Nonlinear shear wave interaction at a frictional interface:

Energy dissipation and generation of harmonics
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Analytical and numerical modeling of the nonlinear interaction of shear wave with a frictional
interface is presented. The system studied is composed of two homogeneous and isotropic elastic
solids, brought into frictional contact by remote normal compression. A shear wave, either time har-
monic or a narrow band pulse, is incident normal to the interface and propagates through the con-
tact. Two friction laws are considered and the influence on interface behavior is investigated:
Coulomb’s law with a constant friction coefficient and a slip-weakening friction law which involves
static and dynamic friction coefficients. The relationship between the nonlinear harmonics and the
dissipated energy, and the dependence on the contact dynamics (friction law, sliding, and tangential
stress) and on the normal contact stress are examined in detail. The analytical and numerical results
indicate universal type laws for the amplitude of the higher harmonics and for the dissipated
energy, properly non-dimensionalized in terms of the pre-stress, the friction coefficient and the inci-
dent amplitude. The results suggest that measurements of higher harmonics can be used to quantify

friction and dissipation effects of a sliding interface. © 2011 Acoustical Society of America.

[DOLI: 10.1121/1.3628663]
PACS number(s): 43.25.Dc, 43.25.Fe [OAS]

I. INTRODUCTION

The detection of contacting interfaces which can slide
or open under applied load is a difficult task but one that is
relevant in many technologies. Examples include closed
cracks or defects, glued bondings, and partially delaminated
material interfaces. Ultrasonic methods based on linear wave
scattering are efficient for detecting defects and characteriz-
ing material elasticity, but are less sensitive to closed cracks
and contacting interfaces. Using the nonlinear behavior of
these defects, nonlinear ultrasonic techniques such as nonlin-
ear resonance ultrasound spectroscopy,' sub- and higher-
harmonic generation,2 and nonlinear wave modulation
spectroscopy” have been shown to be sensitive to micro-
cracks or closed cracks. For an overview of nonlinear acous-
tics applications see Refs. 4-6. When an ultrasonic wave
with large enough amplitude is incident on a contact with a
frictional interface (e.g., closed cracks), higher harmonics
appear in the frequency spectrum of transmitted and
reflected waves. This effect, called contact acoustic nonli-
nearity,” is of increasing interest for characterization of
closed cracks or imperfectly bonded interfaces.*’
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Analysis of model systems has helped to understand the
nonlinear interaction of waves and frictional cracks. In partic-
ular, Ref. 8 analyzed the partition of energy resulting from a
time harmonic obliquely incident plane SH wave reflected
and refracted by a frictional contact interface that slips. Both
longitudinal and shear wave propagation through a rough sur-
face were investigated in Ref. 9 using an interface contact
model based on Hertz theory, again for time harmonic inci-
dence. The partial contact model was subsequently applied to
model scattering from surface breaking cracks,'® and numeri-
cal simulations indicated efficient production of second
harmonics. Time domain studies have concentrated on nu-
merical implementations, such as boundary element method
(BEM) formulation of SH slip motion on an arbitrary inter-
face.!' Using a generalization of this method to include in-
plane motion, it was shown in Refs. 12 and 13 that the ampli-
tudes of the higher harmonics of the scattered far-fields can
be useful in determining both the pre-stress and the frictional
coefficient. Measurements of second harmonic generation for
normal incidence of longitudinal waves on a contacting inter-
face between aluminum blocks have been reported in Refs.
14 and 15. These experiments indicate that the amplitude of
the second harmonic decreases rapidly with applied normal
contact pressure initially, and then falls off in magnitude at a
lesser rate. These findings are in agreement with experimen-
tal measurements on contacting adhesive bonds.'® A simple
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but instructive model was proposed in'’ for the nonlinear
interaction of an SH wave normally incident on a frictional
contact interface. In contrast to the other studies mentioned,
this friction model predicts that only odd harmonics are gen-
erated for time harmonic incident wave motion.

