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Summary

Impedancematrices are obtained for radially inhomogeneous structures using the Stroh-like
system of six first-order differential equations for the time-harmonic displacement-traction
6-vector. Particular attention is paid to the newly identified solid-cylinder impedance matrix
Z(r ) appropriate to cylinders with material atr = 0, and its limiting value at that point, the
solid-cylinder impedance matrixZ0. We show thatZ0 is a fundamental material property
depending only on the elastic moduli and the azimuthal ordern, that Z(r ) is Hermitian and
Z0 is negative semi-definite. Explicit solutions forZ0 arepresented for monoclinic and higher
material symmetry, and the special cases ofn = 0 and 1 are treated in detail. Two methods
are proposed for findingZ(r ), one based on the Frobenius series solution and the other using
a differential Riccati equation withZ0 as initial value. The radiation impedance matrix is
defined and shown to be non-Hermitian. These impedance matrices enable concise and efficient
formulations of dispersion equations for wave guides, and solutions of scattering and related
wave problems in cylinders.

1. Introduction

Impedance provides a useful tool for solving dynamic problems in acoustics and elasticity. A single
scalar impedance is usually sufficient in acoustics, whereas a matrix of impedance elements is re-
quired to handle the vector nature of elastic wave motion, particularly in the presence of anisotropy.
The use of impedance matrices can offer new insight because their properties are intimately re-
lated to the fundamental physics of the problem, as, for instance, the Hermitian property of the
impedance matrix which is directly linked to energy considerations. A classical example is surface
impedance matrix of Lothe and Barnett (1,2), which proved to be crucial for understanding surface
waves in anisotropic homogeneous half spaces, with the result that it provides perhaps the simplest
method for finding the Rayleigh wave speed. Biryukov (3, 4) has developed a general impedance
approach for surface waves in inhomogeneous half spaces based on the differential Riccati equa-
tion, see also (5). Direct use of the impedance rather than the full displacement-traction wave field
provides an efficient and stable procedure for computing high-frequency dispersion spectra. Several
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numericalschemes for guided waves and scattering in multilayered structures have been developed
on this basis (6 to 8). These involve the 3×3 impedance matrix often called the surface impedance,
although it actually differs from the 3×3 surface impedance of a half space. It is useful to fur-
ther distinguish the familiar 3×3 (conditional) impedance from a 6×6 (two-point) matrix more
closely related to the matricant of the system equations. The nature of these impedances has been
analyzed using the Stroh framework for homogeneous and functionally graded plates (9,10). It is
noteworthy that both impedances are Hermitian under appropriate physical assumptions; however,
their hermiticity implies a somewhat different energy-flux property than the hermiticity of the half-
space impedance. Bibliographies on the impedance matrices for piezoelectric media are available
(4, 11).

The above review concerns rectangularly anisotropic materials and planar structures. The objec-
tive of this paper is to provide an equally comprehensive impedance formalism for time-harmonic
modes ofnth azimuthal order in radially inhomogeneous cylindrically anisotropic materials of
infinite axial extent and various circular configurations. An important element in this task is the
Stroh-like state-vector formalism developed for such materials by Shuvalov (12). His results, which
are based on the matricant in a Peano-series form (particularly the definition of the ‘two-point’
impedances similar to the case of planar structures) are however only relevant to a cylindrical an-
nulus with no material around the central pointr = 0. The intrinsic singularity of elastodynamic
solutions at the origin of the cylindrical coordinate system, which rules out the Peano series, is an
essential distinguishing feature as compared to the Cartesian setup. The problem can be readily
handled in (transversely) isotropic homogeneous media with explicit Bessel solutions; however, it
becomes considerably more intricate for cylindrically anisotropic and for radially inhomogeneous
solid cylinders. The main analytical tool in this case is the Frobenius series solution. The mile-
stone results on its application to homogeneous and layered cylinders of various classes of cylin-
drical anisotropy include (13 to 18); see also the review (19). The state-vector formalism based
on the Frobenius solution for the general case of unrestricted cylindrical anisotropy and arbitrary
radial variation of material properties (20) is of crucial importance to the present study. Another
vital ingredient is the differential matrix Riccati equation for an impedance (4). To the best of
the authors’ knowledge, this equation has only recently been used for the first time in elastic-
ity of cylinders by Destradeet al. (21) who numerically solved it for an elastostatic problem in
tubes.

The presence of the special pointr = 0 distinguishes the solid-cylinder case from its Cartesian
counterpart in many ways. Apart from the usual radiation condition at infinity, a similar kind of
condition has to be applied atr = 0. The Riccati equation simultaneously determines the central
impedance atr = 0 in a consistent manner while requiring it as the initial value for obtaining
the solid-cylinder impedance. No other auxiliary (boundary) condition applies atr = 0, which is
(again) unlike the surface or conditional impedance for, say, a traction-free planey = 0. These
observations point to the fundamental role of the impedance formalism in cylindrically anisotropic
elastodynamics and actually call for a new type of the impedance matrix appropriate for solid cylin-
ders. The concept, properties and calculation of the solid-cylinder impedance are among the main
results of this paper.

The outline is as follows. Background material on the matricant, impedance matrices and Riccati
equations is presented in section2 in a general context not specific to cylindrical configurations.
In section3, the governing equations for cylindrically anisotropic elastic solids are reviewed and
the first-order differential system for the displacement-traction vector is described. Some examples
of the use of impedance matrices are discussed in section4, and in the process, the solid cylinder
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and the radiation impedance matrices are introduced. Methods for determining the solid-cylinder
impedance are developed in section5. This section provides a detailed description of the Frobe-
nius solution and its properties and also discusses the Riccati solution. Both methods involve the
crucial central-impedance matrix, to which section6 is devoted, where explicit solutions are pre-
sented and general attributes delineated, including the important Hermitian property. The radiation
impedance matrix is analyzed in section7. Explicit examples are presented in section8 for the
central-impedance matrix in different types of anisotropy, and the solid-cylinder impedance is ex-
plicitly presented for transverse isotropy. Numerical results illustrating the Riccati equation solution
method are also discussed. Concluding remarks are in section9.

2. The matricant, impedance matrices and Riccati equations

For the moment, the development is independent of the physical dimension and the underlying
coordinates. Consider a system of 2m linear ordinary differential equations

dηηη

dy
= Qηηη with Q =

(
Q1 Q2

Q3 Q4

)

, ηηη =

(
U
V

)

. (2.1)

The m-dimensional vectorsU, V and them × m submatricesQ j , j = 1,2,3,4 all possess uni-
dimensional spatial dependence ony, which may be a Cartesian or radial coordinate. The system
matrixQ displays an important algebraic symmetry, which is a consequence of a general flux conti-
nuity condition. The derivative of the scalar quantityηηη+Tηηη, where superscript ‘+’ means the adjoint
(complex conjugate transpose) andT has block structure with zero submatrices on the diagonal and
off-diagonalm × m identity matrices, can be identified with the divergence of the flux vectorP
(to be defined more specifically later). Thus,(d/dy)

(
ηηη+Tηηη

)
∼ divP, and hence, (2.1) implies the

connection between flux continuity and symmetry of the system matrix (10):

Q = −TQ+T ⇔ divP = 0. (2.2)

The vanishing of divP = 0 assumes certain physical restrictions that will be described when the
elasticity problem is considered in section3.

The 2m× 2m matricantM( y, y0) is a function of two coordinates defined as the solution of the
initial value problem:

dM
dy

(y, y0) = Q(y)M( y, y0), M( y0, y0) = I (2m). (2.3)

The matricant may be represented formally as a Volterra or multiplicative integral evaluated by
means of a Peano series (22), alternatively it may be expanded in a Frobenius series (23). Letηηηα(y)
(α = 1,2, . . . , 2m) be a set of partial solutions, that is, a complete set of independent solutions of
the homogeneous system (2.1), thenM( y, y0) = NNN (y)NNN−1(y0), whereNNN is the integral matrix (a
first-rank tensor)NNN (y) = (ηηη1, . . . ,ηηη2m). The propagator nature of the matricant is apparent from
the propertyM( y, y1)M( y1, y0) = M( y, y0), and in particularM( y, y0) = M( y0, y)−1, while the
symmetry (2.2)1 implies

M( y, y0) = TM +(y0, y)T. (2.4)

Hence,M is T-unitary (22), that is,

M−1(y, y0) = TM +(y, y0)T. (2.5)
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In solving problems, one is often not interested in the individual fieldsU(y) andV(y), but rather
in their relationship to one another, and perhaps only at one or two positions such as boundary
values ofy. Accordingly, we introduce them × m conditional impedance matrixz defined such
that:

V(y) = −i z(y)U(y). (2.6)

The conditional nature of this impedance arises from an auxiliary condition at another coordinate
y0 (9, 10),and may be understood from an equivalent definition of the matricant

(
U(y)

V(y)

)

=

(
M1 M2

M3 M4

)(
U(y0)

V(y0)

)

, whereM( y, y0) =

(
M1 M2

M3 M4

)

. (2.7)

Now supposez(y0) is the conditional impedance aty0, then

U(y) = (M1 − i M2z(y0)) U(y0), V(y) = (M3 − i M4z(y0)) U(y0),

andthe conditional impedance aty is therefore

z(y) = i (M3 − i M4z(y0))(M1 − i M2z(y0))
−1. (2.8)

In practice,z(y0) is often associated with boundary conditions on the level surfacey = y0. For
instance, ‘zero traction’ and ‘rigid boundary’ conditions are specified by vanishingV andU, re-
spectively, with conditional impedances

z(y) =

{
i M3M−1

1 zerotraction(V(y0) = 0),

i M4M−1
2 rigid boundary(U(y0) = 0),

(2.9)

whereM j = M j (y, y0) in (2.7)–(2.9).
While it is possible to define the conditional impedance in terms of solutions of the 2m×2m linear

system (2.1), the same system leads through a process of elimination to a quadratically nonlinear
equation for the matrixz: the differential Riccati equation (4):

dz
dy

+ zQ1 − Q4z − i zQ2z − i Q3 = 0. (2.10)

In this context, the auxiliary impedancez(y0) serves as an initial condition aty = y0 which once
specified uniquely determinesz(y) at other positions. The symmetry (2.2)1 renders(2.10) self-
adjoint in the sense that ifz is a solution then so isz+, which does not imply their equality. It
does however imply that the differential Riccati equation (2.10) produces a Hermitian impedance,
z(r ) = z+(r ), as long as the initial condition is Hermitian,z(y0) = z+(y0). We will also find useful
the algebraic Riccati equation associated with (2.10),

zQ1 − Q4z − i zQ2z − i Q3 = 0, (2.11)

thesolution of which determines limiting values of the impedance, for example, as|y| → ∞, and
can serve as the initial value for the differential equation (2.10).

