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similar to the one proposed by Fikioris and Waterman for scalar waves. The characteristic
equation, the solution of which yields the effective wave numbers of coherent elastic
waves, is obtained in an explicit form without the use of any renormalisation methods.
Two approximations are considered. First, formulae are derived for the effective wave
numbers in a dilute random distribution of identical scatterers. These equations generalize
the formula obtained by Linton and Martin for scalar coherent waves. Second, the high fre-
quency approximation is compared with the Waterman and Truell approach derived here
for elastic waves. The Fikioris and Waterman approach, in contrast with Waterman and
Truell’s method, shows that P and SV waves are coupled even at relatively low concentra-
tion of scatterers. Simple expressions for the reflected coefficients of P and SV waves inci-
dent on the interface of the half-space containing randomly distributed inclusions are also
derived. These expressions depend on frequency, concentration of scatterers, and the two
effective wave numbers of the coherent waves propagating in the elastic multiple scatter-
ing medium.

Keywords:
Multiple scattering
Elastic coherent waves

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of elastic wave propagation in heterogeneous solids containing distributions of inhomogenei-
ties. The results have application in geophysical exploration and ultrasonic evaluation of composite materials or biological
tissues. Typically, the inhomogeneities can be hard grains, inclusions, micro-cracks, fibers, pores, or contrast agents, for in-
stance. The present work is a contribution in this direction.

The main difficulty is the quantitative description of interactions between many scatterers distributed throughout the
heterogeneous solid. In the case of random sets of scatterers this problem cannot be solved exactly, except in very particular
cases [25], and in general only approximate solutions are available. These are all based on hypotheses that reduce the many
scatterer problem to a problem for one scatterer or one cell. In this way we may focus attention on the coherent wave prop-
agation, which is the statistical average of the dynamics corresponding to all possible configurations of the scatterers. It is
well-known that the coherent motion makes each heterogeneous medium appear as a dissipative homogeneous material,
and propagation is governed by a complex effective wave number that is frequency dependent. The real part of the wave
number is related to the velocity, and the imaginary part represents the attenuation.

* Corresponding author.
E-mail addresses: conoir@lmm.jussieu.fr (J.-M. Conoir), norris@rutgers.edu (A.N. Norris).

0165-2125/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.wavemoti.2009.09.004


http://dx.doi.org/10.1016/j.wavemoti.2009.09.004
mailto:conoir@lmm.jussieu.fr
mailto:norris@rutgers.edu
http://www.sciencedirect.com/science/journal/01652125
http://www.elsevier.com/locate/wavemoti

184 J.-M. Conoir, A.N. Norris/ Wave Motion 47 (2010) 183-197

Various methods for the analysis of the multiple scattering of elastic waves have been considered in the literature. These
include: perturbation methods [14,27]; self consistent methods, which are analogous to the coherent potential approxima-
tion [9,15]; and effective medium methods based on self consistent schemes [26,5,13]. The method of asymptotic homoge-
nization [24] was recently considered in the context of fiber-reinforced media where the fibers are arranged on a periodic
lattice. All of these approaches have their own advantages and disadvantages.

The method developed here starts from an explicit multiple scattering formulation in which the field scattered from any
particular scatterer is expressed as a multipole (far-field) expansion. In the case of scalar waves, this is a classical topic with a
large literature. The method was initiated by Foldy for studying the multiple scattering of isotropic point scatterers [11]. The
quasi-crystalline approximation (QCA) was subsequently introduced by Lax in order to take into account double scattering
[16]. With the use of the QCA, Waterman and Truell derived an expression for the effective wave number of coherent waves
that depends on the far-field scattering properties of a single scatterer, in both the forward and backward directions [33].
Waterman and Truell’s approach, like that of Twersky [29] which is based on the Foldy’s approximation, is known to be valid
only for dilute distributions of scatterers. Not long after, Fikioris and Waterman introduced the “hole correction” that allows
consideration of higher concentrations of anisotropic finite-size scatterers [10]. Anisotropy refers here to scattering proper-
ties that depend on angular orientation, as illustrated for example in a polar radiation diagram. The present approach is
based on multipole expansions, and can therefore handle scatterers with non-circular or non spherical shapes. The T-matrix
method provides a convenient tool to calculate multipole expansions [31].

Numerous investigators have attempted to improve on the original theory [11,33,10] or extend its range of applicability.
Recently, Aristégui and Angel [3] showed that Foldy’s method also yields predictions of the reflection and transmission of
scalar waves by a random distribution of point or line scatterers contained within a slab. Similarly, an extension of Fikioris
and Waterman'’s formalism was developed by Le Bas et al. [17] in order to describe both the reflection and transmission from
a slab-fluid region in which elastic cylindrical scatterers are randomly spaced. They show in particular that two different
coherent waves can propagate in the fluid slab. Starting from Fikioris and Waterman’s approach, Linton and Martin [18]
obtained the two-dimensional counterpart of Lloyd and Berry’s effective wave number [20,19], taking into account the hole
correction and the boundary effect. In the case of immersed fluid cylinders with a sound-speed that is close to that of the
surrounding fluid, Martin and Maurel [22] show that Linton and Martin’s formula [18] can be derived from Lippman-
Schwinger’s equation without use of the QCA, thus providing a link between distinct formalisms based on Green functions
and multipole expansions. Shear-horizontal elastic waves (SH) are also scalar-type waves, and the effective dynamic
properties SH waves in composites made of elastic cylindrical fibers randomly distributed in another elastic solid have been
calculated by Aguiar and Angel [2] and Aristégui and Angel [4]. They show that the effective mass density and the effective
shear stiffness are complex valued and frequency dependent.