The objective here is to investigate the effect of friction
on shear wave scattering from an interface. Physically the
friction leads to nonlinearity due to switching between the
sticking and sliding states of the interfacial contact. Analytical
and numerical methods are combined to understand the role
of energy loss and the generation of higher harmonics and
their dependence on the system parameters, such as applied
normal load, incident amplitude, and the friction coefficient.
We consider a shear wave incident normally on a flat fric-
tional interface. The friction behavior of the interface is
described by two friction laws: Coulomb’s law with a constant
friction coefficient and a slip-weakening friction law includ-
ing static/dynamic friction coefficients. The outline of the pa-
per is as follows. The analysis in Sec. II develops the basic
model of Ref. 17 to consider both time harmonic and transient
pulses. Particular attention is given to estimating the energy
lost in frictional sliding, and how it affects the scattered
waves. A closed form expression is obtained for the energy
dissipation under time harmonic incidence. The time domain
numerical model is presented in Sec. III. We note that the nu-
merical simulation contains more of the actual physical effects
encountered in practice, such as finite contact interface and
cylindrical wave spreading. Simulation results are discussed
in Sec. IV in light of the simpler analytical model, and several
conclusions are drawn concerning the relation between the
total energy dissipated and the amplitudes of the harmonics in
terms of non-dimensional system parameters.

Il. NONLINEAR ANALYSIS OF SHEAR WAVE
INTERACTION

A. Setup and energy dissipation

We consider uni-dimensional SH motion in a solid with
shear modulus G, density p, impedance Z=(Gp)"? and
wave speed ¢ = (G/p)"*. A plane SH wave is normally inci-
dent from y >0 on the interface y =0, such that the total
shear stress ¢,, = o7 comprises the incident and reflected
waves above the interface, and a transmitted wave below:

Oinc :f'(t+%),
Ginc + Oref, Y > 07 y
or(t,y)= where o r=g(r—2), (1)
atraa y < 07 y
Jtra - h(t“r;).
Instantaneous particle velocity in the x direction is v(¢,y) and
equal to Z (Gine — Orer) for y>0and Z 'y for y < 0. Shear
stress is continuous across the interface, regardless of the

state of contact, with stress ar (¢, 04+) =0ar (¢, 0—) = a70(?),
where the latter follows from Eq. (1) as

orolt) = £(1) + g(t) = hz). @)

When the interface is in contact the wave is completely trans-
mitted with zero reflection: g(f) =0, h(t) =f(¢), and there is
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no energy dissipation. When slipping occurs, the velocity
jump across the interface follows from Egs. (1) and (2) as

[v(6)] = v(t,0+) — v(t,0—) = —2Z ' g(1). 3)

Slipping incurs irreversible loss of mechanical energy into
heat, which can be quantified in two equivalent ways. First,
the work done per unit interface length by the slippage over
a time increment At is (force x distance =) oy []Af. The
total amount of energy dissipated (per unit interface length)
then follows from Egs. (2) and (3) as

D= Joro(t) [v(f)]dt = —277! Jg(t)h(t)dt. 4)

Alternatively, the rate of flux of incident energy per unit
length (power flow) is (stress x velocity =) Z 'o2 . The
fluxes of the reflected and transmitted waves are Z~'¢2, and
respectively. The loss in energy (per unit length and

| 5 ref
Y 2 2 >
2 — 0% — 05,). The three waves

time) is therefore Z~' (o
are assumed to be plane waves, and hence the fluxes are in-
dependent of y, with y >0 for the incident and reflected
waves, and y <0 for the transmitted wave. Taking y= *0
and using Eq. (1) to express the stresses, the total energy loss
per unit length can be written

wave energy lost = Z~! J (F2(r) — g°(t) — K*(1))dr. (5)

Substituting from Eq. (2) shows that the lost wave energy is
the same as the dissipated interfacial energy of Eq. (4)

B. Coulomb friction

Before the incident wave strikes the interface it is
assumed to be in a state of constant normal stress oy <0
(compression). Slipping commences at the first instant that

lozo(t)| = o1c, (6)

where the critical value otc depends on the friction model.
For simple Coulomb friction: o1c= u|on|, where >0 is
the frictional coefficient. Slipping continues for as long as
Fl(®)] > o1c and |f () + g(¢)| = orc while it occurs. By con-
sidering the two possibilities: f(f) > ¢, f(f) < —o1c, it fol-
lows that the reflected wave during slipping is

