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a b s t r a c t

A first-order ordinary differential system with a matrix of periodic coefficients
Q ðyÞ ¼ Q ðyþ TÞ is studied in the context of time-harmonic elastic waves travelling with
frequency x in a unidirectionally periodic medium, for which case the monodromy matrix
MðxÞ implies a propagator of the wave field over a period. The main interest to the matrix
logarithm ln MðxÞ is owing to the fact that it yields the ‘effective’ matrix Q eff ðxÞ of the
dynamic-homogenization method. For the typical case of a unimodular matrix
MðxÞðdet M ¼ 1Þ, it is established that the components of ln MðxÞ diverge as
ðx�x0Þ�1=2 with x! x0, where x0 is the set of frequencies of the passband/stopband
crossovers at the edges of the first Brillouin zone. The divergence disappears for a homo-
geneous medium. Mathematical and physical aspects of this observation are discussed.
Explicit analytical examples of Q eff ðxÞ and of its diverging asymptotics at x! x0 are pro-
vided for a simple model of scalar waves in a two-component periodic structure consisting
of identical bilayers or layers in spring–mass–spring contact. The case of high contrast due
to stiff/soft layers or soft springs is elaborated. Special attention in this case is given to the
asymptotics of Q eff ðxÞ near the first stopband that occurs at the Brillouin-zone edge at
arbitrary low frequency. The link to the quasi-static asymptotics of the same Q eff ðxÞ near
the point x ¼ 0 is also elucidated.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The first-order ordinary differential system
Q ðyÞgðyÞ ¼ d
dy

gðyÞ ð1Þ
with a n� n matrix of continuous or piecewise continuous periodic coefficients Q ðyÞ ¼ Q ðyþ TÞ is a classical problem arising
in miscellaneous models of applied mathematics and mathematical physics. Its analysis largely relies on the Floquet theorem
asserting that the matricant Mðy; 0Þ, which is the fundamental solution of (1) yielding gðyÞ ¼Mðy;0Þgð0Þ, can be factored into
the product
Mðy;0Þ ¼ LðyÞ expðiKyÞ; ð2Þ
. All rights reserved.

(A.L. Shuvalov).
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where LðyÞ ¼ Lðyþ TÞð¼Mðyn;0Þ expð�iKynÞwith yn ¼ y� nTÞÞ; Lð0Þ ¼ I (I is the identity matrix), and K is a constant matrix
[1]. By (2), K is defined by the equation
expðiKTÞ ¼MðT; 0Þ ) iKT ¼ ln MðT;0Þ; ð3Þ
where MðT;0Þ �M is termed the monodromy matrix (its reference to ðT;0Þ is dropped hereafter). It can be calculated by a
number of available methods, e.g. using the Peano series of multiple integrals of Q ðyÞ, or applying polynomial expansion of
Q ðyÞ, or discretizing Q ðyÞ. In many problems the system matrix Q ðyÞ is a continuous function of a certain control parameter
x, and hence also M ¼MðxÞ. At first glance, the matrix logarithm KðxÞ is well-behaved as long as the logarithm of the eigen-
values qðxÞ of MðxÞ is well-behaved. However, it turns out that ln MðxÞ diverges at x! x0, where x0 corresponds to a
non-semisimple (not diagonalizable) Mðx0Þwith a degenerate eigenvalue qðx0Þwhose values, being taken on the same Rie-
mann sheet of ln q, are situated on the opposite edges of the cut. This fairly surprising observation seems to have passed
unnoticed in the extensive reference literature on the matrix logarithm. The manner in which such a divergence reveals itself
in the Floquet formalism is discussed in the present paper in the context, where Eq. (1) is associated with time-harmonic
elastic waves travelling at frequency x in unidirectionally (1D) periodic media. Within this context, the system (1) such that
consists of n ¼ 2 equations and hence is equivalent to Hill’s equation describes scalar acoustic (or electromagnetic) waves
[2,3]; the cases where (1) consists of n ¼ 4;6;8; . . . equations corresponds to coupled waves in elastic isotropic or anisotropic
media, in piezoelectric or piezomagnetoelectric media, etc. In either of these cases, the monodromy matrix M is often called
the propagator (of the wave field) over the period T.

The matrix logarithm KðxÞ (3) is a crucial ingredient in the dynamic-homogenization approach. Assuming that expðiKyÞ
in the 1D Floquet theorem (2) is a relatively slowly varying function, this approach seeks to replace an exact solution Mðy;0Þ
by its ‘slow component’ expðiKyÞ and hence to replace the actual periodically inhomogeneous material by an ‘homogenized’
medium with spatially constant but frequency dispersive properties described by the ‘effective’ matrix
Q effðxÞ ¼ iKðxÞ; ð4Þ
see e.g. [4–6]. Obviously, the matrix Q eff also provides (regardless of any assumptions) an exact solution
MðnT;0Þ ¼ expðinKTÞ at the interfaces between the periods. Another aspect of the matrix logarithm KðxÞ is related to the
Floquet dispersion branches xðKÞ or KðxÞ. These are determined by the secular equation for M,
det½MðxÞ � qðxÞI� ¼ 0; ð5Þ
so that the definition q ¼ eiKT yields iKðxÞT ¼ ln qðxÞ, or else by the formally equivalent secular equation for K,
det½KðxÞ � KðxÞI� ¼ 0: ð6Þ
The Floquet spectrum is commonly defined over the first Brillouin zone (BZ) Re KT 2 ½�p;p�, which is related to the zeroth
Riemann sheet of the single-valued ln q ¼ ln jqj þ i arg q with the cut arg q ¼ �p corresponding to the BZ edges. The fre-
quency intervals, where K is real or complex, are called passbands and stopbands, respectively.

The paper is concerned with the typical case, where MðxÞ is unimodular (detM = 1) and so the BZ edges contain the pass-
band/stopband crossovers at a set of frequencies x ¼ x0 associated with a degenerate pair of eigenvalues qðx0Þ of Mðx0Þ.
According to the background outlined in Section 2, this is the case for a normal propagation across an arbitrary anisotropic
periodic structure or for an arbitrary propagation direction in the presence of appropriately oriented symmetry plane. The
original material of this work consists of two parts, Sections 3 and 4. The first part (Section 3) deals with the problem in gen-
eral. It is shown that the matrix ln MðxÞ ¼ iKðxÞT , and hence Q eff , must have components diverging as ðx�x0Þ�1=2 when
x! x0, i.e. when the real Floquet branches tend to the BZ edges or the complex part of �K ¼ p=T þ iImK tends to zero. The
eigenspectrum of KðxÞ certainly remains well-behaved for any x infinitesimally close to x0; however, computing the Flo-
quet spectrum KðxÞ specifically from Eq. (6) may become numerically unstable at x close to x0. A transition is explained
from a weakly inhomogeneous to perfectly homogeneous elastic medium, for which ln MðxÞ certainly does not diverge.
The second part (Section 4) presents detailed analytical examples of Q eff ðxÞ and of its diverging asymptotics for x! x0

for the shear-horizontal wave in a periodic structure composed of piecewise homogeneous bilayers or layers in spring–
mass–spring contact. Particular attention is given to the high-contrast case with either a soft layer in the bilayer or with
a soft spring in the interfacial joint. The interest to this case lies in the fact that the first stopband at the BZ edges and hence
the local divergence of Q eff ðxÞ occurs at low frequency that may in principle be made arbitrarily small. To this end, a link to
the regular asymptotics of the same Q effðxÞ near the point x ¼ 0 is also elucidated. The basic points of the study are sum-
marized in Section 5. Some technical aspects of the derivations of Sections 3 and 4 are detailed in Appendix.
2. Background

Consider elastic waves in a 1D-periodic infinite anisotropic non-absorbing medium without sources. Choose the period-
icity direction as the axis Y and denote the (least) period by T, so that the density and the elasticity tensor satisfy
qðyÞ ¼ qðyþ TÞ and cðyÞ ¼ cðyþ TÞ, respectively. Take the axis X in the sagittal plane spanned by Y and by the direction
to the observation point. Applying Fourier transforms in time and in X brings in the frequency x and wavenumber kx as
the (real) parameters of the problem.



