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Propagation of P and SV waves in an elastic solid containing randomly distributed inclu-
sions in a half-space is investigated. The approach is based on a multiple scattering analysis
similar to the one proposed by Fikioris and Waterman for scalar waves. The characteristic
equation, the solution of which yields the effective wave numbers of coherent elastic
waves, is obtained in an explicit form without the use of any renormalisation methods.
Two approximations are considered. First, formulae are derived for the effective wave
numbers in a dilute random distribution of identical scatterers. These equations generalize
the formula obtained by Linton and Martin for scalar coherent waves. Second, the high fre-
quency approximation is compared with the Waterman and Truell approach derived here
for elastic waves. The Fikioris and Waterman approach, in contrast with Waterman and
Truell’s method, shows that P and SV waves are coupled even at relatively low concentra-
tion of scatterers. Simple expressions for the reflected coefficients of P and SV waves inci-
dent on the interface of the half-space containing randomly distributed inclusions are also
derived. These expressions depend on frequency, concentration of scatterers, and the two
effective wave numbers of the coherent waves propagating in the elastic multiple scatter-
ing medium.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

We consider the problem of elastic wave propagation in heterogeneous solids containing distributions of inhomogenei-
ties. The results have application in geophysical exploration and ultrasonic evaluation of composite materials or biological
tissues. Typically, the inhomogeneities can be hard grains, inclusions, micro-cracks, fibers, pores, or contrast agents, for in-
stance. The present work is a contribution in this direction.

The main difficulty is the quantitative description of interactions between many scatterers distributed throughout the
heterogeneous solid. In the case of random sets of scatterers this problem cannot be solved exactly, except in very particular
cases [25], and in general only approximate solutions are available. These are all based on hypotheses that reduce the many
scatterer problem to a problem for one scatterer or one cell. In this way we may focus attention on the coherent wave prop-
agation, which is the statistical average of the dynamics corresponding to all possible configurations of the scatterers. It is
well-known that the coherent motion makes each heterogeneous medium appear as a dissipative homogeneous material,
and propagation is governed by a complex effective wave number that is frequency dependent. The real part of the wave
number is related to the velocity, and the imaginary part represents the attenuation.
. All rights reserved.
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Various methods for the analysis of the multiple scattering of elastic waves have been considered in the literature. These
include: perturbation methods [14,27]; self consistent methods, which are analogous to the coherent potential approxima-
tion [9,15]; and effective medium methods based on self consistent schemes [26,5,13]. The method of asymptotic homoge-
nization [24] was recently considered in the context of fiber-reinforced media where the fibers are arranged on a periodic
lattice. All of these approaches have their own advantages and disadvantages.

The method developed here starts from an explicit multiple scattering formulation in which the field scattered from any
particular scatterer is expressed as a multipole (far-field) expansion. In the case of scalar waves, this is a classical topic with a
large literature. The method was initiated by Foldy for studying the multiple scattering of isotropic point scatterers [11]. The
quasi-crystalline approximation (QCA) was subsequently introduced by Lax in order to take into account double scattering
[16]. With the use of the QCA, Waterman and Truell derived an expression for the effective wave number of coherent waves
that depends on the far-field scattering properties of a single scatterer, in both the forward and backward directions [33].
Waterman and Truell’s approach, like that of Twersky [29] which is based on the Foldy’s approximation, is known to be valid
only for dilute distributions of scatterers. Not long after, Fikioris and Waterman introduced the ‘‘hole correction” that allows
consideration of higher concentrations of anisotropic finite-size scatterers [10]. Anisotropy refers here to scattering proper-
ties that depend on angular orientation, as illustrated for example in a polar radiation diagram. The present approach is
based on multipole expansions, and can therefore handle scatterers with non-circular or non spherical shapes. The T-matrix
method provides a convenient tool to calculate multipole expansions [31].

Numerous investigators have attempted to improve on the original theory [11,33,10] or extend its range of applicability.
Recently, Aristégui and Angel [3] showed that Foldy’s method also yields predictions of the reflection and transmission of
scalar waves by a random distribution of point or line scatterers contained within a slab. Similarly, an extension of Fikioris
and Waterman’s formalism was developed by Le Bas et al. [17] in order to describe both the reflection and transmission from
a slab-fluid region in which elastic cylindrical scatterers are randomly spaced. They show in particular that two different
coherent waves can propagate in the fluid slab. Starting from Fikioris and Waterman’s approach, Linton and Martin [18]
obtained the two-dimensional counterpart of Lloyd and Berry’s effective wave number [20,19], taking into account the hole
correction and the boundary effect. In the case of immersed fluid cylinders with a sound-speed that is close to that of the
surrounding fluid, Martin and Maurel [22] show that Linton and Martin’s formula [18] can be derived from Lippman–
Schwinger’s equation without use of the QCA, thus providing a link between distinct formalisms based on Green functions
and multipole expansions. Shear-horizontal elastic waves (SH) are also scalar-type waves, and the effective dynamic
properties SH waves in composites made of elastic cylindrical fibers randomly distributed in another elastic solid have been
calculated by Aguiar and Angel [2] and Aristégui and Angel [4]. They show that the effective mass density and the effective
shear stiffness are complex valued and frequency dependent.

In comparison with the numerous studies of the scalar situation, multiple scattering of elastic waves involving both
compressional (P) and shear waves (SV) has received relatively little attention. Varadan et al. [30] and Yang and Mal
[34] have considered this problem using multipole expansions. Their analysis is mainly focused on the low-frequency limit
(Rayleigh limit) which predicts dynamic effective mechanical properties of particulate composites that are in agreement
with Hashin and Rosen’s bounds [12]. The Generalized Self Consistent Method (GSCM) [34] is derived by using a self con-
sistent scheme applied to Waterman and Truell’s formula [33]. However, this formula, which is valid for scalar waves, is
applied to P and SV waves separately [34], and mode conversions between P and SV waves are therefore neglected. In
contrast to the GSCM, the theory developed in [30] takes mode conversions into account, but the equations that involve
P and SV waves are uncoupled by invoking additional hypotheses above and beyond those for the QCA used in most of the
papers previously cited. This is not necessary and it can be avoided by ensuring that the equations faithfully and accu-
rately describe the coupling between the P and SV waves, as we do in this paper. More precisely, we derive equations
for P and SV waves in the spirit of the paper by Fikioris and Waterman [10], and effective wave numbers are then obtained
in the limit as the scatterer size tends to zero. From this point of view, our results can be considered as a generalization of
the work of Linton and Martin [18] for scalar waves to the elastic case. It is shown here that the effective wave numbers,
which are predominantly P or SV waves at low concentration of scatterers, depend upon the four far-field scattering func-
tions, including those related to mode conversions. An advantage of our method is that it is valid not only at low-fre-
quency but also at higher frequencies. For this reason we also consider the short-wave limit in some detail. Also, we
assume that the scatterers are located in a semi infinite region, a configuration that has received little attention. This al-
lows us to determine the four reflection coefficients related to the solid–solid interface, both in general and in the small
concentration and long wavelength limit.

The outline of the paper is as follows. Section 2 contains a derivation of the coupled equations for elastic waves. This is
based on the multiple scattering theory of Fikioris and Waterman [10] for acoustic waves. In Section 3 we reformulate the
infinite system of equations to derive a single equation for the wavenumber. We present in Section 4 a systematic solution
of the coupled equations using asymptotic expansions in the concentration. This generalizes the theory of Linton and Mar-
tin [18,19]. The high frequency limit is also derived and compared to the Waterman and Truell approach. Section 5 is de-
voted to the calculation of reflection coefficients at the interface of the half-space enclosing the random distribution of
scatterers. Asymptotic approximations are derived for the reflection coefficients that are valid in the low concentration
limit. In Section 6 we derive explicit formulae for low concentration expansions of the effective wavenumbers, formulae
which generalize that of Linton and Martin for the scaler case. We begin with the multiple scattering equations for
elasticity.
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2. Fikioris and Waterman theory for elastic media

The multiple scattering theory of Fikioris and Waterman [10] was derived for acoustic media. Here we develop the theory
to consider multiple scattering from identical scatterers in elastic materials.

