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Analytical and numerical modeling of the nonlinear interaction of shear wave with a frictional

interface is presented. The system studied is composed of two homogeneous and isotropic elastic

solids, brought into frictional contact by remote normal compression. A shear wave, either time har-

monic or a narrow band pulse, is incident normal to the interface and propagates through the con-

tact. Two friction laws are considered and the influence on interface behavior is investigated:

Coulomb’s law with a constant friction coefficient and a slip-weakening friction law which involves

static and dynamic friction coefficients. The relationship between the nonlinear harmonics and the

dissipated energy, and the dependence on the contact dynamics (friction law, sliding, and tangential

stress) and on the normal contact stress are examined in detail. The analytical and numerical results

indicate universal type laws for the amplitude of the higher harmonics and for the dissipated

energy, properly non-dimensionalized in terms of the pre-stress, the friction coefficient and the inci-

dent amplitude. The results suggest that measurements of higher harmonics can be used to quantify

friction and dissipation effects of a sliding interface. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

The detection of contacting interfaces which can slide

or open under applied load is a difficult task but one that is

relevant in many technologies. Examples include closed

cracks or defects, glued bondings, and partially delaminated

material interfaces. Ultrasonic methods based on linear wave

scattering are efficient for detecting defects and characteriz-

ing material elasticity, but are less sensitive to closed cracks

and contacting interfaces. Using the nonlinear behavior of

these defects, nonlinear ultrasonic techniques such as nonlin-

ear resonance ultrasound spectroscopy,1 sub- and higher-

harmonic generation,2 and nonlinear wave modulation

spectroscopy3 have been shown to be sensitive to micro-

cracks or closed cracks. For an overview of nonlinear acous-

tics applications see Refs. 4–6. When an ultrasonic wave

with large enough amplitude is incident on a contact with a

frictional interface (e.g., closed cracks), higher harmonics

appear in the frequency spectrum of transmitted and

reflected waves. This effect, called contact acoustic nonli-

nearity,2 is of increasing interest for characterization of

closed cracks or imperfectly bonded interfaces.4,7

Analysis of model systems has helped to understand the

nonlinear interaction of waves and frictional cracks. In partic-

ular, Ref. 8 analyzed the partition of energy resulting from a

time harmonic obliquely incident plane SH wave reflected

and refracted by a frictional contact interface that slips. Both

longitudinal and shear wave propagation through a rough sur-

face were investigated in Ref. 9 using an interface contact

model based on Hertz theory, again for time harmonic inci-

dence. The partial contact model was subsequently applied to

model scattering from surface breaking cracks,10 and numeri-

cal simulations indicated efficient production of second

harmonics. Time domain studies have concentrated on nu-

merical implementations, such as boundary element method

(BEM) formulation of SH slip motion on an arbitrary inter-

face.11 Using a generalization of this method to include in-

plane motion, it was shown in Refs. 12 and 13 that the ampli-

tudes of the higher harmonics of the scattered far-fields can

be useful in determining both the pre-stress and the frictional

coefficient. Measurements of second harmonic generation for

normal incidence of longitudinal waves on a contacting inter-

face between aluminum blocks have been reported in Refs.

14 and 15. These experiments indicate that the amplitude of

the second harmonic decreases rapidly with applied normal

contact pressure initially, and then falls off in magnitude at a

lesser rate. These findings are in agreement with experimen-

tal measurements on contacting adhesive bonds.16 A simple
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but instructive model was proposed in17 for the nonlinear

interaction of an SH wave normally incident on a frictional

contact interface. In contrast to the other studies mentioned,

this friction model predicts that only odd harmonics are gen-

erated for time harmonic incident wave motion.

The objective here is to investigate the effect of friction

on shear wave scattering from an interface. Physically the

friction leads to nonlinearity due to switching between the

sticking and sliding states of the interfacial contact. Analytical

and numerical methods are combined to understand the role

of energy loss and the generation of higher harmonics and

their dependence on the system parameters, such as applied

normal load, incident amplitude, and the friction coefficient.