8(0) = =(If (1) — arc|)sen(FO)H(f ()| — o1c), (D)

where H is the Heaviside step function. The transmitted
wave amplitude £ is given by Eq. (2) and the dissipated
energy is therefore

D =27 'orc (F(1)] — orc)dr. ®)

t|f (1)) >o1c

The slip condition (7) is equivalent to the model proposed in
Ref. 17. It predicts that the reflected and transmitted waves
are “clipped” versions of the incident pulse at the positive
and negative values equal in magnitude to the critical yield
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stress, as illustrated in Fig. 1. The simple expression (4) for
the dissipated energy is new and will be central to subse-
quent developments.

As an example, consider the time harmonic incident
wave f(f) = oy sin ot, oty > orc. During a single period,
0 <t < T=2m/w the slip condition |[f(¢)|>0rc prevails for
t€ [tc,(T/2) —tc] and t€[(T/2)+tc, T —tc], where
wrc = Oc = sin"'(orc/omm) € (0,1/2), with the same
amount of energy lost in each sub-interval. It follows that
the reflected stress function is

—g(™'0) = orm(sin 0 — sin Oc)H(0 — 0c)

for 0<60<m/2.

©))
The energy dissipated in one cycle then follows from Eq. (4)
as

2

OTM 1 oTC = ¢ 1/2
D="TAD(E), =T, D) =8¢[(1-8)

-

where the nondimensional function D is shown in Fig. 2.
Nonlinear effects occur only for values of the non-dimen-
sional stress parameter ¢ less than unity. If £ > 1 no energy
is dissipated as the wave transmits unaltered. We will also
find the scaling factor wZoyg critical for interpreting the nu-
merical simulations (see Sec. III C).

(10)

C. Generation of higher harmonics

The reflected and transmitted stress waves together sum
to equal the wave shape of the incident wave. This means

=01 o 01 02 03 0.4 05

£(t)
h(t)

FIG. 1. (Color online) (a) The filled
part depicts the transmitted wave for
an incident time harmonic wave of
period T and amplitude twice the
critical value opc=0.5. The remain-
ing part of the wave form between h
and f is the negative of the reflected
wave g(t), by Eq. (2). (b) A narrow
band pulse for the incident stress
function f(f). The central frequency

is w =2n/T with T=2/9, 61c =0.3.
2t/9T

(b)

that the higher harmonic amplitudes of the reflected and
transmitted waves equal the content of the incident wave. If
the latter is a single frequency time harmonic wave, then
higher harmonic amplitudes of the reflected and transmitted
waves are equal in magnitude and of opposite sign. We con-
sider this case first.

1. Time harmonic wave motion

The incident wave is f(f) = oy sinmt, oy > opc. The
clipped nature of the reflected wave implies that its Fourier
series contains only odd harmonics,'” i.e.,

g(t) =orm iAgn,l sin((2n — 1)),

n=1

A =1 2ein -2

2\1/2
;é(l_f) )
A = —5-e(- ),

Aﬂ@ii*é%5678fﬂlféﬂy{emw (11)

where ¢ is defined in Eq. (10). The first harmonic amplitudes
and the magnitudes of the third and fifth harmonics are plot-
ted in Fig. 2. Note that by definition the non-dimensional
amplitudes are normalized such that A; + B; =1 where B is
the amplitude of the first harmonic of the transmitted wave.

