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Acoustic wave propagation in a fluid with a random assortment of identical cylindrical scatterers is
considered. While the leading order correction to the effective wavenumber of the coherent wave is
well established at dilute areal density (n) of scatterers, in this paper the higher order dependence
of the coherent wavenumber on ng is developed in several directions. Starting from the quasi-
crystalline approximation (QCA) a consistent method is described for continuing the Linton and
Martin formula, which is second order in 7, to higher orders. Explicit formulas are provided for
corrections to the effective wavenumber up to O (r3). Then, using the QCA theory as a basis, gen-
eralized self-consistent schemes are developed and compared with self-consistent schemes using
other dynamic effective medium theories. It is shown that the Linton and Martin formula provides a
closed self-consistent scheme, unlike other approaches. © 2011 Acoustical Society of America.
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. INTRODUCTION

It is often assumed that multiple scattering by a dilute
array of scatterers in a perfect fluid may be described by the
propagation of a coherent wave representing the acoustic
field averaged over all possible scatterer configurations. The
coherent wave has a complex-valued wavenumber, k¢, often
called the effective wavenumber. Its imaginary part accounts
for loss due to scattering in all directions. Foldy' first derived
an expression for the effective wavenumber of point scatterers
(isotropic scattering). Subsequently, Waterman and Truell®
considered finite size scatterers (non-isotropic scattering) and
obtained a second order correction to Foldy’s formula in
terms of the scatterer density. The averaged exciting field in
Ref. 2 is obtained by replacing the spherical scatterers by
point scatterers with the same angle-dependent far-field scat-
tering amplitude as the actual finite size scatterers. For cylin-
drical scatterers, Waterman and Truell’s approach provides
keff = kWT’ Where3

5 2ing 2 T 2ing 2
kwr = {k - Tf(o)] - {Tf(n)] ) (D

with f(0), defined in Sec. II, the far-field scattered amplitude
in direction 6 for each cylinder and ng the number of scatter-
ers per unit area.

In 1967 Lloyd and Berry* proposed an explicit expres-
sion for spherical scatterers different from that of Waterman
and Truell. While Lloyd and Berry’s formula had been
obtained for spherical scatterers by using a different method,’
Linton and Martin® derived its counterpart for cylindrical
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scatterers in 2005. Linton and Martin’s formula may be
recovered from Fikioris and Waterman’s’ dispersion relation
by expanding it in powers of ny, under the assumption that
no/k* < 1, and by letting the radius of exclusion in the hole
correction tends to zero. For cylindrical scatterers, Linton
and Martin’s approach yields k. = kym,

Ky = k> — 4ing £(0) + 8”‘2)J cot (¥ i[ £(0)]d0. 2
M 0 k2 J,  \2)do '

This formula is only valid for symmetric scattering functions
satisfying f(0) = f(—0).® Its generalization to arbitrary f is
obtained by replacing £*(0) with £(0)f(—6) in Eq. (2), see
below and Ref. 8. Linton and Martin’s formula is a conse-
quence of the widely used closure assumption known as the
quasi-crystalline approximation (QCA). Martin and Maurel’
demonstrated that QCA agrees with the Lippmann—
Schwinger approach (weak scattering) to O (n3).

The independent scattering approximation (ISA)'? is a
simplistic approximation in multiple-scattering theory,
sometimes used without justification. It can be deduced
directly from Egs. (1) and (2) by neglecting the term of sec-
ond order in no/k?, giving keg = kiga With

Ky = k> — ding £(0). (3)

All of these methods are explicit since kg is given by a
formula. But the question remains: Which method is the
most accurate? This depends largely on the value of the con-
centration, ¢ = nonaz, where «a is the radius for circular cyl-
inders or the radius of the enclosing cylinder for non-circular
scatterers. It is evident that ISA, which is a method of order
one in ny/k* = c/n(ka)®, is the least precise. As for the two
others, according to the analysis made by Linton and Martin
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in Ref. 6, it is justified to think that k;,; is more accurate
than kwr. However, the difference between kwr and &y
is small at low concentration, as shown in Ref. 11 when
¢ = 6%. Reference 11 also shows that the Waterman and
Truell method or ISA fail while Linton and Martin’s gives
better results for higher concentration: ¢ = 14%.

There are two other methods that deal with the far-field
scattered amplitudes, but they are implicit; ke is obtained by
solving an equation. The most famous is the coherent poten-
tial approximation (CPA) and its generalization (GCPA),
both based on Dyson’s equation.'? There is also the general-
ized self-consistent model (GSCM) which is derived using a
self-consistent scheme applied to Waterman and Truell’s
formula.'® The existence of a non-trivial solution to the ho-
mogeneous system of linear equations obtained by Fikioris
and Waterman also allows one to calculate a keff.14 Accord-
ing to the finding of Cowan et al.,' the CPA is capable of
accounting for concentrations up to 60% for glass beads in a
liquid mixture of water and glycerol. Of course, scatterers do
not radiate as much at this level of concentration as com-
pared to those considered at the lower levels of concentration
in Ref. 11. Nevertheless, the results of Cowan et al. sug-
gest that implicit methods can be more powerful than
explicit ones even if, to our knowledge, no rigorous compari-
son has been made between the two types of methods. Refer-
ence 16 provides comprehensive numerical comparisons of
eight different explicit and implicit methods.