2.1. Multiple scattering equations

Suppose that time-harmonic P or SV waves are propagating perpendicular to N parallel cylinders located in an elastic so-
lid and that kL and kT are the wave numbers of the P and SV waves. We assume the Helmholtz decomposition of the displace-
ment in the form
~u ¼ ~rwL þ ~r� ðwT~ezÞ; ð1Þ
where~ez is the unit vector parallel to the cylinders and wL and wT represent potentials for the longitudinal (P) and transverse
(SV) components of the waves. Under the influence of the incident waves wL

incð~rÞ and wT
incð~rÞ, both L and T scattered waves

wL
Sð~r;~rkÞ and wT

S ð~r;~rkÞ are generated by the kth scatterer, so that
wLð~rÞ ¼ wL
incð~rÞ þ

XN

k¼1

wL
Sð~r;~rkÞ; ð2aÞ

wTð~rÞ ¼ wT
incð~rÞ þ

XN

k¼1

wT
S ð~r;~rkÞ: ð2bÞ
Here, the first vector argument~r specifies the field point of evaluation, while~rk is the location of the kth scatterer. The scat-
ters are assumed to be identical in composition and orientation and the properties of a single scatterer are assumed to be
known, so that a rule is available that relates the scattered waves wa

S ð~r;~rkÞ and the exciting fields wa
Eð~r;~rkÞ acting on the

kth scatterer (a ¼ L; T). This rule defines a linear scattering operator Tð~rkÞ by the relations [31]
wL
Sð~r;~rkÞ ¼ TLLð~rkÞwL

Eð~r;~rkÞ þ TTLð~rkÞwT
Eð~r;~rkÞ; ð3aÞ

wT
S ð~r;~rkÞ ¼ TLTð~rkÞwL

Eð~r;~rkÞ þ TTTð~rkÞwT
Eð~r;~rkÞ; ð3bÞ
and
Tð~rkÞ ¼
TLLð~rkÞ TTLð~rkÞ
TLTð~rkÞ TTTð~rkÞ

" #
: ð4Þ
If the scatterers are similar but are not all oriented in the same manner then the orientation of scatterers must be as-
sumed to be random. The exciting field acting on the kth scatterer is the sum of the incident waves and the scattered waves
from all scatterers other than the kth. It follows that:
wL
Eð~r;~rkÞ ¼ wL

incð~rÞ þ
X
j–k

TLLð~rjÞwL
Eð~r;~rjÞ þ

X
j–k

TTLð~rjÞwT
Eð~r;~rjÞ; ð5aÞ

wT
Eð~r;~rkÞ ¼ wT

incð~rÞ þ
X
j–k

TTTð~rjÞwT
Eð~r;~rjÞ þ

X
j–k

TLTð~rjÞwL
Eð~r;~rjÞ: ð5bÞ
Eqs. 2–5 are the multiple scattering equations that generalize those obtained for the scalar case (cf. Eqs. (2.9)–(10) in [33]).
In order to derive the equations governing the coherent motion, we use the method initially developed by Foldy [11] and

Lax [16] to average over all configurations of cylinders. This method is a very well documented [21,28], and it includes as a
special case the quasi-crystalline approximation (QCA). Performing the configurational average transforms Eq. (5) into
wL
Eð~r;~r1Þ

� �
¼ wL

incð~rÞ þ
Z

d~rj nð~r;~rjÞ TLLð~rjÞ wL
Eð~r;~rjÞ

� �
þ TTLð~rjÞ wT

Eð~r;~rjÞ
� �h i

; ð6aÞ

wT
Eð~r;~r1Þ

� �
¼ wT

incð~rÞ þ
Z

d~rj nð~r;~rjÞ TTTð~rjÞ wT
Eð~r;~rjÞ

� �
þ TLTð~rjÞ wL

Eð~r;~rjÞ
� �h i

: ð6bÞ
In these equations,~r1 is the location of one of the cylinders, wa
Eð~r;~rjÞ

� �
ða ¼ L; TÞ are the average coherent fields acting on

the jth scatterer, nð~r;~rjÞ the conditional number density of scatterers at~r if a scatterer is known to be at~rj, and the integral is
taken over the whole surface accessible to scatterers. For a uniform and random array of identical cylinders of constant den-
sity n0 and radius a, the ‘‘hole correction” [10] requires
nð~r;~rjÞ ¼
n0 for j~r �~rjj > b;

0 otherwise;

�
ð7Þ
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with b > 2a. Generally, b represents the distance of closest approach between centers of adjacent cylinders. Eq. (6) are the
multiple scattering integral equations that generalize the integral equation for acoustic media (cf. Eq. (2.1) in [10]). In the
same way, the average coherent fields are obtained by performing a configurational average on Eq. (2), yielding
hwLð~rÞi ¼ wL
incð~rÞ þ n0

Z
d~rj TLLð~rjÞ wL

Eð~r;~rjÞ
� �

þ TTLð~rjÞ wT
Eð~r;~rjÞ

� �h i
; ð8aÞ

hwTð~rÞi ¼ wT
incð~rÞ þ n0

Z
d~rj TTTð~rjÞ wT

Eð~r;~rjÞ
� �

þ TLTð~rjÞ wL
Eð~r;~rjÞ

� �h i
: ð8bÞ
It should be noted that Eq. (8) are exact if the observation point~r is not close to the surface of the volume enclosing the
cylinders. Field points at the boundary of the volume require a special treatment, see [18] for details in the acoustic case.

2.2. Modal equations

Our goal in the remainder of this section is to obtain the modal equations, which will be solved in Sections 3 and 4 to give
the effective wave numbers. In the following, cylinders are assumed to be randomly distributed in the half-space defined by
Sþ ¼ fx > 0g. The incident wave propagates in the direction of the x-axis, normal to the interface x ¼ 0 ð~r ¼ ðx; yÞÞ:
wa
incð~rÞ ¼ Aaeikax; a 2 fL; Tg; ð9Þ
with AL;T ¼ 1 or 0 depending on the type of the incident wave considered (P or SV). The incident and the effective potentials
satisfy the Helmholtz equation
r2wa þ k2
aw

a ¼ 0; a 2 fL; Tg: ð10Þ
In the same way as wL;T
E ð~r;~rjÞ, the effective potentials wL;T

E ð~r;~rjÞ
D E

satisfy the Helmholtz equation and are regular functions
at the point ~rj, they can therefore be expressed
wa
Eð~r;~rjÞ

� �
¼
X

n

Aa
nð~rjÞJnðkaqjÞeinhð~qjÞ; a 2 fL; Tg; ð11Þ
with ~qj ¼~r �~rj; hð~qjÞ ¼ argð~qjÞ and qj ¼ j~qjj. As usual with the T-matrix approach [31], the transition operators are defined
by
Tabð~rjÞJnðkaqjÞeinhð~qjÞ ¼ Tab
n Hð1Þn ðkaqjÞ einhð~qjÞ; a; b 2 fL; Tg; ð12Þ
and the corresponding far-field scattering amplitudes of the different interactions are given by
Tabð~0Þeikax ¼
X

n

Tab
n Hð1Þn ðkarÞeinh ’

ðr!1Þ

ffiffiffiffiffiffiffiffiffiffi
2

pkar

s
ei kar�p

4ð Þ f abðhÞ; a; b 2 fL; Tg; ð13Þ
with ~r ¼ ðr cos h; r sin hÞ. The far-field scattering functions f abðhÞ are therefore Fourier series with coefficients equal to the
modal scattering amplitudes Tab

n , i.e.,
f abðhÞ ¼
X

n

Tab
n einh; a; b 2 fL; Tg: ð14Þ
Modal coefficients Tab
n can be calculated numerically [31,32]. For circular cylinders, they are the components of the T-ma-

trix and satisfy the symmetry relation Tab
�n ¼ Tab

n . For non-circular cylinders, they are expressed in terms of the T-matrix com-
ponents that depend on the orientation of the scatterer, so that in general Tab

�n – Tab
n .