We consider a shear wave incident normally on a flat fric-

tional interface. The friction behavior of the interface is

described by two friction laws: Coulomb’s law with a constant

friction coefficient and a slip-weakening friction law includ-

ing static/dynamic friction coefficients. The outline of the pa-

per is as follows. The analysis in Sec. II develops the basic

model of Ref. 17 to consider both time harmonic and transient

pulses. Particular attention is given to estimating the energy

lost in frictional sliding, and how it affects the scattered

waves. A closed form expression is obtained for the energy

dissipation under time harmonic incidence. The time domain

numerical model is presented in Sec. III. We note that the nu-

merical simulation contains more of the actual physical effects

encountered in practice, such as finite contact interface and

cylindrical wave spreading. Simulation results are discussed

in Sec. IV in light of the simpler analytical model, and several

conclusions are drawn concerning the relation between the

total energy dissipated and the amplitudes of the harmonics in

terms of non-dimensional system parameters.

II. NONLINEAR ANALYSIS OF SHEAR WAVE
INTERACTION

A. Setup and energy dissipation

We consider uni-dimensional SH motion in a solid with

shear modulus G, density q, impedance Z¼ (Gq)1/2, and

wave speed c¼ (G/q)1/2. A plane SH wave is normally inci-

dent from y> 0 on the interface y¼ 0, such that the total

shear stress rxy : rT comprises the incident and reflected

waves above the interface, and a transmitted wave below:

rT t;yð Þ¼
rincþrref ; y> 0;

rtra; y< 0;

(
where

rinc¼ f tþ y
c

� �
;

rref ¼ g t� y
c

� �
;

rtra¼ h tþ y
c

� �
:

(1)

Instantaneous particle velocity in the x direction is t(t,y) and

equal to Z�1(rinc�rref) for y> 0 and Z�1rtra for y< 0. Shear

stress is continuous across the interface, regardless of the

state of contact, with stress rT (t, 0þ)¼rT (t, 0�) : rT0(t),
where the latter follows from Eq. (1) as

rT0 tð Þ ¼ f tð Þ þ g tð Þ ¼ h tð Þ: (2)

When the interface is in contact the wave is completely trans-

mitted with zero reflection: g(t)¼ 0, h(t)¼ f(t), and there is

no energy dissipation. When slipping occurs, the velocity

jump across the interface follows from Eqs. (1) and (2) as

v tð Þ½ � � v t; 0þð Þ � v t; 0�ð Þ ¼ �2Z�1g tð Þ: (3)

Slipping incurs irreversible loss of mechanical energy into

heat, which can be quantified in two equivalent ways. First,

the work done per unit interface length by the slippage over

a time increment Dt is (force� distance¼) rT0 [t]Dt. The

total amount of energy dissipated (per unit interface length)

then follows from Eqs. (2) and (3) as

D �
ð

rT0 tð Þ v tð Þ½ �dt ¼ �2Z�1

ð
g tð Þh tð Þdt: (4)

Alternatively, the rate of flux of incident energy per unit

length (power flow) is (stress� velocity¼) Z�1r2
inc. The

fluxes of the reflected and transmitted waves are Z�1r2
ref and

Z�1r2
tra, respectively. The loss in energy (per unit length and

time) is therefore Z�1 r2
inc � r2

ref � r2
tra

� �
. The three waves

are assumed to be plane waves, and hence the fluxes are in-

dependent of y, with y> 0 for the incident and reflected

waves, and y< 0 for the transmitted wave. Taking y¼60

and using Eq. (1) to express the stresses, the total energy loss

per unit length can be written

wave energy lost ¼ Z�1

ð
f 2 tð Þ � g2 tð Þ � h2 tð Þ
� �

dt: (5)

Substituting from Eq. (2) shows that the lost wave energy is

the same as the dissipated interfacial energy of Eq. (4)

B. Coulomb friction

Before the incident wave strikes the interface it is

assumed to be in a state of constant normal stress rN< 0

(compression). Slipping commences at the first instant that

rT0 tð Þj j ¼ rTC; (6)

where the critical value rTC depends on the friction model.

