Wave Motion 47 (2010) 370-382

Contents lists available at ScienceDirect

Wave Motion

journal homepage: www.elsevier.com/locate/wavemoti

Divergence of logarithm of a unimodular monodromy matrix near
the edges of the Brillouin zone

A.L. Shuvalov®*, A.A. Kutsenko®, A.N. Norris €

2 Université de Bordeaux, CNRS, UMR 5469, Laboratoire de Mécanique Physique, Talence 33405, France
b Mathematics & Mechanics Faculty, St-Petersburg State University, St. Petersburg 198504, Russia
€Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854-8058, USA

ARTICLE INFO ABSTRACT
Artid_e history: A first-order ordinary differential system with a matrix of periodic coefficients
Received 9 June 2009 Q) =Q(y +T) is studied in the context of time-harmonic elastic waves travelling with

Received in revised form 11 November 2009
Accepted 8 December 2009
Available online 14 December 2009

frequency w in a unidirectionally periodic medium, for which case the monodromy matrix
M(w) implies a propagator of the wave field over a period. The main interest to the matrix
logarithm In M(w) is owing to the fact that it yields the ‘effective’ matrix Q.¢(w) of the
dynamic-homogenization method. For the typical case of a unimodular matrix
M(w)(det M = 1), it is established that the components of InM(w) diverge as
(@ — o) "* with @ — w,, where @y is the set of frequencies of the passband/stopband
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Floquet spectrum crossovers at the edges of the first Brillouin zone. The divergence disappears for a homo-
Dynamic homogenization geneous medium. Mathematical and physical aspects of this observation are discussed.
High-contrast structure Explicit analytical examples of Q. () and of its diverging asymptotics at @ — ), are pro-

vided for a simple model of scalar waves in a two-component periodic structure consisting
of identical bilayers or layers in spring-mass-spring contact. The case of high contrast due
to stiff/soft layers or soft springs is elaborated. Special attention in this case is given to the
asymptotics of Q.¢(w) near the first stopband that occurs at the Brillouin-zone edge at
arbitrary low frequency. The link to the quasi-static asymptotics of the same Q¢ () near
the point w = 0 is also elucidated.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The first-order ordinary differential system

QW) = ?”(y) (1)

with a n x n matrix of continuous or piecewise continuous periodic coefficients Q (y) = Q(y + T) is a classical problem arising
in miscellaneous models of applied mathematics and mathematical physics. Its analysis largely relies on the Floquet theorem
asserting that the matricant M(y, 0), which is the fundamental solution of (1) yielding #(y) = M(y, 0)4(0), can be factored into
the product

M(y,0) = L(y) exp(iKy), (2)
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where L(y) = L(y + T)(= M(y,, 0) exp(—iKy,) withy, =y —nT)), L(0) = I (I is the identity matrix), and K is a constant matrix
[1]. By (2), K is defined by the equation

exp(iKT) = M(T,0) = iKT = In M(T,0), 3)

where M(T,0) = M is termed the monodromy matrix (its reference to (T, 0) is dropped hereafter). It can be calculated by a
number of available methods, e.g. using the Peano series of multiple integrals of Q (y), or applying polynomial expansion of
Q(y), or discretizing Q(y). In many problems the system matrix Q(y) is a continuous function of a certain control parameter
w, and hence also M = M(w). At first glance, the matrix logarithm K(w) is well-behaved as long as the logarithm of the eigen-
values g(w) of M(w) is well-behaved. However, it turns out that In M(w) diverges at @ — @, where m, corresponds to a
non-semisimple (not diagonalizable) M(w,) with a degenerate eigenvalue q(w,) whose values, being taken on the same Rie-
mann sheet of In g, are situated on the opposite edges of the cut. This fairly surprising observation seems to have passed
unnoticed in the extensive reference literature on the matrix logarithm. The manner in which such a divergence reveals itself
in the Floquet formalism is discussed in the present paper in the context, where Eq. (1) is associated with time-harmonic
elastic waves travelling at frequency o in unidirectionally (1D) periodic media. Within this context, the system (1) such that
consists of n = 2 equations and hence is equivalent to Hill's equation describes scalar acoustic (or electromagnetic) waves
[2,3]; the cases where (1) consists of n = 4,6, 8, ... equations corresponds to coupled waves in elastic isotropic or anisotropic
media, in piezoelectric or piezomagnetoelectric media, etc. In either of these cases, the monodromy matrix M is often called
the propagator (of the wave field) over the period T.

The matrix logarithm K(w) (3) is a crucial ingredient in the dynamic-homogenization approach. Assuming that exp(iKy)
in the 1D Floquet theorem (2) is a relatively slowly varying function, this approach seeks to replace an exact solution M(y, 0)
by its ‘slow component’ exp(iKy) and hence to replace the actual periodically inhomogeneous material by an ‘homogenized’
medium with spatially constant but frequency dispersive properties described by the ‘effective’ matrix

Qer() = iK(w), (4)

see e.g. [4-6]. Obviously, the matrix Q. also provides (regardless of any assumptions) an exact solution
M(nT,0) = exp(inKT) at the interfaces between the periods. Another aspect of the matrix logarithm K(w) is related to the
Floquet dispersion branches w(K) or K(w). These are determined by the secular equation for M,

detM(e) — q(@)I] =0, (5)
so that the definition g = e yields iK(w)T = In g(w), or else by the formally equivalent secular equation for K,
det[K(w) — K(w)I] = 0. (6)

The Floquet spectrum is commonly defined over the first Brillouin zone (BZ) Re KT € [, 7], which is related to the zeroth
Riemann sheet of the single-valued In g = In |q| + iargq with the cut argq = 7 corresponding to the BZ edges. The fre-
quency intervals, where K is real or complex, are called passbands and stopbands, respectively.