372 A.L. Shuvalov et al. / Wave Motion 47 (2010) 370–382
The equation of motion and the linear stress-strain law may be combined into the system (1) of, generally, six equations.
The periodic matrix of coefficients Q ðyÞ, defined through qðyÞ; cðyÞ and x; kx, is pure imaginary and has the Hamiltonian
structure
Q ðyÞ ¼ TQ TðyÞT; ð7Þ
where the superscript T means transpose and T is the matrix with zero diagonal and identity off-diagonal 3� 3 blocks (see
e.g. [7] for the details).

In the following we deal with the essentially typical case of a medium with at least a single symmetry plane m orthogonal
to the axis X or Y. Then the trace of Q ðyÞ is zero for any y. Therefore, by the Jacobi identity, Mðy;0Þ is unimodular and hence so
is the monodromy matrix M �MðT;0Þ, i.e.
det M ¼ 1: ð8Þ
The identities (7) and (8) together ensure that for every eigenvalue qa of M, there is a corresponding eigenvalue qb ¼ 1=qa,
where a; b ¼ 1; . . . ;6. This property has been established in [9] for a piecewise constant Q ðyÞ and m ? Y; its generalization
for any piecewise continuous Q ðyÞ and for m ? X is obvious. Note that no stipulation of any material symmetry is needed if
the wave propagates strictly along the periodicity direction Y (i.e. if kx ¼ 0), which is when (8) is always true. Also note that
the out-of-plane motion with respect to the symmetry plane m ? Z of a monoclinic body (which has no other symmetry
planes) can be cast in the form with property (8), see [8].

Let x be a single free dispersion parameter (kx is fixed or expressed through x). Each pair qbðxÞ ¼ 1=qaðxÞ corresponds to
a set of dispersion curves KaðxÞ ¼ �KbðxÞ in the BZ Re Ka;bT 2 ½�p;p�, which are symmetric about the line K ¼ 0. In view of
(8), the eigenvalues q ¼ 1 and q ¼ �1, occurring, respectively, at the centre and edges of the BZ, are assuredly degenerate. We
are interested in the case q ¼ �1, which is associated with a sequence of passband/stopband crossover points at the BZ
edges, and specifically in the behaviour of the matrix ln M ¼ iKT in the vicinity of these points.

3. Divergence of KðxÞ near the BZ edges

3.1. Derivation

Denote by x ¼ x0 the frequency, at which some pair of eigenvalue branches q1ðxÞ ¼ 1=q2ðxÞ of the monodromy matrix
MðxÞ falls into two-fold degeneracy q1ðx0Þ ¼ q2ðx0Þ ¼ �1 rendering Mðx0Þ non-semisimple. Consider a function
ln q ¼ ln jqj þ i arg q defined on the zeroth Riemann sheet with a cut arg q ¼ �p passing through �1. Let x lying in the stop-
band or passband tend to x0 from, respectively, above or below. Then q1ðxÞ and q2ðxÞ tend to e�ip, thus approaching their
degenerate value �1 from the opposite sides of the cut for lnq, and, correspondingly, ln q1;2ðxÞ ¼ iK1;2ðxÞT tend to �ip,
meaning that two Floquet branches tend to the opposite edges of the BZ.

This is indeed nothing else than a very standard setup. The state of affairs is, however, not so trivial when the same limit
x! x0 is applied to the matrix logarithm ln MðxÞ ¼ iKðxÞT . It is natural to specify it by asking that both eigenvalues
ln q1;2ðxÞ of ln MðxÞ satisfy the above-mentioned definition of lnq (the issue of alternative definitions of lnM is addressed
in Section 3.1 and in Appendix B). As we have just observed, these eigenvalues tend to �ip as x! x0, i.e. they do not ap-
proach each other in contrast to the eigenvalues q1ðxÞ ! q2ðxÞ of MðxÞ. This signals a singularity of ln MðxÞ on the path
x! x0.

Let us analyze the local behaviour of ln MðxÞ for x ¼ x0 þ Dx ðjDx=x0j � 1Þ. With reference to (8), denote
q1;2ðx0 þ DxÞ � qd � dq !
x!x0

q1;2ðx0Þ � qd ¼ �1; ð9Þ
where dq means the leading-order correction in the small parameter Dx=x0. For brevity, assume the case of 2� 2 matrices
(the same derivation for the general n� n case is detailed in Appendix A). A polynomial formula for a function of a 2� 2
matrix M with eigenvalues q1 – q2 has a simple form
f ðMÞ ¼ q2f ðq1Þ � q1f ðq2Þ
q2 � q1

Iþ f ðq2Þ � f ðq1Þ
q2 � q1

M; ð10Þ
see e.g. [10]. Taking (10) for Mðx0 þ DxÞ ¼Mðx0Þ þ DM with q1;2ðxÞ given by (9) yields
f ½Mðx0 þ DxÞ� ¼ f01 þ f02

2
Iþ f01 � f02

2dq
þ f 0ðqdÞ

� �
½Mðx0Þ þ DM� qdI� þ O ðdqÞ; ð11Þ
where f01;02 ¼ limx!x0 f ðq1;2ðxÞÞ and O is a matrix symbol ‘of the order of’. For the case in hand f ¼ ln and f01;02 ¼ lnðe�ipÞ,
whence (11) becomes
ln Mðx0 þ DxÞ ¼ ip
dq
þ 1

qd

� �
½Mðx0Þ � qdI� þ ip

dq
DMþ O ðdq;DMÞ: ð12Þ
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Since Mðx0Þ � qdI is non-zero for a non-semisimple Mðx0Þ while dq tends to zero with Dx! 0, we conclude from Eq. (12)
that the matrix logarithm ln MðxÞ, and thus KðxÞ, must have components tending to infinity when x! x0. Note in passing
that an identically zero determinant of the first matrix term on the right-hand side of (12) does certainly not preclude but, on
the contrary, underlies (with due regard for the next term) the necessary identity det½ln MðxÞ� ! p2 as x! x0.