For simple Coulomb friction: rTC¼l rNj j, where l> 0 is

the frictional coefficient. Slipping continues for as long as

f tð Þj j > rTC and f tð Þ þ g tð Þj j ¼ rTC while it occurs. By con-

sidering the two possibilities: f(t)>rTC, f(t)<�rTC, it fol-

lows that the reflected wave during slipping is

g tð Þ ¼ � f tð Þ � rTCj jð Þsgn f tð Þð ÞH f tð Þj j � rTCð Þ; (7)

where H is the Heaviside step function. The transmitted

wave amplitude h is given by Eq. (2) and the dissipated

energy is therefore

D ¼ 2Z�1rTC

ð
t: f tð Þj j>rTC

f tð Þj j � rTCð Þdt: (8)

The slip condition (7) is equivalent to the model proposed in

Ref. 17. It predicts that the reflected and transmitted waves

are “clipped” versions of the incident pulse at the positive

and negative values equal in magnitude to the critical yield
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stress, as illustrated in Fig. 1. The simple expression (4) for

the dissipated energy is new and will be central to subse-

quent developments.

As an example, consider the time harmonic incident

wave f(t)¼ rTM sin xt, rTM> rTC. During a single period,

0 � t � T¼ 2p/x the slip condition f tð Þj j>rTC prevails for

t 2 tC; T=2ð Þ � tC½ � and t 2 T=2ð Þ þ tC; T � tC½ �, where

xTC ¼ hC � sin�1ðrTC=rTMÞ 2 ð0;p=2Þ; with the same

amount of energy lost in each sub-interval. It follows that

the reflected stress function is

�g x�1h
� �

¼ rTM sin h� sin hCð ÞH h� hCð Þ
for 0 < h < p=2: (9)

The energy dissipated in one cycle then follows from Eq. (4)

as

D ¼ r2
TM

xZ
�D nð Þ; n ¼ rTC

rTM

; �D nð Þ ¼ 8n 1� n2
� �1=2
h

�n
p
2
� sin�1 n

� �i
; (10)

where the nondimensional function �D is shown in Fig. 2.

Nonlinear effects occur only for values of the non-dimen-

sional stress parameter n less than unity. If n> 1 no energy

is dissipated as the wave transmits unaltered. We will also

find the scaling factor xZr�2
TM critical for interpreting the nu-

merical simulations (see Sec. III C).

C. Generation of higher harmonics

The reflected and transmitted stress waves together sum

to equal the wave shape of the incident wave. This means

that the higher harmonic amplitudes of the reflected and

transmitted waves equal the content of the incident wave. If

the latter is a single frequency time harmonic wave, then

higher harmonic amplitudes of the reflected and transmitted

waves are equal in magnitude and of opposite sign. We con-

sider this case first.

1. Time harmonic wave motion

The incident wave is f(t)¼rTM sinxt, rTM> rTC. The

clipped nature of the reflected wave implies that its Fourier

series contains only odd harmonics,17 i.e.,

g tð Þ ¼ rTM

X1
n¼1

A2n�1 sin 2n� 1ð Þxtð Þ;

A1 nð Þ ¼ 1� 2

p
sin�1 n� 2

p
n 1� n2
� �1=2

;

A3 nð Þ ¼ � 4

3p
n 1� n2
� �3=2

;

A5 nð Þ ¼ � 4

15p
n 3� 8n2
� �

1� n2
� �3=2

; etc:; (11)

where n is defined in Eq. (10). The first harmonic amplitudes

and the magnitudes of the third and fifth harmonics are plot-

ted in Fig. 2. Note that by definition the non-dimensional

amplitudes are normalized such that A1þB1¼ 1 where B1 is

the amplitude of the first harmonic of the transmitted wave.

2. A narrow band pulse

A narrow band pulse is shown in Fig. 1(b). Note that the

pulse is antisymmetric about the center t¼ 0 because it

FIG. 1. (Color online) (a) The filled

part depicts the transmitted wave for

an incident time harmonic wave of

period T and amplitude twice the

critical value rTC¼ 0.5. The remain-

ing part of the wave form between h

and f is the negative of the reflected

wave g(t), by Eq. (2). (b) A narrow

band pulse for the incident stress

function f(t). The central frequency

is x¼ 2p/T with T¼ 2/9, rTC¼ 0.3.