In comparison with the numerous studies of the scalar situation, multiple scattering of elastic waves involving both
compressional (P) and shear waves (SV) has received relatively little attention. Varadan et al. [30] and Yang and Mal
[34] have considered this problem using multipole expansions. Their analysis is mainly focused on the low-frequency limit
(Rayleigh limit) which predicts dynamic effective mechanical properties of particulate composites that are in agreement
with Hashin and Rosen’s bounds [12]. The Generalized Self Consistent Method (GSCM) [34] is derived by using a self con-
sistent scheme applied to Waterman and Truell’s formula [33]. However, this formula, which is valid for scalar waves, is
applied to P and SV waves separately [34], and mode conversions between P and SV waves are therefore neglected. In
contrast to the GSCM, the theory developed in [30] takes mode conversions into account, but the equations that involve
P and SV waves are uncoupled by invoking additional hypotheses above and beyond those for the QCA used in most of the
papers previously cited. This is not necessary and it can be avoided by ensuring that the equations faithfully and accu-
rately describe the coupling between the P and SV waves, as we do in this paper. More precisely, we derive equations
for P and SV waves in the spirit of the paper by Fikioris and Waterman [10], and effective wave numbers are then obtained
in the limit as the scatterer size tends to zero. From this point of view, our results can be considered as a generalization of
the work of Linton and Martin [18] for scalar waves to the elastic case. It is shown here that the effective wave numbers,
which are predominantly P or SV waves at low concentration of scatterers, depend upon the four far-field scattering func-
tions, including those related to mode conversions. An advantage of our method is that it is valid not only at low-fre-
quency but also at higher frequencies. For this reason we also consider the short-wave limit in some detail. Also, we
assume that the scatterers are located in a semi infinite region, a configuration that has received little attention. This al-
lows us to determine the four reflection coefficients related to the solid-solid interface, both in general and in the small
concentration and long wavelength limit.

The outline of the paper is as follows. Section 2 contains a derivation of the coupled equations for elastic waves. This is
based on the multiple scattering theory of Fikioris and Waterman [10] for acoustic waves. In Section 3 we reformulate the
infinite system of equations to derive a single equation for the wavenumber. We present in Section 4 a systematic solution
of the coupled equations using asymptotic expansions in the concentration. This generalizes the theory of Linton and Mar-
tin [18,19]. The high frequency limit is also derived and compared to the Waterman and Truell approach. Section 5 is de-
voted to the calculation of reflection coefficients at the interface of the half-space enclosing the random distribution of
scatterers. Asymptotic approximations are derived for the reflection coefficients that are valid in the low concentration
limit. In Section 6 we derive explicit formulae for low concentration expansions of the effective wavenumbers, formulae
which generalize that of Linton and Martin for the scaler case. We begin with the multiple scattering equations for
elasticity.
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2. Fikioris and Waterman theory for elastic media

The multiple scattering theory of Fikioris and Waterman [10] was derived for acoustic media. Here we develop the theory
to consider multiple scattering from identical scatterers in elastic materials.

2.1. Multiple scattering equations

Suppose that time-harmonic P or SV waves are propagating perpendicular to N parallel cylinders located in an elastic so-
lid and that k; and kr are the wave numbers of the P and SV waves. We assume the Helmholtz decomposition of the displace-
ment in the form

ii=Vyt+V x (y'8,), (1)

where &, is the unit vector parallel to the cylinders and * and " represent potentials for the longitudinal (P) and transverse
(SV) components of the waves. Under the influence of the incident waves % (7) and y},.(F), both L and T scattered waves
WE(F;T) and Yl (7 T,) are generated by the kth scatterer, so that

N

YHE) = Ve () + > Ws(Ti T, (2a)
k=1
N

T(F) = Yine(1) + D _Wi(FiTi). (2b)

k=1

Here, the first vector argument 7 specifies the field point of evaluation, while 7, is the location of the kth scatterer. The scat-
ters are assumed to be identical in composition and orientation and the properties of a single scatterer are assumed to be
known, so that a rule is available that relates the scattered waves (7 7) and the exciting fields y(r;7) acting on the
kth scatterer (o = L, T). This rule defines a linear scattering operator T(7) by the relations [31]

Ve ) = THFOWE(F i) + THFOWE (T T, (3a)
s (i) = T (P T + T (Fvp (T ), (3b)
and
S | TR T
T(rk) = |:TLT(_,’() T”(Fk :| (4)

If the scatterers are similar but are not all oriented in the same manner then the orientation of scatterers must be as-
sumed to be random. The exciting field acting on the kth scatterer is the sum of the incident waves and the scattered waves
from all scatterers other than the kth. It follows that:

VET,TR) = Uhe () + Y THEWRET) + Y THEWETT), (5a)
j#k j#k

V(T = Vi () + T (B)e (BT + DT (T ). (5b)
j#k Jj#k

Eqgs. 2-5 are the multiple scattering equations that generalize those obtained for the scalar case (cf. Egs. (2.9)-(10) in [33]).
In order to derive the equations governing the coherent motion, we use the method initially developed by Foldy [11] and

Lax [16] to average over all configurations of cylinders. This method is a very well documented [21,28], and it includes as a

special case the quasi-crystalline approximation (QCA). Performing the configurational average transforms Eq. (5) into

(We(T, 1)) = Winc(T) + / dFj n(F. 7)) [T“(ijwé(ﬁfj» + THE)WEET))] (6a)
UEEF)) = Wl + [ B F) [T ) UEE ) + 1T (AR T)) | (6)