We also introduce a ‘two-point’ impedanceZ(y, y0) distinguishedfrom the conditional impedance
by its explicit dependence upon two arguments, and defined such that it relates the constituent parts
of the 2m-vector aty andy0 accordingto (9,10):

(
V(y0)

−V(y)

)

= −i Z(y, y0)

(
U(y0)

U(y)

)

. (2.12)
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WAVE IMPEDANCE MATRICES FOR ELASTIC SOLIDS 5 of 35

Comparing (2.6) and (2.12) one might be tempted to surmise that the two-point impedance is
composed simply of block diagonal elementsZ1(y, y0) andZ4(y, y0) identifiedasz(y0) and−z(y),
respectively, wherez is the conditional impedance, and with zero off-diagonal blocks (Z3 andZ2).
But the two-point impedance is more fundamental and thereby richer, as one can see by comparing
(2.7) and (2.12), implying:

(
Z1 Z2

Z3 Z4

)

= i

(
−M−1

2 M1 M−1
2

M4M−1
2 M1 − M3 −M4M−1

2

)

, detZ =
det(−M3)

detM2
, (2.13)

(
M1 M2

M3 M4

)

=

(
−Z−1

2 Z1 i Z−1
2

i Z3 − i Z4Z−1
2 Z1 −Z4Z−1

2

)

, detM =
detZ3

detZ2
,

whereM j = M j (y, y0), Z j = Z j (y, y0). The identity (2.4) then implies the important properties
that the two-point impedance is Hermitian, and that the matricant determinant is of unit magnitude,
that is,

equation (2.2)1 ⇒ Z = Z+, detM = ei φ whereφ = arg det(M1M4). (2.14)

It follows directly from (2.3)1 andJacobi’s formula that the phase satisfies the differential equation
dφ/dy = −i tr Q with initial conditionφ(y0) = 0. The matricant is therefore unimodular(detM =
1) if tr Q vanishes. Further properties of the impedance may be deduced by swapping the ‘running’
and ‘reference’ pointsy andy0 in (2.12) (that is, inU, V andZ), implying the reciprocal form:

(
V(y)

−V(y0)

)

= −i Z(y0, y)

(
U(y)

U(y0)

)

,

whencefollows an obvious relation

Z(y0, y) = −TZ( y, y0)T. (2.15)

Thetwo-point impedance therefore has the structure

Z(y, y0) =

(
Z1 Z2

Z3 Z4

)

, with
Z1(y, y0) = −Z4(y0, y),

Z2(y, y0) = −Z3(y0, y).
(2.16)

As an alternative to (2.8), the conditional impedance aty may be expressed in terms of the
impedance aty0 by using the two-point impedance,

z(y) = −Z4 − Z3
(
z(y0) − Z1

)−1Z2, (2.17)

whereZ j = Z j (y, y0). Note thatz(y) is Hermitian ifz(y0) is.
In the same way that the matricantM( y, y0) satisfiesan ordinary differential equation iny, (2.3),

it is possible to express the dependence ofZ(y, y0) on y in differential form. Differentiating (2.12)
with respect toy and using (2.1) to eliminate the traction vectors yields an equation for the two-point
impedance,

dZ
dy

+ ZJ1 − J4Z + i ZJ2Z + i J3 = 0, whereJ j =

(
0 0
0 Q j (y)

)

. (2.18)
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The self-adjoint property of this equation is obvious because the two-point impedance is itself
self-adjoint (Hermitian). Direct integration of the differential system (2.18) subject to initial con-
ditions at y = y0 is problematic because of the fact that all submatrices ofZ(y, y0) are of the
form ±i

( ∫ y
y0

dy Q2
)−1 as |y − y0| → 0, and hence undefined. Differential equations with well-

defined (finite) initial value conditions can be obtained for the block matricesZ−1
j ( j = 1,2,3,4)

by simple manipulation of (2.18), but we do not discuss this further here. It is interesting to note,
however, that inspection of the block structure of (2.18) shows that the equation forZ4 decouples
from the other submatrices and it is the same as the differential Riccati equation (2.10) for the con-
ditional impedance (under the interchangeZ4 ↔ −z). Furthermore, sinceZ4 becomesunbounded
as y → y0, (2.18) implies that the submatrix−Z4 is the conditional impedance with the auxil-
iary condition of rigid (infinite) impedance aty = y0, an observation that is verified by (2.9)2
and(2.13).

3. Cylindrically anisotropic elastic solids

3.1 Equations in cylindrical coordinates

The dynamic equilibrium equations for a linearly elastic material when expressed in cylindrical
coordinates are (24):

r −1(r tr ), r + r −1(tθ, θ + K tθ ) + tz, z = ρü with K =






0 −1 0

1 0 0

0 0 0




 . (3.1)

Here,ρ = ρ(x) is the mass density,u = u(x, t) the displacement, and the traction vectorsti =
ti (x, t), i = r, θ, z, are defined by the orthonormal basis vectors{er , eθ , ez} of the cylindrical co-
ordinates{r, θ, z} according toti = eiσσσ (i = r, θ, z), whereσσσ(x, t) is the stress, and a comma
denotes partial differentiation. With the same basis vectors, and assuming the summation conven-
tion on repeated indices, the elements of stress areσi j = ci jkl εkl , whereεεε = 1

2(∇u + ∇uT ) is the
strain,ci jkl = ci jkl (x) areelements of the fourth order (anisotropic) elastic stiffness tensor, andT
denotes transpose. The traction vectors are (12):






tr
tθ
tz




 =






Q̂ R P

RT T̂ S

PT ST M̂











u, r

r −1(u, θ +Ku)

u, z




 ,

Q̂ = (er er ), S = (eθez),

T̂ = (eθeθ ), P = (er ez),

M̂ = (ezez), R = (er eθ ),

where,in the notation of (1), the matrix(ab) has components(ab) j k = ai ci jkl bl for arbitrary
vectorsa andb. The explicit form of the various matrices is apparent with the use of Voigt’s notation
ci jkl → cαβ (α, β ∈ {1,2, . . . ,6})

Q̂ =






c11 c16 c15

c16 c66 c56

c15 c56 c55




 , T̂ =






c66 c26 c46

c26 c22 c24

c46 c24 c44




 , M̂ =






c55 c45 c35

c45 c44 c34

c35 c34 c33




 ,

S =






c56 c46 c36

c25 c24 c23

c45 c44 c34




 , P =






c15 c14 c13

c56 c46 c36

c55 c45 c35




 , R =






c16 c12 c14

c66 c26 c46

c56 c25 c45




 .
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3.2 Cylindrically anisotropic materials

The concept of cylindrical anisotropy, which apparently originated with Jean Claude Saint-Venant,
and has been elaborated by Lekhnitskii (25), demands the angular independence of material con-
stants in the cylindrical coordinates, but admits their dependence onr andz. We consider materials
with no axial dependence whose density and elasticity tensor may depend uponr , ρ = ρ(r ) and
ci jkl = ci jkl (r ) for all i, j, k, l ∈ r, θ, z. We seek solutions in the form of time-harmonic cylindrical
waves as:

u = U(n)(r )ei (nθ+kzz−ωt), tr = ϒϒϒ(n)(r )ei (nθ+kzz−ωt), (3.2)

wheren = 0,1,2, . . . is the circumferential number.
The dependence of the displacement and traction on the single spatial coordinater allows the

elastodynamic equations to be reduced to the canonical form of (2.1) (12):

d

dr
ηηη(n)(r ) =

i

r
G(r )ηηη(n)(r ), (3.3)

whereηηη(n) is a 6× 1 vector

ηηη(n)(r ) =

(
U(n)(r )

V(n)(r )

)

, with V(n)(r ) = i rϒϒϒ(n)(r ), (3.4)

andthe 6× 6 system matrixG is defined by:

i G(r ) = g0(r ) + r g1(r ) + r 2g2(r ) =

(
g{1}(r ) i g{2}(r )

i g{3}(r ) −g{1}+(r )

)

.

Theindividual 6× 6 matrices are

g0 =

(
g{1}

0 i g{2}
0

i g{3}
0 −g{1}+

0

)

, g1 = i kz

(
g{1}

1 0

i g{3}
1 g{1}T

1

)

, g2 =

(
0 0

i g{3}
2 0

)

,

with the 3× 3 matrices

g{1} = g{1}
0 + i kzr g{1}

1 , g{2} = g{2}
0 , g{3} = g{3}

0 + i kzr g{3}
1 + r 2g{3}

2 .

Theconstituent 3× 3 matrices are:

g{1}
0 = −Q̂−1R̃, g{1}

1 = −Q̂−1P,

g{2}
0 = −Q̂−1 = g{2}T

0 , g{3}
1 = PT Q̂−1R̃ − S̃−

(
PT Q̂−1R̃ − S̃

)+ = −g{3}+
1 ,

g{3}
0 = T̃ − R̃+Q̂−1R̃ = g{3}+

0 , g{3}
2 = k2

z(M̂ − PT Q̂−1P) − ρω2I = g{3}T
2 ,

where

R̃ = Rκκκ, S̃ = κκκS, T̃ = κκκ+T̂κκκ = T̃+, κκκ = K + inI = −κκκ+.

The matricesg{2}
0 andg{3}

0 arenegative definite and positive semi-definite, respectively, for real-
valued and positive definite elastic moduli. Note that thenth order modal solutionηηη(n)(r ) is a
function of the radial coordinate, but it is also an implicit function of the frequencyω and the axial
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8 of 35 A. N. NORRIS AND A. L. SHUVALOV

wavenumberkz, the dependence of which is here kept tacit. In the same manner, the dependence of
G(r ) uponn, ω andkz is understood. The superscript ‘(n)’ is omitted henceforth, with the exception
of the specific casesn = 0 andn = 1, as required.