Let us now find an asymptotic rate of divergence of ln MðxÞ in terms of Dxð� x�x0Þ. For a non-semisimple M of 2� 2
dimension, the leading-order dependence dq 	 ðx�x0Þ1=2 obviously follows from a quadratic secular Eq. (5). For the general
n� n case, the same trend is easy to infer from the leading-order Taylor expansion of Dðq;xÞ � det½MðxÞ � qI� about the
point of double degeneracy q1;2ðx0Þ ¼ qd, which leads to
1 For
relevan
ðdqÞ2 ¼ BDx; B ¼ �2
@D=@x
@2D=@q2

 !
x0 ;qd

: ð13Þ
Omitting details (see e.g. [11]), it suffices to note that B is generally non-zero for non-semisimple Mðx0Þ. Thus, by (12),
ln MðxÞ, and hence KðxÞ, diverges as ðx�x0Þ�1=2 with x! x0. An explicit form of the coefficient B will be exemplified
in Section 4.
3.2. Discussion

A few formal remarks are in order. First it is reiterated that even though the components of the dealt-with matrix
ln MðxÞ ¼ iKðxÞT diverge as x! x0, its eigenvalues ln q1;2 ¼ iK1;2ðxÞT remain formally well-defined so long as x – x0.
It is also understood that the exponential of this ln MðxÞ at any x – x0 certainly reproduces (continuous) MðxÞ. Regarding
the infinity of ln MðxÞ precisely at x ¼ x0, which is when dq ¼ 0 on the right-hand side of (12), it simply tells us that the
conventional definition of ln MðxÞ, which refers both eigenvalues ln q1;2ðxÞ to the zeroth Riemann sheet of lnq with the cut
arg q ¼ �p fixing the edges of the BZ Re KT 2 ½�p;p�, precludes this matrix function of x from reaching the limiting point x0

of the path x! x0 continuously.
It is clear from the above that shifting the cut in the q-plane away from the point q ¼ �1 while keeping ln q1;2 on the

same Riemann sheet leads to a different matrix logarithm ln MðxÞ that has degenerate eigenvalues ln q1ðx0Þ ¼ ln q2ðx0Þ
and hence is well-behaved at x ¼ x0 and around it. However, this ‘gain’ for x near x0 is at the expense of one or another
essential deficiency elsewhere for the redefined ln MðxÞ. For instance, if the eigenvalues ln q1;2 of ln MðxÞ are taken on the
zeroth Riemann sheet with the cut arg q ¼ 0;2p, then this ln MðxÞ has the same divergence 	ðx�x01Þ�1=2 due to the
degeneracy q1;2ðx01Þ ¼ 1 at the set x01 of passband/stopband crossovers occurring at K ¼ 0; 2p. An exception is the origin
point x ¼ 0, where M = I and so any ln M is continuous; however, the low-frequency onset of lnM defined by taking the
cut arg q ¼ 0; 2p has no physical sense (see Appendix B). Another possibility is to use a cut arg q ¼ u; u� 2p at u – pn,
e.g. at u such that 0 < u < p. Then lnM, whose eigenvalues ln q1;2 ¼ �iKT lie on the zeroth Riemann sheet, is well-be-
haved as j arg qj ¼ jKTj grows from zero but only until u, where there is a jump to a different matrix lnM, for which
the eigenvalue ln q1 has to be shifted from arg q1 ¼ KT to arg q1 ¼ KT � 2p with KT > 0 increasing above u. Note that a
similar piecewise discontinuity pertains in the BZ Re KT 2 ½�p;p� to the logarithm of M that is not unimodular
ðdet M – 1Þ. Thus, using any ‘unconventional’ definition of the logarithm of M based on shifting the cut from the point
q ¼ �1 is hardly an alternative.

It remains to settle a natural question concerning the case of a homogeneous elastic material, for which the matrix Q is
constant, hence M ¼ expðQTÞ, and so lnM merely returns the ‘initial’ QT , which is certainly continuous in x. ‘Technically’,
the difference with the case of a periodic medium is that a constant Q keeps Mðx0Þ diagonalizable (semisimple) at the
degeneracy point q1ðx0Þ ¼ q2ðx0Þ ¼ �1 under discussion.1 Assuming Mðx0Þ ¼ qdI in Eq. (12), its first term turns to zero
and thus a continuous ln Mðx0 þ DxÞ is defined by the second term of (12), in which DM 	 ðx�x0Þ and dq 	 ðx�x0Þ (the
latter being due to B ¼ 0 in (13) for a semisimple Mðx0Þ [11]). A transition to (or from) a homogeneous material from (or
to) a weakly (periodically) inhomogeneous one is also evident: given a small parameter � of elastic inhomogeneity,
Mðx0Þ � qdI is scaled by � and dq is scaled by ð�DxÞ1=2, hence, by (12), the singularity of ln MðxÞ at x! x0 is proportional
to ð�=DxÞ1=2 and disappears at � ¼ 0.

In conclusion, let us outline some exceptional cases that are theoretically possible due to ‘incidental’ occurrence of Mðx0Þ
in a peculiar form. First, a non-semisimple Mðx0Þ does not preclude vanishing of the leading-order coefficient B (13)2 [11]; if
it happens to be zero then ðdqÞ2 is given by the higher-order terms of the Taylor series of Dðq;xÞ about x0, in which case Eq.
(12) (where Mðx0Þ– qdI) leads to ln MðxÞ 	 ðx�x0Þ�m=2 with an integer m P 2. Secondly, a (periodically) inhomogeneous
medium does not rule out a possibility for Mðx0Þ at a degeneracy point to remain semisimple (such an option is usually asso-
ciated with a stopband of zero width). Finally, a semisimple Mðx0Þmay, in principle, also cause diverging ln Mðx0 þ DxÞ – it
is the case when dq 	 ðx�x0Þ1þðm=2Þ with m > 0 due to incidentally vanishing higher-order derivatives @2D=@x2; @2D=@q@x,
etc. in the Taylor series of Dðq;xÞ about x0, whence ln MðxÞ for x! x0 diverges owing to the term
ðdqÞ�1DM 	 ðx�x0Þ�m=2 in Eq. (12).
a constant Q, this degeneracy of q1;2 ¼ eiky T implies nothing more than an odd number of half-wavelengths within the interval Dy ¼ T – note no
ce to degenerate eigenvalues ky of Q that do render Q and hence M ¼ expðQTÞ non-semisimple.
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4. Examples of Qeff ¼ iK

4.1. Bilayered unit cell

This section is intended to illuminate the preceding general development by way of its application to simple examples of
a scalar acoustic wave in a periodically repeated sequence of pairs of homogeneous layers. With this purpose, we first remind
the 2� 2 setup for an arbitrary 1D-periodic medium [2,3] and detail the formulas describing the ‘effective’ matrix Q eff ¼ iK
for this framework. Then we further elaborate Q eff for the case of a bilayered unit cell.

4.1.1. 2� 2 setup
Consider a 2� 2 unimodular monodromy matrix MðxÞ. Its eigenvalues
q1;2 ¼
1
2

trace M� R; where R � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrace MÞ2 � 4

q
¼ q1 � q2

2

� �
; ð14Þ
define the Floquet wavenumbers
iK1;2T ¼ �iKT ¼ ln q1;2 ¼ �i arccos
1
2

trace M
� �

¼ �2i arccos
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace Mþ 2

p� �
; ð15Þ
and the equation
trace M ¼ �2 ð16Þ
defines the set of frequencies x ¼ x0 of passband/stopband crossovers at the BZ edges KT ¼ �p, where
q1ðx0Þ ¼ q2ðx0Þ � qd ¼ �1, see [2,3].