FIG. 2. (Color online) (a) Magnitudes

of the third and fifth harmonic ampli-

tudes of the reflected or transmitted

wave. The third curve is �D/10, where
�D is the nondimensional energy dissi-

pation function of Eq. (10). The ab-

scissa is n ¼ l rNj j=rTM ¼ rTC=rTM,

where rTM is the maximum stress of

the incident shear wave. The maxi-

mum value of A3 is at n¼ 0.5, and

maximum of �D occurs at n¼ 0.3942.

(b) Reflected and transmitted first har-

monic amplitudes.
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represents the incident shear stress, which is proportional to

the velocity. The incident displacement amplitude is sym-

metric about t¼ 0. Explicit expressions for the dissipation

and for the harmonic content are not available, but are easily

found by numerical quadrature. Thus, the dissipation is com-

puted from Eq. (8), and the harmonic amplitudes of the

reflected wave are given by analogy with Eq. (11) as

An ¼
x
p

rTM

ð
g tð Þ sin nxtð Þdt: (12)

Note that all of these quantities (D, An) are proportional to

Fourier components of the reflected wave, either at zero fre-

quency for D, or finite values for the harmonics. Figure 3

shows the dissipation [normalized by the scaling factor

xZr�2
TM of Eq. (10)] and the magnitudes of the several har-

monics. Comparing Figs. 2(a) and 3 we note that the har-

monics A3 and A5 for the pulse are larger in magnitude as

compared with the time harmonic case, whereas the nondi-

mensional dissipation �D is smaller. The overall magnitudes

are still comparable with those in the time harmonic case

because, even though the integral is over all t rather than a

single period, the majority of the wave clipping and dissipa-

tion occurs within one cycle. Note that A2= 0 but it is small

in comparison with A3.

We next consider a more realistic model using numeri-

cal simulation.

III. NUMERICAL STUDY FOR NON-PLANE WAVE
INCIDENCE

A. System studied

The system modeled is shown in Fig. 4. It is composed

of two identical isotropic elastic media P1 and P2 separated

by an interface governed by unilateral contact with a Cou-

lomb friction law. The material used in the simulations is

aluminum with the Young modulus, Poisson’s ratio and den-

sity equal to 69 GPa, 0.33 and 2700 kg/m3, respectively. The

problem is considered in terms of a material (Lagrangian)

description.

In the first step of the simulation a normal contact stress

between the two solids is applied by numerically imposing

appropriate boundary conditions on the external surfaces.

The lower surface of the body P2 is fixed (u2¼ 0) and the

upper surface of the body P1 is shifted by the appropriate

amount t0 in the y direction (u2¼ t0). The normal contact

stress profile is shown in Fig. 5(a). The normal contact stress

rN is quasi-constant on a part of interface [in Fig. 5(a),

r0
N ¼�0.3 MPa].

In the second step, a non-planar shear wave is generated

by imposing a dynamic displacement along the x axis on the

upper surface of P1. During this stage of the simulation the

lower surface of body P2 is fixed (u2¼ 0) and the displace-

ment u1 imposed on the upper surface of P1 is expressed as a

product of a weight function W(x) and a function of time

U(t) shown in Fig. 5(b). The interface is supposed to remain

in contact during the transmission/reflection of the shear

wave. This assumption has been verified for all simulations.

B. Numerical model

PLAST2, an explicit dynamic finite element code in 2D, is

used to simulate the behavior of the system (P1 and P2) dur-

ing frictional contact. PLAST2 is designed for large deforma-

tions and non-linear material behavior.18 It uses a forward

Lagrange multiplier method for the contact between deform-

able bodies. For this dynamic study, the formulation is dis-

cretized spatially using the finite element method and

discretized temporally by the b2 method. The contact

FIG. 3. (Color online) The dissipation and the second, third and fifth har-

monic amplitudes as a function of n ¼ rTC=rTM, where rTM is the ampli-

tude of the incident wave in Fig. 1(b).

FIG. 4. (Color online) (a) The sys-

tem considered in the numerical

model. (b) Snapshot of the velocity

magnitude illustrating the non-plane

wave incidence generated from the

upper surface of P1.
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algorithm uses slave nodes (situated on the contact surface

of P1) and target surfaces (on the contact surface of P2)

described by a four node quadrilateral element with 2� 2 G

quadrature rule. The elementary target segments are

described by two nodes and approximated by bicubic

splines.19

The forward Lagrange multiplier method is formulated

for the equations of motion at time ti¼ iDt with the displace-

ment condition imposed on the slave node at time tiþ1:

M€U
iþC€U

iþKUiþGiþ1T

ki ¼ F; Giþ1Uiþ1 � 0; (13)

where M, C, and K are symmetric and positive definite mat-

rices of mass, Rayleigh’s proportional damping

(C¼ d1Mþ d2K) and stiffness of the system, respectively.