In this paper we search for explicit and implicit expres-
sions of kg that could allow us to consider higher concentra-
tions for multiple-scattering problems. For explicit methods, the
only way to improve keg is to extend Linton and Martin’s
formula to orders higher than two in concentration; this is
accomplished in Sec. II. In this regard we note that Waterman
and Truell’s formula is of order 2 in concentration, which is
not possible to go further. For implicit methods we use the self-
consistent scheme as used by Yang and Mal in Ref. 13. When
applied to the ISA this self-consistent scheme leads to CPA. It
is applied to the generalized Linton and Martin formula in
Sec. IV where the physical meaning of the self-consistent
scheme is discussed. In particular, we obtain a new result that
generalizes the CPA. In Sec. V we compare all the effective
wavenumbers in the Rayleigh limit (low frequencies).

Il. HIGHER ORDER THEORY
A. Multiple-scattering formulation

The problem is formulated in terms of the pressure y/(F)
which satisfies the Helmholtz equation in the interstitial
space between scatterers,

V2 + 2y =0, (4)
where k = cu/c'and c is the speed of sound. Time harmonic
dependence ¢’ is assumed. Consider first a system of N

scatterers with fixed positions, for which the total field can
be expressed as

N
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Here, i, is the incident wave, Y (7, 77) is the exciting field
for scatterer j, and 7'(7j) its scattering operator. Focusing on
scatterer j = 1 as representative, we have

N
Ve ) = e (7) + D T()Ws (7 75)- (6)
=2

If, as is the case here, the positions are not known, it
becomes necessary to assume some type of statistical descrip-
tion. The number density n for N discrete scatterers with
centers at 7y,7,... is n(i, 7, ...,7v) = Np(F1, 72, ..., TN),
where p is the probability density. Conditional densities,
defined by fixing the position of one scatterer, satisfy?
n(i, ..., iy|"1) = (N = 1)p(7a, ..., Fy|F1). For our purposes
we need only the conditional number density of the jth scatterer
if a scatterer is known to be at 7: n(rj|r) = (N — 1)p(#j|r),
j # 1, satisfying [ drjn(rj|F;) = N — 1. The analog of Eq. (6)
is then an equation for the configurationally averaged field,

(Ve (7171)),

(Ve (171)) = e (7)

+ @GR G W)

As noted by Waterman and Tmell,2 “The fact that the excit-
ing field with one scatterer fixed is given in terms of the field
with two scatterers fixed is the basic difficulty in multiple
scattering.” We adopt perhaps the simplest solution to this
quandary, the QCA, under which assumption (7) reduces to

<WE(F‘FI)> = lpinc(?)
+ Jd;,.n@m)T@)wE(ﬂa)» @®)

The scattering operator for every scatterer is assumed to
have translational invariance with

llm ZlnT Hl k}’ in0

(2 p ), )

(r—o0) V Tkr

and therefore the Fourier series for f is
= T, (10)

The assumed form of the operator in Eq. (9) means that each
scatterer has the same scattering behavior. We consider
plane wave incidence, ;. () = Ae’™. The exciting potential
(Yg(7,r;)) satisfies the Helmholtz equation and is regular
function at the point Tf it can therefore be expressed as

ZA

where g, = " — 7, 0(p;) = arg(pg;). Substituting from Eq. (11)
into the configurational average equation [Eq. (8)] and using
the addition theorem for cylinder functions® yields

kp] Iil() p,) (11)
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AR =

i Ik)(] +Z

><An+p(r,) D (kp)em P dF;, (12)

Tj n(F7)
S+

on the half-space S* = {x > 0}. The effective wavenumber
¢ defines the coherent wave according to the assumed func-
tional form for each A,,,

An(7) = iA€' (13)

Use of the addition theorem for cylindrical functions then
implies

Ane™ =A™ £ T ALy (£), (14)
P
with
L,(&)=i" J A7 (7|7 ) H (krp )" e (15)
S+

where 75 = 15 — 1, 0(751) = arg(7}).
We assume a modified form of the hole correction with
hole radius b,
- no(1+ h(rp)), rj > b,
{ 07 Tj1 < b7 (16)
where i represents the deviation from the constant back-
ground value. It satisfies 4(r) — 0 as r — oo, with the stronger
condition

R
lim R*ZJ h(r)rdr = 0. (17)
R—o0 b

Following, e.g., Ref. 8, it may be shown that integral (15)
reduces to

Ly(¢) = znno{Np(éb) +Mp(éb)}eifﬂ + (Q'Aeilm

c_r K KE—K)°
(18)
where
N, (Eb) = EbT(EL)HLV (kb) — kb, (¢b)HY (kb), (192)
My () = | (&Y () rar (19%)

The simple “hole correction” is # = 0 and, hence, M, = 0; see
Sec. IV D in Ref. 6 for further discussion of the case /& # 0.