Introduce the 2� 2 ‘effective’ matrix Q eff ¼ iK, which is related to M by the equality M ¼ expðiKTÞ and which has eigen-
values (15) understood under the standard definition of the functions ln and arccos, so that Re KT 2 ½�p;p�. Then Eq. (10)
specified for f ðMÞ � ln M gives
Q effðxÞ ¼
iK
R

M� 1
2
ðtrace MÞI

� �
: ð17Þ
The same result may certainly be obtained by equating M to expðiKTÞ, which follows from the same (10) (re-adjusted to f ðKÞ)
in the form
expðiKTÞ ¼ ðcos KTÞIþ i
sin KT

K

� �
K ¼ 1

2
ðtrace MÞIþ R

K
K ð18Þ
due to using the condition K1;2 ¼ �K equivalent to fixing the appropriate definition of matrix logarithm lnM.
Consider now a vicinity of the BZ edge. Eqs. (14) and (15) expand in small Dx ¼ x�x0 as
q1;2ðxÞjx�x0
¼ �1�

ffiffiffiffiffiffiffiffiffiffiffi
BDx
p

þ OðDxÞ; KðxÞTjx�x0
¼ pþ i

ffiffiffiffiffiffiffiffiffiffiffi
BDx
p

þ OðDxÞ; RðxÞjx�x0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BDxþ O½ðDxÞ2�

q
; ð19Þ
where it is denoted
B ¼ � d
dx

trace M
� �

x0

; ð20Þ
which is non-zero for a non-semisimple Mðx0Þ (barring the theoretical exceptions mentioned in the end of Section 3.2).
Inserting (19) and (20) in (17) yields
Q effðxÞx�x0
¼ ip�

ffiffiffiffiffiffiffiffiffiffiffi
BDx
p

þ OðDxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BDxþ O½ðDxÞ2�

q Aþ dM
dx

� �
x0

þ 1
2

BI

" #
Dxþ OðDxÞ2

( )
; ð21Þ
where A denotes a non-zero nilpotent matrix
A ¼Mðx0Þ � qdI ¼Mðx0Þ þ I ðA2 ¼ 0Þ: ð22Þ
Eq. (21) elaborates (12) (with due regard for DM=dq 	 OðdqÞ). Note also that Eq. (19)3 for R, defined in (14)2, to leading order
reads dq ¼

ffiffiffiffiffiffiffiffiffiffiffi
BDx
p

which is recognized as Eq. (13)1. Correspondingly, the definition (20) of the coefficient B is equivalent to
Eq. (13)2, which specializes for the given case (of 2� 2 M with qd ¼ �1 at x0) as
B ¼ � d
dx

detðM� qIÞ
� �

x0

¼ trace A
dM
dx

� �
x0

" #
: ð23Þ
Expansion (21) shows that the ‘effective’ matrix Q eff ðxÞ has well-behaved eigenvalues �iKðxÞ ! �ip=T at x! x0, while
its components diverge due to non-zero A with a common factor	 ðx�x0Þ�1=2. It is also seen from Eqs. (21)–(23) that A and
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B for a weakly inhomogeneous unit cell can in general be scaled by the same small parameter � (=0 for a homogeneous limit),
and so the singularity of Q eff ðxÞ at x! x0 is scaled by ð�=DxÞ1=2 as argued in Section 3.

4.1.2. Q eff for a bilayered unit cell
Let us narrow our analysis to the case of a two-component piecewise constant unit cell. Specifically, we consider the shear

horizontal (SH) wave in a periodic structure of perfectly bonded pairs of isotropic homogeneous infinite layers j ¼ 1; 2, each
with constant density qj, shear modulus lj and thickness dj. For the sake of the brevity of explicit formulas, assume the wave
uðyÞ propagating along the axis Y normal to the interfaces ðkx ¼ 0Þ. Hooke’s law rðyÞ ¼ lju

0ðyÞ and the equation of motion
r0ðyÞ ¼ �qjx2uðyÞ combine into the system (1) with the state vector gðyÞ ¼ ðixu; rÞT and the piecewise-constant periodic
2� 2 system matrix
Q j ¼ ixsj
0 Z�1

j

Zj 0

 !
; j ¼ 1;2; ð24Þ
which leads to the propagator MðT;0Þ ¼ eQ 2d2 eQ 1d1 �MðxÞ through the period T ¼ d1 þ d2 (the monodromy matrix) in the
form
MðxÞ ¼
cos w2 cos w1 � Z1

Z2
sin w2 sin w1

i
Z1

cos w2 sin w1 þ i
Z2

sin w2 cos w1

iZ1 cos w2 sin w1 þ iZ2 sin w2 cos w1 cos w2 cos w1 � Z2
Z1

sin w2 sin w1

 !
; ð25Þ
where sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
qj=lj

q
is the slowness, Zj ¼

ffiffiffiffiffiffiffiffiffiqjlj
p

the impedance and wj ¼ xsjdj the phase shift over a layer. Passing in (25) to an

oblique propagation amounts to merely premultiplying wj and Zj by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

x=s2
j

q
with a fixed sx ¼ kx=x. Inserting M into the

basic relations (14) and (16) provides the textbook equations implicitly defining the Floquet spectrum xðKÞ and its stopband
bounds x ¼ x0 at the BG edge for a bilayered unit cell, e.g. [2].

The 2� 2 ‘effective’ matrix Q eff ¼ iK for a bilayered unit cell follows from (17) and (25) in the form
Q effðxÞ ¼
iK
R

� 1
2

Z1
Z2
� Z2

Z1

� �
sin w2 sin w1

i
Z1

cos w2 sin w1 þ i
Z2

sin w2 cos w1

iZ1 cos w2 sin w1 þ iZ2 sin w2 cos w1
1
2

Z1
Z2
� Z2

Z1

� �
sin w2 sin w1

0B@
1CA: ð26Þ
It is evident from (17) and the definition (14)2 of R that the eigenvalues of this matrix are �iK, and that it reduces to (24)1

when Z1 ¼ Z2; s1 ¼ s2. As another consistency test, we note that (26) provides the well-known low-frequency asymptotics of
Q eff , whose diagonal and off-diagonal components expand in, respectively, even and odd powers of ix as follows:
Q effðxÞx=x0�1 ¼ hQ i þ
d1d2

2T
ðQ 2Q 1 � Q 1Q 2Þ þ 
 
 
 ¼ ix

0 hl�1i
hqi 0

 !
þ 1

2
ðixÞ2jT

1 0
0 �1

� �
þ 
 
 
 ; ð27Þ
where
hQ ðxÞi ¼ Q 1
d1

T
þ Q 2

d2

T
; hl�1i ¼ 1

l1

d1

T
þ 1

l2

d2

T
; hqi ¼ q1

d1

T
þ q2

d2

T
; j ¼ d1d2

T2

q1

l2
� q2

l1

� �
: ð28Þ
Additional explicit insight is gained by noticing that trace M + 2 with M given by (25) can be factored as
trace Mþ 2 ¼ fþf�; f� ¼
1ffiffiffiffiffiffiffiffiffiffi

Z1Z2
p ðZ1 þ Z2Þ cos

w1 þ w2

2
� ðZ1 � Z2Þ cos

w1 � w2

2

� �
; ð29Þ
whence Eqs. (14) and (15) provide
iKðxÞT ¼ ln
fþf�

2
� 1þ R

� �
¼ 2i arccos

ffiffiffiffiffiffiffiffiffi
fþf�

p
2

; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþf�

fþf�
4
� 1

� �s
; ð30Þ
and Eq. (16) takes the form
fþf� ¼ 0; ð31Þ
showing that the set x ¼ x0 consists of two families given by zeros of f�. Evidently, this split reveals the symmetric/anti-
symmetric decoupling of the problem. As a result, the expansion (21) of Q eff ðxÞ about the points x ¼ x0, when applied
to the matrix Q eff (26) in hand, admits compact formulas for its leading-order parameters B (20) and A (22) as follows:
B ¼ � f�
df�
dx

� �
x0

¼ � 1
x0

Z1

Z2
� Z2

Z1

� �
ðw1 sin w2 þ w2 sin w1Þ; A ¼ �

cos w1 þ cos w2
i

Z1
sin w1 � i

Z2
sin w2

iZ2 sin w2 � iZ1 sin w1 � cos w1 � cos w2

 !
;

ð32Þ
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where wj ¼ x0sjdj are referred to x0, and the upper or lower sign corresponds to fþ ¼ 0 or f� ¼ 0 in (31), respectively (see
Appendix C for derivation of (32)2). The derivative ðdM=dxÞx0

, which also appears in (21), can be obtained due to
M ¼ eQ 2d2 eQ 1d1 in the form expressed through the matrices Q j (24) and A as
dM
dx

� �
x0

¼ 1
x0
ðd2Q 2Mþ d1MQ 1Þx0

¼ T
x0

d2

T
Q 2ðx0ÞAþ

d1

T
AQ 1ðx0Þ � hQ ðx0Þi

� �
: ð33Þ
Its plugging in (23)2 and taking note of A2 ¼ 0 yields another definition of the coefficient B,
B ¼ � T
x0

trace½AhQ ðx0Þi�; ð34Þ
which for the given case of a bilayered unit cell is equivalent to (20) and (23). It is easy to verify that (34) with (28) and (32)2

leads to (32)1.
The following analysis for highly contrasting layers and for layers in spring–mass–spring contact makes an extensive use

of the factorization (29) and the consequent formulas.