The paper is concerned with the typical case, where M(w) is unimodular (detM = 1) and so the BZ edges contain the pass-
band/stopband crossovers at a set of frequencies w = wy associated with a degenerate pair of eigenvalues q(wo) of M(wy).
According to the background outlined in Section 2, this is the case for a normal propagation across an arbitrary anisotropic
periodic structure or for an arbitrary propagation direction in the presence of appropriately oriented symmetry plane. The
original material of this work consists of two parts, Sections 3 and 4. The first part (Section 3) deals with the problem in gen-
eral. It is shown that the matrix In M(w) = iK()T, and hence Q., must have components diverging as (w — wg) "/ when
 — @y, i.e. when the real Floquet branches tend to the BZ edges or the complex part of +K = 7/T + ilmK tends to zero. The
eigenspectrum of K(w) certainly remains well-behaved for any w infinitesimally close to w,; however, computing the Flo-
quet spectrum K(w) specifically from Eq. (6) may become numerically unstable at o close to w,. A transition is explained
from a weakly inhomogeneous to perfectly homogeneous elastic medium, for which In M(w) certainly does not diverge.
The second part (Section 4) presents detailed analytical examples of Q.4(w) and of its diverging asymptotics for w — wq
for the shear-horizontal wave in a periodic structure composed of piecewise homogeneous bilayers or layers in spring—
mass-spring contact. Particular attention is given to the high-contrast case with either a soft layer in the bilayer or with
a soft spring in the interfacial joint. The interest to this case lies in the fact that the first stopband at the BZ edges and hence
the local divergence of Q. () occurs at low frequency that may in principle be made arbitrarily small. To this end, a link to
the regular asymptotics of the same Q. () near the point @ = 0 is also elucidated. The basic points of the study are sum-
marized in Section 5. Some technical aspects of the derivations of Sections 3 and 4 are detailed in Appendix.

2. Background

Consider elastic waves in a 1D-periodic infinite anisotropic non-absorbing medium without sources. Choose the period-
icity direction as the axis Y and denote the (least) period by T, so that the density and the elasticity tensor satisfy
p(y)=py+T) and c(y) = c(y + T), respectively. Take the axis X in the sagittal plane spanned by Y and by the direction
to the observation point. Applying Fourier transforms in time and in X brings in the frequency @ and wavenumber k, as
the (real) parameters of the problem.
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The equation of motion and the linear stress-strain law may be combined into the system (1) of, generally, six equations.
The periodic matrix of coefficients Q(y), defined through p(y), ¢(y) and w, ky, is pure imaginary and has the Hamiltonian
structure

Q) =TQ YT, (7)

where the superscript T means transpose and T is the matrix with zero diagonal and identity off-diagonal 3 x 3 blocks (see
e.g. [7] for the details).

In the following we deal with the essentially typical case of a medium with at least a single symmetry plane m orthogonal
to the axis X or Y. Then the trace of Q (y) is zero for any y. Therefore, by the Jacobi identity, M(y, 0) is unimodular and hence so
is the monodromy matrix M = M(T, 0), i.e.

det M = 1. 8)

The identities (7) and (8) together ensure that for every eigenvalue g, of M, there is a corresponding eigenvalue g, = 1/q,,
where o, B =1,...,6. This property has been established in [9] for a piecewise constant Q (y) and m L Y; its generalization
for any piecewise continuous Q(y) and for m L X is obvious. Note that no stipulation of any material symmetry is needed if
the wave propagates strictly along the periodicity direction Y (i.e. if k, = 0), which is when (8) is always true. Also note that
the out-of-plane motion with respect to the symmetry plane m L Z of a monoclinic body (which has no other symmetry
planes) can be cast in the form with property (8), see [8].

Let w be a single free dispersion parameter (k, is fixed or expressed through ®). Each pair q4(®) = 1/q,(®) corresponds to
a set of dispersion curves K, (w) = —K;(w) in the BZ Re K, 4T € [—r, 7], which are symmetric about the line K = 0. In view of
(8), the eigenvalues g = 1 and q = —1, occurring, respectively, at the centre and edges of the BZ, are assuredly degenerate. We
are interested in the case g = —1, which is associated with a sequence of passband/stopband crossover points at the BZ
edges, and specifically in the behaviour of the matrix In M = iKT in the vicinity of these points.

3. Divergence of K(») near the BZ edges
3.1. Derivation

Denote by w = wy the frequency, at which some pair of eigenvalue branches ¢, (w) = 1/q,(w) of the monodromy matrix
M(w) falls into two-fold degeneracy q,(wo) = q,(wo) = —1 rendering M(w,) non-semisimple. Consider a function
In g = In |q| + iarg q defined on the zeroth Riemann sheet with a cut arg g = +r passing through —1. Let w lying in the stop-
band or passband tend to ), from, respectively, above or below. Then g, (w) and g,(w) tend to e*, thus approaching their
degenerate value —1 from the opposite sides of the cut for Ing, and, correspondingly, In g, ,(®) = iK; ()T tend to =i,
meaning that two Floquet branches tend to the opposite edges of the BZ.

This is indeed nothing else than a very standard setup. The state of affairs is, however, not so trivial when the same limit
 — g is applied to the matrix logarithm In M(w) = iK(w)T. It is natural to specify it by asking that both eigenvalues
In g, ,(w) of In M(w) satisfy the above-mentioned definition of Inq (the issue of alternative definitions of InM is addressed
in Section 3.1 and in Appendix B). As we have just observed, these eigenvalues tend to +im as w — y, i.e. they do not ap-
proach each other in contrast to the eigenvalues g, (w) — g,(w) of M(w). This signals a singularity of In M(w) on the path
w — Wog.

Let us analyze the local behaviour of In M(w) for @ = wo + Aw (|Aw/me| < 1). With reference to (8), denote

12(0 + Aw) ~ g4 £ 6q o G12(@0) =qq=—1, 9)
where 5q means the leading-order correction in the small parameter Aw/wy. For brevity, assume the case of 2 x 2 matrices
(the same derivation for the general n x n case is detailed in Appendix A). A polynomial formula for a function of a 2 x 2
matrix M with eigenvalues g, # g, has a simple form

_ Bf4) ~af(4) f(9) = f(a)y, (10)

M
JM) a; —q, a; — g,
see e.g. [10]. Taking (10) for M(wo + A®) = M(wy) + AM with g, ,(w) given by (9) yields

_ Jor +foz for — foz
=73 T

FM(@o + A)] +f/<qd)} M(c0) + AM — q,1] + O (5), (1)

where fo1,02 = lime,_q,f(q; 2(w)) and O is a matrix symbol ‘of the order of. For the case in hand f = In and fo;102 = In(e*i™),
whence (11) becomes

In M(cwo + Aw) = <m + l) M(wo) — g 1] + ;—ZAM +0 (5q, AM). (12)

E%
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Since M(wo) — g4l is non-zero for a non-semisimple M(w) while éq tends to zero with Aw — 0, we conclude from Eq. (12)
that the matrix logarithm In M(w), and thus K(w), must have components tending to infinity when w — @,. Note in passing
that an identically zero determinant of the first matrix term on the right-hand side of (12) does certainly not preclude but, on
the contrary, underlies (with due regard for the next term) the necessary identity det[ln M(w)] — 7 as @ — .