B. Matrix formulation

Substituting Eq. (18) into Eq. (14) and equating to zero
the coefficients of ¢/*"1 and e*! yields two equations, known
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as the Lorentz—Lorenz law and the extinction theorem,
respectively,

zmo S N (e (20a)
p—foo
21n0
Z T)A, (20b)
pffoc
where Eq. (20a) is satisfied by all n € Z and
52
Np(b) = Np(ch) + (kz )Mp(afb>. 1)

Equation (20a) is a homogeneous system which defines the
effective wavenumber and the associated infinite eigenvector,
while Eq. (20b) defines the amplitude of the eigenvector
in terms of the excitation amplitude A. The identity
N _,(&) = N, (&) follows from the known properties of Bessel
and Hankel functions. Equation (20a) with 4 =0 = M, =0
is equivalent to the system of equations studied by Linton—
Martin® [their Eq. (71)]. We focus on the solution of Eq. (20a).
We introduce non-dimensional parameters y and €, which
depend on b, along with some related vectors and matrices,

y = (¢b)* = (kb)?, (22a)
e = —4ingh?, (22b)
b = T!?a, (22¢)
u="T"%, (22d)
Q(y) = (kb) > T'2QT'", (22¢)

where the vectors a and e, the diagonal matrix T, and the
symmetric matrix Q are defined

a=(...,A |, Ag, Ay,...), (23a)
e=(...,1,1,1,..), (23b)
Ton = Ty, (23¢c)
O = M (23d)
(&/k)" ~
Then Eq. (20a) can be expressed as
{yT—eQ(y)) — cun'}b = 0. (24)

Setting the determinant of the matrix {..} of this infinite sys-
tem of equations yields the desired dispersion relation for ¢.
We next reduce this to a simple and transparent form and
obtain an expression for the amplitude vector a.

C. Implicit solutions for £ and a

Multiply Eq. (24) from the left by the inverse of (I — €Q),
yielding
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(I+wu')b =0, (25)
with infinite vector w = —ey~' (I — ¢Q) 'u. Noting that
det(I+ wu') = 1 4+ w'u, we deduce that the solution for y
can be expressed implicitly as

y=ea'[l — eQ(y)] 'u. (26)

The dependence upon b in Eq. (26) may be removed by
introducing alternative non-dimensional scalars y = y/(kb)
and € = ¢/(kb)?, that is,

y=8k72—1, €= —4inok 2, (27)

and writing Q = Q() in terms of which Eq. (26) becomes

y=€[ET) ' = Q) e (28)
This formula clearly splits the dependence upon the scatter-
ing matrix T, from that of multiple interactions, Q The
choice of the symmetric matrix Q and hence, Q is moti-
vated by the observation that at leading order the elements
N, are equal: N ,,(kb) = 2/(ir) for all n. Despite the appa-
rent pole at ¢ = k in Eq. (23d), the matrix Q(¥) is a regular
function of y at the origin since the limit and its derivatives
exist as ¢ — k. The solution of Eq. (20a) may be expressed
in implicit form through either of the identities (26 or 28).
We will find both useful in different circumstances. The lat-
ter is simpler for considering general properties, while the
former is useful for the particular limit as b — 0.

The identity 1 + w'u = 0 also implies that the null vec-
tor of Eq. (25) is of the form b = aw(x # 0). The precise
value of o follows from the extinction theorem in Eq. (20b)
and the vector of amplitudes A, can then be expressed as

a=——[1-eQ(T) e (29)

D. Asymptotic expansion
We seek an asymptotic expansion of y = y, in powers of

the small parameter e,

Ye= e+ eyt (30)
The individual terms follow from Eq. (26) as

1, d
o =—u'—{e[l = eQ(y)] "'} _u. (31)

n! der

Using the expansion (1 — x) ' =1 +x + x>+ --- in Eq.
(31) and noting that the derivative is evaluated at ¢ = 0 means
that only a finite number of terms are necessary for a given n.
Thus,

1 tdn nyn—1 n—1gyn—2
nzmu@{eQ (0) + €"°Q" *(ey)

o EQ(eyr 4+ € Hyu) Hou. (32)

y
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We only need to expand each term in this finite series to obtain
its O (") contribution. This is simple for the first term €'Q"(0),
and for the second it is €'~ 'Q"(ey;) — €"y;(d/dy) Q" %(0)
where (d/dy)g(0) = (d/dy)g(y)l,—. Subsequent terms be-
come more complicated but the procedure for finding their
contribution is straightforward. Thus,

—wfQr 0+ n L0+ 2L o
Yn = Y1 dy 2 dy2

u.
e=0

(33)

d n—3 d
‘H’zaQ 0) - +Yn2d—yQ(0)}

The following expansion includes all terms up to fourth
order in the small parameter e,

y=eau'u+ fu'Quu + € [w'Qju + (u'u)u'Qyu]
+ ¢ u'Qiu + (u'Quu)u'Qju + 2(u'u)u'Q,Qpu
+ % (u'u)’u'Q)u] + - -, (34)
where
Q) =0Q(0), Q;=Q(0), Q;=Q"(0). (35)

The symmetry Q" = Q has been used to simplify terms in
expansion (34).