3.3 Cylindrical elasticity in the general context

The results of section3.2, particularly (3.3) and (3.4), show that the cylindrically anisotropic system
of azimuthal ordern is a special case of the formulation of section2 generally withm = 3, and
{y, U, V, Q} → {r, U, ir ϒϒϒ, ir −1G}. The physical restrictions required for the hermiticity condition
(2.2) are real-valuedω, kz andmaterial constants (more precisely, Hermitian elastic modulicαβ =
c∗
βα suffice (11)). Under these conditions, the 6× 6 matrixG(r ) displays the symmetry

G = TG+T. (3.5)

The6×6 matricantM(r, r0) is the solution of the initial value problem
(

i

r
G(r ) −

d

dr

)

M(r, r0) = 0, M(r0, r0) = I (6), r, r0 6= 0. (3.6)

Thecondition thatr andr0 arestrictly positive is important since the case of zero radial coordinate
needs to be handled separately, which is discussed at length below. Note that we do not specify
whetherr or r0 is the greater or lesser of the two radii. The matricant allows us to express the state
vectorηηη(r ) of partial modes in a cylinder as

ηηη(r ) = M(r, r0)ηηη(r0), r, r0 6= 0. (3.7)

Thepointwise elastodynamic energy balance isdE/dt+divP = 0, whereE is the energy density
per unit volume andP is the energy flux vector. The pertinent form of (2.2)2 for cylindrical elasticity
is divP = r −1d(r Pr )/dr = 0, wherePr = 〈P〉t ∙ er is the time-averaged radial component for
azimuthal moden,

Pr (r ) = −
ω

4r
ηηη+(r )Tηηη(r ), (3.8)

which together with the system equation (3.3) implies the symmetry (3.5) forG (see (12)).
The conditional impedance matrixz relates traction and displacement at a particular value ofr ,

but specificallyr 6= 0, according to (2.6). The pointr = 0 requires a separate discussion, and
indeed a newly defined impedance, introduced in the next section. For the moment, we note that
z(r ) is contingent upon the definition of the (one-point) impedance at some radial coordinate, say
z(r0) = z0. The traction at other values ofr is then unambiguously related to the local displacement
by either the matricant or the two-point impedance matrices, using (2.8) or (2.17). By rewriting
(3.8), we see that the conditional impedance determines the pointwise flux,

Pr (r ) = −
ω

2r
=
{

U+(r )z(r )U(r )
}
, (3.9)

which is zero for allU(r ) only if z is Hermitian. This in turn is the case only ifz(r0) = z0 is
Hermitian,that is, if there is no flux across the surfacer = r0. On the other hand, the 6×6 two-point
impedance matrixZ(r2, r1) of (2.12) defines the global energy flow into or out of the finite region
between the two radial coordinatesr1 < r2. Let E(t) be the total energy in the shell cross-section
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WAVE IMPEDANCE MATRICES FOR ELASTIC SOLIDS 9 of 35

per unit length of the cylinder for azimuthal moden. Its increment over one period of time-harmonic
motion is

1E = −2π
2π

ω

(
r Pr
)∣∣r2

r1
= −2π2=

{(
U(r1)

U(r2)

)+

Z(r2, r1)

(
U(r1)

U(r2)

)}

, (3.10)

which is identically zero for realω, kz andHermitian parameters, that is, whenZ is Hermitian. If
the material in the slab is lossy, then=(Z − Z+) shouldbe positive definite in order thatE is not
increasing with time.

The differential Riccati equation satisfied byz follows from (2.10) as:

r
dz
dr

+ zg{1} + g{1}+z + zg{2}z + g{3} = 0. (3.11)

Theinitial value problem forz(r ) is therefore

r
dz
dr

−
[
z +

(
R̃ + ikzr P

)+]Q̂−1[z + R̃ + i kzr P
]
+ B(r ) = 0, r > 0, z(r0) = z0, (3.12)

where

B(r ) = T̃ + i kzr (S̃+ − S̃)+ r 2(k2
zM̂ − ρω2I) = B+(r ). (3.13)

Equation(3.12) shows the explicit dependence uponω, kz andthe elastic moduli. The exclusion of
the distinguished pointr = 0 at the cylinder centre is addressed next.

4. Wave impedance matrices for cylinders

In this section, we describe typical uses of impedance matrices, and in the process introduce the
solid-cylinder impedanceZ(r ) and the radiation impedanceZrad(r ). We consider the three distinct
configurations depicted schematically in Fig.1.

4.1 Solid-cylinder impedance matrixZ(r )

A solid cylinder, by definition, is one that includes the axisr = 0. A new impedance matrix is in-
troduced to handle this situation. The solid-cylinder impedanceZ(r ) is defined in the usual manner
by its property of relating the traction and displacement 3-vectors of (3.2),

V(r ) = −i Z(r )U(r ), r > 0, (4.1)

although this is not a conditional impedance matrix because of the absence of an auxiliary impedance
condition at some other coordinate. Instead, the solidity of the cylinder atr = 0 dictates the char-
acter ofZ(r ) (and one could argue that it is ‘conditional’ in that sense). The limiting value of the
solid impedance atr = 0 plays a crucial role, and we accordingly define the central-impedance
matrix:

Z0 ≡ Z(0). (4.2)

Theproperties of the central impedance are discussed in detail in section6 after we develop methods
for finding the solid-cylinder impedance matrix in section5.
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10 of 35 A. N. NORRIS AND A. L. SHUVALOV

Fig. 1 Three types of cylindrical structures defined byr1 6 r 6 r2: the annulus(0 < r1 < r2 < ∞), the solid
(r1 = 0) and the exterior region(r2 = ∞)

As an example application, consider the task of finding the dispersion equation for guided waves
of frequencyω and wavenumberkz. We suppose, quite generally, an interface condition on the level
surfacer = r2 of the form

V(r2) = −i z2U(r2), (4.3)

wherez2 is considered as given. It could be zero (traction-free condition), infinite (rigid bound-
ary), or it could be defined by some surrounding material, whether finite or infinite in extent. For
instance, if the solid cylinder is surrounded by a shell of cylindrically anisotropic material in lubri-
cated contact atr = r2 and free atr = r3 > r2, thenz2 = z11(r2)er eT

r wherez(r2) is the conditional
impedance with the auxiliary conditionz(r3) = 0. Assuming (4.3) describes the condition at the
outer surface, the desired dispersion equation is:

det
(
Z(r2) − z2

)
= 0. (4.4)

It is instructive to compare (4.4) with the dispersion equation for a (possibly functionally graded)
layer y ∈ [0, y2] with the traction-free surfacey = 0 on a homogeneous substratey > y2 which
may be written in the form (26)

det
(
z(y2) − Z2

)
= 0,

whereZ2 is a (constant) impedance of the substrate andz(y2) is the conditional impedance of the
layer satisfying the reference conditionz(0) = 0. If the surrounding material beyond a rigid (say)
interfacer = r2 is infinite, then there are Stoneley-like waves defined by the dispersion equation
(4.3) withz2 = Zrad(r2), whereZrad(r ) is the radiation impedance discussed in section7.

The solid-cylinder impedance also provides a means to compute the modal displacement vector
U(r ) for all 0 6 r 6 r2 if the dispersion equation (4.4) is satisfied. By analogy with the case of an
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WAVE IMPEDANCE MATRICES FOR ELASTIC SOLIDS 11of 35

annulus (21), the unnormalized displacement follows from (3.3) and the definition ofZ(r ) in (4.1)
as the solution of the initial value problem

r
dU
dr

+ Q̂−1(R̃ + i kzP + Z
)
U(r ) = 0, 06 r 6 r2; U(r2) = U0, (4.5)

whereU0 is the null vector of the surface impedance condition,(Z(r2) − z2)U0 = 0. Note that
the solution of (4.5) remains well behaved even as the matricant solutionU(r ) = (M1(r, r2) −
i M2(r, r2)Z(r2))U(r2) is numerically unstable(see section5.2.2).

4.2 Impedance matrices for cylinders of infinite radius

Consider a cylinder extending to infinity in the radial direction, with inner surface atr = r1 (Fig.1).
A wave incident fromr > r1 resultsin a total field that can be expanded in terms of partial waves
of the form (3.2). The amplitude of thenth azimuthal mode is:

U(r ) = Uinc(r ) + Uscat(r ), r > r1, (4.6)

wherethe scattered amplitudeUscat(r ) satisfiesa radiation condition atr → ∞. This in turn requires
that the following condition prevails on the interface:

Vscat(r ) = −i Zrad(r )Uscat(r ), r = r1, (4.7)

wherethe radiation impedance matrixZrad(r ) is defined by the radiation conditions (see section7).
The scattered field is then uniquely determined by the condition atr = r1, which we assume is of
the generalized form (4.3) with prescribed interface impedancez1. Then,

−Z inc(r1)Uinc(r1) − Zrad(r1)Uscat(r1) = −z1
(
Uinc(r1) + Uscat(r1)

)
,

whereZ inc(r ) is the impedance of the incident wave, which follows directly from the equations of
motion. The scattered amplitude on the interface is therefore

Uscat(r1) = (z1 − Zrad(r1))
−1(z1 − Z inc(r1)) Uinc(r1), (4.8)

whichprovides the initial condition to determine the entire scattered field inr > r1. Further details
on the radiation impedance matrix are provided in section7, including its asymptotic properties for
larger .

4.3 An annulus of finite thickness

The case of the annulus 0< r1 6 r 6 r2 fits readily into the general theory. Again consider the
task of finding the dispersion equation for guided waves, which may be found by simultaneous
satisfaction of the conditions on the two radial surfaces. Suppose the conditions are both of the
generalized formV(r j ) = −i z j U(r j ) ( j = 1,2) wherez j ( j = 1,2) areknown quantities. The
conditional impedancez(r ) is determined (numerically) by integrating (3.6) from (say)r = r1 with
initial conditionz(r1) = z1 to give

z(r ) = i (M3(r, r1) − i M4(r, r1)z1)(M1(r, r1) − i M2(r, r1)z1)
−1. (4.9)

Theinterface condition atr = r2 requiresthat−z2U(r2) = −z(r2)U(r2), which implies the disper-
sion equation:

det{i (M3(r2, r1) − i M4(r2, r1)z1)(M1(r2, r1) − i M2(r2, r1)z1)
−1 − z2} = 0. (4.10)
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12of 35 A. N. NORRIS AND A. L. SHUVALOV

Variants on this equation may be obtained using the two-point impedance instead of the matricant.
Thus, from (2.16) we have the equivalent condition

det{z2 + Z4(r2, r1) + Z3(r2, r1)(z1 − Z1(r2, r1))
−1Z2(r2, r1)} = 0.

