
Multiple scattering by cylinders immersed in fluid: High order
approximations for the effective wavenumbers

Andrew N. Norrisa)

Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854

Jean-Marc Conoir
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Acoustic wave propagation in a fluid with a random assortment of identical cylindrical scatterers is

considered. While the leading order correction to the effective wavenumber of the coherent wave is

well established at dilute areal density (n0) of scatterers, in this paper the higher order dependence

of the coherent wavenumber on n0 is developed in several directions. Starting from the quasi-

crystalline approximation (QCA) a consistent method is described for continuing the Linton and

Martin formula, which is second order in n0, to higher orders. Explicit formulas are provided for

corrections to the effective wavenumber up to O ðn4
0Þ. Then, using the QCA theory as a basis, gen-

eralized self-consistent schemes are developed and compared with self-consistent schemes using

other dynamic effective medium theories. It is shown that the Linton and Martin formula provides a

closed self-consistent scheme, unlike other approaches. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

It is often assumed that multiple scattering by a dilute

array of scatterers in a perfect fluid may be described by the

propagation of a coherent wave representing the acoustic

field averaged over all possible scatterer configurations. The

coherent wave has a complex-valued wavenumber, keff, often

called the effective wavenumber. Its imaginary part accounts

for loss due to scattering in all directions. Foldy1 first derived

an expression for the effective wavenumber of point scatterers

(isotropic scattering). Subsequently, Waterman and Truell2

considered finite size scatterers (non-isotropic scattering) and

obtained a second order correction to Foldy’s formula in

terms of the scatterer density. The averaged exciting field in

Ref. 2 is obtained by replacing the spherical scatterers by

point scatterers with the same angle-dependent far-field scat-

tering amplitude as the actual finite size scatterers. For cylin-

drical scatterers, Waterman and Truell’s approach provides

keff ¼ kWT, where3

k2
WT ¼ k � 2in0

k
f ð0Þ

� �2

� 2in0

k
f ðpÞ

� �2

; (1)

with f(h), defined in Sec. II, the far-field scattered amplitude

in direction h for each cylinder and n0 the number of scatter-

ers per unit area.

In 1967 Lloyd and Berry4 proposed an explicit expres-

sion for spherical scatterers different from that of Waterman

and Truell. While Lloyd and Berry’s formula had been

obtained for spherical scatterers by using a different method,5

Linton and Martin6 derived its counterpart for cylindrical

scatterers in 2005. Linton and Martin’s formula may be

recovered from Fikioris and Waterman’s7 dispersion relation

by expanding it in powers of n0, under the assumption that

n0/k2 � 1, and by letting the radius of exclusion in the hole
correction tends to zero. For cylindrical scatterers, Linton

and Martin’s approach yields keff ¼ kLM,

k2
LM ¼ k2 � 4in0 f ð0Þ þ 8n2

0

pk2

ðp

0

cot
h
2

� �
d

dh
½ f ðhÞ�2dh: (2)

This formula is only valid for symmetric scattering functions

satisfying f(h) ¼ f(�h).8 Its generalization to arbitrary f is

obtained by replacing f 2(h) with f (h) f (�h) in Eq. (2), see

below and Ref. 8. Linton and Martin’s formula is a conse-

quence of the widely used closure assumption known as the

quasi-crystalline approximation (QCA). Martin and Maurel9

demonstrated that QCA agrees with the Lippmann–

Schwinger approach (weak scattering) to O ðn2
0Þ.

The independent scattering approximation (ISA)10 is a

simplistic approximation in multiple-scattering theory,

sometimes used without justification. It can be deduced

directly from Eqs. (1) and (2) by neglecting the term of sec-

ond order in n0/k2, giving keff ¼ kISA with

k2
ISA ¼ k2 � 4in0 f ð0Þ: (3)

All of these methods are explicit since keff is given by a

formula. But the question remains: Which method is the

most accurate? This depends largely on the value of the con-

centration, c ¼ n0pa2, where a is the radius for circular cyl-

inders or the radius of the enclosing cylinder for non-circular

scatterers. It is evident that ISA, which is a method of order

one in n0/k2 ¼ c/p(ka)2, is the least precise. As for the two

others, according to the analysis made by Linton and Martin
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in Ref. 6, it is justified to think that kLM is more accurate

than kWT. However, the difference between kWT and kLM

is small at low concentration, as shown in Ref. 11 when

c ¼ 6%. Reference 11 also shows that the Waterman and

Truell method or ISA fail while Linton and Martin’s gives

better results for higher concentration: c ¼ 14%.

There are two other methods that deal with the far-field

scattered amplitudes, but they are implicit; keff is obtained by

solving an equation. The most famous is the coherent poten-

tial approximation (CPA) and its generalization (GCPA),

both based on Dyson’s equation.12 There is also the general-

ized self-consistent model (GSCM) which is derived using a

self-consistent scheme applied to Waterman and Truell’s

formula.13 The existence of a non-trivial solution to the ho-

mogeneous system of linear equations obtained by Fikioris

and Waterman also allows one to calculate a keff.
14 Accord-

ing to the finding of Cowan et al.,15 the CPA is capable of

accounting for concentrations up to 60% for glass beads in a

liquid mixture of water and glycerol. Of course, scatterers do

not radiate as much at this level of concentration as com-

pared to those considered at the lower levels of concentration

in Ref. 11. Nevertheless, the results of Cowan et al.15 sug-

gest that implicit methods can be more powerful than

explicit ones even if, to our knowledge, no rigorous compari-

son has been made between the two types of methods. Refer-

ence 16 provides comprehensive numerical comparisons of

eight different explicit and implicit methods.