2. A narrow band pulse

A narrow band pulse is shown in Fig. 1(b). Note that the
pulse is antisymmetric about the center =0 because it

0.16 1
0s - reflected
0.8}
0.7}

0.6}
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transmitted FIG. 2. (Color online) (a) Magnitudes
of the third and fifth harmonic ampli-
tudes of the reflected or transmitted
wave. The third curve is D/10, where
D is the nondimensional energy dissi-
pation function of Eq. (10). The ab-
scissa is & = ulon|/omm = o1C/0TM™M>
where gy 1S the maximum stress of
the incident shear wave. The maxi-
mum value of Az is at ¢=0.5, and
maximum of D occurs at & =0.3942.
(b) Reflected and transmitted first har-
monic amplitudes.
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FIG. 3. (Color online) The dissipation and the second, third and fifth har-
monic amplitudes as a function of ¢ = orc/oTm, Where a1y is the ampli-
tude of the incident wave in Fig. 1(b).

represents the incident shear stress, which is proportional to
the velocity. The incident displacement amplitude is sym-
metric about r=0. Explicit expressions for the dissipation
and for the harmonic content are not available, but are easily
found by numerical quadrature. Thus, the dissipation is com-
puted from Eq. (8), and the harmonic amplitudes of the
reflected wave are given by analogy with Eq. (11) as

A, = %om Jg(t) sin(noor)dr. (12)

Note that all of these quantities (D, A,) are proportional to
Fourier components of the reflected wave, either at zero fre-
quency for D, or finite values for the harmonics. Figure 3
shows the dissipation [normalized by the scaling factor
a)Z(r;I% of Eq. (10)] and the magnitudes of the several har-
monics. Comparing Figs. 2(a) and 3 we note that the har-
monics A; and As for the pulse are larger in magnitude as
compared with the time harmonic case, whereas the nondi-
mensional dissipation D is smaller. The overall magnitudes
are still comparable with those in the time harmonic case
because, even though the integral is over all ¢ rather than a
single period, the majority of the wave clipping and dissipa-
tion occurs within one cycle. Note that A, # 0 but it is small
in comparison with As.

Imposed displacement s

Velocity magnitude
[rmis]

Lo

-5z
—ma
—374
— 15

— P
30mm

40mm |

(2)
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Interface

We next consider a more realistic model using numeri-
cal simulation.

lll. NUMERICAL STUDY FOR NON-PLANE WAVE
INCIDENCE

A. System studied

The system modeled is shown in Fig. 4. It is composed
of two identical isotropic elastic media P' and P? separated
by an interface governed by unilateral contact with a Cou-
lomb friction law. The material used in the simulations is
aluminum with the Young modulus, Poisson’s ratio and den-
sity equal to 69 GPa, 0.33 and 2700 kg/m?, respectively. The
problem is considered in terms of a material (Lagrangian)
description.

In the first step of the simulation a normal contact stress
between the two solids is applied by numerically imposing
appropriate boundary conditions on the external surfaces.
The lower surface of the body P? is fixed (1> =0) and the
upper surface of the body P' is shifted by the appropriate
amount vy in the y direction (u*> =vp). The normal contact
stress profile is shown in Fig. 5(a). The normal contact stress
oy 1s quasi-constant on a part of interface [in Fig. 5(a),
JR, = —0.3 MPa].

In the second step, a non-planar shear wave is generated
by imposing a dynamic displacement along the x axis on the
upper surface of P'. During this stage of the simulation the
lower surface of body P? is fixed (u*=0) and the displace-
ment u' imposed on the upper surface of P' is expressed as a
product of a weight function W(x) and a function of time
U(t) shown in Fig. 5(b). The interface is supposed to remain
in contact during the transmission/reflection of the shear
wave. This assumption has been verified for all simulations.

B. Numerical model

PLAST2, an explicit dynamic finite element code in 2D, is
used to simulate the behavior of the system (P1 and P2) dur-
ing frictional contact. pLAST2 is designed for large deforma-
tions and non-linear material behavior.'® It uses a forward
Lagrange multiplier method for the contact between deform-
able bodies. For this dynamic study, the formulation is dis-
cretized spatially using the finite element method and
discretized temporally by the [, method. The contact

FIG. 4. (Color online) (a) The sys-
tem considered in the numerical
model. (b) Snapshot of the velocity
magnitude illustrating the non-plane
wave incidence generated from the
upper surface of P'.