Substituting Eqs. (11) and (12) into Eq. (6) gives
X
n

½AL
nð~r1Þ � inALeikLx1 �JnðkLq1Þeinhð~q1Þ ¼

X
n

TLL
n

Z
Sþ

d~rj nð~rj;~r1ÞAL
nð~rjÞHð1Þn ðkLqjÞeinhð~qjÞ

þ
X

n

TTL
n

Z
Sþ

d~rj nð~rj;~r1ÞAT
nð~rjÞHð1Þn ðkLqjÞeinhð~qjÞ; ð15aÞ

ðL$ TÞ: ð15bÞ
The symbol ðL$ TÞmeans the same equation(s) as the previous one(s) but with the L and T indices permuted. In order to
write series of (15) as a function of the coordinates centered on ~r1 ¼ ðx1; y1Þ, we use the change of variables
hð~qjÞ ¼ hð�~qjÞ � p with the addition theorem [1]
Hð1Þn ðkaqjÞeinhð�~qjÞ ¼
X

m

ð�1Þmeiðn�mÞhð~rj1ÞHð1Þn�mðkarj1ÞJmðkaq1Þeimhð~q1Þ; ð16Þ
where~rj1 ¼~rj �~r1; hð~rj1Þ ¼ argð~rj1Þ and rj1 ¼ j~rj1j. The condition j~q1j < j~rj1jmust hold in order that the waves scattered from
~rj are expressed with the use of Eq. (16) in the vicinity of~r1. It then follows that:
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AL
nð~r1Þ ¼

X
p

ð�1ÞpTLL
nþp

Z
Sþ

d~rj nð~rj;~r1ÞAL
nþpð~rjÞHð1Þp ðkLrj1Þeiphð~rj1Þ

þ
X

p

ð�1ÞpTTL
nþp

Z
Sþ

d~rj nð~rj;~r1ÞAT
nþpð~rjÞHð1Þp ðkLrj1Þeiphð~rj1Þ þ inALeikLx1 ; ð17aÞ

ðL$ TÞ: ð17bÞ
We seek coherent waves that propagate in the equivalent homogeneous medium, which consists in assuming that solu-
tions of Eq. (17) may be written in the form
AL
nð~rjÞ ¼ inAL

nei~n:~rj þ inBL
nei~n0 :~rj ¼ inAL

neinxj þ inBL
nein0xj ; ð18aÞ

AT
nð~rjÞ ¼ inAT

nei~n:~rj þ inBT
nei~n0 :~rj ¼ inAT

neinxj þ inBT
nein0xj : ð18bÞ
Here~n ¼ ðn;0Þ and~n0 ¼ ðn0;0Þ are the effective wave vectors of coherent waves that propagate in the direction of the x-axis,
and the coefficients AL

n and BL
n are at this stage unknown. Here, two coherent waves with n and n0 as wave numbers are as-

sumed to propagate, which is a natural hypothesis for scarce concentrations of scatterers. In such situations the homoge-
neous medium looks like an elastic medium in which the two waves that propagate are predominantly P or SV waves
(see Section 4.1). In the following, the concentration is supposed to be low enough that only two coherent waves propagate.
It is worthwhile to note that a search for solutions of Eq. (17) in the following form:
AL
nð~rjÞ ¼ inAL

n ei~n:~rj ¼ inAL
neinxj ; ð19aÞ

AT
nð~rjÞ ¼ inAT

nei~n0 :~rj ¼ inAT
nein0xj ; ð19bÞ
leads to an ill-conditioned problem (the number of unknowns does not equal the number of equations available). Solutions
of the form (19) were considered in [30], although in the context of uncoupled integral equations.

Inserting the ansatz (18) into Eq. (17) yields
AL
nei~n:~r1 þ BL

nei~n0 :~r1 ¼ ALeikLx1 þ
X

p

i�p TLL
nþpAL

nþpIL
pðnÞ þ TLL

nþpBL
nþpIL

pðn
0Þ þ TTL

nþpAT
nþpIL

pðnÞ þ TTL
nþpBT

nþpIL
pðn
0Þ

h i
; ð20aÞ

ðL$ TÞ: ð20bÞ
with
IapðfÞ ¼
Z

Sþ
d~rj nð~rj;~r1ÞHð1Þp ðkarj1Þeiphð~rj1Þei~f:~rj ; f 2 fn; n0g; a 2 fL; Tg: ð21Þ
Taking the hole correction (7) into account, the integral (21) may be written
IapðfÞ ¼ n0ei~f:~r1

Z
Sb

d~rj1/pðkarj1Þei~f:~rj1 ; f 2 fn; n0g; a 2 fL; Tg; ð22Þ
where Sb is the entirety of Sþ with the exclusion of the hole j~rj1j < b centered at~r1, and /p are the cylindrical wave functions
with respect to the same origin, with
/pðkarj1Þ ¼ Hð1Þp ðkarj1Þeiphð~rj1Þ; a 2 fL; Tg: ð23Þ
The integral in Eq. (22) has been previously calculated in [17,18], with the result
IapðfÞ ¼ ip 2n0p
f2 � k2

a

Na
pðfÞeifx1 þ 2in0

kaðf� kaÞ
eikax1

" #
; f 2 fn; n0g; a 2 fL; Tg; ð24Þ
where
Na
pðfÞ ¼ fbJ0pðfbÞHð1Þp ðkabÞ � kabJpðfbÞHð1Þ

0

p ðkabÞ; f 2 fn; n0g; a 2 fL; Tg: ð25Þ
As a consequence Eq. (20) become
AL
neinx1 þ BL

nein0x1 ¼ ALeikLx1 þ einx1
2pn0

n2 � k2
L

X
p

TLL
nþpAL

nþp þ TTL
nþpAT

nþp

h i
NL

pðnÞ þ ein0x1
2pn0

n0
2 � k2

L

X
p

½TLL
nþpBL

nþp þ TTL
nþpBT

nþp�N
L
pðn

0Þ

þ eikLx1
2in0

kLðn� kLÞ
X

p

TLL
nþpAL

nþp þ TTL
nþpAT

nþp

h i
þ eikLx1

2in0

kLðn0 � kLÞ
X

p

½TLL
nþpBL

nþp þ TTL
nþpBT

nþp�; ð26aÞ

ðL$ TÞ: ð26bÞ
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2.2.1. The generalized Fikioris and Waterman equations
Eq. (26) are satisfied whatever the value of x1 if the coefficients of einx1 ; ein0x1 ; eikLx1 and eikT x1 are all zero. Equating the

coefficients of einx1 and ein0x1 to zero gives what is known as the Lorentz–Lorenz law. We obtain
AL
n �

2pn0

n2 � k2
L

X
p

TLL
p AL

p þ TTL
p AT

p

� �
NL

n�pðnÞ ¼ 0; ðL$ TÞ; ð27aÞ

BL
n �

2pn0

n0
2 � k2

L

X
p

TLL
p BL

p þ TTL
p BT

p

� �
NL

n�pðn
0Þ ¼ 0; ðL$ TÞ: ð27bÞ
Eq. (27) are the desired modal equations that generalize those of Fikioris and Waterman. They provide two identical

homogeneous systems of linear algebraic equations which involve either the unknowns AL
p;A

T
p

n o
with n or BL

p;B
T
p

n o
with

n0. The existence of nontrivial solutions of the homogeneous system determines the effective wave numbers n and n0. This
is the goal of the next section.

2.2.2. The extinction theorem for elastic waves
Equating the coefficients of eikLx1 and eikT x1 in (26) to zero corresponds to what is known as the extinction theorem. In this

case it becomes
AL þ
2in0

kLðn� kLÞ
X

p

TLL
p AL

p þ TTL
p AT

p

h i
þ 2in0

kLðn0 � kLÞ
X

p

TLL
p BL

p þ TTL
p BT

p

h i
¼ 0; ð28aÞ

ðL$ TÞ: ð28bÞ
The extinction theorem is useful for calculating reflection coefficients for the waves reflected at the interface x ¼ 0, see
Section 5.