The examples considered in this section illustrate the usefulness of wave impedance matrices
for cylinders of finite and infinite radial extent. Solutions to problems of practical concern can be
formulated concisely in terms of impedance matrices, such as the dispersion equation for guided
waves and the scattering of waves from a cylindrical region. Calculation of the impedance matrices
is relatively straightforward using the matricant or two-point impedance matrices (12), but only as
long as the pointsr = 0 or r = ∞ are not involved; otherwise the solid-cylinder impedance and/or
radiation impedance matrices are required. Determination of the solid-cylinder impedance matrix
Z(r ) is discussed next.

5. The solid-cylinder impedance matrix

In this section, we develop methods to calculate the solid-cylinder impedance matrix for a radially
inhomogeneous cylindrically anisotropic cylinder with material atr = 0. Two principal approaches
are considered: a semi-explicit solution as a Frobenius series, and an implicit solution in terms of a
differential Riccati equation.

Unlike the conditional impedance that can be determined directly from the matricantM along
with the prescribed reference value, the matricant is not of direct use here because of its divergence
atr = 0. This introduces the need to identify ‘physical’ and ‘non-physical’ constituents of the solu-
tion nearr = 0, which is performed explicitly for the Frobenius solution. In the Riccati approach,
the displacement and traction fields are not considered explicitly and the divergence atr = 0 is
taken care of by the initial value of the impedance.

5.1 Frobenius expansion

We take advantage of the fact that the fundamental solution can formally be written in terms of
a Frobenius series, which is an explicit one-point solution valid at anyr (including r = 0). As a
result, the Frobenius series approach provides a constructive definition ofZ(r ). The Frobenius series
solution can be obtained via a recursive procedure with the number of numerically required terms
increasing withr . Before we present the formal solution forZ(r ), we review and develop some
properties of the Frobenius series for cylindrically anisotropic materials, following the analysis of
Shuvalov (20).

5.1.1 Background material The Frobenius solution is based on the integral matrix solution
NNN (y) = (ηηη1, . . . ,ηηη6) of (3.3), which can always be defined through the Frobenius series for any
r > 0. The pivotal role in constructing this series belongs to the eigenspectrum of the 6× 6 matrix
g0(0) with the symmetry

g0 = −Tg+
0 T, (5.1)

which follows from (3.5). Denote the eigenvalues and eigenvectors ofg0(0) by λα andγγγ 0α =
(aα, lα)T (α = 1, . . . , 6), and introduce the matrix0000 = (γγγ 01, . . . , γγγ 06). Barring extraordinary
exceptions, ifn > 1 then (i) no two eigenvaluesλα of g0(0) differ by an integer, and (ii) allλα
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WAVE IMPEDANCE MATRICES FOR ELASTIC SOLIDS 13of 35

normally are distinct (and non-zero). Let us first consider the casen > 1, otherwise see section5.1.2.
By virtue of (i), the integral matrix may be written as:

NNN (r ) = D(r )0000C, D(r ) = I +
∞∑

m=1

Dmr m, (5.2)

whereC is the Jordan form of the matrixr g0(0), which is diagonal when (ii) holds, andD(r ) is
defined recursively throughG(r ) (20, equations (9)–(13)).

The arguments underlying (2.2) imply that the matrixNNN+(r )TNNN (r ) is a constant independent
of r , and according to (3.8) this matrix defines the flux properties of the constituentsηηη1, . . . ,ηηη6,
of NNN (r ). For the present purposes, we wish to split them into a pair of triplets: a physical set
(α = 1,2,3) and a non-physical triplet(α = 4,5,6), where the only non-zero flux interactions
occur betweenα andα + 3 (α = 1,2,3), thus ensuring the crucial property thatNNN+(r )TNNN (r )
hasnon-zero elements confined to the main diagonal of the off-diagonal blocks. The partitioning is
accomplished through appropriate arrangement of the eigenspectrum ofg0(0) as(20, equation (44))

λα = −λ∗
α+3, <λα > 0, α = 1,2,3. (5.3)

Combining (5.1) and (5.3) and adopting the normalizationγγγ +
0αTγγγ 0α+3 = 1 yields the orthogonal-

ity/completeness relation for the eigenvectors in the form

000+
0 T0000 = T. (5.4)

It follows from (5.1)–(5.4) thatNNN+(0)TNNN (0) = T andhence the flux matrix atr is T,

NNN+(r )TNNN (r ) = T (⇒ NNN (r )TNNN+(r ) = T). (5.5)

Notethat (5.4) yieldsD+TD = T.
In order to further clarify the structure ofNNN we represent the 6×6 matricesD, 0000 andC in terms

of 3 × 3 submatrices,

D(r ) =

(
D1 D2

D3 D4

)

, 0000 =

(
A1 A2

L1 L2

)

, C =

(
diag

(
r λα
)

0

0 diag(r −λ∗
α )

)

, (5.6)

whereα = 1,2,3 andC is diagonal forn > 1. Consequently,NNN has block structure

NNN (r ) =

(
Û1 Û2

V̂1 V̂2

)

=

(
D1 D2

D3 D4

)(
A1diag(r λα t) A2diag(r −λ∗

α )

L1diag(r λα ) L2diag(r −λ∗
α )

)

. (5.7)

Notein particular that the integral matrixNNN (r ) consists of two distinct 6×3 matrices,
(

Û1(r )

V̂1(r )

)

= (ηηη1,ηηη2,ηηη3) = D(γγγ 01,γγγ 02,γγγ 03)diag(r λα ),

(
Û2(r )

V̂2(r )

)

= (ηηη4,ηηη5,ηηη6) = D(γγγ 04,γγγ 05,γγγ 06)diag(r −λ∗
α ),

(5.8)
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14of 35 A. N. NORRIS AND A. L. SHUVALOV

theformer with the columnsηηηα(r ) tendingto zero asr → 0, and the latter with columnsηηηα+3(r )
diverging asr → 0. The block structure of (5.4) and (5.5) is

000+
0 T0000 =

(
A+

1 L+
1

A+
2 L+

2

)(
L1 L2

A1 A2

)

=

(
0 I

I 0

)

, (5.9)

NNN+(r )TNNN (r ) =

(
Û+

1 V̂+
1

Û+
2 V̂+

2

)(
V̂1 V̂2

Û1 Û2

)

=

(
0 I

I 0

)

. (5.10)

The latter explicitly shows that the normal energy flux of the displacement-traction wave fieldηηη(r )
comprising an arbitrary superposition of either the three modesηηηα(r ) or three modesηηηα+3(r ) with
α = 1,2,3 is zero at anyr . This specific arrangement ofNNN may be interpreted as the general-
ization of the isotropic case with solutions cast in terms of the cylinder functionsJn and−i Yn,
correspondingto the physical and non-physical triplets, respectively, each of which yields zero
flux individually. This partitioning will be crucial in developing an explicit solution for the solid
impedance matrix.

5.1.2 Overview of the cases n= 0 and n = 1 Let us return to the two assumptions made
above which are that (i) no two eigenvaluesλα of g0(0) differ by an integer and (ii) allλα are
distinct,henceg0(0) is semisimple (diagonalizable). Violating (i) invalidates the relatively simple
form (5.2) of the Frobenius fundamental solution to the governing equation (23). Violation of (ii),
or more precisely, the occurrence of degenerateλα that makesg0(0) non-semisimple,alters the
orthogonality/completeness relations and the composition ofNNN given above forn > 1. The cases
affected aren = 0 (axisymmetric modes) andn = 1 (lowest-order flexural modes): specifically, the
property (i) does not hold forn = 0, and the property (ii) does not hold for bothn = 0 andn = 1.
From a physical point of view, the casesn = 0 andn = 1 stand out because they are related to
the rigid-body motions producing zero stresses (20, equation (19)). Note also thatg0(0) admitsa
zero eigenvalue iffn = 0,1 (20, equation (30)3) and thatλ(0,1) = 0 is always a double eigenvalue
renderingg(0,1)

0 (0) non-semisimple.
Considerthe axisymmetric casen = 0. The six eigenvaluesλ(0)

α of g(0)
0 (0) areλ(0)

α = {0,0,±1,
±κ}, whereκ = 1 for trigonal or tetragonal symmetry withc16 = 0 (24, equations (3.12), (3.13)). It
is seen that, whatever the symmetry, the set ofλ(0)

α includespairs different by an integer. As a result,
the integral matrixNNN (r ) is now defined throughg(0)

0 (0) in a rather intricate form elucidated in (20,
equations (A2), (A.4)). This observation is essential for treating inhomogeneous and low-symmetry
homogeneous cylinders. At the same time, if the cylinder is homogeneous and has orthorhombic or
higher symmetry with the exception of trigonal and tetragonal withc16 = 0, thenNNN (r ) decouples
into the solutions described by Bessel functions and/or by a simple Frobenius form (5.2).1

Considerthe casen = 1. The matrixg(1)
0 (0) hasa doubly degenerate eigenvalueλ(1) = 0 which

makesg(1)
0 non-semisimple(20, equation (36)). This does not preclude takingNNN (r ) in the form (5.2)

1 Orthorhombicor higher symmetry enables uncoupling of the pair of torsional modes described by the Bessel solutions
stemming fromλ(0) = ±1. The four sagittal modes are associated withλ(0) = {0,0,±κ}, whereκ 6= 1 for symmetry lower
than the trigonal or tetragonal withc16 = 0. Whenκ = 1, so that the above quartet ofλ(0) involves pairs with an integer
difference, the sagittal problem admits explicit Bessel solutions for the isotropic or transverse isotropic symmetry due to
uncoupling of potentials. Note that double eigenvaluesλ(0) = ±1 atκ = 1 do not bring non-diagonal blocks into the Jordan

form of g(0)
0 (0).
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WAVE IMPEDANCE MATRICES FOR ELASTIC SOLIDS 15of 35

but the matrixC is now not diagonal. As a result, the tripletα = 1,2,3 of physical modes (with one
of the modesηηη(1)

α associatedwith λ(1) = 0) retains its form (5.8)1, whereas the non-physical triplet
α = 4,5,6 is no longer of the form (5.8)2 dueto one of its modes involving both eigenvectors, the
proper and the generalized onesγγγ (1) andγ̃̃γ̃γ (1), associated withλ(1) = 0 (20, equations (51), (61)). It
is thus evident that the physical modes satisfy the same orthogonality/completeness relations as for
n > 1; moreover, subject to the optional conditionγ̃̃γ̃γ (1)+Tγγγ (1) = 0, the non-physical modes may
be shown to do so as well. The relations (5.4) and (5.5) for the casen = 1 are accordingly modified
into a slightly different form,

000+
0 T0000 = E, NNN+(r )TNTNTN (r ) = E (n = 1) , (5.11)

which differs from (5.4) and (5.5) only in the replacement of the right-hand matrixT by E, whose
non-zero elements are also confined to the main diagonal of the off-diagonal blocks but they cannot
now be all normalized to 1 (20, equation (49)).