(b)
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algorithm uses slave nodes (situated on the contact surface
of P') and target surfaces (on the contact surface of P?)
described by a four node quadrilateral element with 2 x 2 G
quadrature rule. The elementary target segments are
described by two nodes and approximated by bicubic
splines. '’

The forward Lagrange multiplier method is formulated
for the equations of motion at time # = iAr with the displace-

ment condition imposed on the slave node at time #':

MU +CU + KU +G*" 2 =F, G*'U*' <0, (13)

where M, C, and K are symmetric and positive definite mat-
rices of mass, Rayleigh’s proportional damping
(C=d M+ d>,K) and stiffness of the system, respectively.
U, U, U are, respectively, the vectors of nodal displacements,
nodal velocities and nodal accelerations. F is the vector of
nodal external forces. The vector A = [4y,4,]" comprises nor-
mal (N) and tangential (7) forces at contact points
Cn. G' = G}, Gl is the global matrix of the displacement
conditions ensuring non-penetration and the contact law of
the bodies in contact.

The equations of motion (13) are discretized in time
using an explicit Newmark scheme. The vectors are
expressed at each time step using a time scheme of type f3,,

(f» €10.5,1]):

["Ji:A%Z(UH-l _Ui_AtUi)’

U = (U 4+ A1 = )0 42 (U - 1) ).

(14)

The displacements ~U’ of the nodes situated on the contact
surface (P! and P?) are first computed with A’ equal to zero.
For simplicity f3, is fixed at 0.5 and the nodal displacements
"U at time 7! are obtained according to

U = APM™ (F — KU') +2U' — UL (15)
A constraint matrix G'' is formulated for the slave nodes if
they have penetrated through a target segment. Calculation
of the contact forces A" and of the correct nodal displace-
ments U™ at time # " are then performed:

1824  J. Acoust. Soc. Am., Vol. 130, No. 4, October 2011

- (AIZGHIMflGH—IT) 71Gi+l*Ui+1

’ 16

Ui-H _* Ui+l o AtzM_]GhLlTli. ( )

Equations (16) are solved using the Gauss—Seidel method.

The contact conditions solved during each internal iteration
of this method are expressed as follows:

oy <0, (contact if oy <0 and seperation if oy = 0)
vp =0 if |O'T| < ﬂa|O'N| (StiCk),
|GT| Sﬂa'GNL and . .
orvr <0 if  Jor| = p,lon|  (slip),
(17)

where vy is the relative tangential velocity for a slave node
related to the surface, gy and o7 are normal and tangential stress,
respectively, subscript N and T referring to the normal and tan-
gential vectors defining the contact. y, is an apparent friction
coefficient. Two friction laws are considered in the simulations:
a standard Coulomb friction law with a constant friction coeffi-
cient [u, = p, see Fig. 6(a)] and a slip-weakening (SW) friction
law [Fig. 6(b)] for which y,, is defined in Refs. 20 and 21 as

Uty < g,
ur > d R

Hs —
Up,

wlor) = { 1s)
where g and pp are static and dynamic friction coefficients,
ur is the slip, and d the critical slip distance. Once the
dynamic regime is reached, the friction corresponds to a

a, a,

p|(I,\. | ﬂslo’,\- ‘

Liolon]

Uy —d ity

o -l

(a) (b)

FIG. 6. (Color online) Tangential stress as a function of slip for Coulomb
friction law (a) and for slip-weakening friction law (b).
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classical Coulomb friction law with a dynamic friction coef-
ficient pp (< pg). This physically motivated model of slip
weakening friction (i.e., the decrease of the friction force
with slip), which was first introduced in the geophysical con-
text,”> can be associated to a phenomenon of adhesion
caused by long time stationary contact.”> For more details on
rate and state-variable friction law (including the slip-weak-
ening one) see, for example, Ref. 24.

C. Results
1. Case of Coulomb friction law

Figure 7 shows the velocity on the x-axis versus time
and y-position (depth) for three different friction coefficients.
At time t =0, the shear wave is generated on the upper face
of P' (see Fig. 4). The incident wave then propagates
through P' and the contact interface gives rise to reflected
and transmitted waves.