U, _U, €U are, respectively, the vectors of nodal displacements,

nodal velocities and nodal accelerations. F is the vector of

nodal external forces. The vector k¼ [kN,kt]
T comprises nor-

mal (N) and tangential (T) forces at contact points

Cm: GT ¼ GT
N;G

T
T is the global matrix of the displacement

conditions ensuring non-penetration and the contact law of

the bodies in contact.

The equations of motion (13) are discretized in time

using an explicit Newmark scheme. The vectors are

expressed at each time step using a time scheme of type b2,

(b2 [ [0.5,1]):

€Ui¼ 2
Dt2 Uiþ1�Ui�Dt _Ui
� �

;

_Ui¼ 1
1þ2b2

_Uiþ1þDt 1�b2ð Þ _Ui�1þ 2b2

Dt Uiþ1�Ui
� �� �

:

(
(14)

The displacements *Ui of the nodes situated on the contact

surface (P1 and P2) are first computed with ki equal to zero.

For simplicity b2 is fixed at 0.5 and the nodal displacements
*Uiþ1 at time tiþ1 are obtained according to

� €Uiþ1 ¼ Dt2M�1 F�KUi
� �

þ 2Ui � Ui�1: (15)

A constraint matrix G
iþ1 is formulated for the slave nodes if

they have penetrated through a target segment. Calculation

of the contact forces ki and of the correct nodal displace-

ments U
iþ1 at time tiþ1 are then performed:

ki ¼ Dt2Giþ1M�1Giþ1T
� ��1

Giþ1�Uiþ1;

Uiþ1 ¼�Uiþ1 � Dt2M�1Giþ1T

ki:

8<
: (16)

Equations (16) are solved using the Gauss–Seidel method.

The contact conditions solved during each internal iteration

of this method are expressed as follows:

rN � 0; ðcontact if rN � 0 and seperation if rN ¼ 0Þ

rTj j � la rNj j; and
vT ¼ 0 if rTj j < la rNj j stickð Þ;

rTtT � 0 if rTj j ¼ la rNj j slipð Þ;

(

(17)

where tT is the relative tangential velocity for a slave node

related to the surface, rN and rT are normal and tangential stress,

respectively, subscript N and T referring to the normal and tan-

gential vectors defining the contact. la is an apparent friction

coefficient. Two friction laws are considered in the simulations:

a standard Coulomb friction law with a constant friction coeffi-

cient [la¼l, see Fig. 6(a)] and a slip-weakening (SW) friction

law [Fig. 6(b)] for which la is defined in Refs. 20 and 21 as

la uTð Þ ¼ lS �
lS�lDð ÞuT

d uT � d;
lD; uT > d;

�
(18)

where lS and lD are static and dynamic friction coefficients,

uT is the slip, and d the critical slip distance. Once the

dynamic regime is reached, the friction corresponds to a

FIG. 5. (Color online) (a) Normal

contact stress along contact interface

after the first step of simulations for

r0
N

�� ��¼ 0.3 MPa. (b) The imposed

displacement on the upper surface

u1¼W(x)U(t).

FIG. 6. (Color online) Tangential stress as a function of slip for Coulomb

friction law (a) and for slip-weakening friction law (b).
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classical Coulomb friction law with a dynamic friction coef-

ficient lD (< lS). This physically motivated model of slip

weakening friction (i.e., the decrease of the friction force

with slip), which was first introduced in the geophysical con-

text,22 can be associated to a phenomenon of adhesion

caused by long time stationary contact.23 For more details on

rate and state-variable friction law (including the slip-weak-

ening one) see, for example, Ref. 24.

C. Results

1. Case of Coulomb friction law

Figure 7 shows the velocity on the x-axis versus time

and y-position (depth) for three different friction coefficients.