2.2.3. The Waterman and Truell method
Waterman and Truell’s approach is an alternative method relevant at very low concentration of cylinders [3] and simpler

than the more general approach of Fikioris and Waterman represented by the system (27). The Waterman and Truell approx-
imation assumes a pair correlation function with the following property [33,18]:
nð~r;~r1Þ ¼
n0 for jx� x1j > g;
0 otherwise;

�
ð29Þ
for g! 0 with~r ¼ ðx; yÞ and~r1 ¼ ðx1; y1Þ. In this limit Eq. (21) are improper integrals in the sense of Cauchy principal value,
which may be calculated as in [17,18]. We find
AL
n �

2n0

ikL

X
p

TLL
p AL

p þ TTL
p AT

p

� � 1
n� kL

� ð�1Þnþp

nþ kL

� 	
¼ 0; ð30aÞ

BL
n �

2n0

ikL

X
p

TLL
p BL

p þ TTL
p BT

p

� � 1
n0 � kL

� ð�1Þnþp

n0 þ kL

� 	
¼ 0; ð30bÞ

ðL$ TÞ; ð30cÞ
which are the modal equations that generalize those of Waterman and Truell, Eq. (27) in [33]. The extinction theorem (28) is
unchanged.
3. Matrix form of the modal equations

In this section we focus on reformulating either of the identical systems of Eq. (27) with the objective of determining a
single scalar equation for the wavenumbers. With no loss in generality we consider the first system, which in full is as
follows:
AL
n �

2n0p
n2 � k2

L

X
p

TLL
p AL

p þ TTL
p AT

p

� �
NL

n�pðnÞ ¼ 0; ð31aÞ

AT
n �

2n0p
n2 � k2

T

X
p

TLT
p AL

p þ TTT
p AT

p

� �
NT

n�pðnÞ ¼ 0: ð31bÞ
The goal is a simplified equation for the wavenumbers n and n0.
We begin by rewriting the doubly infinite set of equations in matrix form. The unknown amplitudes are represented by

vectors aa, defined by aa ¼ ð. . . ; Aa
�1; Aa

0; Aa
1; . . . Þt; a 2 fL; Tg, so that the amplitude Aa

p is in the pth position of the infinitely



J.-M. Conoir, A.N. Norris / Wave Motion 47 (2010) 183–197 189
long column vector. Introduce the constant vector e ¼ ð. . . ; 1; 1; 1; . . . Þt , and the infinite square matrices Q a and Tab with
elements
Qa
mn ¼

ip
2 Na

m�nðnÞ � 1

n2 � k2
a

; Tab
mn ¼ Tab

n dmn; a; b 2 fL; Tg: ð32Þ
Then Eq. (31) can be expressed
aL � � Q L þ eet

yL


 �
ðTLLaL þ TTLaTÞ ¼ 0; ð33aÞ

aT � � Q T þ eet

yT


 �
ðTLT aL þ TTT aTÞ ¼ 0; ð33bÞ
where the scalars � and ya are
� ¼ �i4n0; ð34aÞ
ya ¼ n2 � k2

a; a 2 fL; Tg: ð34bÞ
The pair of Eq. (33) are combined to form a single equation involving doubly infinite vectors and matrices
I� �Q T� � eLet
L

yL
T� � eT et

T

yT
T

� �
a ¼ 0; ð35Þ
with vectors
eL ¼
e
0


 �
; eT ¼

0
e


 �
; a ¼

aL

aT


 �
; ð36Þ
and matrices
I ¼
I 0
0 I

� 	
; Q ¼ Q L 0

0 Q T

" #
; T ¼ TLL TTL

TLT TTT

" #
: ð37Þ
The system (35) can be replaced by an equivalent equation of simpler form. In order to achieve this we multiply from the
left by T1=2 and rearrange the terms,
I� �Q � �
yL

fLft
L �

�
yT

fT ft
T

� �
u ¼ 0; ð38Þ
where the doubly infinite vectors are
fL ¼ T1=2eL; fT ¼ T1=2eT ; u ¼ T1=2a; ð39Þ
and the sole matrix, apart from the identity, is
Q ¼ T1=2Q T1=2: ð40Þ
The wavenumbers must clearly satisfy the condition that det P ¼ 0 where P is the infinite matrix premultiplying u in Eq.
(38). This approach was adopted by Varadan et al. [30], although the infinite system of equations they considered are not the
same as the present system (39). While det P ¼ 0 is a sufficient condition for determining the coherent wavenumbers, it is
not always necessary, particularly in the limit of small concentration, which is equivalent to the limit of small �. We now
develop a necessary condition that is far simpler in form, and which, as we note below in Section 4.1, is both necessary
and sufficient for small �. We first rewrite (38) in the equivalent form
I� �ðI� �Q Þ�1 fLft
L

yL
þ fT ft

T

yT

 !( )
u ¼ 0: ð41Þ
Taking the inner product of (41) with ft
L and ft

T yields a system of two equations for the scalar quantities ft
au; a 2 fL; Tg,
1� �MLL
yL

��MTL
yT

��MLT
yL

1� �MTT
yT

" #
ft

Lu

ft
T u

 !
¼

0
0


 �
: ð42Þ
The four matrix elements are given by
Mab ¼ ft
aðI� �Q Þ

�1fb; a; b 2 fL; Tg: ð43Þ
Taking the determinant of the 2� 2 matrix yields the desired equation for n:
ðyL � �MLLÞðyT � �MTTÞ � �2MLT MTL ¼ 0; ð44Þ
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or more explicitly
n2 � k2
L � �MLL

� �
n2 � k2

T � �MTT

� �
� �2MLT MTL ¼ 0: ð45Þ
Eq. (45) is the fundamental equation for determining the coherent wavenumbers.

4. Asymptotic solutions of the wavenumber equation

4.1. Preliminary observations

Before considering solutions to Eq. (45) we note that the matrix elements can be expressed
Mab ¼ et
aT1=2tðI� �T1=2t

Q T1=2Þ�1T1=2eb ¼ et
a½T
�1 � �Q ��1eb; a; b 2 fL; Tg: ð46Þ
This indicates that the elements can be calculated without evaluation of the square root matrix T1=2. The elements MLL

depend upon n, but the form of the wavenumber Eq. (45) suggests a natural asymptotic expansion in the parameter �. Thus,
using ðI� �Q Þ�1 ¼ Iþ �Q þ �2Q 2 þ � � �, Eq. (43) implies
Mab ¼ ft
afb þ �ft

aQfb þ �2ft
aQ 2fb þ � � �

¼ et
aTeb þ �et

aTQ Teb þ �2et
aTQTQ Teb þ � � � ; a;b 2 fL; Tg: ð47Þ
Based on this expansion, the modal equation Eq. (45) has the following leading order expansion in n0:
1þ 4in0

n2 � k2
L

f LLð0Þ þ 4in0

n2 � k2
T

f TTð0Þ ¼ 0: ð48Þ
This indicates that even at low concentration the effective wave numbers which are solutions of Eq. (44) depend on a
coupling between P and SV waves. It should also be noted that Eq. (48) is an algebraic equation of order 2 with regard to
n2. Consequently, as expected at low concentration, there are two solutions that propagate in the direction of the x-axis
(the other ones propagate in the opposite direction).

Satisfaction of the single Eq. (45) is clearly a necessary condition for the infinite system of homogeneous Eq. (35). An alter-
native procedure to solving the latter for small � is to simultaneously seek both the wavenumber n and the null vector a as
asymptotic series in �. We do not present the details here, but it can be shown that the leading order solution yields
a ¼ eaþOð�Þ for a ¼ L or T. This indicates that the effective wave solution can be characterized as either a quasi-L or a qua-
si-T wave. Furthermore, it may be shown that the solution for the wavenumber obtained by proceeding with the asymptotic
series in � is equivalent to that of the simplified Eq. (45). Hence, the latter is both necessary and sufficient for developing the
asymptotic wavenumber solution.

The remainder of this section considers asymptotic expansions of the solutions, valid in different limits: low concentra-
tion, low-frequency, and high frequency, respectively. We begin with the small concentration expansion.