E. Asymptotic expansion for finite kb

Expanding the function N ,(£b) for small (&b — kb)
yields
Q_Omn = DEr?ln (kb)’ Q_E)mn = Dﬁnlzn(kb% (36)

where

— 2T ()HD (x) + 2M,, (kb)) (37a)
DM (x) = — %D}f” (x) + %”Mp (kb)
- é [p* — x* — imJ, (x)HD (x)] (37b)
Higher derivatives may be found using the identity
(€b)’N, + (DN, + () = PN,
= —2(b)*J,(Eb)H') (kD). (38)

Using the above results, the expansion to O(e*) may be
rewritten in terms of the areal density of scatterers, 7, as

& =12 +ding + dong + dsny + -+, (39)
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where

dy = 741‘ZT,1 = —4if(0) (40a)
16
— 2 2 DL (KD)TT,, (40b)
_ 64
: = 2 D), (D)D), ()T, T,
m,n.p
~ 16d
‘ZDm (k)T (40c)

The dependence on kb and the scattering function is con-
tained in the coefficients d;, d», etc.

F. Small kb limit

In this limit we derive the terms in the series
62:k2+51n0+52n3+53n8+54ng—|—--~. 41)

It follows immediately from Eq. (40) that 6; = d;, while
0, may be found by letting kb — 0 and using
Dy (x) = |p|/2 + O(x) and D} (x) = p*/8 — D} (x)+ O(x)
as x — 0. It is easier, however, to begin with the small kb
expansion of Q. This allows us to deduce not only the terms
in Eq. (39) to O(n}) but the next one. Higher order terms can
be found using the procedure described next. As kb — 0 we
have, using Eq. (19a),

||
Ny (Eb) ~ % (%) : (42)

Hence Q becomes independent of b,

On(9) = (14 3)" 12 1) /3, (43)

from which it follows that

_ 1
QOmn - 5

|m7n|,
ngn :§|m—n|(|m—n| —2),
~ 1

ngn:ﬁ‘m_nlqm_n‘_2)(‘m_n|_4)7 (44)

etc. Now express the asymptotic expansion (34) in terms of
the non-dimensional parameters y and € which do not depend

upon b,
j=étrT + &e'TQ,Te + & [¢'T(Q,T) e
+ (trT)e'TQ}Te] + €*[e'T(Q,T) e
+ (¢'TQ,Te)e'TQ,Te + 2(tr T)e'TQ,TQ, Te
%(trT)z "TQ;Te] + O(&). 45)
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The matrices Q. Q. etc. are defined in the same way as in
Eq. (35) for the matrix Q(¥) of Eq. (23d). The coefficients in
Eq. (41) then follow from Egs. (44) and (45) as

51 = _4iZTn7 (46a)
8
16i
53 - F Z |m - an _p|TanTp
mn,p
251 2 5152
T2 T (46c)
32
04 =75 > Im—nlln = pllp = dITuT.T,T,
m,n,p,q
180
l IZ|m—n|n_ TmTT
mnp
- Z |:3k16 |m N n|3 +72(m - }’1)2 T,T,
528, 2 8,9
_919%2 9% 9193 o)

G. The Linton—Martin formula generalized

The coefficients in Eq. (46) depend upon the far-field
scattering function through its Fourier coefficients. We now
show that the coefficients can be expressed in terms of the
function fitself rather than its Fourier series. Thus,

5, = —4if (0), (47a)
’ J d0cor(2) (o) (~0) “7b)
2 k2 co 2 a0 f ,
16i 0 - 0 _
5 n2k4j a0 tEJO icot 5(0,0)
26, d? 5102
& A [ (0)f (=0)]p—o 22 (47¢)
32 L. 0
04 36 Jo do cot Jo do cot Jo df cot=
= 8 [T 0\ 0 _
X T(@, 0, 0) - WJAO d0C0t<§>8_§S(6’ 6) o
5" 0\ d*
-k L d0 cot 5) (-0
20, d° 826,
k4 02 [f( ) ( )]970 61—/(4
5 5,05
BEy st (47d)
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where
2
5(6,0) = ia?ae
x {F(O)[F(=0)f (0 — 0) — f(0)f (=0 — 0)]
+F(=0)[F(0)F (0 — 0) — f(—0)f (0 + 0)]},
T(0,0,5) = L&
T 8900000

We now justify these expressions.

The first identity for J; in Eq. (47) is obvious from the
definition of Eq. (10). Regarding d,, we note that the product
of f(0) and f{—0) may be written as

= i i T, T, ") (48)

Nn=—00 §=—00

Interchanging the indices implies that the double sum is

Z ZTTcosn—s)Q (49)

Nn=—00 §=—00

This identity is equivalent to Eq. (83) in Ref. 6 but without
the restriction 7,, = T_,, that was assumed there. The formula
for &, follows from the relation'” [Eq. 3.612(7)]

lJ de cotgsin mb = sgn(m). (50)
T Jo 2

Turning to the coefficient d5 in Eq. (46¢) define

==>.>.> (m=n)n—p)

% TanTp ei(mfn)()ei(nfp)()

? = =
= ~[f(0)f (0 — O)f (—0)]. 51
s [P0 (0~ 07 (=) 5D
The individual terms in the triple sum are of the form ¢~ 0
but an identical sum with the preferred dependence sin --- 0
in each term can be obtained by an appropriate permutation
of 22 = 4 expressions. The correct combination is

%{S(f), 6) — S(0,—) — S(=0,0) + S(=0, —0)},

which reduces to S(0,0) as given. It may then be deduced,
again using the identity in Eq. (50), that

Z |m — n|ln — p|T,T,T,

mn.p

(" 0
= ;Jo do cotZJ0 do cot2 S(0,0). (52)
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The second term in Eq. (47c¢) follows directly from Eq. (49).
Regarding the coefficient d4, the third term in the right mem-
ber of Eq. (47d) follows in the same manner as the integral
for §,, based on Eq. (49). The second term in Eq. (47d) may
be deduced using the relation