Let us now find an asymptotic rate of divergence of In M(w) in terms of Aw(= @ — @y). For a non-semisimple M of 2 x 2
dimension, the leading-order dependence g ~ (@ — wy)"/? obviously follows from a quadratic secular Eq. (5). For the general
n x n case, the same trend is easy to infer from the leading-order Taylor expansion of D(q, w) = det[M(w) — ql] about the
point of double degeneracy g, ,(wo) = q4, which leads to

oD/ow

59 =BA®w, B=-2|—-L"~ } 13

(99) : (821)/&]2) (13)
®0,qq

Omitting details (see e.g. [11]), it suffices to note that B is generally non-zero for non-semisimple M(wy). Thus, by (12),
In M(®), and hence K(w), diverges as (@ — wo) "/ with @ — wy. An explicit form of the coefficient B will be exemplified
in Section 4.

3.2. Discussion

A few formal remarks are in order. First it is reiterated that even though the components of the dealt-with matrix
In M(w) = iK(w)T diverge as w — wy, its eigenvalues In q,, = iK;2(w)T remain formally well-defined so long as w # w.
It is also understood that the exponential of this In M(w) at any @ # wy certainly reproduces (continuous) M(w). Regarding
the infinity of In M(w) precisely at @ = w,, which is when dq = 0 on the right-hand side of (12), it simply tells us that the
conventional definition of In M(w), which refers both eigenvalues In g, , () to the zeroth Riemann sheet of Inq with the cut
arg q = +7 fixing the edges of the BZ Re KT € [—m, 7], precludes this matrix function of @ from reaching the limiting point wq
of the path w — wy continuously.

It is clear from the above that shifting the cut in the g-plane away from the point g = —1 while keeping In g, , on the
same Riemann sheet leads to a different matrix logarithm In M(w) that has degenerate eigenvalues In q;(®o) = In g, (o)
and hence is well-behaved at ® = wy and around it. However, this ‘gain’ for o near wy is at the expense of one or another
essential deficiency elsewhere for the redefined In M(w). For instance, if the eigenvalues In g, , of In M(w) are taken on the
zeroth Riemann sheet with the cut argq = 0,27, then this In M(w) has the same divergence ~(c — wq;)""/? due to the
degeneracy q, (o) = 1 at the set wo; of passband/stopband crossovers occurring at K = 0, 27. An exception is the origin
point @ = 0, where M = I and so any In M is continuous; however, the low-frequency onset of InM defined by taking the
cut argq = 0, 27 has no physical sense (see Appendix B). Another possibility is to use a cut argq = ¢, ¢ — 21 at ¢ # 7n,
e.g. at ¢ such that 0 < ¢ < . Then InM, whose eigenvalues In q,, = +iKT lie on the zeroth Riemann sheet, is well-be-
haved as |argq| = |KT| grows from zero but only until ¢, where there is a jump to a different matrix InM, for which
the eigenvalue In q; has to be shifted from argq, = KT to argq, = KT — 27 with KT > 0 increasing above ¢. Note that a
similar piecewise discontinuity pertains in the BZ Re KT € [-m,n] to the logarithm of M that is not unimodular
(det M # 1). Thus, using any ‘unconventional’ definition of the logarithm of M based on shifting the cut from the point
q = —1 is hardly an alternative.

It remains to settle a natural question concerning the case of a homogeneous elastic material, for which the matrix Q is
constant, hence M = exp(QT), and so InM merely returns the ‘initial’ QT, which is certainly continuous in w. ‘Technically’,
the difference with the case of a periodic medium is that a constant Q keeps M(w,) diagonalizable (semisimple) at the
degeneracy point g (wo) = ¢,(wo) = —1 under discussion.! Assuming M(wy) = g4I in Eq. (12), its first term turns to zero
and thus a continuous In M(w, + Aw) is defined by the second term of (12), in which AM ~ (@ — wy) and §q ~ (w — wy) (the
latter being due to B=0 in (13) for a semisimple M(wy) [11]). A transition to (or from) a homogeneous material from (or
to) a weakly (periodically) inhomogeneous one is also evident: given a small parameter ¢ of elastic inhomogeneity,
M(wy) — q,l is scaled by € and dq is scaled by (eAw)'/?, hence, by (12), the singularity of In M(c) at & — ey is proportional
to (¢/Aw)'? and disappears at € = 0.

In conclusion, let us outline some exceptional cases that are theoretically possible due to ‘incidental’ occurrence of M(wy)
in a peculiar form. First, a non-semisimple M(w,) does not preclude vanishing of the leading-order coefficient B (13), [11]; if
it happens to be zero then (5q)* is given by the higher-order terms of the Taylor series of D(q, @) about wy, in which case Eq.
(12) (where M(wy) # g 1) leads to In M(w) ~ (& — @) ™? with an integer m > 2. Secondly, a (periodically) inhomogeneous
medium does not rule out a possibility for M(wy) at a degeneracy point to remain semisimple (such an option is usually asso-
ciated with a stopband of zero width). Finally, a semisimple M(w,) may, in principle, also cause diverging In M(wo + Aw) - it
is the case when 8q ~ (@ — g)"™? with m > 0 due to incidentally vanishing higher-order derivatives *D/dw?, 9*D/8qdw,
etc. in the Taylor series of D(q,w) about w,, whence InM(w) for w — wy diverges owing to the term
(5q)"'AM ~ (@ — wo) ™2 in Eq. (12).