The overall conclusion is that both casesn = 0 andn = 1 preserve the partitioning of the six
linear independent Frobenius solutionsηηηα(r ) = (Uα, Vα)T within NNN (r ) (α = 1, . . . , 6) into the
physical and non-physical tripletsα = 1,2,3 andα = 4,5,6. The partitioning is based on (5.3)
supplemented by including the (double) eigenvalueλ(0,1) = 0. The vectorsUα(r ) andVα(r ) are
certainlyregular asr → 0 for bothn = 0 andn = 1, although the limiting trend forn = 0 is not
of the form that results from (5.2), see (20, equation (A4)). Equations (5.8)–(5.10), which are valid
for anyn > 0, enable treating the solid-cylinder impedanceZ(r ) for n = 1 on the same grounds as
for the ‘ordinary’ case,n > 1. The impedanceZ(r ) for n = 0 needs special attention because the
casen = 0 may not satisfy (5.2). We are now ready to derive the explicit form of the solid-cylinder
impedance for alln.

5.2 Explicit solution of the solid-cylinder impedance

5.2.1 The solid-cylinder impedance for arbitrary nThe definition (4.1) of the solid-cylinder
impedanceZ(r ) tacitly assumesU(r ) and V(r ) are regular function ofr . This is always so for
ηηη(r ) = (U, V)T comprisingan arbitrary superposition of, specifically, the physical Frobenius
modesηηηα(r ) = (Uα, Vα)T, which satisfy (5.3) supplemented by the optionλ(0,1) = 0 for n = 0,1
(see section5.1.2). Thus, the solid-cylinder impedance may be defined by any of the equivalent
expressions:

Vα(r ) = −i Z(r )Uα(r ) (α = 1,2,3) ⇔ V(r ) = −i Z(r )U(r ) ⇔ Z(r ) = i V̂1(r )Û−1
1 (r ).
(5.12)

This yields a finite value if det̂U1(r ) 6= 0, otherwise the impedance is associated with a ‘rigid’
condition atr (conversely, the determinant of its inverse—the admittance matrix—is zero). The
occurrence of infinities is in no way anomalous but rather a natural consequence of the definition of
the impedance matrix.

Consider firstn > 0. Based on the definition (5.12) and the representation (5.8)1 for the 3× 3
matricesÛ1 andV̂1, we obtain an alternative form for the solid-cylinder impedance,

Z(r ) = i
(
D3(r ) − i D4(r )Z0

)(
D1(r ) − i D2(r )Z0

)−1 whereZ0 = i L1A−1
1 . (5.13)
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16of 35 A. N. NORRIS AND A. L. SHUVALOV

hermiticity of the solid-cylinder impedance follows from (5.10) and (5.11)2, which imply that
Û+

1 V̂1 + V̂+
1 Û1 = −i Û+

1

(
Z − Z+

)
Û1 = 0, whence

Z(r ) = Z+(r ). (5.14)

Theexpression (5.13) is reminiscent of the representation of the conditional impedance, for exam-
ple, (4.9), except that the role of the two-point matricantM(r, r0) is replaced byD(r ). Note that
detA1 6= 0 may be deduced from the integral representation ofZ0, see (6.17)1, by reasoning similar
to that in (2): if two of the eigenvectors are parallel, saya1 anda2, then so are the traction vectors
lα = −i Z0aα contraryto the assumed linear independence ofγγγ 1 andγγγ 2.

Now considern = 0. Violation of (5.2) forN (0)(r ) invalidates the definition (5.13)2 for the cen-
tral impedanceZ(0)

0 . At the same time,Z(0)
0 canreadily be found by means of a direct derivation

given in section6.4.2, specifically (6.28), which is clearly Hermitian regardless of anisotropy. Con-
sequentlyZ(0)(r ) is Hermitian for anyr due to the self-adjoint property of the differential Riccati
equation of whichZ(0)(r ) is the unique physical solution (see section5.3).

5.2.2 The link between the solid-cylinder and the conditional impedancesIt is evident from
the previous discussion thatZ(r ) can formally be defined as the conditional impedancez(r ) with
initial value atr0 → 0. Assume for brevity thatn > 1, then using the representationM( y, y0) =
NNN (y)NNN−1(y0) for the matricant and (5.5), (5.7), we have

M(r, r0) →
r0→0

(
Û1(r ) Û2(r )

V̂1(r ) V̂2(r )

)(
V̂+

2 (r0) Û+
2 (r0)

0 0

)

=

(
Û1(r )V̂+

2 (r0) Û1(r )Û+
2 (r0)

V̂1(r )V̂+
2 (r0) V̂1(r )Û+

2 (r0)

)

r0→0

.

This illustrates that even though the matricantM(r, r0) diverges asr0 → 0, as expected, it provides
the correct limit

z(r ) = i (M3 − i M4z(r0))(M1 − i M2z(r0))
−1 →

r0→0
i V̂1(r )Û−1

1 (r ) = Z(r ). (5.15)

Formal consistency requires the limiting value ofz(r0) asr0 → 0 be set equal toZ0. However, the
definition (5.15) ofZ(r ) is actually of no value for practical calculations because of the divergence
of M(r, r0) asr0 → 0.

At the same time, in the limit asr → 0, the conditional impedancez(r ) with any initial value
z(r0), such that|z(r0) − Z(r0)| > 0, should tend to the non-physical central impedanceZnp(0) =
i L2A−1

2 . Similarly to (5.2.2),

M(r, r0) →
r →0

(
0 Û2(r )

0 V̂2(r )

)

r →0

(
V̂+

2 (r0) Û+
2 (r0)

V̂+
1 (r0) Û+

1 (r0)

)

=

(
Û2(r )V̂+

1 (r0) Û2(r )Û+
1 (r0)

V̂2(r )V̂+
1 (r0) V̂2(r )Û+

1 (r0)

)

r →0

.

Hence,from (4.9),

z(r ) = i (M3 − i M4z(r0))(M1 − i M2z(r0))
−1 →

r →0
i [V̂2(r )Û−1

2 (r )]r →0 = i L2A−1
2 . (5.16)

If z(r0) is precisely the solid impedance atr0, then (5.16)1 reproducesthe solid impedance,z(r ) =
Z(r ) for r > 0. But the limit atr = 0, formally Z(0) = Z0, cannot be achieved in practice, a
reflection of the fact that the matricant-based solution (2.7) in cylindrical coordinates is uniquely
ill-posed at this point (see also section5.4).
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5.3 Riccati equation solution

An alternative to the Frobenius approach is to considerZ(r ) as a solution of the differential Riccati
equation with initial valueZ0 extended to the case when the initial value occurs atr = 0. The
solid-cylinder impedance is then the solution of the initial value problem,

r
dZ
dr

= [Z + (R̃ + ikzr P)+]Q̂−1[Z + R̃ + i kzr P
]
− B(r ), r > 0; Z(0) = Z0, (5.17)

whereB(r ) is defined in (3.13). The central-impedance matrixZ0, as discussed in section5.2, is de-
fined by the eigenvectors ofg0(0), see (5.13)2. Alternatively, noting that a non-physical singularity
is introduced unless the right-hand side of (5.17)1 vanishes atr = 0, we conclude that the central
impedance must satisfy the algebraic Riccati equation

(Z0 + R̃+
0 )Q̂−1

0 (Z0 + R̃0) − T̃0 = 0. (5.18)

While it is expected that the solutionZ(r ) is well behaved in some finite neighbourhood of
r = 0, the Riccati solution will inevitably develop singularities. These are associated with guided
waves of a cylinder of radiusr with clamped surface (zero displacement condition). For givenω
andkz, the singularities occur at values ofr such that det̂U1(r ) = 0 (see (5.12)). Thus, one can
integrate the differential Riccati equation only as far as the first singularity at (say)r = r∗. The
problem is evident from the example of the out-of-plane impedance derived in (8.9)2, Zz(r, 0) =
−c44k2r J ′

n(k2r )/Jn(k2r ), which blows up whenk2r is a zero of the Bessel functionJn. The effect
of singularities may be circumvented in practice by integrating the Riccati equation to some finite
r short of the first singularity and then to switch to some other solution method that is regular
in the vicinity of r = r∗. One approach (3) is to consider the admittance (inverse of impedance)
Y(r ) = Z−1(r ) which will be well behaved atr = r∗. Its differential Riccati equation, which
is easily found from (5.17), can therefore be integrated without incident through the singularity
at r = r∗, but the admittance then has its own singularities at positions different from those of
the impedance, so in general this approach requires switching back and forth between two Riccati
equations. While certainly feasible, the procedure is complicated by the fact that one does not know
the singularitiesa priori. Note that the admittance Riccati equation is not suitable for starting at
r = 0 because as discussed in the next section detZ0 = 0 and henceY0 = Y(0) is undefined for
n = 0,1.

A more practical approach to deal with the unavoidable singularity problem is to use the Riccati
solution to generate initial conditions for the full 6× 6 system atr = r1 < r∗, with which one can
integrate (again numerically) to arbitraryr > r1 using(4.9). In practice, one only needs to solve for
a 6× 3 matrix���(r ), satisfying

d

dr
���(r ) =

i

r
G(r )���(r ), r > r1; ���(r1) =

(
I

−i Z(r1)

)

. (5.19)

Although���(r ) doesnot describe the complete wave field it is sufficient to determine the impedance,
since

���(r ) =

(
���1

���2

)

= M(r, r1)

(
I

−i Z(r1)

)

⇒ Z(r ) = i���2(r )���−1
1 (r ), (5.20)

for r > r1. The value ofr at which one switches from the differential Riccati equation to the
matricant-based solution is a free parameter, and arbitrary as long as it is below the first singularity
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18of 35 A. N. NORRIS AND A. L. SHUVALOV

in the impedance. This can be estimated from the separable solutions in section8 asr∗
(
ω2s2

max −

k2
z

)1/2 ∼ 1, wheresmax is the largest plane wave slowness atr = 0.