DDAV

—n)0cos(n —p)0, (53)

_S 0,0) =
x T, T,T, sin(m

evaluated at 0 = 0 in combination with integral identity Eq.
(50). Note that

0 yonn d
F50.0| =) Glr0r(-0)
~7'(0) 55 LF(O)F (~60) + F(~0)(0)]
3
+10) O 0] + L8

[()(9)]~

Finally, the first term in the right member of Eq. (47d) may
be obtained using the same type of argument used for the
identity in Eq. (52). The function analogous to S now has
three arguments

0.0.0)= =335 3 m=min=p)
X (p - q)TanTqu €I(m_n)()el(n_p)()gi(p_q)(:)

G . -
= 00000 F(0)(0—0)r(0—

0)f(=0)], (54)

and 2* = 8 permutations are required in order to arrive at the
correct quadruple summation, yielding T(0, 0, 0).

lll. SIMPLIFICATIONS BASED ON THE FINITE
RANK OF Q

The infinite matrix Q is in practice well approximated
by a matrix of finite rank. This follows from the fact that the
far-field scattering function f{0) is an entire function of
the angular argument 0 considered as a complex variable.'®
The scattering operator (matrix) T is therefore compact and
has only a finite number of eigenvalues of finite size. At low
frequency only the first few elements 7, for m near zero are
important (monopole, dipole, etc.). Furthermore, as we will
see in this section, Q is of rank 2 in the high-frequency limit.
Therefore, at any finite frequency the infinite system of
equations is really not so in practice and may be replaced by
a finite system. We first develop the solution for finite rank n
and then apply it to two important cases: The low-frequency
Rayleigh limit (n = 3) and the high-frequency limit (n = 2).
For the remainder of the paper we take 4, introduced in Eq.
(16), to be zero, so that M, = 0.

A. Qisofrankn

As noted above only a finite number of the elements 7,
are significant at any given frequency. If only n are non-zero,
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then Q is of rank n. The matrix satisfies an homogeneous
equation of degree n + 1,

Q" +bQ" +5,1Q" + - +51Q =0, (55)
with by = (—1)"(detQ), ..., b, = —(trQ), and therefore,

(I— Q)™ =1+ 4,eQ+ Q> + -+ + B,€'Q",

where
1+ Z bk6n+17k
k=j+1
B =— : (56)
L+ 3 byerti—n
m=1

Thus, using the fundamental result in Eq. (26), it follows
that y = (&2 — k?)b? is given by

y = eu'u+ Z JHBu'Qu. (57)
j=1

Since Q = Q(y), Eq. (57) is an implicit equation for y which
could be solved by iteration, for instance. It may also be
written as

2 n
& =k — dingf(0) — 16%2 &' Be/(TQ)Te.  (58)
=

1. Rayleigh limit, Q is of rank 3

An important case is 7 = 3 which is useful at low
frequency (Rayleigh limit) when the scattering matrix is well
approximated by only three terms: Ty and T+ ;. For n = 3,

Q' — 1,Q* + 11,Q* — 1LQ = 0, (59)

withIp = trQ, Ilp = 1[(rQ)* — tr Q?], iy = det Q. In this
case the implicit equation for y becomes

y = eu'u+ *[(1 — elp + €’Tly) u'Qu
+ (1 = elp)eu'Q%u + u'Q’y]
x [1 — el + €Tl — €Ty . (60)
More detailed results for the Rayleigh limit are presented in

Sec. V for the particular case of circularly cylindrical
scatterers.

B. High-frequency limit

In the high-frequency limit kb, £b > 1, we have, from
Eq. (19a),

%M@):AHAW 1)

(¢h—o0)
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with
_ kD) o g— k=9 Juon
2vVkE ’ i2/kE

The high-frequency limit for elastic waves was discussed in
Ref. 8, and the same methods developed there could be used
for the acoustic problem. It is instructive to note that
Egs. (61) and (22¢), combined with M,, = 0, implies that

Q = oqun’ + Bvv', (62)
where
x=(A-1)/y, B=B/y,

v=TY2(..., —1,1,-1,1,...),

with vy = Té/ %. The matrix Q is therefore rank 2, and the
wavenumber ¢ can be found using the methods described
above.

Equation (60) reduces for rank 2 to

(1 —€trQ) u'Qu + eu'Q*u

t 2
= 63
y=awude 1—etrQ+e2detQ 63)
Noting that
vu=vv=£(0), u'v=vu=f(n), (64)

and, hence,

rQ = («+ B)f(0),
detQ = af(f*(0) — f*(n)),

the equation for & becomes

y=ef(0)+¢
x {af?(0) + Bf*(m) — ef(0)f(f2(0) — f*(m))}
{1 = ef(0)(a+ B) + Eap(f2(0) — f*(m))}.