In these equations, 7 is the location of one of the cylinders, (y#(7,7;)) (o« = L, T) are the average coherent fields acting on
the jth scatterer, n(#,7;) the conditional number density of scatterers at 7 if a scatterer is known to be at 7}, and the integral is
taken over the whole surface accessible to scatterers. For a uniform and random array of identical cylinders of constant den-
sity no and radius a, the “hole correction” [10] requires

N ) = {no for |F—.Fj\ > b,
0 otherwise,

(7)
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with b > 2a. Generally, b represents the distance of closest approach between centers of adjacent cylinders. Eq. (6) are the
multiple scattering integral equations that generalize the integral equation for acoustic media (cf. Eq. (2.1) in [10]). In the
same way, the average coherent fields are obtained by performing a configurational average on Eq. (2), yielding

W) = Whe(F) + o [ B [THE)WEE.B)) + T G)WEER))], (52
W (E) = WP+ o [ B [T G)EEB) + T B) W F)). (8b)

It should be noted that Eq. (8) are exact if the observation point 7 is not close to the surface of the volume enclosing the
cylinders. Field points at the boundary of the volume require a special treatment, see [18] for details in the acoustic case.

2.2. Modal equations

Our goal in the remainder of this section is to obtain the modal equations, which will be solved in Sections 3 and 4 to give
the effective wave numbers. In the following, cylinders are assumed to be randomly distributed in the half-space defined by
S™ = {x > 0}. The incident wave propagates in the direction of the x-axis, normal to the interface x =0 (7 = (x,¥)):

Vi) = Ae™, o (LT}, ©)

with A, r = 1 or 0 depending on the type of the incident wave considered (P or SV). The incident and the effective potentials
satisfy the Helmholtz equation

VA +ICy* =0, ae{Ll,T}. (10)

In the same way as YL (7, 7)), the effective potentials <¢§T( )> satisfy the Helmholtz equation and are regular functions
at the point 7j, they can therefore be expressed

(Ve (r.15) ZA“ Wa(kepy)e™®), o€ {L,T}, (11)

with g; = 7 —T7j, 0(9;) = arg(p;) and p; = |g;|. As usual with the T-matrix approach [31], the transition operators are defined
by
T (#)(kap;) €™ = T HY (kapy) €7, o, pe {L, T}, (12)

and the corresponding far-field scattering amplitudes of the different interactions are given by

oo : 2 z
op ikaX _ of (1) ino = '(k“r’_) o
TG = ST (e ~ ([ 2 b Dpne, o pe LT, 13)

n

with 7 = (rcos 0, rsin ). The far-field scattering functions f*#(0) are therefore Fourier series with coefficients equal to the
modal scattering amplitudes T?, i.e.,

fy/f ZTW mf)7 o, ﬁ c {L, T} (14)

Modal coefficients T2 can be calculated numerically [31,32]. For circular cylinders, they are the components of the T-ma-
trix and satisfy the symmetry relation T* = T% For non-circular cylinders, they are expressed in terms of the T-matrix com-
ponents that depend on the orientation of the scatterer, so that in general T = T,

Substituting Egs. (11) and (12) into Eq. (6) gives

DDA~ AR k) = ST [ (s )AL H] (e
n

+D T / dFs (B, F1) Ay (F)H (k) e P), (15a)

n st
(L-T). (15b)
The symbol (L < T) means the same equation(s) as the previous one(s) but with the L and T indices permuted. In order to

write series of (15) as a function of the coordinates centered on 7; = (x1,y;), we use the change of variables
0(p;) = 0(—p;) = m with the addition theorem [1]

HY (kypy)e™ =) = 3™ (—1)"elmm0GHD (K, ri1)] (ke )€™, (16)

m

where 7j; =7 — 71, 0(Fj1) = arg(fj;) and rj; = |fj;|. The condition |p+| < |fj;| must hold in order that the waves scattered from
7; are expressed with the use of Eq. (16) in the vicinity of 7;. It then follows that:
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Ay(F) = (-1 prHp/ dFn(F, 7o) Ay (F)H, (ki e )

p

P} / drn(7, 71)Ay, , (F)HY (kurj )@ 4 i"A el (17a)

n+p
(L T). (17b)

We seek coherent waves that propagate in the equivalent homogeneous medium, which consists in assuming that solu-
tions of Eq. (17) may be written in the form

AL(F) = i"ALe T + "BLet' T = {"ALel 1 {"BLel, (18a)
A(F) = 'A<l 4 "Ble T = {"Alel® 1 i"B] el (18b)
Here & = (£,0) and & = (¢, 0) are the effective wave vectors of coherent waves that propagate in the direction of the x-axis,
and the coefficients Aﬁ and Bfl are at this stage unknown. Here, two coherent waves with ¢ and ¢ as wave numbers are as-
sumed to propagate, which is a natural hypothesis for scarce concentrations of scatterers. In such situations the homoge-
neous medium looks like an elastic medium in which the two waves that propagate are predominantly P or SV waves

(see Section 4.1). In the following, the concentration is supposed to be low enough that only two coherent waves propagate.
It is worthwhile to note that a search for solutions of Eq. (17) in the following form:

AL (1—;]) HA’L1 elEFJ _ l'nAl’-lei..ij7 (19&)
Al(F) = I"ATei® T = {"AT el (19b)
leads to an ill-conditioned problem (the number of unknowns does not equal the number of equations available). Solutions

of the form (19) were considered in [30], although in the context of uncoupled integral equations.
Inserting the ansatz (18) into Eq. (17) yields

AL+ e — At NPT AL (E) + TH B L (&) + T AL I (E) + i B 1 ()] (20a)