! For a constant Q, this degeneracy of q;, = e implies nothing more than an odd number of half-wavelengths within the interval Ay =T - note no
relevance to degenerate eigenvalues k, of Q that do render Q and hence M = exp(QT) non-semisimple.
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4. Examples of Q.4 = iK
4.1. Bilayered unit cell
This section is intended to illuminate the preceding general development by way of its application to simple examples of
a scalar acoustic wave in a periodically repeated sequence of pairs of homogeneous layers. With this purpose, we first remind

the 2 x 2 setup for an arbitrary 1D-periodic medium [2,3] and detail the formulas describing the ‘effective’ matrix Q.4 = iK
for this framework. Then we further elaborate Q.4 for the case of a bilayered unit cell.

4.1.1. 2 x 2 setup
Consider a 2 x 2 unimodular monodromy matrix M(w). Its eigenvalues

1 _1 2 )
G = jtrace M +R, whereR= 5 (trace M)~ — 4<7 T)’ (14)
define the Floquet wavenumbers
iK1 ,T = +iKT = In q, , = +iarccos <%trace M) = +2iarccos <% \/trace M + 2); (15)
and the equation
trace M = -2 (16)

defines the set of frequencies w = wy of passband/stopband crossovers at the BZ edges KT =4m, where
q1(o) = qz(o) = g4 = —1, see [2,3].

Introduce the 2 x 2 ‘effective’ matrix Q.4 = iK, which is related to M by the equality M = exp(iKT) and which has eigen-
values (15) understood under the standard definition of the functions In and arccos, so that Re KT € [, ]. Then Eq. (10)
specified for f(M) = In M gives

Q. (w) = % [M - % (trace M)I} . (17)

The same result may certainly be obtained by equating M to exp(iKT), which follows from the same (10) (re-adjusted to f(K))
in the form

exp(iKT) = (cos KT)I + <i S";<KT > K= %(trace MI+ %K (18)

due to using the condition K;, = &K equivalent to fixing the appropriate definition of matrix logarithm InM.
Consider now a vicinity of the BZ edge. Eqs. (14) and (15) expand in small Aw = w — wy as

QI.Z(CO)Lusz = -1+ vBAw + 0(Aw), K(w)T‘cmwo =T+ iVBAw + O(Aw), R(w)‘wzwo =V BAw + O[(ACU)Z], (19)

where it is denoted

d
B=- <% trace M) o (20)

which is non-zero for a non-semisimple M(wy) (barring the theoretical exceptions mentioned in the end of Section 3.2).
Inserting (19) and (20) in (17) yields

Qeff(w)wzmo = i~ vBA® + O(Aw) {A + |:<(C:|1Nl> + %Bl A + O(Aw)z}/ (21)
BAw + O[(Aw)’] O
where A denotes a non-zero nilpotent matrix
A=M(wo) — g = M(wo) +1 (A* =0). (22)

Eq. (21) elaborates (12) (with due regard for AM/dq ~ O(5q)). Note also that Eq. (19); for R, defined in (14),, to leading order
reads 6qg = vVBAw which is recognized as Eq. (13),. Correspondingly, the definition (20) of the coefficient B is equivalent to
Eq. (13),, which specializes for the given case (of 2 x 2 M with q; = —1 at wy) as

A<g—“£>wj. (23)

Expansion (21) shows that the ‘effective’ matrix Q () has well-behaved eigenvalues +iK(w) — +in/T at w — wp, while
its components diverge due to non-zero A with a common factor ~ (w — @g) /. It is also seen from Eqgs. (21)-(23) that A and

d
B=-— [@ det(M — ql)} N = trace
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B for a weakly inhomogeneous unit cell can in general be scaled by the same small parameter € (=0 for a homogeneous limit),
and so the singularity of Q. () at @ — wy is scaled by (¢/Aw)"/? as argued in Section 3.

4.1.2. Q. for a bilayered unit cell

Let us narrow our analysis to the case of a two-component piecewise constant unit cell. Specifically, we consider the shear
horizontal (SH) wave in a periodic structure of perfectly bonded pairs of isotropic homogeneous infinite layers j = 1, 2, each
with constant density p;, shear modulus y; and thickness d;. For the sake of the brevity of explicit formulas, assume the wave
u(y) propagating along the axis Y normal to the mterfaces (ky = 0). Hooke’s law a(y) w;u'(y) and the equation of motion
d'(y) = —p;w*u(y) combine into the system (1) with the state vector (y) = (iwu, o)’ and the piecewise-constant periodic
2 x 2 system matrix

-1
Qj=iw5j<§ g ) j-1.2, (24)
)

which leads to the propagator M(T, 0) = e®®2eQ4 = M(w) through the period T = d; + d, (the monodromy matrix) in the
form

COS 1, COS Yy — 2L siny, siny L oS, sinyy + 5L siny, cosy
M(a) _( 2 177, 2 1 2 2 177 2 1 . (25)

iZy coS Y, Sinyy + iZ, Siny, COSY;  COS Y, COS Yy — é—j siny, siny,

where s; =, /p;/1; is the slowness, Z; = | /p;[i; the impedance and ; = ws;d; the phase shift over a layer. Passing in (25) to an

oblique propagation amounts to merely premultiplying ¢; and Z; by ,/1 — s,%/s].2 with a fixed s, = ky/w. Inserting M into the
basic relations (14) and (16) provides the textbook equations implicitly defining the Floquet spectrum w(K) and its stopband
bounds w = wy at the BG edge for a bilayered unit cell, e.g. [2].

The 2 x 2 ‘effective’ matrix Q.4 = iK for a bilayered unit cell follows from (17) and (25) in the form

iK -1 (ﬁ—l——> siny, siny, 7- COS Y, Sinyy + £ siny, cosyy
0 2 ! 26
Q. () R\ . . (26)
iZy COS Y, Sinyy + iZ, siny, cos y, i (zl - —) siny, siny,