This simplifies to

(& — k2)* + 4ing(&% — K*)(A + B)f(0)
— 16mAB(f2(0) —f*(x)) =0, (65)

or dividing out the factor (52 — kz) (corresponding to the
trivial solution &> = k%) implies that ¢ at high-frequency
satisfies

52 _ k2 o f/lz—(]if(o)[(k + é)efifb + l(é . k)eicfb]eikb
4ing o 2 i2kb
2 (f7(0) = f~(m))e™™. (66)
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IV. GSCM

The GSCM developed by Yang and Mal'® was derived
using a self-consistent scheme applied to the Waterman and
Truell’s formula.> Among the objectives of this section is to
apply this scheme, which is very broad in scope, to the gen-
eralized Linton and Martin formula.

The basic idea follows Christensen and Lo.'? Instead of
considering cylinders that are directly immersed in fluid, a
“three phase cylinder” model is used which assumes that each
cylinder is surrounded by a cylindrical ring of fluid, the whole
being immersed in a outer region of equivalent fluid of unlim-
ited extent. Hence, form functions in this section correspond
to three phase cylinders, and, as for cylinders, they may be
expressed as a modal sum and calculated numerically.°

Let a be the radius of circular cylinders and ¢ (0 < ¢ < 1)
their concentration, the radius a.. of cylindrical rings is related
to a and ¢ by

nona2 a®

—. 67
nona2 2 67

Let petr and k. be the effective properties of the equivalent
outer fluid. The mass density p.s is defined as the spatial
average

Pett = CPeyt T (1 =€) Ppyias (68)
with pcy; and pgyiq the cylinder and fluid mass densities. The
wavenumber kg, which is unknown, is determined with the
use of the self-consistent scheme.

Without loss of generality, consider the Linton and
Martin formula at the second order in concentration. Let &;
be the Linton and Martin’s effective wavenumber in the
outer equivalent fluid, then we have

. 8n2
— 4ll’le(keff, ) + k—zo
eff

J d000t(9> dde [f (ketr, O)f (ketr, —0)],  (69)

2 12
éLM - keff

with
etf, ZTn etf m() (70)

and?° ng = c/na The self-consistent scheme consists in

assuming that k.;r = & From a physical point of view this
means that the outer equivalent fluid is a medium in which
the waves propagate in exactly the same manner as the
coherent waves. Because &y n = kege there is no scattering
due to the three phase cylinders in the outer equivalent fluid,
and the medium can be considered as homogenized. It fol-
lows from (69) that k. is given by the equation

Zn;) JO do cot (0) ddg [f (kegt, O)f (kege, —0)].

eff

fkete,0) =

(71)
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It is worth mentioning that at low concentration of cylinders
the second term in Eq. (71) can be neglected, so that
Eq. (71) reduces to

f(ketr, 0) =0, (72)

which corresponds to the equation for the CPA.'? In other
words, the CPA appears as the approximation of Eq. (71) to
first order in concentration.

Another way of presenting the self-consistent scheme is
to use an iterative procedure applied to Eq. (69). Starting
with kg = k we carry out the homogenization by employing
Eq. (69) to obtain ky, and so on, so that

k2., =k, — dingf (ky, 0)

+ 290 [ 00 cot(5) a1k 01, 0L

The iteration is repeated until there is convergence, k, .1 —
kefr, the solution of Eq. (71). This procedure is of interest not
only for computations but also for its physical interpretation.
The effective wavenumber k; corresponds to a coherent
wave that accounts for the double interactions between cyl-
inders according to the basic hypothesis of the QCA.? In the
same way, k, involves double interactions in the medium
characterized by &, the medium in which double interactions
are already taken into account. So, relative to the fluid me-
dium characterized by ko, k, must deal with interactions of
higher order, even if we do not know how to describe these
explicitly. In addition, the number of interactions between
cylinders is linked to the order of convergence of the
scheme. Accordingly, it can be supposed that the use of the
self-consistent scheme applied to an explicit effective wave-
number, whatever it is, kisa, kwr, or kpp (Whatever the order
in concentration), can improve the accuracy of the results
while the concentration of cylinders increases. This is what
has been observed in Ref. 13 when searching for dynamic
effective mechanical properties of composites at low fre-
quencies. Furthermore, just as the Linton and Martin
approach is more efficient than the one of Waterman and
Truell, Eq. (71) should be more efficient than the GSCM
introduced by Yang and Mal, and also the CPA. Numerical
calculations are beyond the scope of this paper, but the dif-
ferent effective wavenumbers are compared at low fre-
quency in the next section.

V. THE RAYLEIGH LIMIT

In the Rayleigh or low-frequency limit, the size of the
scatterers is assumed to be small compared to the incident
wavelength. In this section scatterers are specifically consid-
ered to be circular fluid cylinders of radius a, characterized
by the density p, and the sound speed c¢,. They are immersed
in a fluid, characterized by the density p; and the sound
speed c;. The Rayleigh limit then corresponds to kja — 0
with k; = w/c;. It is then sufficient to take only the lowest
order coefficients in the modal series.”' More exactly, it can
be shown that at low frequencies, only Ty and 7T, make a
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contribution, reducing the infinite matrix Q to a rank 3
matrix (see Sec. III).

The goal of this section is to compare the Rayleigh limit
for the different effective wavenumbers which correspond,
respectively, to ISA, Waterman and Truell, Linton and
Martin, CPA, the GSCM developed by Yang and Mal,"
noted here G-WT, and the GSCM introduced in Sec. IV
from the Linton and Martin approach, noted here G-LM.