4.2. Asymptotic expansion at low concentrations

Rather than working with the wavenumber directly it is more convenient to expand the solutions of Eq. (44) about one of
the two leading order solutions ya ¼ 0; a 2 fL; Tg. We choose to expand about the P-wave root yL ¼ 0, although all of the
results below apply to the other solution under the interchange L$ T . At low concentration j�j � 1 and we therefore assume
a formal asymptotic expansion in � as follows:
yL ¼ �y
ð1Þ
L þ �2yð2ÞL þ �3yð3ÞL þ � � � : ð49Þ
Substituting yL from (49) into Eq. (44) and noting that yT ¼ yL þ k2
L � k2

T , we obtain
yð1ÞL �MLL þ �yð2ÞL þ �3yð3ÞL þ . . .
� �

k2
L � k2

T þ �ðy
ð1Þ
L �MTTÞ þ �2yð2ÞL þ . . .

� �
� �MLT MTL ¼ 0: ð50Þ
The coefficients in the expansion (49) follow by taking derivatives of Eq. (50) with respect to � at � ¼ 0.

4.2.1. Oð�0Þ
The leading order term is found by setting � ¼ 0, yielding
yð1ÞL �MLLj�¼0 ¼ 0: ð51Þ
Hence,
yð1ÞL ¼ etTLLe ¼ f LLð0Þ: ð52Þ



J.-M. Conoir, A.N. Norris / Wave Motion 47 (2010) 183–197 191
4.2.2. Oð�1Þ
At the next order Eq. (50) implies
k2
L � k2

T

� �
yð2ÞL �

dMLL

d�






�¼0


 �
�MLT MTLj�¼0 ¼ 0: ð53Þ
The derivative can be found using the expansion (47), resulting in
yð2ÞL ¼ etTLLQ Ljn¼kL
TLLeþ etTTLQ T jn¼kL

TLT e� etTTLeetTLT e

k2
T � k2

L

: ð54Þ
The quantities Q L and Q T in (54) are evaluated at n ¼ kL. Using the definition of Q T in Eq. (32) we have
yð2ÞL ¼ etTLLQ L
0TLLeþ ip

2ðk2
L � k2

TÞ
etTTL �NTðkLÞTLT e; ð55Þ
where the square matrices �Na; Q a
0 and for later use, Q a0

0 , are defined
Na
mnðnÞ ¼ Na

m�nðnÞ; Q a
0 ¼ Q aðkaÞ; Q a0

0 ¼ Q a0 ðkaÞ; a 2 fL; Tg: ð56Þ
Expanding the function Na
pðnÞ for small ðn� kaÞ it is straightforward to derive
Qa
0mn ¼ Dð0Þm�nðkaÞ; Qa0

0mn ¼ Dð1Þm�nðkaÞ; ð57Þ
where
Dð0Þp ðkÞ ¼ �
ip
4
ððkbÞ2 � p2ÞJpðkbÞHð1Þp ðkbÞ þ ðkbÞ2J0pðkbÞHð1Þ

0

p ðkbÞ
h i

; ð58aÞ

Dð1Þp ðkÞ ¼ �
1
2

Dð0Þp ðkÞ þ
p2

8
� ðkbÞ2

8
1þ i2pðkbÞ2JpðkbÞHð1Þp ðkbÞ
h i

: ð58bÞ
4.2.3. Oð�2Þ
Taking the second derivative of (50) and setting � ¼ 0 yields
k2
L � k2

T

� �
2yð3ÞL �

d2MLL

d�2







�¼0

 !
þ 2 yð2ÞL �

dMLL

d�






�¼0

� 	
yð1ÞL �MTT j�¼0

h i
� d

d�
MLT MTL






�¼0
¼ 0: ð59Þ
The derivatives are again evaluated using the expansion (47). The second derivative requires some care, since the terms
involving Q on the right hand side of (47) are themselves dependent upon �. This is the same as for the acoustic case; in fact,
in the acoustic case only the second derivative terms is needed, all the remaining terms in (59) are unique to the elastic prob-
lem. Thus, using results from the acoustic case we have
yð3ÞL ¼ et
LTQTQTeL þ f LLð0Þet

LTQ 0TeL þ
f TTð0Þ � f LLð0Þ
� �
ðk2

L � k2
TÞ

2
et

LTeT et
T TeL

þ 1

2ðk2
L � k2

TÞ
et

LTeT
� �

et
T TQTeL þ et

T TeL
� �

et
LTQ TeT

h i
; ð60Þ
where the doubly infinite square matrices Q and Q 0 are evaluated at n ¼ kL. Higher order terms in the expansion (49) can be
determined using the same procedure.

4.2.4. Wavenumber expansion to Oðn2
0Þ

Combining the above expressions for yð1ÞL and yð2ÞL , the quasi-longitudinal wavenumber expansion up to second order in
the concentration is
n2 ¼ k2
L þ dL

1n0 þ dL
2n2

0 þ . . . ; ð61Þ
where
dL
1 ¼ �4if LLð0Þ; ð62aÞ

dL
2 ¼ �

16

k2
L

X
m;n

Dð0Þm�nðkLÞTLL
m TLL

n �
8ip

k2
L � k2

T

X
p;q

NT
p�qðkLÞTTL

p TLT
q : ð62bÞ
The third order term follows in a straightforward manner from yð3ÞL but is too long to warrant including here. The expan-
sion for the quasi-transverse wavenumber follows by the interchange L$ T.
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4.3. Long wavelength limit

The long wavelength regime corresponds to small kL;T b. As kab! 0 we have
Na
pðnÞ ’

2
ip

n
ka


 �jpj
; a 2 fL; Tg: ð63Þ
In the same limit, it follows from its definition in Eqs. (32) and (56) that the elements of the matrix Q a
0 become
Qa
0mn ¼

1
2
jm� nj: ð64Þ
The long wavelength limit of the low concentration expansion (61) becomes, up to O n2
0

� �
,

n2 ¼ k2
L þ dL

1n0 þ dL
2n2

0 þ . . . ; ð65Þ
where
dL
1 ¼ �4if LLð0Þ; ð66aÞ

dL
2 ¼ �

8

k2
L

X
m;n

jm� njTLL
m TLL

n �
16

k2
L � k2

T

X
m;n

kL

kT


 �jm�nj

TLT
m TTL

n : ð66bÞ
Note that the expansion for the wavenumber is independent of b in this limit. Again, the quasi-transverse wavenumber
expansion follows from the interchange L$ T.

4.4. High kL;T b limit and the Waterman and Truell formula for elastic media

As mentioned in the Introduction, the method we have developed is also valid at high frequency. In the following it is
assumed that kL;T b!1. This means either the frequency increases, i.e. kL;T a!1 with b ¼ Oð1Þ, or the separation length
increases, b!1 with kL;T a ¼ Oð1Þ. The high frequency limit kL;T a!1 corresponds to wavelengths shorter than the radius
a of cylinders. This situation has been studied in [6] which deals with ultrasonic characterization of thermal damage in con-
crete. However, since b can be related to the concentration c ð0 < c < 1Þ of cylinders [34] by
c ¼ n0pa2

n0pb2 ¼
a2

b2 ; ð67Þ
it follows that the limit b!1with kL;T a ¼ Oð1Þ corresponds to a dilute medium ðc! 0Þ. This is one reason why it is of inter-
est to compare the high kL;T b limit to the Waterman and Truell approach.