It is evident from (17) and the definition (14), of R that the eigenvalues of this matrix are +iK, and that it reduces to (24),
when Z; = Z,, s; = s,. As another consistency test, we note that (26) provides the well-known low-frequency asymptotics of
Q.. whose diagonal and off-diagonal components expand in, respectively, even and odd powers of iw as follows:

dqd 0 -1 1,. 1 0
Qur (@) = (@) + 5 Q0 - Q) + zw<<p> " >) sytofer(y O ) @7)
where
d] d2 1 1 d] 1 d2 d] dz d]dz (p] p2>
0)=Q;=+Q,=, + — =, + , K= ==. 28
(Q—( )> Q—] T Q2 T <lu > ,ul ,uz T <p> p] T p2 T T2 ,uz u] ( )
Additional explicit insight is gained by noticing that trace M + 2 with M given by (25) can be factored as
_ __ 1 i+, ¥ — %}
trace M+2=f.f, f,= N2 {(Zl +Z;) cos———= 3 +(Z1 — Z,) cos (29)
whence Eqgs. (14) and (15) provide
iK(w)T =In (f*;’ -1 +R> = 2iarccos ¥-27— f+f f.f (ﬂf )., (30)
and Eq. (16) takes the form
fif =0, (31)

showing that the set w = w, consists of two families given by zeros of f.. Evidently, this split reveals the symmetric/anti-
symmetric decoupling of the problem. As a result, the expansion (21) of Q.(w) about the points @ = @y, when applied
to the matrix Q. (26) in hand, admits compact formulas for its leading-order parameters B (20) and A (22) as follows:

<1dfi> =F - 1 (;_1_@>(¢15m¢2+¢251n¢1) Aif a_)sn//1+?05t/_/2 A+ sinyy — £ siny, |
wo 2 iZysiny, —iZ;siny;  —CoSy; — COS Y,
(32)
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where v; = wgs;d; are referred to wo, and the upper or lower sign corresponds to f, = 0 or f- = 0 in (31), respectively (see
Appendix C for derivation of (32),). The derivative (dM/dw),, , which also appears in (21), can be obtained due to
M = eQ%eQdi in the form expressed through the matrices Q; (24) and A as

(30) = o QM+ diMQ), = -7 Qa(00)A + S AQ o) - @(00)] 33)
0

dw/,, wo

Its plugging in (23), and taking note of A’ = 0 yields another definition of the coefficient B,
T
B = — —trace[A(Q(wy))], (34)
o

which for the given case of a bilayered unit cell is equivalent to (20) and (23). It is easy to verify that (34) with (28) and (32),
leads to (32);.

The following analysis for highly contrasting layers and for layers in spring-mass-spring contact makes an extensive use
of the factorization (29) and the consequent formulas.

4.1.3. High-contrast case
It is instructive to specialize the above considerations to the case of high contrast between the material properties of two
layers composing the unit cell. Suppose that e.g. the second layer is much softer than the first one:

W/ =& (=>s~¢&1, Zy ~¢), where0<e< 1. (35)

The main interest of the high-contrast case is that the first stopband at the BZ edge occurs in the low-frequency range, which
is scaled by ¢ and implies y; = 0(¢),y, = O(1). In this range, the propagator (25) is approximated to leading order in ¢ as

cosy, — fsing,  Lsiny,
y B : 36
(w)m:o(a) <iZz(Sin W, + COSY,)  COSY, ) 7 B

where
Z1y, ( p1ds p1ds )
w) = = = ; 37
plo) =3t (=0 o =T, (37)
and Eq. (16) with M (36) defines the stopband bounds w = w, by
B 2 Yo B Vo) _
Cos Y, — 5 sin Y, = -1+ cos=- 5 (0S5 —5 sm7 =0. (38)

The latter, factorized, form is Eq. (31) with approximate f. (29),. So the first stopband is bounded by the least roots of f. =0
and f_ = 0 which, to leading order in ¢, are the first zeros of the cofactors of (38),. The upper bound corresponding to f, = 0 is
close to the first thickness resonance v, (= ws,d,) = 7 of the soft layer. Denote the lower bound corresponding to f = 0 by
Q(= min wy). It is approximated by the least root of equation

tan(y,/2) =2/p, (39)

which involves coupling of the layers. Note in passing resemblance and dissimilarity between this simple model (see also
Section 4.2) and the textbook case of a high-contrast diatomic lattice [2].

With a view to highlight the low-frequency behaviour of Q. (®), let us focus our attention on w ranging from w ~ Q and
going down the first Floquet branch to w = 0. Substituting (36) in (26) yields

iK ~Esiny, 7 siny,
2 | 40
Qe (0) =& (iZz(sint//Z +pcosy,) Esiny, ) (40)

where by (30) and (38)

1/2
iK(w)T = In <cos vy —g siny, + R) = 2iarccos [cos% (cos% - g sin l/;zﬂ ,

R(w) = {Zsm(//z(ﬁ cosh+sm%> <§ sm%—cos%)}m.

The singular term for Q.4(w) (40) as @ tends to the first stopband bound Q is Q.f(w) ;}’ZwA (see (21)) with
VA® =ivQ — » and

(41)

B = l By + sinyr,)] A= # ) % ‘ h
5 w-0> 1+@/p° \izop/2 1), ,
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Eq. (42) follows from (32) which is taken with the lower sign (since Q is defined by f = 0) and confined to leading order in &
(in accordance with the accuracy of (36) and hence of (40)). The asymptotics of the same Q. () (40) near the origin point
w = 0 is given by Eq. (27) with

1d_didip,

-1 . K= , 43
wh=7F o (43)
which also implies taking leading order in the high-contrast parameter ¢. Note that B provided in (42), satisfies Eq. (34) with

(Q) given by (43).
4.2. Layers in spring—mass-spring contact

As another example, consider propagation of the SH wave through a structure of identical layers of thickness T in spring—
mass-spring contact. Denote the rigidity of each of two springs by y and the mass by m. Note that the physical dimension of
m is voluminal density times length. The monodromy matrix M = M(T,0) for the state vector » = (iwu, O')T is M = M;,(M,,
where M, = exp(QT) is the propagator across the layer with Q given by (24) (no subscripts j = 1, 2), and M;,, is the propa-
gator across the spring-mass-spring interface:

? 2iw ? _ 202 2w ?
e (1 ) (o (%) )
int o | _om 2oy 1_ 27 )

m 7 [ [

where Q. = /2y/m is the resonant frequency of this joint. Thus

(1-22) cosy—202 (1 - @) siny 4 (1-22) siny + 22 (1-2) cos

M(w) = (45)
1Z<] 2”2> siny + 2"" cos ( 2“2> cosy — 227 siny
A factorized form (31) of Eq. (16) defining the stopbands at the edge of the BZ holds with
_ 2 m U Yy om W
fi=4 K oT ZVT> cos 5 szlﬂ sin 2} )
—cos? _Hsin?
f- =cos 25T z// sin<,

where w?/Q? = y*mu/2pyT? is used to write f. as functions of the phase shift y = wT\/p/pL. It is seen that f. () depends on
both spring and mass parameters yT/u and m/pT, while f () depends on /)T only.