A. Effective wavenumbers

We first calculate effective wavenumbers using the
Rayleigh limit of the far-field scattering function associated
with cylinders which are directly immersed in fluid,

: 2
Im (P 2

To=—< — )(kla),
4 ,020%

In (py — Py 2
Ttl :—( > kla .
4 \p2+p (aa)

These coefficients can be derived from those corresponding
to circular elastic cylinders immersed in ﬂuid,21 if the shear
and longitudinal velocities are equal to 0 and c,, respectively
(scattering coefficients are denoted by R in Ref. 21 with
RO = TO and Rtl = _Ttl)-

The use of Eq. (73) leads to the following results for the
ISA, Waterman and Truell (WT) and Linton and Martin
(LM). First

(73a)

(73b)

ket \ 2 2 -3
(ﬂ) s (ﬂl_g+u>c
ky pPac; Pt P2
Foce 2
= <_“) (ISA), (74)
ki ISA

in terms of which the other two are

kett N2 [ketr )2
(&) - (&), (=)
kl kl ISA p2+pl
(Bd-1) (W),
X p2§ ] (75)
pe 2
(ﬂzéé P2+1P1) (LM)

Note that the latter two effective wavenumbers are almost
the same if the densities p; and p, are close to one another in
value. However, even at low frequency where cylinders look
like “point scatterers,” the Waterman and Truell and the
Linton and Martin approaches give different results as soon
as p, is not close to p;.

B. Wavenumbers from the self-consistent scheme

We now consider effective wavenumbers obtained by
the self-consistent scheme, which uses scattering coefficients
for the “three phase cylinder” as described in Sec. IV. The
coefficients are calculated as outlined in Ref. 22, with the
results
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. 2 2
In Peft PeriCl Kegr 2
T0:—<l—c—+c———> kia.)”,
7\179) P ;s kg (iac)
in
7 Floesr) (kesrac)”, (76)

T+ =
where por = (1 — ¢)p1 + cp, from Eq. (68), and

(1 =c)(p] = papee) + (1
(1 =¢)(p] + papere) + (1

+¢)p1(p2 — Petr)
+

Flper) )p1(P2 + Perr)
Note that Eq. (73) follows Eq. (76) formally, if we first put
kegr = k1 and pegr = p1, in order to identify the outer equiva-
lent fluid with the fluid itself, and then cancel the ring of
fluid by setting a. = a, which implies ¢ = 1.

We now consider three approaches based on self-
consistent schemes: The CPA, the generalized self-consistent
method based on Waterman and Truell (G-WT) and the same
for Linton and Martin’s approach (G-LM). We find

2
(&) 5l Ge)
ky P1 p263

[1— 2F(peff)}*1 (CPA),
x{ [1+2F(p)]  (G-WT), (77)
e (6w,

In order to compare these effective wavenumbers with those
of Egs. (74) and (75) in Sec. V A, we have to perform an as-
ymptotic expansion with regard to the concentration of scat-
terers. It follows that

2
(p1 — p2) —C c
+ - + ce s
2p, pr+p2 2p
and we find at the second order in concentration

-
ky ki ) 1sa P2+ Py

P 200 (p=pa)®
[k = 72— st (coa),

F(perr) =

% plC%_ 2p,
Pc: pata

Pl‘% __2p
pacs  patpy

As expected, all three methods give the same result at
the first order in concentration. At the second order, the CPA
and G-WT introduce the same additional term as compared
to Linton and Martin’s approach but with the opposite sign
in each. It is significant that the self-consistent scheme
applied to Linton and Martin’s formula does not modify the
result, at least at this order. The same cannot be said of the
CPA and the Waterman and Truell methods. Thus, we may
conclude that Linton and Martin’s approach and the G-LM

(p1=p)*
+aeel ] (G-WT),  (78)

(G-LM).
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can be considered “self-consistent” methods. Finally, we
note that the additional terms in the CPA and in the G-WT in
Eq. (79) are very small if the densities p; and p, are close in
value. Hence, all the methods are equivalent at low fre-
quency when the densities p; and p, are equal. Of course,
these results say nothing about what happens at higher
frequency and at higher concentration.

VI. CONCLUSIONS

Implications of the QCA on the effective wave number
beyond the dilute concentration limit have been described.
Equation (28) is the starting point for all further developments
and as such represents the fundamental result of the paper. It
splits the implicit form of the effective wavenumber into two
distinct parts, one defined by the single scatter T-matrix, T,
and the other by the spatial arrangement of the scatterers, Q. In
this paper we have used to the hole correction, for which Q is
given by Eq. (23d). More generally, this matrix has elements

i(k—&)x; 1

men
U(E—k) -k

—i4n0

O = emi ¢ (79)

where L,,_, is defined by Eq. (15) for arbitrary pair correla-
tion function. The QCA is exact for a regular array of scat-
terers, in which case Qnm can be reduced to a known lattice
sum. Equation (28) therefore provides a formula for deter-
mining the dispersion curves of a regular array. This and
other implications will be examined elsewhere.

'L. L. Foldy, “The multiple scattering of waves. I. General theory of isotropic
scattering by randomly distributed scatterers,” Phys. Rev. 67, 107-119
(1945).

2p. C. Waterman and R. Truell, “Multiple scattering of waves,” J. Math.
Phys. 2(4), 512-537 (1961).