In the limit as kL;T b!1 the leading order asymptotic approximation of Na
pðnÞ is [1]
Na
pðnÞ ’

�1
pka

ffiffiffiffiffi
ka

n

s
½ð�1Þpðka � nÞ einb þ iðka þ nÞe�inb�eikab; a ¼ fL; Tg; ð68Þ
It follows that the coupled systems of infinite equations (31) become in this limit
AL
n þ PLT þ ð�1ÞnQLT ¼ 0; ð69aÞ
ðL$ TÞ; ð69bÞ
with
PLT ¼ PL

X
p

TLL
p AL

p þ TTL
p AT

p

� �
; ð70aÞ

QLT ¼ QL

X
p

ð�1Þp TLL
p AL

p þ TTL
p AT

p

� �
; ð70bÞ

ðL$ TÞ; ð70cÞ

and
Pa ¼
2n0

ika

ffiffiffiffiffi
ka

n

s
eiðka�nÞb

ka � n
; Qa ¼ �

2n0

ka

ffiffiffiffiffi
ka

n

s
eiðkaþnÞb

ka þ n
; a ¼ fL; Tg: ð71Þ
The structure of Eq. (69) implies the identities
AL;T
�n ¼ AL;T

n and AL;T
nþ2 ¼ AL;T

n : ð72Þ
Consequently, the problem reduces from calculating an infinite set of unknowns to one with eight unknowns:
PLT ; PTL; QLT ; Q TL and AL;T

0;1 satisfying a system of eight homogeneous linear equations. Note that although PLT ; . . . ;QTL can
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be expressed in terms of AL;T
0;1, the calculations are simpler with PLT ; . . . ;Q TL considered as unknowns. The first four equations

are obtained by setting n ¼ 0 and n ¼ 1 in Eq. (69). Then, we perform an iteration on Eq. (69) using the identities (72), with
the result
AL
n � ½f LLð0ÞPL þ ð�1Þnf LLðpÞQ L�PLT � ½f LLðpÞPL þ ð�1Þnf LLð0ÞQ L�Q LT

� ½f TLð0ÞPL þ ð�1Þnf TLðpÞQ L�PTL � ½f TLðpÞPL þ ð�1Þnf TLð0ÞQ L�Q TL ¼ 0; ð73aÞ
ðL$ TÞ: ð73bÞ
Four equations are obtained from Eq. (73) by considering the two possibilities for ð�1Þn, corresponding to n ¼ 0 and n ¼ 1.
The second set of four equations follow from Eq. (70) combined with the identities (72). Eliminating AL;T

0;1 from the eight equa-
tions results in the following four equations for the four unknowns PLT ; PTL;Q LT ;Q TL,
½1þ f LLð0ÞPL þ f LLðpÞQ L�PLT þ ½1þ f LLðpÞPL þ f LLð0ÞQL�QLT þ ½f TLð0ÞPL þ f TLðpÞQ L�PTL

þ ½f TLðpÞPL þ f TLð0ÞQ L�QTL ¼ 0; ð74aÞ
½1þ f LLð0ÞPL � f LLðpÞQ L�PLT � ½1� f LLðpÞPL þ f LLð0ÞQL�QLT þ ½f TLð0ÞPL � f TLðpÞQ L�PTL

þ ½f TLðpÞPL � f TLð0ÞQ L�QTL ¼ 0; ð74bÞ
ðL$ TÞ: ð74cÞ
The homogeneous linear system of Eq. (74) has nontrivial solutions if the associated determinant vanishes. Thus, the
modal equation at high frequency is
det

1þ f LLð0ÞPL f LLðpÞPL f TLð0ÞPL f TLðpÞPL

f LLðpÞQ L 1þ f LLð0ÞQL f TLðpÞQ L f TLð0ÞQL

f LTð0ÞPT f LTðpÞPT 1þ f TTð0ÞPT f TTðpÞPT

f LTðpÞQ T f LTð0ÞQ T f TTðpÞQ T 1þ f TTð0ÞQ T

2
6664

3
7775 ¼ 0: ð75Þ
The mode converted forward scattering and back-scattering amplitudes, f LT;TLð0Þ and f LT;TLðpÞ, respectively, are identically
zero if the fundamental scatterer has sufficient geometrical symmetry. This is the case for circular cylinders, and occurs gen-
erally for cylinders with reflection symmetry about the x-axis. When f LT;TLð0Þ ¼ f LT;TLðpÞ ¼ 0, instead of the determinant of Eq.
(75), the condition for satisfaction of the four Eq. (74) becomes two simpler equations:
½1þ f LLð0ÞPL�½1þ f LLð0ÞQ L� � ½f LLðpÞ�2PLQL ¼ 0; ð76aÞ
½1þ f TTð0ÞPT �½1þ f TTð0ÞQT � � ½f TTðpÞ�2PT Q T ¼ 0: ð76bÞ
These provide uncoupled modal equations for the P and SV waves, in contrast to what happens with the Fikioris and
Waterman approach.

Starting from Eq. (30) and using the same process as before, we can easily verify that the Waterman and Truell’s modal
equation for elastic media is once again given by Eq. (75) where now PL;T and Q L;T are defined by
Pa ¼
2n0

ika

1
ka � n

; Qa ¼
2n0

ika

1
ka þ n

; a ¼ fL; Tg: ð77Þ
So, the modal equation in the limit kL;T b!1 is very similar but fundamentally different from that of Waterman and Tru-
ell. For circular cylinders, Eq. (76) combined with (77) are nothing else than the Waterman and Truell formula [33] for acous-
tic waves applied to P and SV waves separately.

5. Reflection coefficients

5.1. Reflection coefficients for an incident P wave

We consider a single type of wave incident on the half-space x > 0, specifically a P wave, so that AL ¼ 1 and AT ¼ 0. The
fields hwLð~rÞi and hwTð~rÞi in the domain fx < 0g then correspond to the P and SV reflected waves respectively. Consequently,
the reflection coefficients RLL and RLT can be defined as follows:
hwað~rÞi ¼ RLa e�ikax; ðx < 0Þ; a ¼ fL; Tg: ð78Þ
Inserting Eqs. (11) and (18) into Eq. (8), and taking into account Eq. (12), we get
hwLð~rÞi ¼ n0

X
p

i�p TLL
p AL

p þ TTL
p AT

p

� �
JL

pðnÞ þ TLL
p BL

p þ TTL
p BT

p

� �
JL

pðn
0Þ

h i
; ð79aÞ

hwTð~rÞi ¼ n0

X
p

i�p TLT
p AL

p þ TTT
p AT

p

� �
JT

pðnÞ þ TLT
p BL

p þ TTT
p BT

p

� �
JT

pðn
0Þ

h i
; ð79bÞ

ðL$ TÞ; ð79cÞ
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with ð~rj1 ¼ ðxj1; yj1ÞÞ
JapðfÞ ¼ n0eifx
Z

xj1>�x
d~rj1/pðkarj1Þeifxj1 ; f 2 fn; n0g; a 2 fL; Tg: ð80Þ
The integrals in Eq. (80) are calculated in [17,18], with the result that
JapðfÞ ¼ i�p 2in0

kaðfþ kaÞ
e�ikax; f 2 fn; n0g; a 2 fL; Tg; ð81Þ
and consequently
RLL ¼ 2in0

kL

X
p

ð�1Þp
TLL

p AL
p þ TTL

p AT
p

nþ kL
þ

TLL
p BL

p þ TTL
p BT

p

n0 þ kL

 !
; ð82aÞ

RLT ¼ 2in0

kT

X
p

ð�1Þp
TLT

p AL
p þ TTT

p AT
p

nþ kT
þ

TLT
p BL

p þ TTT
p BT

p

n0 þ kT

 !
: ð82bÞ
As expected, RLL and RLT depend on the infinite sets of coefficients AL;T
p and BL;T

p . These coefficients follow from Eq. (28),
which we rewrite in matrix format:
�
ðnþ kLÞ

2kLyL
et

LTaþ � ðn
0 þ kLÞ

2kLy0L
et

LTb ¼ 1 ð¼ ALÞ; ð83aÞ

�
ðnþ kTÞ
2kT yT

et
T Taþ � ðn

0 þ kTÞ
2kT y0T

et
T Tb ¼ 0 ð¼ ATÞ; ð83bÞ
where the notation is the same as in Section 3, with the additional quantities bt ¼ ðbt
L;b

t
TÞ;ba ¼ ð. . . ; Ba

�1; Ba
0; Ba

1; . . . Þt , and
y0a ¼ n0

2 � k2
a; a 2 fL; Tg. The infinite vectors a and b are null vectors of (35) corresponding to the quasi-P and -SV roots of

Eq. (45), respectively. To be specific, fn; ag solve (35) and fn0;bg satisfy
I� �Q T� � eLet
L

y0L
T� � eT et

T

y0T
T

� �
b ¼ 0; ð84Þ
which together determine the null vectors up to scalar multiples. Finally, Eq. (83) fix the amplitudes of the null vectors in
terms of the incident wave amplitudes ðAL ¼ 1; AT ¼ 0Þ.