(L T). ' (20b)
with

) = | drin(, FOH, (ke )e?00els, - (e (8, ¢}, ae (LT} (21

Taking the hole correction (7) into account, the integral (21) may be written
I(0) = nge®™ /5 A1 gy (karn )€, Ce (&8}, ae{L,T}, (22)
b

where S, is the entirety of S* with the exclusion of the hole |};| < b centered at 7y, and ¢, are the cylindrical wave functions
with respect to the same origin, with

bpkarin) = H (kyrn)eP") o€ {L, T} (23)
The integral in Eq. (22) has been previously calculated in [17,18], with the result
2Ny o 2ing . .
Lo = Ny 4 2 _elaxi | e {¢ ¢}, ae{Ll,T} 24
HOE Luzkm e } Cefed) aeflT) (24)
where
N2(C) = Cbj (ch)HSY (k) — kybJ,(CD)HS (kyb), L e {&,&}, ae{L,T}. (25)

As a consequence Eq. (20) become

Aﬁeié"‘ +Bﬁei:”‘1 :ALeikal 4 eft v27'mo2 Z[TLL A TTL AT ]N;(é)+ef5rxl 27ng Z T gl TTL BLp]NzL)(é/)
L p

nipnip T Tnipfnip 2_ 2 nipPnip + Inip
L p
i 2in i 2in
ik x 0 LL L TL T il x 0 LL plL TL pT
+ et r(f — I{T) zp: [THPA”H; + Tn+pAn+p] + et —kL( e — k) zp:[TnerBmp + Tn+an+p} (26a)

(L =T). (26b)
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2.2.1. The generalized Fikioris and Waterman equations
Eq. (26) are satisfied whatever the value of x; if the coefficients of e, e’ ekt and e are all zero. Equating the
coefficients of e and e“™ to zero gives what is known as the Lorentz-Lorenz law. We obtain

27n
A - Ea ,22 S (Tia+ TIA N, () =0, (L=T), (27a)
> — Rl op
27n »
Bi- g L (BB + T BN, =0 LT (27b)
—RLop

Eq. (27) are the desired modal equations that generalize those of Fikioris and Waterman. They provide two identical

homogeneous systems of linear algebraic equations which involve either the unknowns {A;,A;} with ¢ or {B;,BZ} with
&. The existence of nontrivial solutions of the homogeneous system determines the effective wave numbers ¢ and &. This

is the goal of the next section.

2.2.2. The extinction theorem for elastic waves
Equating the coefficients of e*1 and el in (26) to zero corresponds to what is known as the extinction theorem. In this
case it becomes

2ing L 5L TL 5T 2ing ILpL TLpT]| _
At kp(é—kp) ; [Tp Ap +T, AP] + k(& —ky) Xp: {Tp B+ T, Bp} =0, (282)

L<T). (28b)

The extinction theorem is useful for calculating reflection coefficients for the waves reflected at the interface x = 0, see
Section 5.

2.2.3. The Waterman and Truell method

Waterman and Truell’s approach is an alternative method relevant at very low concentration of cylinders [3] and simpler
than the more general approach of Fikioris and Waterman represented by the system (27). The Waterman and Truell approx-
imation assumes a pair correlation function with the following property [33,18]:

ng for |x — x| > 7,

29
0 otherwise, (29)

n(F,7y) = {

for n — 0 with ¥ = (x,y) and 7, = (x1,¥;). In this limit Eq. (21) are improper integrals in the sense of Cauchy principal value,
which may be calculated as in [17,18]. We find

L 7@ LL pL TL AT 1 _ (=" _
A Zp: (TyA, + Ty AY) {é e (30a)
L 20g LLpl | TTLpT T D" _
BT E,,: (3B + T,'B;) L e | = (30b)
(L T), (300)

which are the modal equations that generalize those of Waterman and Truell, Eq. (27) in [33]. The extinction theorem (28) is
unchanged.

3. Matrix form of the modal equations

In this section we focus on reformulating either of the identical systems of Eq. (27) with the objective of determining a
single scalar equation for the wavenumbers. With no loss in generality we consider the first system, which in full is as
follows:

A, - ;nozz > (ThA + THA NG, (&) =0, (31a)
= "L p
2Ny
A - ﬁ 3 (TffAf, + T}]A;)Nﬁ,p(g) -0. (31b)
—BRr p

The goal is a simplified equation for the wavenumbers ¢ and &'
We begin by rewriting the doubly infinite set of equations in matrix form. The unknown amplitudes are represented by
vectors a,, defined by a, = (..., A%, A3, AY,...)", a € {L, T}, so that the amplitude Aj is in the pth position of the infinitely
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long column vector. Introduce the constant vector e = (..., 1,1, 1,...)", and the infinite square matrices Q* and T* with
elements

L EN% (O -1
amn = %7 Tﬁ{; = Tz/fémna %ﬁ € {L, T} (32)
o

Then Eq. (31) can be expressed

- t
a—¢€ <Q‘ + i/i) (T"a, + T"ar) = 0, (33a)
L
=7 ee\ . 1T
ar—€(Q +y— (T"a,+T ar) =0, (33b)
T
where the scalars € and y, are
€ = —idny, (34a)
Vo=&-l, ac{lT} (34b)
The pair of Eq. (33) are combined to form a single equation involving doubly infinite vectors and matrices
t t
{J-e@T-eﬁT—eﬁT}azo, (35)
Y Yr

with vectors

o) () ()

and matrices

10 — QL o
g = = |, T=
[0 1}7 Q {0 QT}
The system (35) can be replaced by an equivalent equation of simpler form. In order to achieve this we multiply from the
left by T'/? and rearrange the terms,

€ t € t
g —eQ ——ff, ——ff tu=0, 38
{ Q YLLL yTTT} (38)

TLL TTL

™ 7| (37)

where the doubly infinite vectors are

f, =T, f;=T"e;, u=T"a, (39)
and the sole matrix, apart from the identity, is

Q- T]/ZQTI 2 (40)