It can be seen from Fig. 7 that the magnitude of the
transmitted wave is increasing with the friction coefficient.
Consequently, the magnitude of the reflected wave is
decreasing. Points A (x=0, y=20 mm) and B (x=0,
y=—5 mm) are chosen for fast Fourier transform (FFT)
processing of the reflected and transmitted waves,
respectively.

Figures 7(c) and 7(d) show the FFT of velocity along
the x axis for the reflected and transmitted wave for =0,
1u=0.4, and pu=1. Nonlinear harmonics should appear in
the spectrum as soon as slipping zones occur at the contact
interface. For friction coefficient equal to O or 1, no harmon-
ics are observed in the reflected and transmitted wave spec-
trum. For the case p=0, the interface is in a sliding state
during transmission of shear waves but the system is per-

fectly linear under the previously made assumption of no
separation. When the friction coefficient is equal to 1, the
contact law is nonlinear, but the friction coefficient is too
large to permit enough sliding such that would produce a no-
ticeable effect on the transmitted/reflected wave spectrum.
In other words, during transmission/reflection of the shear
wave the contact nodes remain almost always in the sticking
state of the Coulomb friction law. For friction coefficient
equal to 0.4, the third harmonic (1.5 MHz) is observed in the
reflected and transmitted wave spectra due to the nonlinear-
ity of the friction law and the occurrence of sliding zones
during the transmission/reflection stage.

As expected, the magnitude of the wave decreases along
the propagation direction because of diffraction effects. In
order to compare the numerical results with the analytical
ones presented in Sec. II, the non-dimensional parameter
& = uloy|/orm used in the analytical model (where oty
denotes the maximal stress magnitude for the plane wave)
needs to be modified. Let £=1 correspond to the case in
which the wave magnitude is not large enough to initiate slip
at the interface. From this definition a critical friction coeffi-
cient for slip, ., 1S determined numerically, and the modi-
fied &,um is defined as follows:

19)

6num ) with opym = :ucril‘o-l%}'
The harmonic magnitudes A are extracted from the FFT of
the computed velocity [Fig. 7(c) and 7(d)]. Energy dissipated
during transmission of the shear wave D(x) is numerically
calculated along the interface from its definition, Eq. (4).
Since the incident wave is non-plane, D(x) is not constant
along the interface, and accordingly a mean value D on the

30 W‘ [P cdge -5 “‘JU_ 'V“""""“‘"UVU.W"V'
5 10 -——M’ e
= 20 —«W/\AA»M—AMW — :--Ju B L ==l
g T |2 s AR ARV
= 10 ———"’M“‘—'\‘MAMN‘N 2
= 20 e AAAAAAAANNAAA
v wh v WA i | 25 AP AN FIG. 7. (Color online) Propagation
10 . a0 of shearzwave in (a) the body P' and
0 0.2 0.;:“ 06 0.8 1 0 0.2 04 0.6 0.8 1 (b) in P, both for x =0. The water-
el x10” Timefs) %10 fall plots show the x-velocity versus
(a) (b) time for three different friction coef-
ficients (u=0, 0.4, and 1). FFT of
x-velocity of (c) reflected and (d)
. transmitted waves for three different
- Reflected wave . Trifihited e friction coefficients (u=0, 0.4, and
= 2 1). The FFT processing of the
: 5 reflected and transmitted wave are
“:: = respectively done at point A (x=0,
;‘ ; — y=20 mm) and point B (x=0,
3 g - p=0.4 y= -5 mm)
- - — =
[T ,_\\ = -
il b o, 3 PN P
1 1.5 2 25 1 1.5 2 25 3
Frequency [Hz] X ](jlo Frequency [Hz] x 10°
© )
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FIG. 8. (Color online) (a) Third and

fifth harmonics A3, As and dissipated
energy D for |o%|=0.3 MPa (—) and
for |o%| = 0.6 MPa (x). (b) Tangential
stress and relative displacement on
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sented for the case 6% | =0.3 MPa.
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zone of constant normal stress [Fig. 5(a)] is chosen for the
results. Non-dimensional measures of the harmonic magni-
tudes and energy dissipated per unit cycle during transmis-
sion of the shear wave are defined, respectively, as

_ AY _ 4
A=—i p="2p (20)
Imax 5 Thum
where Af .. is the magnitude of the first harmonic of the

transmitted wave velocity for £ =1 at the probe point B and
the factor 5 is the number of cycles in the incident signal
[see Fig. 5(b) for U(?)].