Once the coefficient vectors a and b are determined, the reflection coefficients follow from (82), which can be recast in
matrix form as
RLL ¼ � ðkL � nÞ
2kLyL

et
LJTaþ � ðkL � n0Þ

2kLy0L
et

LJTb; ð85aÞ

RLT ¼ � ðkT � nÞ
2kT yT

et
T JTaþ � ðkT � n0Þ

2kT y0T
et

T JTb; ð85bÞ
where J ¼ diagð. . . ;�1;1;�1;1; . . .Þ with J00 ¼ 1. The reflection coefficients RTT and RTL are obtained in the same same way
with AL ¼ 0 and AT ¼ 1 in Eq. (83).

5.2. Asymptotic approximation

As in Section 3, we consider the low concentration asymptotic approximation. Starting with the ansatz
a ¼ að0Þ þ �að1Þ þ . . . ; ð86aÞ
b ¼ bð0Þ þ �bð1Þ þ . . . ; ð86bÞ
and using the result from Section 4 that yL ¼ �et
LTeL þ Oð�2Þ we find that, to leading order, að0Þ ¼ ALeL. Similarly,

y0T ¼ �et
T TeT þ Oð�2Þ and hence bð0Þ ¼ AT eT ¼ 0. Eq. (85) then become
RLL ¼ �� f LLðpÞ
4k2

L

þ Oð�2Þ; ð87aÞ

RLT ¼ �� f LTðpÞ
2kTðkL þ kTÞ

þ Oð�2Þ: ð87bÞ
The case of SV wave incidence ðAL ¼ 0; AT ¼ 1Þ can be treated in the same way. Combined with the previous results, we
find that the leading order approximations to the reflection coefficients are:
Rab ¼ 2in0 f abðpÞ
ðka þ kbÞkb

þ Oðn2
0Þ; a; b 2 fL; Tg: ð88Þ
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This result shows that reflected waves do not depend on the effective wave numbers at this order, and helps explain why
it can be difficult to detect reflected coherent waves. Experiments usually deal with transmitted coherent waves [8].

6. Generalization of the Linton and Martin formula

The aim of this section is to generalize the acoustics formula of Linton and Martin [18] to elasticity. The advantage of the
Linton and Martin formula is that it expresses the wavenumber at low concentration in terms of the far-field scattering func-
tion only, rather than the T-matrix elements. In the present context of elastodynamics, this requires that we express the two
series in (66b) as integrals of the far-field scattering functions. The analogous acoustic problem involves only the first series
in (66b), which was calculated in [18] as
� 8

k2
L

X
m;n

jm� njTLL
m TLL

n ¼
8

pk2
L

Z 2p

0
dh cot

h
2


 �
d

dh
½f LLðhÞ�2: ð89Þ
This integral is, however, convergent only if f LL 0ð0Þ ¼ 0. That is the case for certain scatterers, including circular cylinders,
where TLL

�p ¼ TLL
p ) f LL 0ð0Þ ¼ 0. But the formula is not correct for non-circular cylinders and must therefore be modified. The

resolution of this problem is found in the following identity, which follows from Eq. (14):
f LLðhÞf LLð�hÞ ¼
X
m;n

TLL
n TLL

m cosðn�mÞh: ð90Þ
Using this we derive an identity similar to Eq. (83) of [18] that does not rely upon the assumption TLL
�p ¼ TLL

p . Thus, instead
of (89) we have the more general identity
� 8

k2
L

X
m;n

jm� njTLL
m TLL

n ¼
8

pk2
L

Z 2p

0
dh cot

h
2


 �
d

dh
½f LLðhÞf LLð�hÞ�: ð91Þ
Regarding the second series in (66b) and its dual for the quasi-SV wavenumber, we consider
SL �
X
m;n

kL

kT


 �jm�nj

TLT
m TTL

n ¼
1
2

X
m;n

ðTLT
m TTL

n þ TTL
m TLT

n Þj�jm�nj; ð92aÞ

ST �
X
m;n

kT

kL


 �jm�nj

TTL
m TLT

n ¼
1
2

X
m;n

ðTLT
m TTL

n þ TTL
m TLT

n Þjjm�nj; ð92bÞ
where j ¼ kT=kL > 1. Although it might appear that the series for ST is divergent, it is not. Based on the original result of Mul-
ler [23] for the Helmholtz equation, later extended to elasticity [7], it follows that the far-field scattering functions are nec-
essarily entire functions of the angular argument h considered as a complex variable. In the present context this implies that
the Fourier coefficients of the far-field scattering functions decay in such a manner that ST series is convergent for any finite
j. This analytic property is apparent by considering, for example, the far-field scattering functions for a circular object.

Our main result is that the two sums can be simplified as follows:

Lemma 1
SL ¼
ðj2 � 1Þ

2p

Z p

0

dhGLTðhÞ
1� 2j cos hþ j2 ; ð93Þ
and
SL þ ST ¼ GLTði log jÞ ¼ lim
N!1

1
p

Z p

0
dhGLTðhÞ

j cosðN � 1Þh� cos Nh
1� 2j cos hþ j2


 �
jN

� �
; ð94Þ
where
GLTðhÞ ¼ f LTðhÞf TLð�hÞ þ f TLðhÞf LTð�hÞ ¼ GLTð�hÞ: ð95Þ
Note that the limit in (94) does not commute with the integral. This is a consequence of the properties of the far-field
scattering functions mentioned before.

Proof. Starting from the definition in Eq. (95) and using Eq. (14), we have
GLTðhÞ ¼
X
m;n

TLT
m TTL

n þ TTL
m TLT

n

h i
cosðm� nÞh: ð96Þ
Consider the function
gðhÞ ¼
X

n

j�jnj cos nh () j�jnj ¼ 1
p

Z p

0
dhgðhÞ cos nh: ð97Þ
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Hence, Eq. (96) implies that
SL ¼
1

2p

Z p

0
dhgðhÞGLTðhÞ: ð98Þ
Performing the sum (97)1 yields
gðhÞ ¼ j2 � 1
1� 2j cos hþ j2 ; ð99Þ
from which the result (93) follows. It remains to prove (94).
The first identity in (94) follows directly from (96) and
GLTði log jÞ ¼ 1
2

X
m;n

TLT
m TTL

n þ TTL
m TLT

n

h i
ðjm�n þ jn�mÞ: ð100Þ
Regarding the second identity in (94), note that replacing j with j�1 in Eq. (97)1 gives a divergent series. However, the
following finite series is perfectly well defined for any positive integer N,
hNðhÞ ¼
X
jnj<N

jjnj cos nh () jjnj ¼ 1
p

Z p

0
dhhNðhÞ cos nh; jnj < N; ð101Þ
and therefore
X
m;n

jm�nj<N

1
2

TLT
m TTL

n þ TTL
m TLT

n

� �
jjm�nj ¼ 1

2p

Z p

0
dhhNðhÞGLTðhÞ: ð102Þ
Using 1þ jþ j2 þ . . .þ jN�1 ¼ ð1� jNÞ=ð1� jÞ gives
hNðhÞ ¼ �gðhÞ þ 2jN j cosðN � 1Þh� cos Nh
1� 2j cos hþ j2


 �
; ð103Þ
which implies the second identity in (94). The integral formula (94) provides a formal procedure to evaluate the far-field
scattering functions at an argument that is imaginary, such as �i log j in this case. In practice, it is advisable to use the Fou-
rier series, or perhaps a truncated version of the same if there is any numerical noise present. This is equivalent to a singular
value decomposition (SVD) of the far-field scattering operators, which is always necessary in any inverse scattering
algorithm. h

Combining the simplified expressions for SL and ST with the expansion (65), we arrive at our main results:

Theorem 1. The long wavelength limit of the low concentration expansions for the quasi-P and -SV wavenumbers are, to Oðn2
0Þ,
n2 ¼ k2
L � 4in0f LLð0Þ þ 8n2