In this paper we search for explicit and implicit expres-

sions of keff that could allow us to consider higher concentra-

tions for multiple-scattering problems. For explicit methods, the

only way to improve keff is to extend Linton and Martin’s

formula to orders higher than two in concentration; this is

accomplished in Sec. II. In this regard we note that Waterman

and Truell’s formula is of order 2 in concentration, which is

not possible to go further. For implicit methods we use the self-

consistent scheme as used by Yang and Mal in Ref. 13. When

applied to the ISA this self-consistent scheme leads to CPA. It

is applied to the generalized Linton and Martin formula in

Sec. IV where the physical meaning of the self-consistent

scheme is discussed. In particular, we obtain a new result that

generalizes the CPA. In Sec. V we compare all the effective

wavenumbers in the Rayleigh limit (low frequencies).

II. HIGHER ORDER THEORY

A. Multiple-scattering formulation

The problem is formulated in terms of the pressure wð~rÞ
which satisfies the Helmholtz equation in the interstitial

space between scatterers,

r2wþ k2w ¼ 0; (4)

where k ¼ x/c and c is the speed of sound. Time harmonic

dependence e�ixt is assumed. Consider first a system of N
scatterers with fixed positions, for which the total field can

be expressed as

wð~r Þ ¼ wincð~r Þ þ
XN

j¼1

Tð~rjÞwEð~r;~rjÞ: (5)

Here, winc is the incident wave, wEð~r;~rjÞ is the exciting field

for scatterer j, and Tð~rjÞ its scattering operator. Focusing on

scatterer j ¼ 1 as representative, we have

wEð~r;~r1Þ ¼ wincð~r Þ þ
XN

j¼2

Tð~rjÞwEð~r;~rjÞ: (6)

If, as is the case here, the positions are not known, it

becomes necessary to assume some type of statistical descrip-

tion. The number density n for N discrete scatterers with

centers at ~r1;~r2;… is nð~r1;~r2;…;~rNÞ ¼ Npð~r1;~r2;…;~rNÞ,
where p is the probability density. Conditional densities,

defined by fixing the position of one scatterer, satisfy2

nð~r2;…;~rNj~r1Þ ¼ ðN � 1Þpð~r2;…;~rNj~r1Þ. For our purposes

we need only the conditional number density of the jth scatterer

if a scatterer is known to be at~r1: nð~rjj~r1Þ ¼ ðN � 1Þpð~rjj~r1Þ;
j 6¼ 1, satisfying

Ð
d~rjnð~rjj~r1Þ ¼ N � 1. The analog of Eq. (6)

is then an equation for the configurationally averaged field,

hwEð~rj~r1Þi,

hwEð~rj~r1Þi ¼ wincð~rÞ

þ
ð

d~rj nð~rjj~r1ÞTð~rjÞhwEð~r j~rj;~r1Þi: (7)

As noted by Waterman and Truell,2 “The fact that the excit-

ing field with one scatterer fixed is given in terms of the field

with two scatterers fixed is the basic difficulty in multiple

scattering.” We adopt perhaps the simplest solution to this

quandary, the QCA, under which assumption (7) reduces to

hwEð~r j~r1Þi ¼ wincð~r Þ

þ
ð

d~rj nð~rjj~r1ÞTð~rjÞhwEð~r j~rjÞi: (8)

The scattering operator for every scatterer is assumed to

have translational invariance with

Tð~0Þeikx ¼
X

n

inTnHð1Þn ðkrÞeinh

’
ðr!1Þ

ffiffiffiffiffiffiffi
2

pkr

r
ei kr�p=4ð Þ f ðhÞ; (9)

and therefore the Fourier series for f is

f ðhÞ ¼
X

n

Tneinh: (10)

The assumed form of the operator in Eq. (9) means that each

scatterer has the same scattering behavior. We consider

plane wave incidence, wincð~rÞ ¼ Aeikx. The exciting potential

hwEð~r;~rjÞi satisfies the Helmholtz equation and is regular

function at the point rj
!, it can therefore be expressed as

hwEð~r j~rjÞi ¼
X

n

Anð~rjÞ JnðkqjÞeinhð~qjÞ; (11)

where ~qj ¼~r �~rj; hð~qjÞ ¼ argð~qjÞ. Substituting from Eq. (11)

into the configurational average equation [Eq. (8)] and using

the addition theorem for cylinder functions8 yields
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Anð~r1Þ ¼ ineikx1 þ
X

p

ð�1Þp Tnþp

ð
Sþ

nð~rjj~r1Þ

� Anþpð~rjÞHð1Þn ðkqjÞeinhð~qjÞd~rj; (12)

on the half-space Sþ ¼ fx > 0g. The effective wavenumber

n defines the coherent wave according to the assumed func-

tional form for each An,

Anð~rjÞ ¼ inAneinxj : (13)

Use of the addition theorem for cylindrical functions then

implies

Aneinx1 ¼ Aeikx1 þ
X

p

TnþpAnþpLpðnÞ; (14)

with

LpðnÞ ¼ i�p

ð
Sþ

d~rj nð~rjj~r1ÞHð1Þp ðkrj1Þeiphð~rj1Þeinxj ; (15)

where~rj1 ¼~rj �~r1; hð~rj1Þ ¼ argð~rj1Þ:
We assume a modified form of the hole correction with

hole radius b,

nð~rjj~r1Þ ¼
n0ð1þ hðrj1ÞÞ; rj1 > b;
0; rj1 � b;

�
(16)

where h represents the deviation from the constant back-

ground value. It satisfies h(r)! 0 as r!1, with the stronger

condition

lim
R!1

R�2

ðR

b

hðrÞrdr ¼ 0: (17)

Following, e.g., Ref. 8, it may be shown that integral (15)

reduces to

LpðnÞ ¼ 2pn0

NpðnbÞ
n2 � k2

þMpðnbÞ
k2

� �
einx1 þ 2in0

kðn� kÞ e
ikx1 ;

(18)

where

NpðnbÞ ¼ nbJ0pðnbÞHð1Þp ðkbÞ � kbJpðnbÞHð1Þ
0

p
ðkbÞ; (19a)

MpðnbÞ ¼
ð1

b

JpðnrÞHð1Þp ðkrÞhðrÞk2rdr: (19b)

The simple “hole correction” is h ¼ 0 and, hence, Mp ¼ 0; see

Sec. IV D in Ref. 6 for further discussion of the case h 6¼ 0.