Figure 8(a) displays the evolution of the non-dimen-
sional third and fifth harmonic magnitudes and non-dimen-
sional dissipated energy versus &, for two different values
of initial normal stress: 0.3 and 0.6 MPa. It can be seen that
the initial normal contact stress has no influence on the non-
dimensional third and fifth harmonics and dissipated energy.

Comparing Figs. 8(a) and 3 shows a good qualitative
agreement between the numerical and analytical results for
D and A;. The fact that the values obtained numerically are
about half of the analytical ones is because the sliding is not
uniform for a cylindrical shape of wave front used in the nu-

Time [s]

(b)

merical model, while the analytical model assumes a plane
wave.

The appearance of odd harmonics in the spectrum is due
to distortion of the incident wave during the transmission/
reflection as the interface partially slides under friction. The
evolution of the odd harmonics, directly related to this dis-
tortion, depends on two competing effects. First, for a fixed
value of the sliding distance, more energy is dissipated and
the wave is more highly distorted as the friction coefficient
increases. On the other hand, since the incident wave is the
same for the different simulations, the cumulative sliding
distance is actually diminished as the friction coefficient
increases, as shown in Fig. 8(b). These two antagonist
aspects of nonlinearity of a frictional interface explain the
existence of a distinguished value of the normal stress that
maximizes energy dissipation: £, =~ 0.4 in Fig. 8(a).

The numerical simulations allow us to explore depend-
ence on parameter values describing the contact interface
(displacement, normal and tangential stresses, sliding dis-
tance...). Figure 8(b) shows the tangential stress and dis-
placement of the contact node situated on the interface at
x=0 mm versus time. The displacement corresponds to the
tangential displacement of the slave node (of P') in a local

et Coulomb p= 0.3

FIG. 9. (Color online) (a) Evolution
of the third harmonic A} and of the

dissipated energy per unit surface D
as a function of |o'?\,‘ for Coulomb
and SW laws for different friction
coefficients (ug=0.3, d=10"2 um).
(b) Tangential stress and displace-
ment on the interface (x=0) versus
time for the case |6 | =0.3 MPa.
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frame of P? whose origin is situated at the initial contact
position of this node (of P') on the P? interface before the ar-
rival of the incident shear wave. As the friction coefficient
increases the relative displacement decreases, because the re-
sistance to sliding is increasing. For &,,,, =0.1, the sliding
of the slave node is important but the sinusoidal form is
weakly affected, whereas for ¢, =0.8 the sliding of the
slave node is weak, but the evolution of the displacement of
the contact node is strongly distorted from the initial
waveform.

2. Case of slip-weakening (SW) friction law

In this simulation the numerical model takes into
account a slip-weakening friction law that includes®®?' the
combined effects of static and dynamic friction, with coeffi-
cients ug and pp, respectively. A third parameter d describes
the slope of the decreasing friction coefficient, see Fig. 6(b).
For all simulations, static friction coefficient and incident
shear wave magnitude remain the same (ug=0.3 and
orm = 0.33 MPa). The simulations were performed for dif-
ferent values of the initial normal stress |J,(Z,‘ (from 0.15 to
1.2 MPa). Note that in these conditions no slip is allowed
when |63 | is greater than 1.1 MPa.