At time t¼ 0, the shear wave is generated on the upper face

of P1 (see Fig. 4). The incident wave then propagates

through P1 and the contact interface gives rise to reflected

and transmitted waves.

It can be seen from Fig. 7 that the magnitude of the

transmitted wave is increasing with the friction coefficient.

Consequently, the magnitude of the reflected wave is

decreasing. Points A (x¼ 0, y¼ 20 mm) and B (x¼ 0,

y¼�5 mm) are chosen for fast Fourier transform (FFT)

processing of the reflected and transmitted waves,

respectively.

Figures 7(c) and 7(d) show the FFT of velocity along

the x axis for the reflected and transmitted wave for l¼ 0,

l¼ 0.4, and l¼ 1. Nonlinear harmonics should appear in

the spectrum as soon as slipping zones occur at the contact

interface. For friction coefficient equal to 0 or 1, no harmon-

ics are observed in the reflected and transmitted wave spec-

trum. For the case l¼ 0, the interface is in a sliding state

during transmission of shear waves but the system is per-

fectly linear under the previously made assumption of no

separation. When the friction coefficient is equal to 1, the

contact law is nonlinear, but the friction coefficient is too

large to permit enough sliding such that would produce a no-

ticeable effect on the transmitted/reflected wave spectrum.

In other words, during transmission/reflection of the shear

wave the contact nodes remain almost always in the sticking

state of the Coulomb friction law. For friction coefficient

equal to 0.4, the third harmonic (1.5 MHz) is observed in the

reflected and transmitted wave spectra due to the nonlinear-

ity of the friction law and the occurrence of sliding zones

during the transmission/reflection stage.

As expected, the magnitude of the wave decreases along

the propagation direction because of diffraction effects. In

order to compare the numerical results with the analytical

ones presented in Sec. II, the non-dimensional parameter

n ¼ l rNj j=rTM used in the analytical model (where rTM

denotes the maximal stress magnitude for the plane wave)

needs to be modified. Let n¼ 1 correspond to the case in

which the wave magnitude is not large enough to initiate slip

at the interface. From this definition a critical friction coeffi-

cient for slip, lcrit, is determined numerically, and the modi-

fied nnum is defined as follows:

nnum ¼
l r0

N

�� ��
rnum

; with rnum ¼ lcrit r0
N

�� ��: (19)

The harmonic magnitudes At
i are extracted from the FFT of

the computed velocity [Fig. 7(c) and 7(d)]. Energy dissipated

during transmission of the shear wave D(x) is numerically

calculated along the interface from its definition, Eq. (4).

Since the incident wave is non-plane, D(x) is not constant

along the interface, and accordingly a mean value D on the

FIG. 7. (Color online) Propagation

of shear wave in (a) the body P1 and

(b) in P2, both for x¼ 0. The water-

fall plots show the x-velocity versus

time for three different friction coef-

ficients (l¼ 0, 0.4, and 1). FFT of

x-velocity of (c) reflected and (d)

transmitted waves for three different

friction coefficients (l¼ 0, 0.4, and

1). The FFT processing of the

reflected and transmitted wave are

respectively done at point A (x¼ 0,

y¼ 20 mm) and point B (x¼ 0,

y¼�5 mm).
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zone of constant normal stress [Fig. 5(a)] is chosen for the

results. Non-dimensional measures of the harmonic magni-

tudes and energy dissipated per unit cycle during transmis-

sion of the shear wave are defined, respectively, as

�Ai ¼
At

i

At
1max

; �D ¼ xZ

5r2
num

D; (20)

where At
1max is the magnitude of the first harmonic of the

transmitted wave velocity for n¼ 1 at the probe point B and

the factor 5 is the number of cycles in the incident signal

[see Fig. 5(b) for U(t)].
Figure 8(a) displays the evolution of the non-dimen-

sional third and fifth harmonic magnitudes and non-dimen-

sional dissipated energy versus nnum for two different values

of initial normal stress: 0.3 and 0.6 MPa. It can be seen that

the initial normal contact stress has no influence on the non-

dimensional third and fifth harmonics and dissipated energy.

Comparing Figs. 8(a) and 3 shows a good qualitative

agreement between the numerical and analytical results for
�D and �Ai. The fact that the values obtained numerically are

about half of the analytical ones is because the sliding is not

uniform for a cylindrical shape of wave front used in the nu-

merical model, while the analytical model assumes a plane

wave.