B. Matrix formulation

Substituting Eq. (18) into Eq. (14) and equating to zero

the coefficients of eifx1 and eikx1 yields two equations, known

as the Lorentz–Lorenz law and the extinction theorem,

respectively,

An þ
2pn0

k2 � n2

X1
p¼�1

N n�pðnbÞTpAp ¼ 0; (20a)

Aþ 2in0

kðn� kÞ
X1

p¼�1
TpAp ¼ 0; (20b)

where Eq. (20a) is satisfied by all n 2 Z and

N pðnbÞ ¼ NpðnbÞ þ n2

k2
� 1

� �
MpðnbÞ: (21)

Equation (20a) is a homogeneous system which defines the

effective wavenumber and the associated infinite eigenvector,

while Eq. (20b) defines the amplitude of the eigenvector

in terms of the excitation amplitude A. The identity

N�pðnÞ ¼ N pðnÞ follows from the known properties of Bessel

and Hankel functions. Equation (20a) with h ¼ 0) Mp ¼ 0

is equivalent to the system of equations studied by Linton–

Martin6 [their Eq. (71)]. We focus on the solution of Eq. (20a).

We introduce non-dimensional parameters y and �, which

depend on b, along with some related vectors and matrices,

y ¼ ðnbÞ2 � ðkbÞ2; (22a)

� ¼ �4in0b2; (22b)

b ¼ T1=2a; (22c)

u ¼ T1=2e; (22d)

QðyÞ ¼ ðkbÞ�2
T1=2 �QT1=2; (22e)

where the vectors a and e, the diagonal matrix T, and the

symmetric matrix �Q are defined

a ¼ ð…; A�1; A0; A1;…Þt; (23a)

e ¼ ð…; 1; 1; 1;…Þt; (23b)

Tmn ¼ Tndmn; (23c)

�Qmn ¼
ip
2
N m�nðnbÞ � 1

ðn=kÞ2 � 1
: (23d)

Then Eq. (20a) can be expressed as

fyðI� �QðyÞÞ � �uutgb ¼ 0: (24)

Setting the determinant of the matrix f..g of this infinite sys-

tem of equations yields the desired dispersion relation for n.

We next reduce this to a simple and transparent form and

obtain an expression for the amplitude vector a.

C. Implicit solutions for n and a

Multiply Eq. (24) from the left by the inverse of (I � �Q),

yielding
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ðIþ wutÞb ¼ 0; (25)

with infinite vector w ¼ ��y�1ðI� �QÞ�1
u. Noting that

detðIþ wutÞ ¼ 1þ wtu, we deduce that the solution for y
can be expressed implicitly as

y ¼ �ut½I� �QðyÞ��1
u: (26)

The dependence upon b in Eq. (26) may be removed by

introducing alternative non-dimensional scalars �y ¼ y=ðkbÞ2
and �� ¼ �=ðkbÞ2, that is,

�y ¼ n2k�2 � 1; �� ¼ �4in0k�2; (27)

and writing �Q ¼ �Qð�yÞ in terms of which Eq. (26) becomes

�y ¼ et½ð��TÞ�1 � �Qð�yÞ��1
e: (28)

This formula clearly splits the dependence upon the scatter-

ing matrix T, from that of multiple interactions, �Q. The

choice of the symmetric matrix �Q and hence, Q is moti-

vated by the observation that at leading order the elements

N n are equal: N nðkbÞ ¼ 2=ðipÞ for all n. Despite the appa-

rent pole at n ¼ k in Eq. (23d), the matrix �Qð�yÞ is a regular

function of �y at the origin since the limit and its derivatives

exist as n ! k. The solution of Eq. (20a) may be expressed

in implicit form through either of the identities (26 or 28).

We will find both useful in different circumstances. The lat-

ter is simpler for considering general properties, while the

former is useful for the particular limit as b! 0.

The identity 1 þ wtu ¼ 0 also implies that the null vec-

tor of Eq. (25) is of the form b ¼ awða 6¼ 0Þ. The precise

value of a follows from the extinction theorem in Eq. (20b)

and the vector of amplitudes An can then be expressed as

a ¼ 2k

k þ n
½ðI� �� �Qð�yÞTÞ��1

e: (29)

D. Asymptotic expansion

We seek an asymptotic expansion of y ¼ y� in powers of

the small parameter �,

y� ¼ �y1 þ �2y2 þ �3y3 þ � � � : (30)

The individual terms follow from Eq. (26) as

yn ¼
1

n!
ut dn

d�n

	
�½I� �Qðy�Þ��1



j�¼0u: (31)

Using the expansion (1 � x)�1 ¼ 1 þ x þ x2 þ � � � in Eq.

(31) and noting that the derivative is evaluated at � ¼ 0 means

that only a finite number of terms are necessary for a given n.