4.1.3. High-contrast case
It is instructive to specialize the above considerations to the case of high contrast between the material properties of two

layers composing the unit cell. Suppose that e.g. the second layer is much softer than the first one:
l2=l1 � e2 ð¼> s2 	 e�1; Z2 	 eÞ; where 0 < e� 1: ð35Þ
The main interest of the high-contrast case is that the first stopband at the BZ edge occurs in the low-frequency range, which
is scaled by e and implies w1 ¼ OðeÞ;w2 ¼ Oð1Þ. In this range, the propagator (25) is approximated to leading order in e as
MðxÞw1¼OðeÞ ¼
cos w2 � b sin w2

i
Z2

sin w2

iZ2ðsin w2 þ b cos w2Þ cos w2

 !
; ð36Þ
where
bðxÞ � Z1w1

Z2
¼ x

q1d1ffiffiffiffiffiffiffiffiffiffiffiq2l2
p ¼ q1d1

q2d2
w2

� �
; ð37Þ
and Eq. (16) with M (36) defines the stopband bounds x ¼ x0 by
cos w2 �
b
2

sin w2 ¼ �1() cos
w2

2
cos

w2

2
� b

2
sin

w2

2

� �
¼ 0: ð38Þ
The latter, factorized, form is Eq. (31) with approximate f� (29)2. So the first stopband is bounded by the least roots of fþ ¼ 0
and f� ¼ 0 which, to leading order in e, are the first zeros of the cofactors of (38)2. The upper bound corresponding to fþ ¼ 0 is
close to the first thickness resonance w2ð¼ xs2d2Þ ¼ p of the soft layer. Denote the lower bound corresponding to f� ¼ 0 by
Xð¼minx0Þ. It is approximated by the least root of equation
tanðw2=2Þ ¼ 2=b; ð39Þ
which involves coupling of the layers. Note in passing resemblance and dissimilarity between this simple model (see also
Section 4.2) and the textbook case of a high-contrast diatomic lattice [2].

With a view to highlight the low-frequency behaviour of Q eff ðxÞ, let us focus our attention on x ranging from x � X and
going down the first Floquet branch to x ¼ 0. Substituting (36) in (26) yields
Q effðxÞ ¼
iK
R

� b
2 sin w2

i
Z2

sin w2

iZ2 sin w2 þ b cos w2ð Þ b
2 sin w2

 !
; ð40Þ
where by (30) and (38)
iKðxÞT ¼ ln cos w2 �
b
2

sin w2 þ R
� �

¼ 2i arccos cos
w2

2
cos

w2

2
� b

2
sin

w2

2

� �� �1=2

;

RðxÞ ¼ 2 sin w2
b
2

cos
w2

2
þ sin

w2

2

� �
b
2

sin
w2

2
� cos

w2

2

� �� �1=2

:

ð41Þ
The singular term for Q effðxÞ (40) as x tends to the first stopband bound X is Q eff ðxÞ / ipffiffiffiffiffiffiffi
BDx
p A (see (21)) withffiffiffiffiffiffiffiffi

Dx
p

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X�x
p

and
B ¼ 1
X
½bðw2 þ sin w2Þ�x¼X; A ¼ 2

1þ ð2=bÞ2
�1 2i

Z2b

iZ2b=2 1

 !
x¼X

: ð42Þ
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Eq. (42) follows from (32) which is taken with the lower sign (since X is defined by f� ¼ 0) and confined to leading order in e
(in accordance with the accuracy of (36) and hence of (40)). The asymptotics of the same Q eff ðxÞ (40) near the origin point
x ¼ 0 is given by Eq. (27) with
hl�1i ¼ 1
l2

d2

T
; j ¼ d1d2

T2

q1

l2
; ð43Þ
which also implies taking leading order in the high-contrast parameter e. Note that B provided in (42)1 satisfies Eq. (34) with
hQ i given by (43).

4.2. Layers in spring–mass–spring contact

As another example, consider propagation of the SH wave through a structure of identical layers of thickness T in spring–
mass–spring contact. Denote the rigidity of each of two springs by c and the mass by m. Note that the physical dimension of
m is voluminal density times length. The monodromy matrix M �MðT;0Þ for the state vector g ¼ ðixu;rÞT is M ¼MintMl,
where Ml ¼ expðQTÞ is the propagator across the layer with Q given by (24) (no subscripts j ¼ 1; 2), and Mint is the propa-
gator across the spring–mass–spring interface:
Mint ¼
1� x2m

c
2ix
c 1� x2m

2c

� �
ixm 1� x2m

c

0@ 1A ¼ 1� 2x2

X2
r

2ix
c 1� x2

X2
r

� �
2ixc
X2

r
1� 2x2

X2
r

0@ 1A; ð44Þ
where Xr ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2c=m

p
is the resonant frequency of this joint. Thus
MðxÞ ¼
1� 2x2

X2
r

� �
cos w� 2xZ

c 1� x2

X2
r

� �
sin w i

Z 1� 2x2

X2
r

� �
sin wþ 2ix

c 1� x2

X2
r

� �
cos w

iZ 1� 2x2

X2
r

� �
sin wþ 2ixc

X2
r

cos w 1� 2x2

X2
r

� �
cos w� 2xc

ZX2
r

sin w

0B@
1CA: ð45Þ
A factorized form (31) of Eq. (16) defining the stopbands at the edge of the BZ holds with
fþ ¼ 4 1� w2 m
qT

l
2cT

� �
cos

w
2
� m

2qT
w sin

w
2

� �
;

f� ¼ cos
w
2
� l

cT
w sin

w
2
;

ð46Þ
where x2=X2
r ¼ w2ml=2qcT2 is used to write f� as functions of the phase shift w ¼ xT

ffiffiffiffiffiffiffiffiffi
q=l

p
. It is seen that fþðwÞ depends on

both spring and mass parameters cT=l and m=qT , while f�ðwÞ depends on l=cT only.
Let us again specialize our consideration to the high-contrast case of a similar ‘stiff/soft’ nature, now by assuming a rel-

atively small rigidity
cT=l� 1 ð47Þ
of the springs supporting the mass. Like before, we are interested in the first stopband at the BZ edge. Given (47), the least
roots w� of f� ¼ 0 and the corresponding stopband bounds X� to leading order are
wþ ¼min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cT
l

qT
m

s
;p

 !
) Xþ ¼minðXr ;XlÞ ¼ min

ffiffiffiffiffiffi
2c
m

r
;
p
T

ffiffiffiffi
l
q

r !
;

w� ¼

ffiffiffiffiffiffiffiffiffi
2cT
l

s
) X� ¼

ffiffiffiffiffiffiffi
2c
qT

s
;

ð48Þ
where Xl is the frequency of the thickness resonance of the layer. The question is which of Xþ and X� is the lower frequency
bound. Since X2

�=X
2
r ¼ m=qT , it is evident that a heavy mass m� qT ensures Xþ ¼ Xr < X�; a ‘medium heavy’ mass m 	 qT

implies commensurate Xþ ¼ Xr 	 X�, and a light mass m� qT ensures X� < Xþ. For the two former cases, the whole first
stopband is confined to the low-frequency range in the sense that both its bounds provide a small phase w� 1. In the latter
case of a light mass, decreasing the small parameter m=qT keeps the lower bound at w� � 1 and lifts the upper bound up
until the phase wþ reaches p, i.e. Xr reaches Xl.