The appearance of odd harmonics in the spectrum is due

to distortion of the incident wave during the transmission/

reflection as the interface partially slides under friction. The

evolution of the odd harmonics, directly related to this dis-

tortion, depends on two competing effects. First, for a fixed

value of the sliding distance, more energy is dissipated and

the wave is more highly distorted as the friction coefficient

increases. On the other hand, since the incident wave is the

same for the different simulations, the cumulative sliding

distance is actually diminished as the friction coefficient

increases, as shown in Fig. 8(b). These two antagonist

aspects of nonlinearity of a frictional interface explain the

existence of a distinguished value of the normal stress that

maximizes energy dissipation: nnum � 0.4 in Fig. 8(a).

The numerical simulations allow us to explore depend-

ence on parameter values describing the contact interface

(displacement, normal and tangential stresses, sliding dis-

tance…). Figure 8(b) shows the tangential stress and dis-

placement of the contact node situated on the interface at

x¼ 0 mm versus time. The displacement corresponds to the

tangential displacement of the slave node (of P1) in a local

FIG. 8. (Color online) (a) Third and

fifth harmonics �A3, �A5 and dissipated

energy �D for r0
N

�� ��¼ 0.3 MPa (—) and

for r0
N

�� ��¼ 0.6 MPa (�). (b) Tangential

stress and relative displacement on

interface (x¼ 0) versus time for three

values of nnum. The results are pre-

sented for the case r0
N

�� ��¼ 0.3 MPa.

FIG. 9. (Color online) (a) Evolution

of the third harmonic At
3 and of the

dissipated energy per unit surface D
as a function of r0

N

�� �� for Coulomb

and SW laws for different friction

coefficients (lS¼ 0.3, d¼ 10�2 lm).

(b) Tangential stress and displace-

ment on the interface (x¼ 0) versus

time for the case r0
N

�� ��¼ 0.3 MPa.
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frame of P2 whose origin is situated at the initial contact

position of this node (of P1) on the P2 interface before the ar-

rival of the incident shear wave. As the friction coefficient

increases the relative displacement decreases, because the re-

sistance to sliding is increasing. For nnum¼ 0.1, the sliding

of the slave node is important but the sinusoidal form is

weakly affected, whereas for nnum¼ 0.8 the sliding of the

slave node is weak, but the evolution of the displacement of

the contact node is strongly distorted from the initial

waveform.

2. Case of slip-weakening (SW) friction law

In this simulation the numerical model takes into

account a slip-weakening friction law that includes20,21 the

combined effects of static and dynamic friction, with coeffi-

cients lS and lD, respectively. A third parameter d describes

the slope of the decreasing friction coefficient, see Fig. 6(b).

For all simulations, static friction coefficient and incident

shear wave magnitude remain the same (lS¼ 0.3 and

rTM¼ 0.33 MPa). The simulations were performed for dif-

ferent values of the initial normal stress r0
N

�� �� (from 0.15 to

1.2 MPa). Note that in these conditions no slip is allowed

when r0
N

�� �� is greater than 1.1 MPa.

Figure 9 shows the results for two dynamic friction

coefficients in comparison with those for the constant fric-

tion law. Figure 9(a) confirms that for this model the third

harmonic again follows the behavior of the dissipated

energy. Maximum values of the third harmonic At
3 and dissi-

pated energy per unit surface D are decreasing when the

dynamic friction coefficient is decreasing. The maximum of

both is obtained for a larger value of r0
N

�� ��.
Figure 9(b) shows the tangential stress rT and the tan-

gential slip ut of the contact node situated at x¼ 0 on the

interface versus time. The interface is sticking because rTj j
is less than lS r0

N

�� ��. When rTj j is equal to lS r0
N

�� ��, the system

begin to slide. rTj j remains the same for constant Coulomb

friction (l¼ lS) while, for the SW law, rTj j ¼ lD r0
N

�� �� after

the slip distance becomes greater than d. Hereafter the inter-

face behavior corresponds to a classical Coulomb friction

law with l¼ lD. As expected, since the dynamic friction

coefficient is less than the static one, the relative displace-

ment at the interface is greater than for the constant friction

coefficient case (l¼ls). Also, the relative displacement

increases when the dynamic friction coefficient decreases.