Let us again specialize our consideration to the high-contrast case of a similar ‘stiff/soft’ nature, now by assuming a rel-
atively small rigidity

7T/ < 1 (47)

of the springs supporting the mass. Like before, we are interested in the first stopband at the BZ edge. Given (47), the least
roots ¢, of f. = 0 and the corresponding stopband bounds Q. to leading order are

w_mm<'/2/TpT> Q, =min(Q,, Q) = m1n<\/7 \/E)
(48)
"/ o - ﬁ

where €, is the frequency of the thickness resonance of the layer. The question is which of Q, and Q_ is the lower frequency
bound. Since Q? /Q? = m/pT, it is evident that a heavy mass m > pT ensures Q, = Q, < Q_; a ‘medium heavy’ mass m ~ pT
implies commensurate Q, = Q. ~ Q_, and a light mass m < pT ensures Q_ < Q.. For the two former cases, the whole first
stopband is confined to the low-frequency range in the sense that both its bounds provide a small phase y < 1. In the latter
case of a light mass, decreasing the small parameter m/pT keeps the lower bound at y_ < 1 and lifts the upper bound up
until the phase , reaches m, i.e. Q, reaches Q.

Consider the range < 1 containing one or both bounds (2_ or Q_ and Q. = Q,, respectively) of the first stopband at the
BZ edge. Expanding (45) to leading order in small , bearing in mind (47), and using the notations (48) of Q_ and @, yields
1— 202 4(02 (1 _ @) 2im (1 wz)

? Q? Q? Y Q?

V

2iwy sz 202
Q%( + ) 1- o

M(w) = (49)
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which observes det M = 1. Inserting (49) in (17) gives

w? w? 2iw w?
iK —2—2( g> 2o (1- g)

Qerr(0) = A ; (50)
in which
iK(w)T = In(20. — 1 + R) = 2iarccos v, R(w) = 2i\/a(1 — )
(51)

with o = (1 - wZ/Qf) (1 - wz/sﬁ).

The latter follows from a similar expansion of f. () (46) aty < 1 and yT/u < 1, approximating the left-hand side of Eq. (31)
as f,f- = 4o and plugging it into (30).

According to (50) and (51), the matrix Q.¢(w), as expected, experiences the square-root singularity at the BZ edge; how-
ever, it does so in a different way when  approaches either Q_ (light mass) or Q, (if @, fulfils y < 1 due to heavy enough
mass). By (49) and (50), all components of the matrix A = M(Q2_) — I are non-zero and hence all components of Q. (w) di-
verge when w — Q_. This is a typical option for a singularity of Q.;(w). On the other hand, A = M(€,) — I has only left off-
diagonal component being non-zero, and hence only this component of Q . () diverges when @ — @, while the others tend
to zero. This is rather an unusual option, which is due to the approximations underlying a simple form (49) and (50) of M and
Q.- The transition between the two above options occurs at Q_ = Q, (i.e. m = pT), in which case wy, = Q_ = Q, implies the
stopband of zero width that yields a semisimple M(wy) = —I so that Q.(w) is well-behaved at w — wy (it is one of the
extraordinary possibilities mentioned in the end of Section 3.2). For either of these cases, the low-frequency asymptotics
of Q. () (50) is given by (27) with the effective properties taken to leading order in the soft-spring parameter (47), i.e. with

1 2 m 2p
(u >7“7T’ py=p+=. K=op (52)
where ), = 7/2 is the rigidity of two identical springs in series (cf. (43)).

The two types of singular behaviour of the ‘effective’ matrix Q.4(w) defined by (50) and (51) are illustrated in Fig. 1. It
displays the off-diagonal components normalized by their statically-averaged values (Q); (~ ®, see (27) with (52),2) and
compares the diagonal components to their leading low-frequency term (~ w?, see (27) with (52)3). Specifically, the plotted
curves are defined as y;(x) = (Qeff)g (i =12, 21) and y;(x ) = T(Qerr)i 022 = —¥1) with x = /Q_ when @* = (1/3)Q}
(Fig. 1a) and with x = w/Q;, When @ = 3Q? (Fig. 1b), where Q* /Q? = m/pT(>> yT/21).

Note in conclusion that passing to the case of an oblique propagation (k, = ws, # 0, see note to (25)) implies replacing the
entries of layer density p by p — s? . Moreover, this case enables further ‘ramification’ of the spring-mass-spring model by
means of recasting the point mass m as an ‘elastic’ mass m(1 — c2s2) with its own shear velocity c; (then Q2 becomes

=2y/m(1 - c}s2)). It is also noted that the case of layers in ‘pure spring’ contact (i.e. without a mass) is described by

Y21

= —Yn

(b)

Fig. 1. Frequency dependence of components of the ‘effective’ matrix Q. (50) in the first passband, which is (a) @ € [0, 2_] with ©?/Q? = 1/3 and (b)
€ [0,Q,] with Q*/Q? = 3. Black curves are the off-diagonal components ij = 12,21 normalized by their statically averaged values; grey curves are
diagonal components, whose leading low-frequency evaluation (~ ®?) is shown by dashed line. The variable is x = ®/Q_ in (a) and x = w/Q; in (b). The
curves definition is further detailed in the text.
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the above formulas taken with m = 0 (22 — o) and with y, = /2 as the rigidity of the spring joint, or else by the formulas of
Section 4.1 taken in the limit d, — 0, pt, — 0 while keeping y, = u,/d, finite.

5. Summary

Components of the matrix logarithm InM, where M = M(T,0) is a unimodular propagator matrix relating the acoustic
wave field with a frequency w at one and the other ends of a period T of 1D-periodic anisotropic medium, have been shown
to diverge when the frequency w tends to the values w, of passband/stopband crossovers occurring at the edge of the first
Brillouin zone (BZ). Explicit analytical examples of the ‘effective’ matrix Q. (w)(= iK(w)) = 1 In M(w) and of its diverging
asymptotics near the BZ edges were provided for the simple case of a scalar waves in a two-component periodic structure
of several types, including its high-contrast model when the least of w, may be made arbitrarily small.