Figure 9 shows the results for two dynamic friction
coefficients in comparison with those for the constant fric-
tion law. Figure 9(a) confirms that for this model the third
harmonic again follows the behavior of the dissipated
energy. Maximum values of the third harmonic A} and dissi-
pated energy per unit surface D are decreasing when the
dynamic friction coefficient is decreasing. The maximum of
both is obtained for a larger value of |a§\’, |

Figure 9(b) shows the tangential stress g7 and the tan-
gential slip u, of the contact node situated at x=0 on the
interface versus time. The interface is sticking because |o7|
is less than yig|o%|. When |o7| is equal to pg|of |, the system
begin to slide. |o7| remains the same for constant Coulomb
friction (1= ) while, for the SW law, |o7| = up|o%| after
the slip distance becomes greater than d. Hereafter the inter-
face behavior corresponds to a classical Coulomb friction
law with p=pp. As expected, since the dynamic friction
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coefficient is less than the static one, the relative displace-
ment at the interface is greater than for the constant friction
coefficient case (u=us). Also, the relative displacement
increases when the dynamic friction coefficient decreases.
The resistance to motion due to friction is less important and
so the dissipated energy is reduced. This explains the offset
of the position of the maximum dissipated energy D [Fig.
9(a)]. The form of the curve Aj (|a,?,|) is directly related to
the interface friction law in effect.

Figure 10 highlights an important effect of the parameter
d on the tangential stress and slip at the interface, and conse-
quently on dissipated energy and third harmonic magnitude.
For a low value of d (= 1073 um), the system behavior is sim-
ilar to the constant friction law with p= pp. The sliding is
delayed due to the static friction coefficient. For low value of
‘GR,’ (< 0.6 MPa) this delay has little influence on the inter-
face behavior. On the contrary, if ’0',0\,’ > 0.6 MPa, the delay
is growing and the interface slip decreases reaching zero for
|o%| = 1.1 MPa. This limit value of || depends on the pa-
rameter d, namely, it decreases as d increases. As a result, for
d=10""/m, the limit value of ’a](\),’ is very low and hence the
dissipated energy and the third harmonic curves tends to those
for constant friction coefficient u= us.

IV. CONCLUSIONS

This study presents a combined numerical and analytical
analysis of the propagation of a shear wave through a fric-
tional interface. A simple analytical model is developed that
describes the case of a classical Coulomb friction law and a
plane wave. The model pinpoints the pivotal non-dimensional
parameters of the problem and yields an explicit dependence
of the measurable quantities on these parameters. Good agree-
ment between the analytical and numerical results for this
case is demonstrated. The numerical analysis is also applied
to a more complex case which involves a non-planar wave
and a slip-weakening (SW) friction law with static and
dynamic coefficients ug/up. For the both cases, it is shown
that the amplitude of the third harmonic is directly related to
the friction-induced dissipated energy. The evolution of the
third harmonic as well as of the dissipated energy depends on
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two aspects: on the cumulative sliding distance during the
transmission of the shear wave and on the friction coefficient.
When a SW friction law is taken into account, the maximum
values of third harmonic magnitude and of the dissipated
energy are achieved for a larger value of the applied normal
stress |o',(i,|. This is explained by the fact that the static effect
in the SW law delays the interface sliding in comparison with
the case u= up. Less sliding and pup < pg both imply lower
values of dissipated energy and of third harmonic.
The main conclusions of this study are as follows:

(1) There exists a specific value of the normal stress that
maximizes energy dissipation. This value results from
the competition of two antagonist aspects of a frictional
interface: sliding (cumulative sliding distance) and re-
sistance to motion (tangential stress).

(2) The SW friction law affects the form of the curves for the
dissipated energy, D(|o|), and third harmonic, A} (|a%]).
The maximal value is obtained for a larger value of |0° |
Each of the three parameters of the SW friction model has
a different impact on interface sliding and dissipated
energy: the dynamic friction coefficient pp acts on the
steady state sliding, the static friction coefficient ug delays
the sliding in comparison with the constant friction law
1= Up, and d acts directly on this delay.

(3) For the form of shear incident wave used in this study,
the third harmonic evolution follows the variation of the
dissipated energy at the interface. Thus the measurement
of transmitted or reflected wave signal can provide infor-
mation on dissipated energy at the interface, and the
form of the A% (|a%|) curve can reveal the type of friction
law of the interface.
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