Thus,

yn ¼
1

n!
ut dn

d�n
f�nQn�1ð0Þ þ �n�1Qn�2ð�y1Þ

� � � þ �2Qð�y1 þ � � � þ �n�2yn�2Þgj�¼0u: (32)

We only need to expand each term in this finite series to obtain

its O (�n) contribution. This is simple for the first term �nQnð0Þ,
and for the second it is �n�1Qnð�y1Þ ! �ny1ðd=dyÞQn�2ð0Þ
where ðd=dyÞgð0Þ � ðd=dyÞgðyÞjy¼0. Subsequent terms be-

come more complicated but the procedure for finding their

contribution is straightforward. Thus,

yn ¼ ut

�
Qn�1ð0Þ þ y1

d

dy
Qn�2ð0Þ þ y2

1

2

d2

dy2
Qn�3ð0Þ

þ y2

d

dy
Qn�3ð0Þ � � � þ yn�2

d

dy
Qð0Þ

�����
�¼0

u:

(33)

The following expansion includes all terms up to fourth

order in the small parameter �,

y ¼ �utuþ �2utQ0uþ �3½utQ2
0uþ ðutuÞutQ00u�

þ �4½utQ3
0uþ ðutQ0uÞutQ00uþ 2ðutuÞutQ0Q00u

þ 1

2
ðutuÞ2utQ000u� þ � � � ; (34)

where

Q0 ¼ Qð0Þ; Q00 ¼ Q0ð0Þ; Q000 ¼ Q00ð0Þ: (35)

The symmetry Qt ¼ Q has been used to simplify terms in

expansion (34).

E. Asymptotic expansion for finite kb

Expanding the function N pðnbÞ for small ðnb� kbÞ
yields

�Q0mn ¼ Dð0Þm�nðkbÞ; �Q
0
0mn ¼ Dð1Þm�nðkbÞ; (36)

where

Dð0Þp ðxÞ ¼
ip
4
½ðp2 � x2ÞJpðxÞHð1Þp ðxÞ

� x2J0pðxÞHð1Þp

0ðxÞ þ 2MpðkbÞ�; (37a)

Dð1Þp ðxÞ ¼ �
1

2
Dð0Þp ðxÞ þ

ip
4

MpðkbÞ

þ 1

8
½p2 � x2 � ipx2JpðxÞHð1Þp ðxÞ�: (37b)

Higher derivatives may be found using the identity

ðnbÞ2N00p þ ðnbÞN0p þ ððnbÞ2 � p2ÞNp

¼ �2ðnbÞ2JpðnbÞHð1Þp ðkbÞ: (38)

Using the above results, the expansion to O(�3) may be

rewritten in terms of the areal density of scatterers, n0, as

n2 ¼ k2 þ d1n0 þ d2n2
0 þ d3n3

0 þ � � � ; (39)
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where

d1 ¼ �4i
X

n

Tn ¼ �4if ð0Þ; (40a)

d2 ¼ �
16

k2

X
m;n

Dð0Þm�nðkbÞTmTn; (40b)

d3 ¼
64i

k4

X
m;n;p

Dð0Þm�nðkbÞDð0Þn�pðkbÞTmTnTp

� 16d1

k4

X
m;n

Dð1Þm�nðkbÞTmTn: (40c)

The dependence on kb and the scattering function is con-

tained in the coefficients d1, d2, etc.

F. Small kb limit

In this limit we derive the terms in the series

n2 ¼ k2 þ d1n0 þ d2n2
0 þ d3n3

0 þ d4n4
0 þ � � � : (41)

It follows immediately from Eq. (40) that d1 ¼ d1, while

d2 may be found by letting kb ! 0 and using

D
ð0Þ
p ðxÞ ¼ jpj=2þ OðxÞ and D

ð1Þ
p ðxÞ ¼ p2=8� D

ð0Þ
p ðxÞþ OðxÞ

as x ! 0. It is easier, however, to begin with the small kb
expansion of �Q. This allows us to deduce not only the terms

in Eq. (39) to Oðn3
0Þ but the next one. Higher order terms can

be found using the procedure described next. As kb ! 0 we

have, using Eq. (19a),

N pðnbÞ ’ 2

ip
n
k

� �jpj
: (42)

Hence �Q becomes independent of b,

�Qmnð�yÞ ’ ðð1þ �yÞjm�nj=2 � 1Þ=�y; (43)

from which it follows that

�Q0mn ¼
1

2
jm� nj;

�Q00mn ¼
1

8
jm� njðjm� nj � 2Þ;

�Q000mn ¼
1

24
jm� njðjm� nj � 2Þðjm� nj � 4Þ; (44)

etc. Now express the asymptotic expansion (34) in terms of

the non-dimensional parameters �y and �� which do not depend

upon b,

�y ¼ �� tr Tþ ��2etT �Q0Teþ ��3½etTð�Q0TÞ2e

þ ðtr TÞetT �Q00Te� þ ��4½etTð�Q0TÞ3e

þ ðetT �Q0TeÞetT �Q00Teþ 2ðtr TÞetT �Q0T �Q00Te

þ 1

2
ðtr TÞ2etT �Q000Te� þ Oð��5Þ: (45)

The matrices �Q0, �Q00, etc. are defined in the same way as in

Eq. (35) for the matrix �Qð�yÞ of Eq. (23d). The coefficients in

Eq. (41) then follow from Eqs. (44) and (45) as

d1 ¼ �4i
X

n

Tn; (46a)

d2 ¼ �
8

k2

X
m;n

jm� njTmTn; (46b)

d3 ¼
16i

k4

X
m;n;p

jm� njjn� pjTmTnTp

� 2d1

k4

X
m;n

ðm� nÞ2TmTn �
d1d2

2k2
; (46c)

d4 ¼
32

k6

X
m;n;p;q

jm� njjn� pjjp� qjTmTnTpTq

þ i8d1

k6

X
m;n;p

jm� njðn� pÞ2TmTnTp

�
X
m;n

d2
1

3k6
jm� nj3 þ 2d2

k4
ðm� nÞ2

� �
TmTn

� d2
1d2

6k4
� d2

2

2k2
� d1d3

k2
: (46d)

