 2; 3Þ of the three

waves with k � kj parallel to a1 are the eigenvalues of the

3	 3 matrix

fWþ
0 ðM0 � IÞ�1

W0

D E
2

D E
3
ðwith h�ii � ð4ÞÞ: (30)

IV. NUMERICAL IMPLEMENTATION

There are several ways to use the above-presented ana-

lytical results for calculating the effective speed. One

approach is to transform to Fourier space with respect to

coordinate(s) other than the coordinate of integration in the

monodromy matrix. Consider the 2D case and apply the Fou-

rier expansion f ðx1; x2Þ ¼
P

n2Z
bfnðx1Þe2pinx2 in x2 for the

functions f ¼ l and l�1. Then the operator of multiplying

by the function l�1ðx1; �Þ and the differential operator

Aðx1Þ ¼ �@2ðlðx1; �Þ@2Þ become matrices

l�1 7! l�1ðx1Þ ¼ ðdl�1
n�mÞ ¼ ðbln�mÞ�1

A 7!Aðx1Þ ¼ 4p2ðnmbln�mÞ; n;m 2 Z (31)

and Eq. (12) reduces to the following form:

c2ða1Þ ¼ hqi�1 ~w0̂ � ðM0 � IÞ�1
w0̂ with

M0 ¼
bð 1

0

ðIþQ0dx1Þ; Q0ðx1Þ ¼
0 l�1

A 0

 !
;

~w0̂ ¼ ð0 d0nÞT; w0̂ ¼ ðd0n 0ÞT; (32)

where cðjÞ ¼ c ¼ const for any j in the isotropic case. The

above-mentioned vectors and matrices are, strictly speaking,

of infinite dimension, which needs to be truncated for numer-

ical purposes. In this sense there is no loss of generality in

assuming a smooth lðxÞ in the course of derivations in Sec.

II. Implementation of Eq. (32)1 consists of two steps.

Step 1. Calculate the multiplicative integral (32)1 defin-

ing M0. For an arbitrary lðxÞ, one way is to use a discretiza-

tion scheme. Divide the segment x1 2 ½0; 1� into N1 intervals

Di � ½xðiÞ1 ; x
ðiþ1Þ
1 Þ, i ¼ 1;…;N1, of small enough length. Cal-

culate 2Nþ 1 Fourier coefficients l̂nðx
ðiÞ
1 Þ, n ¼ �N;…;N

and the ð2N þ 1Þ 	 ð2N þ 1Þ matrices Q0ðx
ðiÞ
1 Þ for each

i ¼ 1;…;N1, and then use the approximate formula

M0 ¼ P1
i¼N1

exp½jDijQ̂0ðx
ðiÞ
1 Þ�. Recall that bÐ satisfies the

chain rule and bÐ a
b ¼ exp½ða� bÞQ0� for a; b 2 D if lðxÞ does

not depend on x1 within D. Therefore the calculation is much

simpler in the common case of a piecewise homogeneous

unit cell with only a few inclusions of simple shape (see the

example to follow).

Step 2. Solve the system ðM0 � IÞw1̂ ¼ iw0̂ for

unknown w1̂. First remove one zero row and one zero col-

umn in the matrix M0 � I [see the remark following Eq.

(10)]. Then the vector w1̂ is uniquely defined and may be

found by any standard method. Note that only a single com-

ponent of w1̂ is needed to evaluate ew0̂ � w1̂. Finally dividing

by hqi yields the desired result (32)1. Note that the case of

even l admits a simpler formula (17), which implies

c2ða1Þ ¼
1

2
hqi�1ðdn0Þ �m�1ðdn0Þ; (33)

where m is the upper right block of the matrix

M0½12; 0� ¼ bÐ 1=2

0
ðIþQ0dx1Þ.

As an example, we calculate the effective shear-wave

speed c versus the volume fraction f of square rods
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periodically embedded in a matrix material to form a 2D

square lattice with translations parallel to the inclusion edges.

A high-contrast pair of materials is chosen such as steel (�St,

with q ¼ 7:8	 103 kg=m3, l ¼ 80 GPa) and epoxy (�Ep,

with q ¼ 1:14	 103 kg=m
3
, l ¼ 1:48 GPa). We consider

two conjugated St/Ep and Ep/St configurations, where the ma-

trix and rod materials are either St and Ep or Ep and St,

respectively. The results are displayed in Fig. 1. The curves

cMMðf Þ are computed by the present monodromy-matrix

(MM) method, Eq. (33); they are complemented by the

approximation (26). Also shown for comparison are the

curves cPWEðf Þ computed from the truncated formula6 of the

conventional PWE method based on a 2D Fourier transform

of Eq. (3). Calculations are performed for a different fixed

number 2N þ 1 � d of the one-dimensional (1D) Fourier

coefficients of lðxÞ, which implies a d 	 d matrix m in Eq.

(33) and, by contrast, a d2 	 d2 matrix in the PWE formula.6

Apart from this advantage of the MM calculation, it is also

seen to be remarkably more stable—with a reasonable fit pro-

vided already at N ¼ 1. The difference between the MM and

PWE numerical curves is especially notable for the case of

densely packed steel rods. Interestingly, the MM computation

and estimate both predict a steep fall for c fð Þ when a small

concentration 1� f of epoxy forms a quasi-insulating net-

work. The PWE fails to capture this important physical fea-

ture for reasons described next.

The far superior stability and accuracy of the MM

method demonstrated in Fig. 1 can be explained as

follows. The PWE formula6 implies calculating M11

�
P

gj j<d Bg gj j�2 g2j j þ 1ð Þ�2þO d�1ð Þ with bounded coef-

ficients Bg, where g are the 2D reciprocal lattice vectors

[we use here that the components of the vector d@1l for

piecewise constant lðxÞ are of order g2j j þ 1ð Þ�1; and that

the matrix corresponding to C�1
0 is close to diagonally

dominant and hence its eigenvalues are of order gj j�2
].

Thus the accuracy of the PWE method is expected to be of

order d�1: In contrast, the accuracy of the MM method,

where the 1D Fourier expansion is performed inside a mul-

tiplicative integral that is “close” to exponential, is

expected to be on the order e�d: This can be understood

from the MM equation (32)1, where the 2d 	 2d matrix

ðM0 � IÞ�1
can be replaced by 2ðM0 �M�1

0 Þ
�1

with eigen-

values of order e�n; n ¼ 1;…; d.
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FIG. 1. (Color online) Effective speed c versus concentration f of square

rods for 2D St/Ep and Ep/St lattices (see details in the text).
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