Whereas the components of matrix Q.4 diverge at = — y, it is understood that Q. for any @ # @, yields a continuous
M = exp(Q.T) and has a continuous eigenspectrum which is in one-to-one correspondence with that of M. Thus, invoking a
diverging Q. for formulating a time-harmonic wave propagation through a finite or infinite number of periods cannot cre-
ate any difficulty, because this phenomenon can be fully described via M and its eigenspectrum. At the same time, diver-
gence of components of Q. calls for careful interpretation if the governing system (1) is taken with Q. in place of the
actual matrix of coefficients Q (y) and is then viewed in the same sense as the ‘true’ system (1), i.e. as incorporating the equa-
tion of motion and the constitutive law, but now with the constant coefficients Q.x(w) of the fictitious homogenized
medium.

Explicit results of this paper can readily be adjusted to other physical problems whose mathematical formulation admits
reduction to Eq. (1), see e.g. [12]. Further development is underway to analyze the high-frequency ‘effective matrix’ Q.; near
the centre of the BZ for 1D-periodic structures. Another interest lies in the potential extension of the analytical means of the
paper to more complicated cases, like in [13], whose exact mathematical statement does not reduce to (1).
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Appendix A. On the divergence of the logarithm of a n x n matrix M(w)

Let M(w) be a nxn non-singular (detM##0) matrix, continuous in @, with eigenvalues g;(w). Denote
M(wo) = My, q;(wo) = q7 and suppose that qf = q3 = q, while all other g} (j = 1, 2) are distinct. Consider a small neighbour-
hood of wy, where

M(w) =M +0(1), g(w) =g} +o(1), (53)

and all g;(w) (j=1,2,...,n) are distinct. Assume that the matrix My with a degenerate eigenvalue g, is non-semisimple, i.e.,
that the Jordan form J, of My is
01

Jo=P&S withP=gq,; +R, R:<0 0

) S = diag(q,...q°), (54)
where I, denotes the m x m identity matrix. Thus the spectral decomposition of M(w) is

M(w) = C(w)diag(q, (), ... ,qn(a)))C’l(a)) for w # wo, (55)
M, = CoJ,C,"  for m = wy,

where C(w) and C, are matrices whose columns are linear independent eigenvectors of, respectively, M(w) and My (note that
Co, which includes a generalized eigenvector of My, is certainly not C(wy), which is singular).
Introduce a logarithm of M(w) with w # wy,

In M(w) = C(w)diag(In g, (),. .., In q,())C" (), (56)
where In q; = In |q;| +i(argq; + 27k;), k€ Z.

This is a general definition in the sense that, while observing indeed the equality exp[ln M(w)] = M(w), it permits taking
each In g; in (56), on any k;th Riemann sheet. Let us further suppose that

In q% — In ¢3 = 27i, (57)

which implies either that g, (w) and g, (w) tending to g, as w — @y are defined on adjacent Riemann sheets (k; — k, = 1) and
qq is away from the cut, or, alternatively, that g, (w) and g,(w) are taken on the same Riemann sheet (k; = k; in (56),) with
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the cut such that q9 and g9 are located on its opposite edges. The latter option with k; > = 0 is directly related to the physical
context discussed in this paper.
Our purpose is to show that, under the aforementioned assumptions, the asymptotics of In M(w) at @ — @y is

2mi 1 .
= A + 0(7) Wlth
q;(w) — gx(@) ¢ (w) — g (w) (58)
A=Gl)p - diag(qy, 44,45 - -, q2)]C," = Co(R& 0,2)C,y" # 0y,

where 0,, is m x m zero matrix and the other entries have been defined above.
The derivation of (58) is based on the Lagrange-Sylvester formula [10] with due regard for (53), (55), and (57). Along
these lines, we manipulate In M(w) as follows (omitting for brevity the argument w of M(w) and q;(w)):

M —ql, n M, — ¢°I, 1
InM = ) Ing, = ( — lnq?+o( )
kz: <g > ¢ kzzlj }11 4y — q; : 4 — qs
2 M, — g°I _
Z H ln qk+0< 1 ) _ H 0 qjoﬂ MO qdln (ln q?—ln q2)+0< 1 )
= \jke Gk~ CI, q1 —q; >3 qa— 4 41 —q; q1 —q;

2mi O*qjln < 1 >
= My, —-q.1,)+o0
qlqz@l g — >( o) ol g,

_ 2mi Jo - - 1
[ R )

4 —q;
Next we invoke (54) and observe that

J - qoln
155 | Uo — quln) =R @ 0,5, (60)
qq — q;

j=3

In M(w)

which is due to

P-qgh\ = 3 1 .
@%%")m q"'”‘LQ(‘”%CI? ﬂ ( 2 ) R

S- qpln—z

Note that an essential simplification of (60) is a consequence of R? = 0,, yielding (61);. Finally, inserting (60) into (59) deliv-
ers the sought result (58). Admitting A =0, in (58) would lead to a contradiction 0, = CalACO =Ry ®0,_, #0,, hence
A#0, O

Eq. (58) shows that the condition (57) leads to divergence of In M(w) with g, (®) — g,(w) at & — @y. For a unimodular M,
taking (58) with g, (®) — g, (w) ~ 25q gives In M(w) = (%A +o0 % . In the case of 2 x 2 matrices, A = CoRC;" = M, — g,I and
hence (58) provides the leading-order term on the right-hand side of (12).

(61)

Appendix B. Low-frequency asymptotics of InM defined over the Brillouin zone [0, 27]

Interest in the ‘effective’ matrix Q. = iK = 1 In M is often confined to the frequency range w € [0, Q] occupied by the first
passband, i.e. by the first Floquet branch. The logarithm of a unimodular M does not diverge at w — Q if, contrary to the con-
ventional definition, its eigenvalues In q are defined on the zeroth Riemann sheet with a cut arg q = 0, 27. Like any other In
M, it is also continuous for «» — 0. We will, however, demonstrate that its low-frequency asymptotics has no physical sense
and thus the so defined In M(w) is of little if any practical value.