5.4 Discussion

We have described two principal ways for finding the solid-cylinder impedanceZ(r ). The Frobenius
series method is summarized in (5.12) and (5.13). Taken together, these equations provide a basis for
calculating the solid-cylinder impedance forn > 0 and arbitraryr via the Frobenius series solution.
The Riccati equation method determinesZ(r ) for arbitraryn by integrating the differential Riccati
equation (5.17) subject to an initial condition defined by the central impedanceZ0. The Riccati
approach is strictly valid only forr less than the first singularity of the solid-cylinder impedance.
The initial valueZ0 canbe evaluated from (5.13)2 or by other methods discussed in section6. For
n = 0, the form ofZ(0)

0 is explicit ((6.28) below) andZ(0)(r ) maybe determined by, for instance,
integration of the Riccati equation discussed in section5.3. The physical solution to the initial value
Riccati equation can be continued through and beyond the first and subsequent singularities by
using the matricant solution to generateZ(r ) as a conditional impedance. Strictly speaking, the
practical value of the Riccati method is confined to the neighbourhood ofr = 0. The differential
Riccati equation provides a regularization of the system of equations (3.3), which are singular at
r = 0. Once this singularity has been taken care of, there is no need to use the Riccati equation,
particularly since the Riccati equation has its own singularities—in fact an infinite number of them.
Note that satisfaction of the algebraic Riccati equation (5.18) is essential to ensure regularization
of the initial value problem (5.17) atr = 0. The differential Riccati equation cannot generally
recover the central impedanceZ0 by ‘backward’ integration tor = 0 from some initialr0 > 0
becausethe system possesses the same ill-posed property observed with respect to (5.16), in this
case associated with the fact that the non-physical central impedanceZnp(0) ( = i L2A−1

2 for n > 1)
alsosolves (5.18).

Both the Frobenius and Riccati methods generate a Hermitian solid-cylinder impedance. Her-
miticity of Z(r ) is a consequence of the fact that it is built from the triplet of physical modes
that produce zero normal fluxes both of their own and due to their cross-coupling. Note that the
non-physical impedanceZnp(r ) = i V̂2Û−1

2 is Hermitian as well, which is similar to the case of a
half-space; however, the physical and non-physical impedances of a cylinder are generally no longer
negative transpose of each other as they are for a half space. Forn > 1, the two impedances are
related by

Z(r ) − Znp(r ) = i (Û1Û+
2 )−1, (5.21)

with normalizedÛ1, Û2 on the right-hand side, as follows from (5.5)2 and(5.10). The Hermitian
nature ofZ(r ), r > 0 can also be viewed as a consequence of the fact that it solves the Riccati
equation (5.17) with an Hermitian initial value,Z0. It is also noteworthy that neither the definition
(5.12) ofZ(r ) nor its Hermitian property requires any specific normalization of the eigenvectorsγγγ α

of g0(0) oncethey have been ordered into physical and non-physical triplets.
While the solid-cylinder impedance is quite distinct in nature, it is in a certain sense, a conditional

‘one-point’ impedance, for it depends on the initial condition atr = 0. However, there is another,
more essential aspect, which actually setsZ(r ) apart from the two-point impedanceZ(r, r0) andthe
general conditional impedancez(r ). It is thatZ(r, r0) andz(r ) involve all six linear independent
partial solutions, whereasZ(r ) involves only half of them and discards the other half on the basis
of certain partitioning atr = 0 (physical/non-physical). As a result, the hermiticity ofZ(r, r0)
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andz(r ) and that ofZ(r ) have different origins. Hermiticity of bothZ(r, r0) andz(r ) (the latter
subject to hermiticity of the initial condition) follows from divP = 0 while hermiticity ofZ(r ) is a
consequence ofPr = 0.

6. Properties of the central-impedance matrix Z0

The central-impedance matrix depends only on the elastic moduli (andn) and is simpler than the
solid-cylinder impedance, its continuation away fromr = 0. At the same time, the value of the
central impedance is requireda priori in order to calculateZ(r ) using the Riccati equation (5.17).
In this section, we describe some properties ofZ0, develop procedures for its determination, and
consider its behaviour for largen.

6.1 Integral formula forZ0 with n > 1

6.1.1 The Lothe–Barnett integral method using the matrix sign functionThe surface impedance
matrixZ(v), wherev is the velocity, plays a central part in the theory of surface waves in an elastic
homogeneous half space. It was first identified in that context by Ingebrigtsen and Tonning (28)
and subsequently developed as a crucial ingredient for proving the uniqueness and the existence
conditions for surface waves (1,2), see also (29,27). The central-impedance matrixZ0 of a cylinder
has a close relationship to the static (v= 0) surface impedance matrix. The similarity allows us to
use some of the considerable array of results for the latter. Here we draw directly on the integral
formalism for the surface impedance of a half space first outlined by Barnett and Lothe (30,31), and
later presented in full (1,29). We show how this formalism can be modified to describe the cylinder
central impedanceZ0 for n > 1, and we discuss the exceptional cases,n = 0,1.

Assumen > 1, so that the eigenspectrum ofg0(0) lies on either side of the imaginary axis in
accordance with (5.3). The restriction ton > 1 will be clarified below. The matrix sign function is
then uniquely defined

signg0(0) = g0(0)(g2
0(0))−1/2, (6.1)

wherethe principal branch of the square-root function with branch cut on the negative real axis is
understood;z = (z2)1/2 signz with signz = +1(−1) if <z > 0(< 0). As a result, the sign matrix
satisfies

(signg0(0))γγγ α = ±γγγ α for <λα ≷ 0. (6.2)

The matrix sign function was first introduced by Roberts (32) as a means of solving algebraic
Riccati equations and has become a standard matrix function (33,34); the simple relation (6.1) was
first noted by Higham (35). Using the spectral decomposition defined by the matrix of eigenvectors
0000 yields

g0(0) = 00003330000
−1
0 ⇒ signg0(0) = 0000(sign3330)000

−1
0 with

3330 =

(
diag(λα) 0

0 diag(−λ∗
α)

)

⇒ sign3330 =

(
I 0

0 −I

)

. (6.3)

The explicit structure of the sign matrix follows from the normalization condition (5.4) and the
submatrices defined in (5.6)2,
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20of 35 A. N. NORRIS AND A. L. SHUVALOV

signg0(0) = 0000(sign3330)T000+
0 T =

(
S i H

i B −S+

)

with

S = 2A1L+
2 − I = I − 2A2L+

1 , H = −2i A1A+
2 = H+, B = −2i L1L+

2 = B+. (6.4)

Additional relations are obtained from the involutory property of the sign matrix function,

(signg0(0))2 = I6 ⇒ S2 − HB = I, SH = (SH)+, BS = (BS)+. (6.5)

Theconnection with Barnett and Lothe’s theory is established via the integral expression for the
matrix sign function (32,34)

signg0(0) =
2

π
g0(0)

∫ ∞

0
dt (t2I + g2

0(0))−1. (6.6)

A simple change of integration variable and separation into partial fractions yields signg0(0) asan
averaged matrix,

signg0(0) =
1

π

∫ π

0
dφ g(φ)

0 ≡ 〈g(φ)
0 〉, (6.7)

whereg(φ)
0 = (cosφ I − i sinφ g0(0))−1(cosφ g0(0) − i sinφ I) . The latter can be simplified by

noting

g0(0) = (A0 − B0)
−1Ĵ(A0 + B0), (6.8)

with

Ĵ = i

(
0 I

−I 0

)

, A0 − B0 =

(
−Q̂ 0

−i R̃+ I

)

, A0 + B0 =

(
−T̃ 0

−i R̃ I

)

. (6.9)

Therefore,

g(φ)
0 = (A0 − ei 2φĴB0)

−1Ĵ(A0 + ei 2φĴB0), (6.10)

anddefining, by analogy with (6.9),

A0 − ei 2φĴB0 =

(
−Q̂φ 0

−i R̃+
φ I

)

, A0 + ei 2φĴB0 =

(
−T̃φ 0

−i R̃φ I

)

, (6.11)

thenthe matrixg(φ)
0 canbe expressed in exactly the same structural form asg0(0) in terms of 3× 3

matrices, as

g(φ)
0 =

(
−Q̂−1

φ R̃φ −i Q̂−1
φ

i
(
T̃φ − R̃+

φ Q̂−1
φ R̃φ

)
R̃+

φ Q̂−1
φ

)

, (6.12)

wheretheπ -periodic submatrices are:

Q̂φ = Q̂+
φ = cos2 φ Q̂ + sin2 φ T̃ + i sinφ cosφ(R̃ − R̃+) = T̃φ+π/2,

T̃φ = T̃+
φ = cos2 φ T̃ + sin2 φ Q̂ − i sinφ cosφ(R̃ − R̃+) = Q̂φ+π/2, (6.13)

R̃φ = cos2 φ R̃ + sin2 φ R̃+ + i sinφ cosφ(Q̂ − T̃) = R̃+
φ+π/2.
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The submatrices defined in (6.4) therefore have alternative integral expressions, from (6.7) and
(6.13),

S = − 〈Q̂−1
φ R̃φ〉, H = − 〈Q̂−1

φ 〉 , B = 〈T̃φ − R̃+
φ Q̂−1

φ R̃φ〉.

Crucially, Q̂φ is positive definite forn > 1. In order to see this, first note the obvious positive
definitenesŝQφ > 0, if sin φ = 0. For sinφ 6= 0, we have

Q̂φ = − sin2 φ333(−i cotφ) where 333(λ) ≡ λ2Q̂0 + λ(R̃0 − R̃+
0 ) − T̃0, (6.14)

which is positive definite because det333 (λ) = 0 does not admit pure imaginary roots forλ (20,
section 3.2.1). By the above arguments, the matricesH andB are negative and positive definite, re-
spectively. Consequently,H andB are invertible, and so the identity (6.5)2 impliesthat the matrices
I − S2 andhenceI − S+2 arealso invertible. Note that the positive definiteness ofB confirms that
detB 6= 0 for n > 1, which is when there is no stress-free modes. The casesn = 0, 1 are discussed
in section6.2.