0

pk2
L

Z 2p

0
dh cot

h
2


 �
d

dh
½f LLðhÞf LLð�hÞ� þ 8n2

0

p

Z p

0
dh

f LTðhÞf TLð�hÞ þ f TLðhÞf LTð�hÞ
k2

T � 2kLkT cos hþ k2
L

; ð104Þ
and
n0
2 ¼ k2

T � 4in0f TTð0Þ þ 8n2
0

pk2
T

Z 2p

0
dh cot

h
2


 �
d

dh
½f TTðhÞf TTð�hÞ� þ 8n2

0

p

Z p

0
dh

f LTðhÞf TLð�hÞ þ f TLðhÞf LTð�hÞ
k2

T � 2kLkT cos hþ k2
L

� 16n2
0

k2
T � k2

L

½f LTði log jÞf TLð�i log jÞ þ f TLði log jÞf LTð�i log jÞ�: ð105Þ
These formulae generalize the identity found by Linton and Martin [18] for acoustic (scalar) waves. The acoustic equation
can be derived from (104) by eliminating the SV wave contributions associated with the index T, giving
n2 ¼ k2
L � 4in0f LLð0Þ þ 8n2

0

pk2
L

Z 2p

0
dh cot

h
2


 �
d

dh
½f LLðhÞf LLð�hÞ�: ð106Þ
References

[1] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1974.
[2] A.R. Aguiar, Y.C. Angel, Antiplane coherent scattering from a slab containing a random distribution of cavities, Proc. Roy. Soc. A 456 (2004) (2000)

2883–2909.
[3] C. Aristégui, Y.C. Angel, New results for isotropic point scatterers: foldy revisited, Wave Motion 36 (2002) 383–399.
[4] C. Aristégui, Y.C. Angel, Effective material properties for shear-horizontal acoustic waves in fiber composites, Phys. Rev. E 75 (5) (2007) 056607.
[5] P.G.J. Bussink, P.L. Iske, J. Oortwijn, G.L.M.M. Verbist, Self-consistent analysis of elastic wave propagation in two dimensional matrix-inclusion

composites, J. Mech. Phys. Solids 43 (10) (1995) 1673–1690.



J.-M. Conoir, A.N. Norris / Wave Motion 47 (2010) 183–197 197
[6] J.F. Chaix, V. Garnier, G. Corneloup, Ultrasonic wave propagation in heterogeneous solid media: theoretical analysis and experimental validation,
Ultrasonics 44 (2006) 200–210.

[7] A. Charalambopoulos, K. Kiriaki, Characterization of functions as radiation patterns in linear elasticity, Math. Meth. Appl. Sci. 15 (8) (1992) 547–558.
[8] A. Derode, V. Mamou, A. Tourin, Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium, Phys. Rev. E

74 (2006) 036606.
[9] A.J. Devaney, Multiple scattering for discrete, elastic random media, J. Acoust. Soc. Am. 21 (11) (1980) 2603–2611.

[10] J.G. Fikioris, P.C. Waterman, Multiple scattering of waves. II. Hole corrections in the scalar case, J. Math. Phys. 5 (10) (1964) 1413–1420.
[11] L.L. Foldy, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev. 67 (1945) 107–119.
[12] Z. Hashin, W.R. Rosen, The elastic moduli of fiber-reinforced materials, J. Appl. Mech. ASME 31 (1964) 223–232.
[13] S.K. Kanaun, V.M. Levin, F.J. Sabina, Propagation of elastic waves in composites with random set of spherical inclusions (effective medium approach),

Wave Motion 40 (2004) 69–88.
[14] F.C. Karal, J.B. Keller, Elastic electromagnetic and other waves in random medium, J. Math. Phys. 5 (10) (1964) 537–547.
[15] J.Y. Kim, J.G. Ih, B.H. Lee, Dispersion of elastic waves in random particulate composites, J. Acoust. Soc. Am. 97 (3) (1995) 1380–1388.
[16] M. Lax, Multiple scattering of waves. II. The effective field in dense systems, Phys. Rev. 85 (4) (1952) 621–629.
[17] P.Y. Le Bas, F. Luppé, J.M. Conoir, Reflection and transmission by randomly spaced elastic cylinders in a fluid slab-like region, J. Acoust. Soc. Am. 117 (3)

(2005) 1088–1097.
[18] C.M. Linton, P.A. Martin, Multiple scattering by random configurations of circular cylinders: second-order corrections for the effective wavenumber, J.

Acoust. Soc. Am. 117 (6) (2005) 3413–3423.
[19] C.M. Linton, P.A. Martin, Multiple scattering by multiple spheres: a new proof of the lloyd-berry formula for the effective wavenumber, SIAM J. Appl.

Math. 66 (5) (2006) 1649–1668.
[20] P. Lloyd, M.V. Berry, Wave propagation through an assembly of spheres. iv. Relation between different scattering theories, Proc. Phys. Soc. Lond. 91

(1967) 678–688.
[21] P.A. Martin, Multiple Scattering: Interaction of Time-harmonic Waves with N Obstacles, Cambridge, New York, 2006.
[22] P.A. Martin, A. Maurel, Multiple scattering by random configurations of circular cylinders: weak scattering without closure assumptions, Wave Motion

45 (2008) 865–880.
[23] C. Muller, Radiation patterns and radiation fields, J. Rat. Mech. Anal. 4 (1955) 235–246.
[24] W.J. Parnell, I.D. Abrahams, Homogenization for wave propagation in periodic-reinforced media with complex microstructure. I-Theory, J. Mech. Phys.

Solids 56 (2008) 2521–2540.
[25] S. Robert, J.M. Conoir, Reflection and transmission process from a slab-like region containing a random distribution of cylindrical scatterers in an

elastic matrix, Acta Acust Unit Acust 93 (1) (2007) 1–12.
[26] F.J. Sabina, J.R. Willis, A simple self-consistent analysis of wave propagation in particulate composites, Wave Motion 10 (1988) 127–142.
[27] F.E. Stanke, G.S. Kino, A unified theory for elastic wave propagation in polycrystalline materials, J. Acoust. Soc. Am. 75 (5) (1983) 665–681.
[28] L. Tsang, J.A. Kong, Scattering of Electromagnetic Waves – Advanced Topics, John Wiley & Sons, 2001.
[29] V. Twersky, On scattering of waves by random distributions. I. Free scatterers formalism, J. Math. Phys. 3 (4) (1962) 700–715.
[30] V.K. Varadan, Y. Ma, V.V. Varadan, Multiple scattering of compressional and shear waves by fiber-reinforced composite materials, J. Acoust. Soc. Am. 80

(1) (1986) 333–339.
[31] V.K. Varadan, V.V. Varadan, Acoustic Electromagnetic and Elastic Waves Scattering-Focused on the T-Matrix Approach, Pergamon Press, New-York,

1980.
[32] N.D. Veksler, J.L. Izbicki, J.M. Conoir, Elastic wave scattering by a cylindrical shell, Wave Motion (1999).
[33] P.C. Waterman, R. Truell, Multiple scattering of waves, J. Math. Phys. 2 (4) (1961) 512–537.
[34] R. Yang, A.K. Mal, Multiple scattering of elastic waves in a fiber-reinforced composite, J. Mech. Phys. Solids 42 (1994) 1945–1968.


	Effective wavenumbers and reflection coefficients for an elastic  medium containing random configurations of cylindrical scatterers
	Introduction
	Fikioris and Waterman theory for elastic media
	Multiple scattering equations
	Modal equations
	The generalized Fikioris and Waterman equations
	The extinction theorem for elastic waves
	The Waterman and Truell method


	Matrix form of the modal equations
	Asymptotic solutions of the wavenumber equation
	Preliminary observations
	Asymptotic expansion at low concentrations
	O( {\epsilon}^{0})
	 {\rm O} ( {\epsilon}^{1})
	 {\rm O} ( {\epsilon}^{2})
	Wavenumber expansion to  {\rm O} ( {n}_{0}^{2})

	Long wavelength limit
	High {k}_{L,T}b limit and the Waterman and Truell formula for elastic media

	Reflection coefficients
	Reflection coefficients for an incident P wave
	Asymptotic approximation

	Generalization of the Linton and Martin formula
	References