The wavenumbers must clearly satisfy the condition that det P = 0 where P is the infinite matrix premultiplying u in Eq.
(38). This approach was adopted by Varadan et al. [30], although the infinite system of equations they considered are not the
same as the present system (39). While det P = 0 is a sufficient condition for determining the coherent wavenumbers, it is
not always necessary, particularly in the limit of small concentration, which is equivalent to the limit of small €. We now
develop a necessary condition that is far simpler in form, and which, as we note below in Section 4.1, is both necessary
and sufficient for small €. We first rewrite (38) in the equivalent form

{JE(JEQ)] (ﬂﬁfﬁ??) }u—O. (41)
Taking the inner product of (41) with f; and f; yields a system of two equations for the scalar quantities f,u, o € {L, T},
TR () -0) )
—efr 1-efr |\ fiu 0
The four matrix elements are given by
My = £,(5 —€Q)'f;, o e {LT}. (43)

Taking the determinant of the 2 x 2 matrix yields the desired equation for ¢:

(y,_ — GMLL)(yT — EMTr) — EZMLTMT[_ = 07 (44)



190 J.-M. Conoir, A.N. Norris/ Wave Motion 47 (2010) 183-197
or more explicitly
(52 - eMLL) (52 - eMn> — €M;;My, = 0. (45)

Eq. (45) is the fundamental equation for determining the coherent wavenumbers.

4. Asymptotic solutions of the wavenumber equation
4.1. Preliminary observations
Before considering solutions to Eq. (45) we note that the matrix elements can be expressed

My = TV (7 — €T QT2) ' T 2e; = e [T ' — Q] 'es, o, f € {L.T}. (46)
This indicates that the elements can be calculated without evaluation of the square root matrix T2, The elements My;
depend upon ¢, but the form of the wavenumber Eq. (45) suggests a natural asymptotic expansion in the parameter €. Thus,
using (.# — €Q) ' =.# + €Q + €2Q? + - - -, Eq. (43) implies
My = .85 + f,Qf, + €2£,Q°F; + -
=e'Te; + ce! TQTe; + %€/ TQTQTe; +---, o, < {L,T}. (47)

Based on this expansion, the modal equation Eq. (45) has the following leading order expansion in ny:

1+ y241n0 , 24m0 .
¢ = kL & - kT

This indicates that even at low concentration the effective wave numbers which are solutions of Eq. (44) depend on a
coupling between P and SV waves. It should also be noted that Eq. (48) is an algebraic equation of order 2 with regard to
&2, Consequently, as expected at low concentration, there are two solutions that propagate in the direction of the x-axis
(the other ones propagate in the opposite direction).

Satisfaction of the single Eq. (45) is clearly a necessary condition for the infinite system of homogeneous Eq. (35). An alter-
native procedure to solving the latter for small € is to simultaneously seek both the wavenumber ¢ and the null vector a as
asymptotic series in €. We do not present the details here, but it can be shown that the leading order solution yields
a=e,+0(¢) for o = L or T. This indicates that the effective wave solution can be characterized as either a quasi-L or a qua-
si-T wave. Furthermore, it may be shown that the solution for the wavenumber obtained by proceeding with the asymptotic
series in € is equivalent to that of the simplified Eq. (45). Hence, the latter is both necessary and sufficient for developing the
asymptotic wavenumber solution.

The remainder of this section considers asymptotic expansions of the solutions, valid in different limits: low concentra-
tion, low-frequency, and high frequency, respectively. We begin with the small concentration expansion.

FH0) + fMo)=o. (48)

4.2. Asymptotic expansion at low concentrations

Rather than working with the wavenumber directly it is more convenient to expand the solutions of Eq. (44) about one of
the two leading order solutions y, = 0, o € {L,T}. We choose to expand about the P-wave root y;, = 0, although all of the
results below apply to the other solution under the interchange L < T. At low concentration |€| < 1 and we therefore assume
a formal asymptotic expansion in € as follows:

=+ ey + ey (49)
Substituting y, from (49) into Eq. (44) and noting that y; =y, + kf - k%, we obtain
(y{” ~My+ey? + ey + .. ) (kf — Kk +e" — M) + €y + .. ) — €MtMq = 0. (50)

The coefficients in the expansion (49) follow by taking derivatives of Eq. (50) with respect to € at € = 0.

4.2.1. O(€%)
The leading order term is found by setting € = 0, yielding
i =Mul o =0. (51)
Hence,

¥ = eTe = f1(0). (52)
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4.2.2. O(€")
At the next order Eq. (50) implies

dM
(kf - k%) (y;z) - deu 0) —MitMn|_o = 0. (53)
€=l

The derivative can be found using the expansion (47), resulting in

— — eT"eeT e
W =eT'Q. T e +eT'Q'|,  Te - ————— (54)
ky — ki
The quantities Q" and Q7 in (54) are evaluated at ¢ = k;. Using the definition of Q" in Eq. (32) we have
y(z) — e'Tl LTLLe n (, _ 1 I ) z-I-TLl(JT(kL)'I-LTe7 (55)
where the square matrices N*, Q% and for later use, Q%, are defined
Nryrm(i) = N?n—n(é% Qg = Qi(ki)? Qg, = 61’(,<“)7 LaS {L~ T} (56)
Expanding the function Nj(¢) for small (¢ — k) it is straightforward to derive
Qi =D 1 (ks), Qi = Dy (ks), (57)
where
in ; /
DY (k) =~ % [((kb) —p*)J,(kb)H" (kb) + (kb)*J;,(kb)H\" (kb)], (58a)
2
D (k) = %D O k) + ‘; (kg) 1+ i27(kb)*], (kb)H" (kb)} (58b)
4.2.3. 0(€?)
Taking the second derivative of (50) and setting € = 0 yields
d’M dm d
2 g2 3 L @ LL a _a -
(k - 17) (ZyL e EO) +2 {yL i EZJ V" = Ml o) = gcMurMn =0 (59)