G. The Linton–Martin formula generalized

The coefficients in Eq. (46) depend upon the far-field

scattering function through its Fourier coefficients. We now

show that the coefficients can be expressed in terms of the

function f itself rather than its Fourier series. Thus,

d1 ¼ �4if ð0Þ; (47a)

d2 ¼
8

pk2

ðp

0

dh cot
h
2

� �
d

dh
½f ðhÞf ð�hÞ�; (47b)

d3 ¼
16i

p2k4

ðp

0

dh cot
h
2

ðp

0

d�h cot
�h
2

Sðh; �hÞ

þ 2d1

k4

d2

dh2
½f ðhÞf ð�hÞ�h¼0 �

d1d2

2k2
; (47c)

d4 ¼ �
32

p3k6

ðp

0

dh cot
h
2

ðp

0

d�h cot
�h
2

ðp

0

d��h cot
��h
2

�Tðh; �h; ��hÞ � i8d1

pk6

ðp

0

dh cot
h
2

� �
@

@ �h
Sðh; �hÞ

����
�h¼0

� d2
1

3pk6

ðp

0

dh cot
h
2

� �
d3

dh3
½f ðhÞf ð�hÞ�

þ 2d2

k4

d2

dh2
½f ðhÞf ð�hÞ�h¼0 �

d2
1d2

6k4

� d2
2

2k2
� d1d3

k2
; (47d)
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where

Sðh; �hÞ ¼ 1

4

@2

@h@ �h

� ff ðhÞ½f ð��hÞf ð�h� hÞ � f ð�hÞf ð��h� hÞ�

þ f ð�hÞ½f ð�hÞf ðh� �hÞ � f ð��hÞf ðhþ �hÞ�g;

Tðh; �h; ��hÞ ¼ 1

8

@3

@h@ �h@��h

� ff ðhÞf ð�h� hÞ½f ð���hÞf ð��h� �hÞ � f ð��hÞf ð���h� �hÞ�
þ f ðhÞf ð��h� hÞ½f ð��hÞf ð�h� ��hÞ � f ð���hÞf ð�hþ ��hÞ�
þ f ð�hÞf ð�hþ hÞ½f ð��hÞf ð��h� ��hÞ � f ð���hÞf ð��h� �hÞ�
þ f ð�hÞf ðh� �hÞ½f ð���hÞf ð�hþ ��hÞ � f ð��hÞf ð�h� ��hÞ�g:

We now justify these expressions.

The first identity for d1 in Eq. (47) is obvious from the

definition of Eq. (10). Regarding d2, we note that the product

of f(h) and f(�h) may be written as

f ðhÞf ð�hÞ ¼
X1

n¼�1

X1
s¼�1

TnTse
iðn�sÞh: (48)

Interchanging the indices implies that the double sum is

f ðhÞf ð�hÞ ¼
X1

n¼�1

X1
s¼�1

TnTs cosðn� sÞh: (49)

This identity is equivalent to Eq. (83) in Ref. 6 but without

the restriction Tn ¼ T�n that was assumed there. The formula

for d2 follows from the relation17 [Eq. 3.612(7)]

1

p

ðp

0

dh cot
h
2

sin mh ¼ sgnðmÞ: (50)

Turning to the coefficient d3 in Eq. (46c) define

Sðh; �hÞ ¼ �
X

m

X
n

X
p

ðm� nÞðn� pÞ

� TmTnTp eiðm�nÞheiðn�pÞ�h

¼ @2

@h@ �h
½f ðhÞf ð�h� hÞf ð��hÞ�: (51)

The individual terms in the triple sum are of the form ei���h,

but an identical sum with the preferred dependence sin ��� h
in each term can be obtained by an appropriate permutation

of 22 ¼ 4 expressions. The correct combination is

1

4
fSðh; �hÞ � Sðh;��hÞ � Sð�h; �hÞ þ Sð�h;��hÞg;

which reduces to Sðh; �hÞ as given. It may then be deduced,

again using the identity in Eq. (50), that

X
m;n;p

jm� njjn� pjTmTnTp

¼ 1

p2

ðp

0

dh cot
h
2

ðp

0

d�h cot
�h
2

Sðh; �hÞ: (52)

The second term in Eq. (47c) follows directly from Eq. (49).

Regarding the coefficient d4, the third term in the right mem-

ber of Eq. (47d) follows in the same manner as the integral

for d2, based on Eq. (49). The second term in Eq. (47d) may

be deduced using the relation

@

@ �h
Sðh; �hÞ ¼ �

X
m

X
n

X
p

ðm� nÞðn� pÞ2

� TmTnTp sinðm� nÞh cosðn� pÞ�h; (53)

evaluated at �h ¼ 0 in combination with integral identity Eq.

(50). Note that

@

@ �h
Sðh; �hÞ

����
�h¼0

¼ f 00ð0Þ d

dh
½ f ðhÞf ð�hÞ�

� f 0ð0Þ d

dh
½ f ðhÞf 0ð�hÞ þ f ð�hÞf 0ðhÞ�

þ f ð0Þ d

dh
½ f 0ðhÞf 0ð�hÞ� þ f ð0Þ

2

d3

dh3

� ½ f ðhÞf ð�hÞ�:

Finally, the first term in the right member of Eq. (47d) may

be obtained using the same type of argument used for the

identity in Eq. (52). The function analogous to S now has

three arguments

Tðh; �h; ��hÞ ¼ �i
X

m

X
n

X
p

X
q

ðm� nÞðn� pÞ

� ðp� qÞTmTnTpTq eiðm�nÞheiðn�pÞ�heiðp�qÞ��h

¼ @3

@h@ �h@��h
½f ðhÞf ð�h� hÞf ð��h� �hÞf ð���hÞ�; (54)

and 23 ¼ 8 permutations are required in order to arrive at the

correct quadruple summation, yielding Tðh; �h; ��hÞ.