Consider the range w� 1 containing one or both bounds (X� or X� and Xþ ¼ Xr , respectively) of the first stopband at the
BZ edge. Expanding (45) to leading order in small w, bearing in mind (47), and using the notations (48) of X� and Xr yields
MðxÞ ¼
1� 2x2

X2
r
� 4 x2

X2
�

1� x2

X2
r

� �
2ix
c 1� x2

X2
r

� �
2ixc
X2
�

1� 2x2

X2
r
þ X2

�
X2

r

� �
1� 2x2

X2
r

0B@
1CA; ð49Þ
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which observes det M = 1. Inserting (49) in (17) gives
Fig. 1.
x 2 ½0;
diagona
curves
Q eff xð Þ ¼ iK
R

�2 x2

X2
�

1� x2

X2
r

� �
2ix
c 1� x2

X2
r

� �
2ixc
X2
�

1� 2x2

X2
r
þ X2

�
X2

r

� �
2 x2

X2
�

1� x2

X2
r

� �
0B@

1CA; ð50Þ
in which
iKðxÞT ¼ lnð2a� 1þ RÞ ¼ 2i arccos
ffiffiffi
a
p

;RðxÞ ¼ 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

p
with a ¼ 1�x2=X2

r

� �
1�x2=X2

�

� �
:

ð51Þ
The latter follows from a similar expansion of f�ðwÞ (46) at w� 1 and cT=l� 1, approximating the left-hand side of Eq. (31)
as fþf� ¼ 4a and plugging it into (30).

According to (50) and (51), the matrix Q eff ðxÞ, as expected, experiences the square-root singularity at the BZ edge; how-
ever, it does so in a different way when x approaches either X� (light mass) or Xr (if Xr fulfils w� 1 due to heavy enough
mass). By (49) and (50), all components of the matrix A ¼MðX�Þ � I are non-zero and hence all components of Q effðxÞ di-
verge when x! X�. This is a typical option for a singularity of Q effðxÞ. On the other hand, A ¼MðXrÞ � I has only left off-
diagonal component being non-zero, and hence only this component of Q effðxÞ diverges when x! Xr while the others tend
to zero. This is rather an unusual option, which is due to the approximations underlying a simple form (49) and (50) of M and
Q eff . The transition between the two above options occurs at X� ¼ Xr (i.e. m ¼ qT), in which case x0 ¼ X� ¼ Xr implies the
stopband of zero width that yields a semisimple Mðx0Þ ¼ �I so that Q eff ðxÞ is well-behaved at x! x0 (it is one of the
extraordinary possibilities mentioned in the end of Section 3.2). For either of these cases, the low-frequency asymptotics
of Q eff ðxÞ (50) is given by (27) with the effective properties taken to leading order in the soft-spring parameter (47), i.e. with
hl�1i ¼ 2
cT
; hqi ¼ qþm

T
; j ¼ 2q

cT
; ð52Þ
where cs ¼ c=2 is the rigidity of two identical springs in series (cf. (43)).
The two types of singular behaviour of the ‘effective’ matrix Q eff ðxÞ defined by (50) and (51) are illustrated in Fig. 1. It

displays the off-diagonal components normalized by their statically-averaged values hQ iij (	 x, see (27) with (52)1,2) and
compares the diagonal components to their leading low-frequency term (	 x2, see (27) with (52)3). Specifically, the plotted
curves are defined as yijðxÞ ¼ 1

hQ iij
ðQ eff Þij ðij ¼ 12; 21Þ and yiiðxÞ ¼ TðQ effÞii ðy22 ¼ �y11Þ with x ¼ x=X� when X2

� ¼ ð1=3ÞX2
r

(Fig. 1a) and with x ¼ x=Xr when X2
� ¼ 3X2

r (Fig. 1b), where X2
�=X

2
r ¼ m=qTð� cT=2lÞ.

Note in conclusion that passing to the case of an oblique propagation (kx ¼ xsx – 0, see note to (25)) implies replacing the
entries of layer density q by q� s2

xl. Moreover, this case enables further ‘ramification’ of the spring–mass–spring model by
means of recasting the point mass m as an ‘elastic’ mass mð1� c2

T s2
x Þ with its own shear velocity cT (then X2

r becomes
X2

r ¼ 2c=m 1� c2
T s2

x

	 

). It is also noted that the case of layers in ‘pure spring’ contact (i.e. without a mass) is described by
Frequency dependence of components of the ‘effective’ matrix Q eff (50) in the first passband, which is (a) x 2 ½0;X�� with X2
�=X

2
r ¼ 1=3 and (b)

Xr � with X2
�=X

2
r ¼ 3. Black curves are the off-diagonal components ij ¼ 12;21 normalized by their statically averaged values; grey curves are

l components, whose leading low-frequency evaluation ð	 x2Þ is shown by dashed line. The variable is x ¼ x=X� in (a) and x ¼ x=Xr in (b). The
definition is further detailed in the text.
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the above formulas taken with m ¼ 0 ðX2
r !1Þ and with cs ¼ c=2 as the rigidity of the spring joint, or else by the formulas of

Section 4.1 taken in the limit d2 ! 0, l2 ! 0 while keeping cs ¼ l2=d2 finite.
5. Summary

Components of the matrix logarithm lnM, where M = MðT;0Þ is a unimodular propagator matrix relating the acoustic
wave field with a frequency x at one and the other ends of a period T of 1D-periodic anisotropic medium, have been shown
to diverge when the frequency x tends to the values x0 of passband/stopband crossovers occurring at the edge of the first
Brillouin zone (BZ). Explicit analytical examples of the ‘effective’ matrix Q effðxÞð� iKðxÞÞ ¼ 1

T ln MðxÞ and of its diverging
asymptotics near the BZ edges were provided for the simple case of a scalar waves in a two-component periodic structure
of several types, including its high-contrast model when the least of x0 may be made arbitrarily small.

Whereas the components of matrix Q eff diverge at x! x0, it is understood that Q eff for any x – x0 yields a continuous
M ¼ expðQ eff TÞ and has a continuous eigenspectrum which is in one-to-one correspondence with that of M. Thus, invoking a
diverging Q eff for formulating a time-harmonic wave propagation through a finite or infinite number of periods cannot cre-
ate any difficulty, because this phenomenon can be fully described via M and its eigenspectrum. At the same time, diver-
gence of components of Q eff calls for careful interpretation if the governing system (1) is taken with Q eff in place of the
actual matrix of coefficients Q ðyÞ and is then viewed in the same sense as the ‘true’ system (1), i.e. as incorporating the equa-
tion of motion and the constitutive law, but now with the constant coefficients Q eff ðxÞ of the fictitious homogenized
medium.