6.1.2 The impedance matricesZ0 andZ0np We are now in a position to express the impedance
matrices in terms of the integrals. As before, we setα = 1,2,3 andα = 4,5,6 for the physical
and non-physical triplets, respectively. InsertingL1 = −i Z0A1 andL2 = −i Z0npA2 in (5.6)2 and
usingthe same argument as in (1) to maintain that detA1,2 6= 0 implies

0000 =

(
I I

−i Z0 −i Z0np

)(
A1 0

0 A2

)

, (6.15)

which, together with (6.3) and (6.4), yields the matrix identity
(

S i H

i B −S+

)(
I I

−i Z0 −i Z0np

)

=

(
I −I

−i Z0 i Z0np

)

. (6.16)

Thefirst line yields explicit expressions for the impedancesZ0 andZ0np,

Z0 = H−1 − H−1S, Z0np = −H−1 − H−1S, (6.17)

andthe second line gives the equivalent expressions

Z0 = −(I + S+)
−1B = −B(I + S)−1, Z0np = (I − S+)−1B = B(I − S)−1. (6.18)

Hence,Z0 andZ0np areHermitian by virtue of (6.17) and (6.5),

Z0 = Z+
0 , Z0np = Z+

0np. (6.19)

Using(6.17) and (6.4) implies

Z0 − Z0np = 2H−1 = i
(
A1A+

2

)−1
= −i

(
A2A+

1

)−1
(6.20)

in agreement with (5.21).
The representation (6.17) of the physical and non-physical central impedances is similar to that of,

respectively, the non-physical and physical half-space impedanceZ(v) in (1); however, the two ad-
dends in the right members of (6.17) are generally not the real and imaginary parts of the impedance
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asis the case in the expressions of (1). Consequently, the non-physical central impedance is not mi-
nus transpose of the physical one, unlike the half-space impedance whereZ(v) = −ZT

np(v) (1).
Another noteworthy difference is that the expressions similar to (6.18) are not unreservedly valid
for the dynamicalZ(v) because the analogue ofB has zero determinant at the Rayleigh speed.

The above results can in the main be obtained by following the alternative method of deriving the
Lothe–Barnett integral formalism that was proposed Mielke and Fu (36).

6.2 Remarks on n= 0 and n= 1

Let us now discuss the implication of the special casesn = 0, 1 in the present context. Occurrence of
a non-semisimpleg0(0) dueto a pair of degenerate eigenvaluesλ(0,1) = 0, which are split between
physical and non-physical triplets, makes the casesn = 0, 1 tantamount to the limiting statev = v̂ of
the elastodynamic problem for a half space (1,2,29) (more specifically, to the so-called exceptional
limiting state in view of the zero-traction mode corresponding toλ(0,1) = 0). The Lothe–Barnett
integral formalism on the whole is well defined atv < v̂. Any difficulties occurring atv = v̂ are due
to the non-integrable divergence acquired atv = v̂ by the angularly varying Stroh matrixN(v̂, φ),
which is a counterpart ofg(φ)

0 . A similar exception arises withg(φ)
0 for n = 0, 1 due toQ̂−1

φ . The

argument underlying positive definiteness ofQ̂φ for n > 1 no longer applies for the casesn = 0,
1, which admit rigid-body motion. This can be ascribed to the fact that detκκκ(0,1) = i n(n2 − 1) = 0
sothat det333(λ) = 0 has the rootλ(0,1) = 0, where333(λ) is given by (6.14). Thus,̂Qφ for n = 0,
1 is positive semi-definite, with det̂Qφ = 0 at cosφ = 0. That is why the cylinder’s version of the
integral formalism cannot generally be extended to the casesn = 0, 1. The exception when this
is yet possible is the casen = 0 for a cylindrically monoclinic material with the symmetry plane
orthogonal to thez-axis. This case simplifies due to the simultaneous occurrence ofez asthe null
vector ofκκκ(0) andof the uncoupling of thezz components. Hence, the upper 2×2 blocks of the
integral-formalism relations remain valid. Such a state of affairs also has a direct analogy with the
theory of surface impedance in a half space, namely, with the case of a symmetrical sagittal plane,
which is when the in-plane modes are unaffected by the limiting statev̂SH of the uncoupled shear-
horizontal mode (37,38). A careful remark is in order regarding (6.18). Forn = 0, the rigid-body
displacement corresponding toλ(0) = 1 and parallel toeθ is the null vector ofB and the eigenvector
of S with the eigenvalue〈λ(φ)〉 = 1. Hence, the upper 2×2 blocks ofB, I − S and I − S+ are
singular, whereas those ofI + S andI + S+ arenot. Thus (6.18) is not valid forZ0np, even for the
monoclinicn = 0 case.

Finally, it needs to be added that analysis of the half-space integral formalism asv → v̂ (1,
29, 27, 39) shows that although the formalism diverges on the whole in this limit, the integral
expressions for the surface impedanceZ(v) remain well defined atv = v̂. This asymptotic property
of Z(v) is not however directly relevant to the central impedanceZ0 of a cylinder since the diverging
casesn = 0, 1 cannot be approached ‘continuously inn’. A more appropriate treatment is either
asymptotic analysis ofZ(r ) → Z0 asr → 0 or else other, explicit, methods of derivingZ0 for
n = 0, 1(see section6.4).

6.3 Definiteness ofZ0 for n > 1 and semi-definiteness for n= 0,1

It has been noted above that the structure of the physical and non-physical central impedances
(6.17) resembles that of, respectively, the non-physical and physical surface impedances (1) for
a half space. This suggests the inverse correspondence of their sign properties. We will outline a
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formal proof. Similarly to the Lothe–Barnett theory for a surface impedance, the insight does not
follow from the integral formalism but relies instead on static energy considerations.

Assume first thatn > 1. The central impedance is related tog0(0) independentof ω andkz,
thereforewe can invoke the two-dimensional (2D) static solutionNNN (r ) = 000 diag

(
r λα
)

(ω = 0,
kz = 0 is tacit below). The associated time-averaged energy is (20, equation (21)):

W = −
i

8r

d

dr

(
U+V − V+U

)
. (6.21)

Insertingthe physical solutions with eigenvalues<λα > 0 and eigenvectorsγγγ 0α = (aα, lα)T (α =
1,2,3) of g0(0) from section5.1.1and using the central impedanceZ0 = Z+

0 leadsto

∫ r2

r1

Wr dr = −
1

4

3∑

α=1

(r 2<λα
2 − r 2<λα

1 )a∗
αZ0aα > 0 for all r2 > r1. (6.22)

Hence,Z0 for n > 1 is negative definite. The same consideration using the non-physical solutions
with <λα < 0, α = 4,5,6, implies thatZ0np for n > 1 is positive definite. As expected, this is
opposite to the sign properties of the physical and non-physical surface impedancesZ(v), Znp(v)
for the static limit,v = 0.

In the casen = 1, the above proof applies unchanged for the physicalZ(1)
0 except that it is

negative semi-definite due to the presence of the rigid-body motion mode. In the casen = 0,
the same conclusion of negative semi-definiteZ(0)

0 follows from an explicit calculation ofZ(0)
0 =

limr →0 Z(0)(r ) presentedin section6.4.2. It is noted that the rigid-body displacements causing

detZ0 = 0 for n = 0,1 (6.23)

are related to the existence of low-frequency (long wavelength)-guided waves in rods: longitudinal,
torsional (n= 0) and flexural (n = 1), see section5.1.2and (20).

6.4 Explicit expressions for the central-impedance matrix

Here, we develop other procedures for determiningZ0, including whenn = 0 andn = 1.

6.4.1 Z0 for n > 0 The central impedanceZ0 for n > 0 is defined by any of the optional
relations (including (5.13)2) that may be written similarly to (5.12) as

lα = −i Z0aα (α = 1,2,3) ⇔ l = −i Z0a ⇔ Z0 = i L1A−1
1 , (6.24)

whereγγγ = (a, l)T is an arbitrary superposition of the physical eigenvectorsγγγ α = (aα, lα)T of g0 (0)
with α = 1,2,3. The matricesA1 = (a1, a2, a3) andL1 = (l1, l2, l3) maybe related to one another
using identities such as (20, equations (24) and (26)),

lα = i (λαQ̂0 + R̃0)aα (α = 1,2,3),

implying

L1 = i (Q̂0A1λλλ + R̃0A1), whereλλλ = diag(λ1, λ2, λ3). (6.25)

Theeigenvectorsaα (α = 1,2,3) arenull vectors of333(λα), see (6.14), and consequently,

Q̂0A1λλλ
2 + (R̃0 − R̃+

0 )A1λλλ − T̃0A1 = 0. (6.26)
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Equations(6.25) and (6.26) provide a pair of expressions for the central impedance, each in terms
of the displacement eigenvector matrix only,

Z0 = −R̃0 − Q̂0A1λλλA−1
1 = −R̃+

0 − T̃0A1λλλ
−1A−1

1 . (6.27)

Thefreedom afforded by these simultaneous identities will prove to be useful when material sym-
metry reduces the matrix size to 2× 2, see section8.1.1.

6.4.2 The central impedance for n= 0 The algebraic Riccati equation (5.18) forn = 0 leads to
a constructive solution forZ(0), which must satisfy



Z(0)

0 +






c12 c26 c25

−c16 −c66 −c56

0 0 0









 Q̂−1

0




Z(0)

0 +






c12 −c16 0

c26 −c66 0

c25 −c56 0









+






−c22 c26 0

c26 −c66 0

0 0 0




 = 0.

Noting that





0 0 0

c16 c66 c56

0 0 0




 Q̂−1

0 = Q̂−1
0






0 c16 0

0 c66 0

0 c56 0




 =






0 0 0

0 1 0

0 0 0




 ,

it is clear that the solution of the algebraic Riccati equation is of the form

Z(0)
0 =






z(0) 0 0

0 0 0

0 0 0




 , (6.28)

where the scalarz(0) satisfiesa quadratic equation

(z(0)er + p)T Q̂−1
0 (z(0)er + p) − c22 = 0, with pT =

(
c12, c26, c25

)
.