III. SIMPLIFICATIONS BASED ON THE FINITE
RANK OF Q

The infinite matrix Q is in practice well approximated

by a matrix of finite rank. This follows from the fact that the

far-field scattering function f(h) is an entire function of

the angular argument h considered as a complex variable.18

The scattering operator (matrix) T is therefore compact and

has only a finite number of eigenvalues of finite size. At low

frequency only the first few elements Tm for m near zero are

important (monopole, dipole, etc.). Furthermore, as we will

see in this section, Q is of rank 2 in the high-frequency limit.

Therefore, at any finite frequency the infinite system of

equations is really not so in practice and may be replaced by

a finite system. We first develop the solution for finite rank n
and then apply it to two important cases: The low-frequency

Rayleigh limit (n ¼ 3) and the high-frequency limit (n ¼ 2).

For the remainder of the paper we take h, introduced in Eq.

(16), to be zero, so that Mp ¼ 0.

A. Q is of rank n

As noted above only a finite number of the elements Tn

are significant at any given frequency. If only n are non-zero,
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then Q is of rank n. The matrix satisfies an homogeneous

equation of degree n þ 1,

Qnþ1 þ bnQn þ bn�1Qn�1 þ � � � þ b1Q ¼ 0; (55)

with b1 ¼ ð�1Þnðdet QÞ, … , bn ¼ �ðtr QÞ, and therefore,

ðI� �QÞ�1 ¼ Iþ b1�Qþ b2�
2Q2 þ � � � þ bn�

nQn;

where

bj ¼
1þ

Pn
k¼jþ1

bk�
nþ1�k

1þ
Pn

m¼1

bm�nþ1�m

: (56)

Thus, using the fundamental result in Eq. (26), it follows

that y ¼ (n2 � k2)b2 is given by

y ¼ �utuþ
Xn

j¼1

�jþ1bju
tQju: (57)

Since Q ¼ Q(y), Eq. (57) is an implicit equation for y which

could be solved by iteration, for instance. It may also be

written as

n2 ¼ k2 � 4in0f ð0Þ � 16
n2

0

k2

Xn

j¼1

��j�1bje
tðT �QÞjTe: (58)

1. Rayleigh limit, Q is of rank 3

An important case is n ¼ 3 which is useful at low

frequency (Rayleigh limit) when the scattering matrix is well

approximated by only three terms: T0 and T61. For n ¼ 3,

Q4 � IQQ3 þ IIQQ2 � IIIQQ ¼ 0; (59)

with IQ ¼ tr Q, IIQ ¼ 1
2
½ðtr QÞ2 � tr Q2�, IIIQ ¼ det Q. In this

case the implicit equation for y becomes

y ¼ �utuþ �2½ð1� �IQ þ �2IIQÞutQu

þ ð1� �IQÞ�utQ2uþ �2utQ3u�
� ½1� �IQ þ �2IIQ � �3IIIQ��1: (60)

More detailed results for the Rayleigh limit are presented in

Sec. V for the particular case of circularly cylindrical

scatterers.

B. High-frequency limit

In the high-frequency limit kb, nb 	 1, we have, from

Eq. (19a),

ip
2

NpðnbÞ ¼
ðnb!1Þ

Aþ ð�1ÞpB (61)

with

A ¼ ðk þ nÞ
2
ffiffiffiffiffi
kn
p eiðk�nÞb; B ¼ ðk � nÞ

i2
ffiffiffiffiffi
kn
p eiðkþnÞb:

The high-frequency limit for elastic waves was discussed in

Ref. 8, and the same methods developed there could be used

for the acoustic problem. It is instructive to note that

Eqs. (61) and (22e), combined with Mp ¼ 0, implies that

Q ¼ auut þ bvvt; (62)

where

a ¼ ðA� 1Þ=y; b ¼ B=y;

v ¼ T1=2ð…; �1; 1; �1; 1;…Þt;

with v0 ¼ T
1=2
0 . The matrix Q is therefore rank 2, and the

wavenumber n can be found using the methods described

above.

Equation (60) reduces for rank 2 to

y ¼ �utuþ �2 ð1� � tr QÞ utQuþ �utQ2u

1� � tr Qþ �2 det Q
: (63)

Noting that

utu ¼ vtv ¼ f ð0Þ; utv ¼ vtu ¼ f ðpÞ; (64)

and, hence,

tr Q ¼ ðaþ bÞf ð0Þ;

det Q ¼ abðf 2ð0Þ � f 2ðpÞÞ;

the equation for n becomes

y ¼ � f ð0Þ þ �2

� faf 2ð0Þ þ bf 2ðpÞ � � f ð0Þabð f 2ð0Þ � f 2ðpÞÞg
=f1� � f ð0Þðaþ bÞ þ �2abð f 2ð0Þ � f 2ðpÞÞg:

This simplifies to

ðn2 � k2Þ2 þ 4in0ðn2 � k2ÞðAþ BÞf ð0Þ
� 16n2

0ABð f 2ð0Þ � f 2ðpÞÞ ¼ 0; (65)

or dividing out the factor (n2 � k2) (corresponding to the

trivial solution n2 ¼ k2) implies that n at high-frequency

satisfies

n2 ¼ k2 � 2in0ffiffiffiffiffi
nk
p f ð0Þ½ðk þ nÞe�inb þ iðn� kÞeinb�eikb

þ 4in2
0

nk
ð f 2ð0Þ � f 2ðpÞÞei2kb: (66)
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IV. GSCM

The GSCM developed by Yang and Mal13 was derived

using a self-consistent scheme applied to the Waterman and

Truell’s formula.2 Among the objectives of this section is to

apply this scheme, which is very broad in scope, to the gen-

eralized Linton and Martin formula.