The derivatives are again evaluated using the expansion (47). The second derivative requires some care, since the terms
involving Q on the right hand side of (47) are themselves dependent upon €. This is the same as for the acoustic case; in fact,
in the acoustic case only the second derivative terms is needed, all the remaining terms in (59) are unique to the elastic prob-
lem. Thus, using results from the acoustic case we have

10)eTo Te, . I (0 =f*(0))
y = elTQTQTe, + f'1(0)e!TQ'Te, + Weﬁer e\ Te;
1 _ _
R |(elTer) e/ TQTe, + (e{Te,) e{TQTe; |, (60)

where the doubly infinite square matrices Q and Q' are evaluated at ¢ = k;. Higher order terms in the expansion (49) can be
determined using the same procedure.

4.2.4. Wavenumber expansion to O(n2)
Combining the above expressions for yf) and yf). the quasi-longitudinal wavenumber expansion up to second order in
the concentration is

&=k +ding+dsn + ..., (61)
where
d; = f4if“( 0), (62a)
d: = B 16 5~ po) yyTiTH — 81” 2 SN (kT T (62b)
L mn T p.a

The third order term follows in a straightforward manner from yf') but is too long to warrant including here. The expan-
sion for the quasi-transverse wavenumber follows by the interchange L < T.
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4.3. Long wavelength limit

The long wavelength regime corresponds to small k; rb. As k,b — 0 we have

o 2 /¢ [Pl

Ny (&) ~ o (E) , ae{L, T} (63)
In the same limit, it follows from its definition in Egs. (32) and (56) that the elements of the matrix Q% become

Qi = 5 m 1. (64)
The long wavelength limit of the low concentration expansion (61) becomes, up to O(n3),

&=k +dkng+ond+..., (65)

where
ot = —4if"(0), (66a)
m-n
S S menit - 1 S () (66D

Note that the expansion for the wavenumber is independent of b in this limit. Again, the quasi-transverse wavenumber
expansion follows from the interchange L < T.

4.4. High k; rb limit and the Waterman and Truell formula for elastic media

As mentioned in the Introduction, the method we have developed is also valid at high frequency. In the following it is
assumed that k;rb — oo. This means either the frequency increases, i.e. k. ra — co with b = O(1), or the separation length
increases, b — oo with k;ra = O(1). The high frequency limit k; ra — oo corresponds to wavelengths shorter than the radius
a of cylinders. This situation has been studied in [6] which deals with ultrasonic characterization of thermal damage in con-
crete. However, since b can be related to the concentration ¢ (0 < ¢ < 1) of cylinders [34] by

nema®  a?
- — T
nomb®  b?

it follows that the limit b — oo with k; ra = O(1) corresponds to a dilute medium (c — 0). This is one reason why it is of inter-
est to compare the high k; rb limit to the Waterman and Truell approach.
In the limit as k. b — oo the leading order asymptotic approximation of N (&) is [1]

(67)

ae  — 1 ks » o aich | £\ @—ich] mikyb _
N3(&) =~ o\ [ U1 =€) € ik + e e, ar= (LT}, (68)

It follows that the coupled systems of infinite equations (31) become in this limit

Ay + P+ (-1)"Qr =0, (69a)
(LT), (69Db)
with
Pir =P (ToAs + Ty A, (70a)
p
Qr=Q Y (1P (T)A, + T)A)), (70b)
p
(L—T), (70c)
and
i(ky—&)b i(ky+¢)b
P“_Zno kye 0, — 2ny (ks € w= (LT} (71)

Sk \ &k =& Tk \ &k E
The structure of Eq. (69) implies the identities

A=A and Al

n+2

= AT, (72)

Consequently, the problem reduces from calculating an infinite set of unknowns to one with eight unknowns:
Pir, Py, Qur, Qp and Aé‘z satisfying a system of eight homogeneous linear equations. Note that although P;r,...,Qq can
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be expressed in terms of A5, the calculations are simpler with Pz, . ..,Qy considered as unknowns. The first four equations
are obtained by setting n = 0 and n = 1 in Eq. (69). Then, we perform an iteration on Eq. (69) using the identities (72), with
the result

Ay = [ (O)P + (=1)"fH(m)QuIPir — [ ()P + (—1)"f*(0)QL)Qur
= FHO)P + (=)™ (m)Qu)Pr — [ ()P + (=1)"f™M(0)Q]Qn = 0, (73a)
(L~ T). (73b)
Four equations are obtained from Eq. (73) by considering the two possibilities for (—1)", corresponding ton =0and n = 1.