The resistance to motion due to friction is less important and

so the dissipated energy is reduced. This explains the offset

of the position of the maximum dissipated energy D [Fig.

9(a)]. The form of the curve A3 r0
N

�� ��� �
is directly related to

the interface friction law in effect.

Figure 10 highlights an important effect of the parameter

d on the tangential stress and slip at the interface, and conse-

quently on dissipated energy and third harmonic magnitude.

For a low value of d (¼ 10�3 lm), the system behavior is sim-

ilar to the constant friction law with l¼lD. The sliding is

delayed due to the static friction coefficient. For low value of

r0
N

�� �� (< 0.6 MPa) this delay has little influence on the inter-

face behavior. On the contrary, if r0
N

�� �� 	 0.6 MPa, the delay

is growing and the interface slip decreases reaching zero for

r0
N

�� ��¼ 1.1 MPa. This limit value of r0
N

�� �� depends on the pa-

rameter d, namely, it decreases as d increases. As a result, for

d¼ 10�1/m, the limit value of r0
N

�� �� is very low and hence the

dissipated energy and the third harmonic curves tends to those

for constant friction coefficient l¼lS.

IV. CONCLUSIONS

This study presents a combined numerical and analytical

analysis of the propagation of a shear wave through a fric-

tional interface. A simple analytical model is developed that

describes the case of a classical Coulomb friction law and a

plane wave. The model pinpoints the pivotal non-dimensional

parameters of the problem and yields an explicit dependence

of the measurable quantities on these parameters. Good agree-

ment between the analytical and numerical results for this

case is demonstrated. The numerical analysis is also applied

to a more complex case which involves a non-planar wave

and a slip-weakening (SW) friction law with static and

dynamic coefficients lS/lD. For the both cases, it is shown

that the amplitude of the third harmonic is directly related to

the friction-induced dissipated energy. The evolution of the

third harmonic as well as of the dissipated energy depends on

FIG. 10. (Color online) (a) Evolu-

tion of the third harmonic At
3 and of

the dissipated energy per unit sur-

face D as a function of r0
N

�� �� for Cou-

lomb (l¼ 0.3 and 0.2) and SW laws

for different values of parameter d
(lS¼ 0.3, lD¼ 0.2). (b) Tangential

stress and displacement on the inter-

face (x¼ 0) versus time for the case

r0
N

�� ��MPa.
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two aspects: on the cumulative sliding distance during the

transmission of the shear wave and on the friction coefficient.

When a SW friction law is taken into account, the maximum

values of third harmonic magnitude and of the dissipated

energy are achieved for a larger value of the applied normal

stress r0
N

�� ��. This is explained by the fact that the static effect

in the SW law delays the interface sliding in comparison with

the case l¼ lD. Less sliding and lD< lS both imply lower

values of dissipated energy and of third harmonic.

The main conclusions of this study are as follows:

(1) There exists a specific value of the normal stress that

maximizes energy dissipation. This value results from

the competition of two antagonist aspects of a frictional

interface: sliding (cumulative sliding distance) and re-

sistance to motion (tangential stress).

(2) The SW friction law affects the form of the curves for the

dissipated energy, Dðjr0
NjÞ, and third harmonic, At

3 r0
N

�� ��� �
.

The maximal value is obtained for a larger value of r0
N

�� ��.
Each of the three parameters of the SW friction model has

a different impact on interface sliding and dissipated

energy: the dynamic friction coefficient lD acts on the

steady state sliding, the static friction coefficient lS delays

the sliding in comparison with the constant friction law

l¼ lD, and d acts directly on this delay.

(3) For the form of shear incident wave used in this study,

the third harmonic evolution follows the variation of the

dissipated energy at the interface. Thus the measurement

of transmitted or reflected wave signal can provide infor-

mation on dissipated energy at the interface, and the

form of the At
3 r0

N

�� ��� �
curve can reveal the type of friction

law of the interface.

ACKNOWLEDGMENT

A.N.N. acknowledges support from CNRS and the

hospitality of the Institut de Mécanique et d’Ingénierie de
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