Explicit results of this paper can readily be adjusted to other physical problems whose mathematical formulation admits
reduction to Eq. (1), see e.g. [12]. Further development is underway to analyze the high-frequency ‘effective matrix’ Q eff near
the centre of the BZ for 1D-periodic structures. Another interest lies in the potential extension of the analytical means of the
paper to more complicated cases, like in [13], whose exact mathematical statement does not reduce to (1).
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Appendix A. On the divergence of the logarithm of a n� n matrix MðxÞ

Let MðxÞ be a n� n non-singular ðdet M – 0Þ matrix, continuous in x, with eigenvalues qjðxÞ. Denote
Mðx0Þ ¼M0; qjðx0Þ ¼ q0

j and suppose that q0
1 ¼ q0

2 � qd while all other q0
j ðj – 1; 2Þ are distinct. Consider a small neighbour-

hood of x0, where
MðxÞ ¼ M0 þ oð1Þ; qjðxÞ ¼ q0
j þ oð1Þ; ð53Þ
and all qjðxÞ ðj ¼ 1;2; . . . ;nÞ are distinct. Assume that the matrix M0 with a degenerate eigenvalue qd is non-semisimple, i.e.,
that the Jordan form J0 of M0 is
J0 ¼ P
 S with P ¼ qdI2 þ R; R ¼
0 1
0 0

� �
; S ¼ diag q0

3; . . . ; q0
n

	 

; ð54Þ
where Im denotes the m�m identity matrix. Thus the spectral decomposition of MðxÞ is
MðxÞ ¼ CðxÞdiagðq1ðxÞ; . . . ; qnðxÞÞC
�1ðxÞ for x – x0;

M0 ¼ C0J0C�1
0 for x ¼ x0;

ð55Þ
where CðxÞ and C0 are matrices whose columns are linear independent eigenvectors of, respectively, MðxÞ and M0 (note that
C0, which includes a generalized eigenvector of M0, is certainly not Cðx0Þ, which is singular).

Introduce a logarithm of MðxÞ with x – x0,
ln MðxÞ ¼ CðxÞdiagðln q1ðxÞ; . . . ; ln qnðxÞÞC
�1ðxÞ;

where ln qj ¼ ln jqjj þ iðarg qj þ 2pkjÞ; kj 2 Z:
ð56Þ
This is a general definition in the sense that, while observing indeed the equality exp½ln MðxÞ� ¼MðxÞ, it permits taking
each ln qj in (56)2 on any kjth Riemann sheet. Let us further suppose that
ln q0
1 � ln q0

2 ¼ 2pi; ð57Þ
which implies either that q1ðxÞ and q2ðxÞ tending to qd as x! x0 are defined on adjacent Riemann sheets (k1 � k2 ¼ 1) and
qd is away from the cut, or, alternatively, that q1ðxÞ and q2ðxÞ are taken on the same Riemann sheet (k1 ¼ k2 in (56)2) with
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the cut such that q0
1 and q0

2 are located on its opposite edges. The latter option with k1;2 ¼ 0 is directly related to the physical
context discussed in this paper.

Our purpose is to show that, under the aforementioned assumptions, the asymptotics of ln MðxÞ at x! x0 is
ln MðxÞ ¼ 2pi
q1ðxÞ � q2ðxÞ

Aþ o
1

q1ðxÞ � q2ðxÞ

� �
with

A ¼ C0 J0 � diag qd; qd; q
0
3; . . . ; q0

n

	 
� �
C�1

0 ¼ C0ðR 
 0n�2ÞC�1
0 – 0n;

ð58Þ
where 0m is m�m zero matrix and the other entries have been defined above.
The derivation of (58) is based on the Lagrange–Sylvester formula [10] with due regard for (53), (55)2 and (57). Along

these lines, we manipulate ln MðxÞ as follows (omitting for brevity the argument x of MðxÞ and qjðxÞ):
ln M ¼
Xn

k¼1

Y
j–k

M� qjIn

qk � qj

 !
ln qk ¼

Xn

k¼1

Y
j–k

M0 � q0
j In

qk � qj

 !
ln q0

k þ o
1

q1 � q2

� �

¼
X2

k¼1

Y
j–k

M0 � q0
j In

qk � qj

 !
ln q0

k þ o
1

q1 � q2

� �
¼

Y
jP3

M0 � q0
j In

qd � q0
j

 !
M0 � qdIn

q1 � q2
ðln q0

1 � ln q0
2Þ þ o

1
q1 � q2

� �

¼ 2pi
q1 � q2

Y
jP3

M0 � q0
j In

qd � q0
j

 !
ðM0 � qdInÞ þ o

1
q1 � q2

� �

¼ 2pi
q1 � q2

C0

Y
jP3

J0 � q0
j In

qd � q0
j

 !
ðJ0 � qdInÞ

" #
C�1

0 þ o
1

q1 � q2

� �
: ð59Þ
Next we invoke (54) and observe that
Y
jP3

J0 � q0
j In

qd � q0
j

 !
ðJ0 � qdInÞ ¼ R 
 0n�2; ð60Þ
which is due to
Y
jP3

P� q0
j I2

qd � q0
j

 !
ðP� qdI2Þ ¼

Y
jP3

I2 þ
1

qd � q0
j

R

 !" #
R ¼ I2 þ

Xn

j¼3

1
qd � q0

j

R

 !
R ¼ R;

Y
jP3

S� q0
j In�2

qd � q0
j

 !
ðS� qdIn�2Þ ¼ 0n�2:

ð61Þ
Note that an essential simplification of (60) is a consequence of R2 ¼ 02, yielding (61)1. Finally, inserting (60) into (59) deliv-
ers the sought result (58). Admitting A ¼ 0n in (58) would lead to a contradiction 0n ¼ C�1

0 AC0 ¼ R0 
 0n�2 – 0n, hence
A – 0n. h

Eq. (58) shows that the condition (57) leads to divergence of ln MðxÞwith q1ðxÞ ! q2ðxÞ at x! x0. For a unimodular M,
taking (58) with q1ðxÞ � q2ðxÞ � 2dq gives ln MðxÞ ¼ pi

dq Aþ o 1
dq

� �
. In the case of 2� 2 matrices, A ¼ C0RC�1

0 ¼ M0 � qdI and
hence (58) provides the leading-order term on the right-hand side of (12).
Appendix B. Low-frequency asymptotics of lnM defined over the Brillouin zone ½0; 2p�

Interest in the ‘effective’ matrix Q eff ¼ iK ¼ 1
T ln M is often confined to the frequency range x 2 ½0;X� occupied by the first

passband, i.e. by the first Floquet branch. The logarithm of a unimodular M does not diverge at x! X if, contrary to the con-
ventional definition, its eigenvalues ln q are defined on the zeroth Riemann sheet with a cut arg q ¼ 0;2p. Like any other ln
M, it is also continuous for x! 0. We will, however, demonstrate that its low-frequency asymptotics has no physical sense
and thus the so defined ln MðxÞ is of little if any practical value.

For brevity, consider the case of a 2� 2 matrix Q ðyÞ given by (24), in which, however, we keep arbitrary periodic
qðyÞ; lðyÞ instead of qj; lj. The matrix MðT;0Þ �M expands as the power series
M ¼ Iþ
Z T

0
Q ðyÞdyþ

Z T

0

Z y1

0
Q ðyÞQ ðy1Þdydy1 þ 
 
 
 ¼ Iþ ixT

0 l�1

 �

hqi 0

 !