The second set of four equations follow from Eq. (70) combined with the identities (72). Eliminating Ag’z from the eight equa-
tions results in the following four equations for the four unknowns P;r, Py, Q;r, Qry,

(14 f0)P, + fH(m)QuIPur + [1 + fH ()P, + f*(0)Q)Qur + [f™(0)P, + f™()Q, )P,

+ [ (m)P. + f™(0)Q,]Qr = O, (74a)
[1+f*(0)P, — fHH(m)Q,IPur — [1 = f*(m)Py + f4(0)Q.]Qur + [f™(0)PL — ™ (7)QuPr

+[f™(m)PL - f(0)Q,)Qn = 0, (74b)
(Lo T). (74c)

The homogeneous linear system of Eq. (74) has nontrivial solutions if the associated determinant vanishes. Thus, the
modal equation at high frequency is

1+fH0)P,  fH(m)P fMO)P, f™(m)P,
fHmQ,  1+f40)Q, fMmQ, fM0)Q,
fH(0)Pr fmPr 1+fT )Py fT(m)Pr
fTmQer  f7(0)Qr fM(mQr  1+7(0)Qr
The mode converted forward scattering and back-scattering amplitudes, f'7™1(0) and f"'™*(7), respectively, are identically
zero if the fundamental scatterer has sufficient geometrical symmetry. This is the case for circular cylinders, and occurs gen-

erally for cylinders with reflection symmetry about the x-axis. When f7'1(0) = fT'™ (1) = 0, instead of the determinant of Eq.
(75), the condition for satisfaction of the four Eq. (74) becomes two simpler equations:

[1+fH(O)P[1 +f*(0)Q,] - [f*(m)*PLQ, = O, (76a)

[1+fT(OP[1 +f7(0)Qq] - [ (m)]*PrQr = 0. (76b)

These provide uncoupled modal equations for the P and SV waves, in contrast to what happens with the Fikioris and
Waterman approach.

Starting from Eq. (30) and using the same process as before, we can easily verify that the Waterman and Truell’s modal
equation for elastic media is once again given by Eq. (75) where now P, and Q, ; are defined by

_2m 1 _ 2 1
Tk, kg — & T ik, kg + &7

—

det =0. (75)

o={LT} (77)
So, the modal equation in the limit k; rb — oo is very similar but fundamentally different from that of Waterman and Tru-

ell. For circular cylinders, Eq. (76) combined with (77) are nothing else than the Waterman and Truell formula [33] for acous-
tic waves applied to P and SV waves separately.

5. Reflection coefficients
5.1. Reflection coefficients for an incident P wave
We consider a single type of wave incident on the half-space x > 0, specifically a P wave, so that A, = 1 and Ar = 0. The

fields (" (7)) and (" (7)) in the domain {x < 0} then correspond to the P and SV reflected waves respectively. Consequently,
the reflection coefficients R" and R'" can be defined as follows:

W' (7)) =R" e ™ (x<0), a={LT} (78)
Inserting Eqs. (11) and (18) into Eq. (8), and taking into account Eq. (12), we get
WHE) =m0 Y0P [(TAL + TIA )@ + (T B, + T B 1)) (792)
p
W) =m0 i [(THTA, + TTA (&) + (TY By + Ty B )52, (79b)
p

(L—T), (79¢)
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with (Fj1 = (Xj1,¥51))

L) = noeigx/ drji ¢, (ko )™, (e {& ¢}, ae{l,T} (80)
Xj1>—X
The integrals in Eq. (80) are calculated in [17,18], with the result that
. Zino p
%y — P 20 a-ikax P ) L.T 81
Jy(Q) =17 e Ce (e8], me (LT (81)

and consequently

. LLgL | TLAT  llpl | TILpT

R :@ Z(_l)p T, A, + T4 n T,B,+T,B, (82a)
kL ? é+kL §,+k1_ ’
. LT AL | TT 4T  LTplL , TITRT

R — 2ing Z(fl)p A +T, 4 I L, B+T, B, (82b)
kr 4 Etkr & +kr ’

As expected, R and R"" depend on the infinite sets of coefficients A;" and B;". These coefficients follow from Eq. (28),
which we rewrite in matrix format:

(é“rkl_) ¢ (fl-i-kL) ¢ . -
€ ke, Ta+¢€ 2k, eTb=1 (=A), (83a)
(E+kr) (& +kr) e 0
€ 2kay, e;Ta+ € 2Ky, e;Tb=0 (=Ar), (83b)

where the notation is the same as in Section 3, with the additional quantities b* = (b}, b}),b, = (..., B*,, B, B},...)', and
vy, = & - ki, o € {L, T}. The infinite vectors a and b are null vectors of (35) corresponding to the quasi-P and -SV roots of
Eq. (45), respectively. To be specific, {¢,a} solve (35) and {&,b} satisfy

t t
{J-e@T-eﬂﬁT—eﬁﬁw}b:Q (84)
Vi Vi

which together determine the null vectors up to scalar multiples. Finally, Eq. (83) fix the amplitudes of the null vectors in
terms of the incident wave amplitudes (A; = 1, Ar = 0).

Once the coefficient vectors a and b are determined, the reflection coefficients follow from (82), which can be recast in
matrix form as

ko —¢) (ke = &)
R e =9 atyra e e!JTh, 85a
MwLb" 2kiy; (852)
o (kr=&) (kr —¢&)
=€ 2Ky, eJTa+e€ 2k, e;JTb, (85Db)
where J = diag(...,-1,1,-1,1,...) with J,, = 1. The reflection coefficients R™" and R™ are obtained in the same same way

with A, =0 and Ar =1 in Eq. (83).
5.2. Asymptotic approximation

As in Section 3, we consider the low concentration asymptotic approximation. Starting with the ansatz
a=a% el 4. .. (86a)
b=b"+eb" 4 .., (86b)

and using the result from Section 4 that y, = ce!Te; + O(e?) we find that, to leading order, a® =Ae;. Similarly,
y; = eetTer + O(e?) and hence b"” = Arer = 0. Eq. (85) then become

ft(m

R* = —€ +0(é?), 87a
2 (€9), (87a)

TR il (1)) 2
R = GZkT(kL R +0(€e?). (87b)

The case of SV wave incidence (A, = 0, Ar = 1) can be treated in the same way. Combined with the previous results, we
find that the leading order approximations to the reflection coefficients are:
up 2ino f* ()

2
= m+ O(no), o, pe {L. T} (88)
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This result shows that reflected waves do not depend on the effective wave numbers at this order, and helps explain why
it can be difficult to detect reflected coherent waves. Experiments usually deal with transmitted coherent waves [8].