The basic idea follows Christensen and Lo.19 Instead of

considering cylinders that are directly immersed in fluid, a

“three phase cylinder” model is used which assumes that each

cylinder is surrounded by a cylindrical ring of fluid, the whole

being immersed in a outer region of equivalent fluid of unlim-

ited extent. Hence, form functions in this section correspond

to three phase cylinders, and, as for cylinders, they may be

expressed as a modal sum and calculated numerically.20

Let a be the radius of circular cylinders and c (0 � c < 1)

their concentration, the radius ac of cylindrical rings is related

to a and c by

c ¼ n0pa2

n0pa2
c

¼ a2

a2
c

: (67)

Let qeff and keff be the effective properties of the equivalent

outer fluid. The mass density qeff is defined as the spatial

average

qeff ¼ cqcyl þ ð1� cÞqfluid; (68)

with qcyl and qfluid the cylinder and fluid mass densities. The

wavenumber keff, which is unknown, is determined with the

use of the self-consistent scheme.

Without loss of generality, consider the Linton and

Martin formula at the second order in concentration. Let nLM

be the Linton and Martin’s effective wavenumber in the

outer equivalent fluid, then we have

n2
LM ¼ k2

eff � 4in0f ðkeff ; 0Þ þ
8n2

0

pk2
eff

�
ðp

0

dh cot
h
2

� �
d

dh
½f ðkeff ; hÞf ðkeff ;�hÞ�; (69)

with

f ðkeff ; hÞ ¼
X

n

TnðkeffÞeinh (70)

and20 n0 ¼ c/pa2. The self-consistent scheme consists in

assuming that keff ¼ nLM. From a physical point of view this

means that the outer equivalent fluid is a medium in which

the waves propagate in exactly the same manner as the

coherent waves. Because nLM ¼ keff there is no scattering

due to the three phase cylinders in the outer equivalent fluid,

and the medium can be considered as homogenized. It fol-

lows from (69) that keff is given by the equation

f ðkeff ; 0Þ ¼
2n0

ipk2
eff

ðp

0

dh cot
h
2

� �
d

dh
½ f ðkeff ; hÞf ðkeff ;�hÞ�:

(71)

It is worth mentioning that at low concentration of cylinders

the second term in Eq. (71) can be neglected, so that

Eq. (71) reduces to

f ðkeff ; 0Þ ¼ 0; (72)

which corresponds to the equation for the CPA.12 In other

words, the CPA appears as the approximation of Eq. (71) to

first order in concentration.

Another way of presenting the self-consistent scheme is

to use an iterative procedure applied to Eq. (69). Starting

with k0 ¼ k we carry out the homogenization by employing

Eq. (69) to obtain k1, and so on, so that

k2
nþ1 ¼ k2

n � 4in0f ðkn; 0Þ

þ 8n2
0

pk2
n

ðp

0

dh cot
h
2

� �
d

dh
½f ðkn; hÞf ðkn;�hÞ�:

The iteration is repeated until there is convergence, knþ1 !
keff, the solution of Eq. (71). This procedure is of interest not

only for computations but also for its physical interpretation.

The effective wavenumber k1 corresponds to a coherent

wave that accounts for the double interactions between cyl-

inders according to the basic hypothesis of the QCA.2 In the

same way, k2 involves double interactions in the medium

characterized by k1, the medium in which double interactions

are already taken into account. So, relative to the fluid me-

dium characterized by k0, k2 must deal with interactions of

higher order, even if we do not know how to describe these

explicitly. In addition, the number of interactions between

cylinders is linked to the order of convergence of the

scheme. Accordingly, it can be supposed that the use of the

self-consistent scheme applied to an explicit effective wave-

number, whatever it is, kISA, kWT, or kLM (whatever the order

in concentration), can improve the accuracy of the results

while the concentration of cylinders increases. This is what

has been observed in Ref. 13 when searching for dynamic

effective mechanical properties of composites at low fre-

quencies. Furthermore, just as the Linton and Martin

approach is more efficient than the one of Waterman and

Truell, Eq. (71) should be more efficient than the GSCM

introduced by Yang and Mal, and also the CPA. Numerical

calculations are beyond the scope of this paper, but the dif-

ferent effective wavenumbers are compared at low fre-

quency in the next section.

V. THE RAYLEIGH LIMIT

In the Rayleigh or low-frequency limit, the size of the

scatterers is assumed to be small compared to the incident

wavelength. In this section scatterers are specifically consid-

ered to be circular fluid cylinders of radius a, characterized

by the density q2 and the sound speed c2. They are immersed

in a fluid, characterized by the density q1 and the sound

speed c1. The Rayleigh limit then corresponds to k1a ! 0

with k1 ¼ x/c1. It is then sufficient to take only the lowest

order coefficients in the modal series.21 More exactly, it can

be shown that at low frequencies, only T0 and T61 make a
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contribution, reducing the infinite matrix Q to a rank 3

matrix (see Sec. III).

The goal of this section is to compare the Rayleigh limit

for the different effective wavenumbers which correspond,

respectively, to ISA, Waterman and Truell, Linton and

Martin, CPA, the GSCM developed by Yang and Mal,13

noted here G-WT, and the GSCM introduced in Sec. IV

from the Linton and Martin approach, noted here G-LM.

A. Effective wavenumbers

We first calculate effective wavenumbers using the

Rayleigh limit of the far-field scattering function associated

with cylinders which are directly immersed in fluid,

T0 ¼
ip
4

q1c2
1

q2c2
2

� 1

� �
ðk1aÞ2; (73a)

T61 ¼
ip
4

q2 � q1

q2 þ q1

� �
ðk1aÞ2: (73b)

These coefficients can be derived from those corresponding

to circular elastic cylinders immersed in fluid,21 if the shear

and longitudinal velocities are equal to 0 and c2, respectively

(scattering coefficients are denoted by R in Ref. 21 with

R0 ¼ T0 and R61 ¼ �T61).