For brevity, consider the case of a 2 x 2 matrix Q(y) given by (24), in which, however, we keep arbitrary periodic
p(y), u(y) instead of p;, w;. The matrix M(T,0) = M expands as the power series

—l+/Q dy+/ / Q)Q(y;)dydy, + —I+in(O <”]>>

() 0O
1 (o)) + 0
+ = (iwT)? +e (62)
2 ( 0 (P)(#") —K
where ( fo (-)dgand k = fo Jslp(@u(cy) — 11(g)p(cy)]dedg,. If the period T consists of two homogeneous layers, then

(p), (u~ ) and x reduce to (28).
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Reserving the notation InM for the conventionally defined logarithm of M, introduce another logarithm InM with the
aforementioned ‘modified’ definition, so that

InM = C diag(In q,,In q,)C”", with Inq=1In|q|+iargq, -m<argq<m; (63)
InM =C diag(ﬁql,ﬁqz)c”, with Inq = In |q| +iargq, O0<argq<2m,

where g, , are eigenvalues of M, and C is a matrix of eigenvectors of M. Obviously, taking exp of both InM and InM returns M.

However, these two matrix logarithms are essentially different. Note that the standard definition used in (63); allows the

Taylor series In(1 +2z) =z —3z% +--- for z < 1, whereas In(1 + z) used in (63), is not analytical near z = 0 and hence does

not admit the Taylor expansion. This underlies a drastic disparity between the low-frequency asymptotics of InM and InM.
For small o, when g, ,(w) are close to 1, InM and InM are related as follows:

InM = C diag(In q,,1ng,)C" = C diag(In q,,In g, + 27i)C " = In M + C diag(0,27i)C ' = InM + ; qu (M — q,1),
2 11
(64)
where, with reference to (14) and (62),
. 1,.
Gr2(0) = TEIOT\/(p)(U") +5 (ioT)*(p)(u ") + O(@?). (65)
Hence an explicit difference between InM and InM at » — 0 is
M- gl 2mi { (— oy ) 1. 2<K 0 >]
2mi =— ioT + = (iwT)
A= 2i0T/{p){iT) +0(c?) (p) Vi) 2 0 -«
1 ()
. ) kT 1 0 )
+ O(w?) = 7i —7w< >+0(w ). (66)
s -1 2y/(p)(u") \O ~1

The low-frequency asymptotics of In M = QT readily follows from (62) on the basis of the Taylor series of In(1 + z), see
its example (27). It has a perfectly clear physical meaning, for Q. tends to zero when @ — 0, and to an appropriate matrix Q
of a homogeneous medium when the inhomogeneity tends to zero (cf. (27) and (24)). As regards InM, Egs. (64) and (66)
show that its discrepancy with InM is non-zero even at w = 0. Thus, contrary to InM, the asymptotics of InM near @ =0
has no physical sense.

Appendix C. Explicit form (32), of the matrix A and its properties

Consider the matrix A = M(wo) — g4I = M(wyo) + I defined at the BZ edge, see (22). Substituting the propagator M through
a bilayered unit cell given by (25) leads to

1 -1 <Zf —Z%) siny, siny, i(Z siny, oSy, + Z; siny, cos ;)

A—_
2122 \ i2,Z,(Z, siny, oSy, + Z, siny, cos ;) 1 (Zf - Z%) siny, siny,

(67)

where ; = mys;d;(j = 1,2) and y is implicitly determined by Eq. (16) or its equivalent (31). In the following, the reference
to w = wo will be understood. The objective is to manipulate (67) into a form that is transparent.
Introduce the auxiliary notations

1 1, . .
Zo =704 2o = 5 (0 ), = Zu cOS Yy be = o (siny, & siny_). (68)
Note the trigonometric identities

siny, siny, =4b, b_ = cos®>y_ — cos® . ;
Z, siny; CoSy, + Z; siny, cosyy = a, siny, —a_siny_; (69)
Z; siny, cosy, + Z, siny, cosy; = a. siny, +a_siny_.

Next we use Eq. (31), which defines two families of the stopband bounds wq given by either f, =0 or f_ = 0, i.e. by either

a, =—a_ora, = a_(see(29), and (68)). Combining these equations with (69) leads to the following alternative expressions
for the diagonal and off-diagonal elements of A:

Z.Z- b.b_ = L2 a.a_ = =+(cosy; + cosy,), (70)

An =~y =2 7172, 7.7
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and
Ap = i a.b, = :Fii a:b., Ayy =i2a.b. = Fi2a; b, (71)
Z1Z, Z4Z,
where
2a;b. = Zy siny, — Zysiny,, 2a. b, = +(Z; siny, — Zy siny,). (72)

Except for the first expression in (70), all others may be called conditional as they depend on which of the two families of wg
they are referred to. The compact form of these expressions in (70)-(72) implies that the upper/lower signs and, simulta-
neously, the upper/lower subscripts are related to f, =0 and to f_ = 0, respectively. By using these expressions, Eq. (67)
can be recast in the form

i gj _ 1 gj
A:i( oSy +CoSY, A siny; — L siny,

1 0
o T = +(e®%G+ GeV"), where G= ( ), (73)
iZ,siny, —iZ;siny;  —COSyy — COS Y,

0 -1

with + corresponding to f. = 0 as above. This is Eq. (32), presented in Section 4.1.2.

By the definition, A = M(wy) — g4I = 0 for a homogeneous medium, in which case (73) holds with Z; = Z,,s; = s, and
with ¢; + ¥, = m(2n + 1) due to w = w,. The matrix A for a periodically bilayered medium may incidentally vanish if both
cosy . and cosy_ at w = wo happen to turn to zero at once, i.e., if ; and v, in (73) differ by == and in addition one of y, , is
equal to 27n. In general, A is non-semisimple with a zero eigenvalue and hence it must also admit a dyadic representation
via its null vector u. This representation further specifies due to the identity M~—' = TM*T following from (7), which may also
be combined with the material-symmetry relation M = GM" G to give M~' = JM"J™!, where J = TG; T and G are defined below
(7) and in (73), respectively; * means complex conjugate and * Hermitian adjoint. Hence

A=u@v(=uyv;), whereAu=0, v=Ju=Tu, uv;=0. (74)
Indeed, Eq. (73) may be re-arranged in the form

A_ +1 < COS Y + COS Y, ) (iZl siny, —iZ, sim//z)
T iZy siny, — iZy siny, \iZ, siny, — iZ; siny, COS Yy + COS Y, ’

(75)
which satisfies (74).
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