6. Generalization of the Linton and Martin formula

The aim of this section is to generalize the acoustics formula of Linton and Martin [18] to elasticity. The advantage of the
Linton and Martin formula is that it expresses the wavenumber at low concentration in terms of the far-field scattering func-
tion only, rather than the T-matrix elements. In the present context of elastodynamics, this requires that we express the two
series in (66b) as integrals of the far-field scattering functions. The analogous acoustic problem involves only the first series

n (66b), which was calculated in [18] as

m—n|TETE = = [ df cot L 89
e Sm / (3) o (89)

This integral is, however, convergent only if f''(0) = 0. That is the case for certain scatterers, including circular cylinders,
where Tpr = T;L = f1'(0) = 0. But the formula is not correct for non-circular cylinders and must therefore be modified. The
resolution of this problem is found in the following identity, which follows from Eq. (14):

FHO)f™(=0) =TTy cos(n — m)0. (90)

mn

Using this we derive an identity similar to Eq. (83) of [18] that does not rely upon the assumption T*, = T}'. Thus, instead
of (89) we have the more general identity

Z|m—n\TLLTLL / do cot( >d0[f“ fHE(=-0)). (91)

Lmn

Regarding the second series in (66b) and its dual for the quasi-SV wavenumber, we consider

I<L>|m7n| ot 1 LTATL | TLLTy 5. m—
S =" (L) T = LN (U T gl 922
L ; <kT m*n 2 ;( m*n ) ( )
6 Z kr m-n| o 1 (TUTT 4 TILTET) jeimeni (92b)
T = - kL min — 2 £ m'n mn )

where x = kr/k;. > 1. Although it might appear that the series for Sy is divergent, it is not. Based on the original result of Mul-

ler [23] for the Helmholtz equation, later extended to elasticity [7], it follows that the far-field scattering functions are nec-

essarily entire functions of the angular argument 6 considered as a complex variable. In the present context this implies that

the Fourier coefficients of the far-field scattering functions decay in such a manner that Sr series is convergent for any finite

k. This analytic property is apparent by considering, for example, the far-field scattering functions for a circular object.
Our main result is that the two sums can be simplified as follows:

Lemma 1
-1 doGr(6
/ 1—2KC056+K2’ (93)
and
B Kcos(N —1)0 —cosNO\

SL+Sr=Gyr(ilogk) = llm { / doGr(6 ( 1 2rcos0 12 )K }, (94)
where

Gur(0) = F7(O)f™(=0) + fH(0)f T (-0) = Gur(—0). (95)

Note that the limit in (94) does not commute with the integral. This is a consequence of the properties of the far-field
scattering functions mentioned before.

Proof. Starting from the definition in Eq. (95) and using Eq. (14), we have

Gir(0) =3 [T',-,{ T + Tf,frﬂ cos(m — n)0. (96)

mn

Consider the function

‘l T
)= Kk Mcosnl — k" :—/ dog(0) cos no. 97
80)=>_ 7 ), 408 (97)
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Hence, Eq. (96) implies that
1 /7
Si =57 [ d0(0)Gur(0). (98)

Performing the sum (97); yields
K2 -1

8(0) = 1—-2Kcosf+ k2’ (99)
from which the result (93) follows. It remains to prove (94).
The first identity in (94) follows directly from (96) and
Gurlilogk) =5 Z [Tf,{ T 4 Tﬁfrﬂ (k™" 4 KM, (100)

Regarding the second identity in (94), note that replacing x with x~! in Eq. (97); gives a divergent series. However, the
following finite series is perfectly well defined for any positive integer N,

hy(0) = > k" cosnf = KM = / dohy(0) cosnd, |n| <N, (101)
|n|<N
and therefore
Z 1 (TLTTTL i TTLTLT) pelm=nl _ 1 /n dohy(0)Gr(0) (102)
Lt 2 m®°n m-n 27‘5 0
|[m—n|<N
Using 1 + Kk + 12 +...+ kN1 =(1-«M)/(1 - k) gives

K coS(N —1)0 — cosNO
1—2Kcosf + k2 ’

h(0) = —g(0) + 2KV ( (103)

which implies the second identity in (94). The integral formula (94) provides a formal procedure to evaluate the far-field
scattering functions at an argument that is imaginary, such as +ilog x in this case. In practice, it is advisable to use the Fou-
rier series, or perhaps a truncated version of the same if there is any numerical noise present. This is equivalent to a singular
value decomposition (SVD) of the far-field scattering operators, which is always necessary in any inverse scattering
algorithm. O

Combining the simplified expressions for S; and Sy with the expansion (65), we arrive at our main results:
Theorem 1. The long wavelength limit of the low concentration expansions for the quasi-P and -SV wavenumbers are, to O(n3),

& =k~ aing™(0) + 55 [ g cot( ) ooy + 2 /ndef”((’) L0+ T OF7 (=0) (104)
0 T Jo k

ik . & — 2kikrcos 0+ ki

and

212 gin o). 8T gy 1 BB [ g LT OF =0 + 0 (~0)
=k aing™0)+ 8 | d()cot()dHU (O (~0)] + n/ﬂ oo

k36n0 [f'T(ilog k)f ™ (—ilog k) + f™(ilog x)f' (—ilog K)]. (105)

These formulae generalize the identity found by Linton and Martin [18] for acoustic (scalar) waves. The acoustic equation
can be derived from (104) by eliminating the SV wave contributions associated with the index T, giving

Sn0
k> Jo

&=k~ aingf(0) + 518 [ g cot (5 gg PO -0 (106)
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