The use of Eq. (73) leads to the following results for the

ISA, Waterman and Truell (WT) and Linton and Martin

(LM). First

keff

k1

� �2

¼ 1þ q1c2
1

q2c2
2

þ q2 � 3q1

q1 þ q2

� �
c

� keff

k1

� �2

ISA

ðISAÞ; (74)

in terms of which the other two are

keff

k1

� �2

¼ keff

k1

� �2

ISA

þ 2c2 q2 � q1

q2 þ q1

� �

�
q1c2

1

q2c2
2

� 1
� 


ðWTÞ;
q1c2

1

q2c2
2

� 2q1

q2þq1

� 

ðLMÞ:

8><
>: (75)

Note that the latter two effective wavenumbers are almost

the same if the densities q1 and q2 are close to one another in

value. However, even at low frequency where cylinders look

like “point scatterers,” the Waterman and Truell and the

Linton and Martin approaches give different results as soon

as q2 is not close to q1.

B. Wavenumbers from the self-consistent scheme

We now consider effective wavenumbers obtained by

the self-consistent scheme, which uses scattering coefficients

for the “three phase cylinder” as described in Sec. IV. The

coefficients are calculated as outlined in Ref. 22, with the

results

T0 ¼
ip
4
ð1� cÞqeff

q1

þ c
qeffc

2
1

q2c2
2

� k2
eff

k2
1

� �
ðk1acÞ2;

T61 ¼
ip
4

FðqeffÞðkeffacÞ2; (76)

where qeff ¼ (1 � c)q1 þ cq2 from Eq. (68), and

FðqeffÞ ¼
ð1� cÞðq2

1 � q2qeffÞ þ ð1þ cÞq1ðq2 � qeffÞ
ð1� cÞðq2

1 þ q2qeffÞ þ ð1þ cÞq1ðq2 þ qeffÞ
:

Note that Eq. (73) follows Eq. (76) formally, if we first put

keff ¼ k1 and qeff ¼ q1, in order to identify the outer equiva-

lent fluid with the fluid itself, and then cancel the ring of

fluid by setting ac ¼ a, which implies c ¼ 1.

We now consider three approaches based on self-

consistent schemes: The CPA, the generalized self-consistent

method based on Waterman and Truell (G-WT) and the same

for Linton and Martin’s approach (G-LM). We find

keff

k1

� �2

¼ qeff

q1

1þ q1c2
1

q2c2
2

� 1

� �
c

� �

�

½1� 2FðqeffÞ��1 ðCPAÞ;

½1þ 2FðqeffÞ� ðG-WTÞ;
1þ2FðqeffÞ
1�2F2ðqeffÞ

h i
ðG-LMÞ:

8>>><
>>>:

(77)

In order to compare these effective wavenumbers with those

of Eqs. (74) and (75) in Sec. V A, we have to perform an as-

ymptotic expansion with regard to the concentration of scat-

terers. It follows that

FðqeffÞ ¼
ðq1 � q2Þ2

2q1

�c

q1 þ q2

þ c2

2q1

þ � � �
� �

;

and we find at the second order in concentration

keff

k1

� �2

¼ keff

k1

� �2

ISA

þ 2c2 q2 � q1

q2 þ q1

� �

�

q1c2
1

q2c2
2

� 2q1

q2þq1
� ðq1�q2Þ2

4q1ðq1þq2Þ

h i
ðCPAÞ;

q1c2
1

q2c2
2

� 2q1

q2þq1
þ ðq1�q2Þ2

4q1ðq1þq2Þ

h i
ðG-WTÞ;

q1c2
1

q2c2
2

� 2q1

q2þq1

h i
ðG-LMÞ:

8>>>>><
>>>>>:

(78)

As expected, all three methods give the same result at

the first order in concentration. At the second order, the CPA

and G-WT introduce the same additional term as compared

to Linton and Martin’s approach but with the opposite sign

in each. It is significant that the self-consistent scheme

applied to Linton and Martin’s formula does not modify the

result, at least at this order. The same cannot be said of the

CPA and the Waterman and Truell methods. Thus, we may

conclude that Linton and Martin’s approach and the G-LM
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can be considered “self-consistent” methods. Finally, we

note that the additional terms in the CPA and in the G-WT in

Eq. (79) are very small if the densities q1 and q2 are close in

value. Hence, all the methods are equivalent at low fre-

quency when the densities q1 and q2 are equal. Of course,

these results say nothing about what happens at higher

frequency and at higher concentration.

VI. CONCLUSIONS

Implications of the QCA on the effective wave number

beyond the dilute concentration limit have been described.

Equation (28) is the starting point for all further developments

and as such represents the fundamental result of the paper. It

splits the implicit form of the effective wavenumber into two

distinct parts, one defined by the single scatter T-matrix, T,

and the other by the spatial arrangement of the scatterers, �Q. In

this paper we have used to the hole correction, for which �Q is

given by Eq. (23d). More generally, this matrix has elements

�Qmn ¼
Lm�n

�i4n0

e�inx1 þ eiðk�nÞx1

2kðn� kÞ �
1

n2 � k2
; (79)

where Lm�n is defined by Eq. (15) for arbitrary pair correla-

tion function. The QCA is exact for a regular array of scat-

terers, in which case �Qmn can be reduced to a known lattice

sum. Equation (28) therefore provides a formula for deter-

mining the dispersion curves of a regular array. This and

other implications will be examined elsewhere.
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