3Y. C. Angel and C. Aristégui, “Analysis of sound propagation in a fluid
through a screen of scatterers,” J. Acoust. Soc. Am. 118(1), 72-82 (2005).
P, Lloyd and M. V. Berry, “Wave propagation through an assembly of
spheres. IV. Relation between different scattering theories,” Proc. Phys.
Soc. London 91, 678-688 (1967).

J. Acoust. Soc. Am., Vol. 129, No. 1, January 2011

3C. M. Linton and P. A. Martin, “Multiple scattering by multiple spheres:
A new proof of the Lloyd—Berry formula for the effective wavenumber,”
SIAM J. Appl. Math. 66(5), 1649-1668 (2006).

C. M. Linton and P. A. Martin, “Multiple scattering by random configura-
tions of circular cylinders: Second-order corrections for the effective
wavenumber,” J. Acoust. Soc. Am. 117(6), 3413-3423 (2005).

7). G. Fikioris and P. C. Waterman, “Multiple scattering of waves. II. ‘Hole
corrections’ in the scalar case,” J. Math. Phys. 5(10), 1413-1420 (1964).

8J. M. Conoir and A. N. Norris, “Effective wave numbers and reflection
coefficients for an elastic medium containing random configurations of
cylindrical scatterer,” Wave Motion 47, 183-197 (2010).

°P. A. Martin and A. Maurel, “Multiple scattering by random configura-
tions of circular cylinders: Weak scattering without closure assumptions,”
Wave Motion 45, 865-880 (2008).

'0A. Lagendijk and B. A. van Tiggelen, “Resonant multiple scattering of
light,” Phys. Rep. 270, 143-215 (1996).

A, Derode, V. Mamou, and A. Tourin, “Influence of correlations between
scatterers on the attenuation of the coherent wave in a random medium,”
Phys. Rev. E 74, 036606 (2006).

12p, Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic
Phenomena (Academic Press, San Diego, 1995).

PR. Yang and A. K. Mal, “Multiple scattering of elastic waves in a fiber-
reinforced composite,” J. Mech. Phys. Solids 42, 1945-1968 (1994).

4p Y. Le Bas, F. Luppé, and J. M. Conoir, “Reflection and transmission by
randomly spaced elastic cylinders in a fluid slab-like region,” J. Acoust.
Soc. Am. 117(3), 1088—1097 (2005).

ISML L. Cowan, K. Beaty, J. H. Page, Z. Liu, and P. Sheng, “Group velocity
of acoustic waves in strongly scattering media: Dependence on the volume
fraction of scatterers,” Phys. Rev. E 58(5), 6626—6636 (1998).

6. Y. Kim, “Models for wave propagation in two-dimensional random
composites: A comparative study,” J. Acoust. Soc. Am. 127(4), 2201-
2209 (2010).

71, S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products
(Academic Press, New York, 1980), pp. 1-366.

8¢, Muller, “Radiation patterns and radiation fields,” J. Ration. Mech.
Anal. 4, 235-246 (1955).

YR. M. Christensen and K. H. Lo, “Solutions for effective shear properties
in three phase sphere and cylinder models,” J. Mech. Phys. Solids 27,
315-330 (1979).

20y, K. Varadan and V. V. Varadan, Acoustic, Electromagnetic, and Elastic
Waves Scattering-Focused on the T-Matrix Approach (Pergamon Press,
New York, 1980), pp. 1-693.

2y G. Minonzio, C. Prad, D. Chambers, D. Clorennec, and M. Fink,
“Characterization of subwavelength elastic cylinders with the decomposi-
tion of the time-reversal operator: Theory and experiment,” J. Acoust.
Soc. Am. 117(2), 789-798 (2005).

2N. D. Veksler, Resonance Acoustic Spectroscopy (Springer-Verlag, Berlin,
Heidelberg, 1993), pp. 1-282.

A. N. Norris and J.-M. Conoir: Multiple scattering by cylinders 113

Downloaded 06 Jun 2011 to 147.210.26.127. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



	s1
	E1
	E2
	E3
	cor1
	s2
	s2A
	E4
	E5
	E6
	E7
	E8
	E9
	E10
	E11
	E12
	E13
	E14
	E15
	E16
	E17
	E18
	E19a
	E19b
	s2B
	E20a
	E20b
	E21
	E22a
	E22b
	E22c
	E22d
	E22e
	E23a
	E23b
	E23c
	E23d
	E24
	s2C
	E25
	E26
	E27
	E28
	E29
	s2D
	E30
	E31
	E32
	E33
	E34
	E35
	s2E
	E36
	E37a
	E37b
	E38
	E39
	E40a
	E40b
	E40c
	E41
	E42
	E43
	E44
	E45
	E46a
	E46b
	E46c
	s2F
	E46d
	s2G
	E47a
	E47b
	E47c
	E47d
	E48
	E49
	E50
	E51
	E52
	E53
	s2G
	E54
	s3
	s3A
	E55
	s3A
	E56
	E57
	E58
	s3A1
	E59
	E60
	E61
	E62
	E63
	E64
	sB
	E65
	E66
	E67
	E68
	E69
	E70
	E71
	E72
	s4
	s5
	s5A
	E73a
	E73b
	E74
	E75
	E76
	E77
	s5B
	E78
	s6
	E79
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22