þ 1
2
ðixTÞ2 hqihl�1i þ j 0

0 hqihl�1i � j

 !
þ 
 
 
 ; ð62Þ
where h
i ¼
R 1

0 ð
Þd1 and j ¼
R 1

0

R 1
0 ½qð1Þl�1ð11Þ � l�1ð1Þqð11Þ�d1d11. If the period T consists of two homogeneous layers, then

hqi; hl�1i and j reduce to (28).
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Reserving the notation lnM for the conventionally defined logarithm of M, introduce another logarithm fln M with the
aforementioned ‘modified’ definition, so that
ln M ¼ C diagðln q1; ln q2ÞC
�1; with ln q ¼ ln jqj þ i arg q; �p 6 arg q < p;flnM ¼ C diagðfln q1;

fln q2ÞC
�1; with fln q ¼ ln jqj þ i arg q; 0 6 arg q < 2p;

ð63Þ
where q1;2 are eigenvalues of M, and C is a matrix of eigenvectors of M. Obviously, taking exp of both lnM andfln M returns M.
However, these two matrix logarithms are essentially different. Note that the standard definition used in (63)1 allows the
Taylor series lnð1þ zÞ ¼ z� 1

2 z2 þ 
 
 
 for z� 1, whereas flnð1þ zÞ used in (63)2 is not analytical near z ¼ 0 and hence does
not admit the Taylor expansion. This underlies a drastic disparity between the low-frequency asymptotics of lnM and flnM.

For small x, when q1;2ðxÞ are close to 1, fln M and lnM are related as follows:
flnM ¼ C diagðln q1;
flnq2ÞC

�1 ¼ C diagðln q1; ln q2 þ 2piÞC�1 ¼ ln Mþ C diagð0;2piÞC�1 ¼ ln Mþ 2pi
q2 � q1

ðM� q1IÞ;

ð64Þ
where, with reference to (14) and (62),
q1;2ðxÞ ¼ 1� ixT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hqihl�1i

q
þ 1

2
ðixTÞ2hqihl�1i þ Oðx3Þ: ð65Þ
Hence an explicit difference between fln M and lnM at x! 0 is
2pi
M� q1I
q2 � q1

¼ 2pi

2ixT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hqihl�1i

p
þ Oðx2Þ

ixT
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hqihl�1i

p
hl�1i

hqi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hqihl�1i

p !
þ 1

2
ðixTÞ2

j 0
0 �j

� �" #

þ Oðx2Þ ¼ pi
�1

ffiffiffiffiffiffiffiffiffi
hl�1i
hqi

q
ffiffiffiffiffiffiffiffiffi
hqi
hl�1i

q
�1

0B@
1CA� pjT

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hqihl�1i

p x
1 0
0 �1

� �
þ Oðx2Þ: ð66Þ
The low-frequency asymptotics of ln M ¼ Q eff T readily follows from (62) on the basis of the Taylor series of lnð1þ zÞ, see
its example (27). It has a perfectly clear physical meaning, for Q eff tends to zero when x! 0, and to an appropriate matrix Q
of a homogeneous medium when the inhomogeneity tends to zero (cf. (27) and (24)). As regards fln M, Eqs. (64) and (66)
show that its discrepancy with lnM is non-zero even at x ¼ 0. Thus, contrary to lnM, the asymptotics of fln M near x ¼ 0
has no physical sense.

Appendix C. Explicit form (32)2 of the matrix A and its properties

Consider the matrix A ¼Mðx0Þ � qdI ¼Mðx0Þ þ I defined at the BZ edge, see (22). Substituting the propagator M through
a bilayered unit cell given by (25) leads to
A ¼ 1
Z1Z2

� 1
2 Z2

1 � Z2
2

� �
sin w1 sin w2 i Z2 sin w1 cos w2 þ Z1 sin w2 cos w1ð Þ

iZ1Z2 Z1 sin w1 cos w2 þ Z2 sin w2 cos w1ð Þ 1
2 Z2

1 � Z2
2

� �
sin w1 sin w2

0B@
1CA; ð67Þ
where wj ¼ x0sjdjðj ¼ 1;2Þ and x0 is implicitly determined by Eq. (16) or its equivalent (31). In the following, the reference
to x ¼ x0 will be understood. The objective is to manipulate (67) into a form that is transparent.

Introduce the auxiliary notations
Z� ¼ Z1 � Z2;w� ¼
1
2
ðw1 � w2Þ; a� ¼ Z� cos w�; b� ¼

1
2
ðsin wþ � sin w�Þ: ð68Þ
Note the trigonometric identities
sin w1 sin w2 ¼ 4bþb� ¼ cos2 w� � cos2 wþ;

Z2 sin w1 cos w2 þ Z1 sin w2 cos w1 ¼ aþ sin wþ � a� sin w�;

Z1 sin w1 cos w2 þ Z2 sin w2 cos w1 ¼ aþ sin wþ þ a� sin w�:

ð69Þ
Next we use Eq. (31), which defines two families of the stopband bounds x0 given by either fþ ¼ 0 or f� ¼ 0, i.e. by either
aþ ¼ �a� or aþ ¼ a� (see (29)2 and (68)). Combining these equations with (69) leads to the following alternative expressions
for the diagonal and off-diagonal elements of A:
A11 ¼ �A22 ¼ �2
ZþZ�
Z1Z2

bþb� ¼ �
2

ZþZ�
aþa� ¼ �ðcos w1 þ cos w2Þ; ð70Þ
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and
A12 ¼
i2

Z1Z2
a�b� ¼ �

i2
Z1Z2

a�b�; A21 ¼ i2a�b� ¼ �i2a�b�; ð71Þ
where
2a�b� ¼ Z1 sin w1 � Z2 sin w2;2a�b� ¼ �ðZ2 sin w1 � Z1 sin w2Þ: ð72Þ
Except for the first expression in (70), all others may be called conditional as they depend on which of the two families of x0

they are referred to. The compact form of these expressions in (70)–(72) implies that the upper/lower signs and, simulta-
neously, the upper/lower subscripts are related to fþ ¼ 0 and to f� ¼ 0, respectively. By using these expressions, Eq. (67)
can be recast in the form
A ¼ �
cos w1 þ cos w2

i
Z1

sin w1 � i
Z2

sin w2

iZ2 sin w2 � iZ1 sin w1 � cos w1 � cos w2

 !
¼ � eQ 2d2 Gþ GeQ 1d1

	 

; where G ¼

1 0
0 �1

� �
; ð73Þ
with ± corresponding to f� ¼ 0 as above. This is Eq. (32)2 presented in Section 4.1.2.
By the definition, A ¼Mðx0Þ � qdI ¼ 0 for a homogeneous medium, in which case (73) holds with Z1 ¼ Z2; s1 ¼ s2 and

with w1 þ w2 ¼ pð2nþ 1Þ due to x ¼ x0. The matrix A for a periodically bilayered medium may incidentally vanish if both
cos wþ and cos w� at x ¼ x0 happen to turn to zero at once, i.e., if w1 and w2 in (73) differ by �p and in addition one of w1;2 is
equal to 2pn. In general, A is non-semisimple with a zero eigenvalue and hence it must also admit a dyadic representation
via its null vector u. This representation further specifies due to the identity M�1 ¼ TMþT following from (7), which may also
be combined with the material-symmetry relation M ¼ GM�G to give M�1 ¼ JMTJ�1, where J = TG; T and G are defined below
(7) and in (73), respectively; � means complex conjugate and + Hermitian adjoint. Hence
A ¼ u� vð¼ uiv jÞ; where Au ¼ 0; v ¼ Ju ¼ Tu�; uiv i ¼ 0: ð74Þ
Indeed, Eq. (73) may be re-arranged in the form
A ¼ �1
iZ1 sin w1 � iZ2 sin w2

cos w1 þ cos w2

iZ2 sin w2 � iZ1 sin w1

� �
�

iZ1 sin w1 � iZ2 sin w2

cos w1 þ cos w2

� �
; ð75Þ
which satisfies (74).
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