Thephysical root must have negative real part in order to be consistent with (6.30) below, implying

z(0) =
1

(
Q̂−1

0

)
11

[

−q1 −
√

q2
1 + (c22 − pT q)(Q̂−1

0 )11

]

, whereq = Q̂−1
0 p. (6.29)

An alternative method is to take the limitr → 0 of the known solution forNNN (20, equation (A4)).
The result is again (6.28) where, by definition,z(0) is (i 2r ) timesthe ratio of radial components of
the traction and displacement of the eigenvectorγγγ (0) of g0(0)correspondingto its eigenvalueλ = κ.
These were found by Ting (24), from which

z(0) = −
W +

√
YQ

c55c66 − c2
56

(6.30)

follows, whereQ = detQ̂0 and,using Ting’s notation (24),

W = det






c12 c26 c25

c16 c66 c56

c15 c56 c55




 , Y = det






c22 c26 c25

c26 c66 c56

c25 c56 c55




 .

Equivalence of the expressions (6.29) and (6.30) follow from identities such asq1 = W/Q and
(c22 − pT q)(Q̂−1

0 )11 = (QY − W2)/Q2. Note thatQY > W2 (24,equation (B2)).
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6.4.3 Z0 for n = 1 The physical triplet of eigenvaluesλ(1)
α andeigenvectorsγγγ (1)

α =
(
a(1)
α , l(1)

α

)T

of g0(0) (α = 1,2,3) includesλ(1) = 0. It corresponds to a rigid-body rotation about thez-axis
with displacement vectora(1) = (1, i, 0)T andzero tractionl(1) = 0, see (20, equation (52)). Hence
by (5.13)2 Z(1)

0 a(1) = 0, that is,a(1) is the null vector ofZ(1)
0 for any anisotropy. This property,

combined with (6.23), implies thatZ(1)
0 hasthe structure

Z(1)
0 =






a ia c

−ia a −ic

c∗ i c∗ b




 with

(
a c

c∗ b

)

negative definite. (6.31)

The 2×2 matrix becomes diagonal(c = 0) for symmetry as low as monoclinic and an explicit form
of Z(1)

0 canthen be found, see section8.1.1.

6.5 The matrixZ0 at large azimuthal order n

For n � 1, we assume an asymptotic expansion of the impedance in inverse powers ofn,

Z0 = nz0 + z1 + n−1z2 + . . . , (6.32)

wherez0, z1, . . . , are independent ofn. Substituting into (5.18) and comparing terms of like powers
in n yields a sequence of matrix equations, the first of which is

(z0 − i RT
0 )Q̂−1

0 (z0 + i R0) − T̂0 = 0. (6.33)

This algebraic Riccati equation can be identified as (2.11) with system matrixQ = ikθN, where
kθ = n/r andN is the (static) Stroh matrix for the sagittal plane defined byer , eθ = n, m. The
subsequent identities are inhomogeneous Lyapunov equations,

E+z j + z j E + f j (z0, z1, . . . z j −1
)

= 0, j = 1,2, . . . , (6.34)

with the constant matrix operatorE = Q̂−1
0 (z0 + i R0), where

f1 = i T̂0K + i KT̂0 + E+R0K + KR T
0 E, etc. (6.35)

The leading order impedancez0 is the solution of the matrix algebraic Riccati equation (6.33),
and may be determined by the methods discussed above (via the eigenvectors and eigenvalues, or
the integral representation). Subsequent termsz j , j = 1,2, . . ., satisfy a Lyapunov equation (6.34)
with different right-hand sides but the matrix Lyapunov operator is the same for eachj . The solution
of this equation depends upon the spectrum ofE, and since the eigenvalues ofE have negative real
part, it follows that the unique solution is:

z j =
∫ ∞

0
ds esE+

f j e
sE. (6.36)

Theasymptotic sequence in inverse powers ofn can thus be evaluated to any desired order.

7. Radiation impedance matrix

The radiation impedance is relevant, for instance, in a configuration of infinite outer extent in which
the cylinder is inhomogeneous inr < r0 for finite r0 anduniform otherwise. It is always possible
to split the linear total field into incident and scattered components, such that the scattered solution
in r > r0 hasonly positive radial energy flux. The radiation impedance is defined by the subset of
wave solutions with this radiation property.
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26of 35 A. N. NORRIS AND A. L. SHUVALOV

7.1 Explicit form ofZrad(r )

An alternative partitioning of the integral matrix is required to account for the separate radiating,
non-zero flux, modes. This may be accomplished by a change of basis that brings about the diagonal
form of the flux matrixNNN+(r )TNNN (r ) (12). Proceeding from the integral matrixNNN that satisfies
(5.5), and hence composed of modes with zero radial flux, we first convertT to diagonal form by
an orthogonal transformation,

T = WJW+, J =

(
−I 0

0 I

)

, W =
1

√
2

(
I I

−I I

)

(W+W = I). (7.1)

Thenreferring to the notation (5.7)1 forNNN satisfying(5.5), we are led to the following partitioning
of the integral matrix,

NNN 1(r ) =NNN (r )W =

(
Û+ Û−

V̂+ V̂−

)

=
1

√
2

(
Û1 − Û2 Û1 + Û2

V̂1 − V̂2 V̂1 + V̂2

)

. (7.2)

The + and− suffices indicate modes that have positive and negative flux in the radial direction,
which is evident from the sign of the flux defined by (3.8), and the flux condition (5.5), which
becomes

NNN+
1 (r )TNNN 1(r ) = J for n > 1 (⇒ NNN 1(r )JNNN+

1 (r ) = T). (7.3)

Extensionof this identity to the special casesn = 0, 1 is contingent on the details of the Frobenius
solutions(see section5.1.2). In the cases of transverse isotropy and isotropy, the+ and −
modes correspond to radiating (outgoing) and incoming Hankel function solutions,H (1)

n andH (2)
n ,

respectively.
The wave-based partition (7.2) provides the required modes to express the radiation impedance,

defined in (4.7), withUscat, Vscat→ Û+, V̂+,

Zrad(r ) = i V̂+Û−1
+ , r > 0. (7.4)

It is important to note that the radiation impedance is not Hermitian, since, from (7.3),

Zrad − Z+
rad = −i (Û+Û+

+)−1 6= 0, (7.5)

which implies in fact thati (Zrad − Z+
rad) is Hermitian and positive definite.

As an example, consider SH wave motion in a uniform isotropic solid withkz = 0, for which
the scalar radiation impedance isZrad(r ) = −c44 kr H (1)′

n (kr )/H (1)
n (kr ), wherek = ω

√
ρ/c44, see

(8.9). For this case, known properties of cylindrical functions yield:

i (Zrad − Z+
rad) = 4π−1c44|H

(1)
n (kr )|−2 > 0.

Notethat the SH radiation impedance isZrad(r ) = −ikrc44 + 1
2c44+O((kr )−1) askr → ∞.

7.2 Asymptotic form ofZrad(r ) asr → ∞

Assume that the cylinder material is homogeneous forr0 < r < ∞, for some finite radiusr0.
As r → ∞, the impedanceZrad(r ), which we recall is defined with generalized traction vector
V = ir ϒϒϒ(r ), may grow without bound whiler −1Zrad(r ) tendsto a planar limit. This behaviour
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WAVE IMPEDANCE MATRICES FOR ELASTIC SOLIDS 27of 35

is evident for the SH radiation impedance considered in section7.1, which is proportional tor as
r → ∞. We therefore assume thatZrad hasthe form

Zrad(r ) = kzr Z∞ + O(1), r → ∞, (7.6)

wherekzZ∞ is a constant matrix. This can be found by considering the larger limit of the differen-
tial system (3.3), which reduces to its plane wave asymptote withr playing the role of a rectangular
coordinate,

d

dr
φφφ(r ) = i f0φφφ(r ), (7.7)

whereφφφ(r ) is a 6-vector andf0 amatrix constant (12)

φφφ(r ) =

(
U(r )

V(r )

)

, V(r ) = i k−1
z ϒϒϒ(r ), f0 = kz

(
g{1}

1 g{2}
0

k−2
z g{3}

2 g{1}+
1

)

. (7.8)

Thesix independent solutions to (7.8) may be separated into triplets according to their flux proper-
ties, withU+, V+ signifying the outgoing or radiating solutions. The limiting radiation impedance
is then defined by analogy with (7.4) as

Z∞ = i V+U−1
+ . (7.9)

Propertiesof Z∞ canbe deduced by noting that the system (7.7) is equivalent to that for a half
space with the identificationf0 = kzN(v), wherev = ω/kz andN(v) is the elastodynamic Stroh
matrix for the sagittal plane{er , ez} = {n, m}. This enables us to equate the limiting radiation ma-
trix Z∞ with the surface impedance matrixZ(v) for a homogeneous half space (2). Consequently,
Z∞ = Z+

∞ for subsonicv, that is, 06 v 6 v̂. The possibilityof Z∞ beingHermitian seems at
odds with the conclusion (7.5); however, it should be borne in mindthat Z∞ is only the leading
order term in the asymptotic series implicit in (7.6). The subsonic situation may be understood in
the context of the SH radiation impedance example above with the wavenumberk formally taken as
imaginary, in which case the Hankel function is replaced with the modified Bessel function of the
second kind via the identity,H (1)

n (x) = 2π−1(−i )n+1Kn(−i x). Conversely, Z∞ is not Hermitian
for v > v̂ (2). The equivalence with the half-space problem also impliesthatZ∞ is a solution of the
algebraic matrix Riccati equation:

(Z∞ − i PT
c )Q̂−1

c (Z∞ + i Pc) − M̂c + ρcv
2I = 0, (7.10)

wherethe suffixc indicates the constant values inr > r0. Equation (7.10) can be deduced by anal-
ogy with (6.33), noting the presence of the additional dynamic termρcv

2I in f0 andhence in (7.10).
The Riccati equation indicates that askz → 0 the matrixkzZ∞ → Z∞0, whereZ∞0Q̂−1

c Z∞0 =
−ρcω

2I, with a unique solution satisfying (7.5), and hence

lim
r →∞

r −1Zrad(r ) = −i ωρ1/2
c Q̂1/2

c for kz = 0.

Note that takingQ̂c with c15 = c56 = 0 andc44 = c55 factors out the asymptotic formZ∞ =
−i krc44 of the above-mentioned scalar radiation impedanceZrad for the SH waves in an isotropic
solid.

Finally, it is emphasized that developments in this subsection are irrelevant to the solid-cylinder
impedanceZ(r ) which, by construction, is Hermitian at anyr and for anyv ( = ω/kz). This in
fact implies thatr −1Z(r ) cannotbecome constant asr → ∞ because otherwise the arguments
subsequent to (7.6) would violate the unconditional hermiticity ofZ(r ). For instance, the out-of-
plane impedance,Zz(r, 0) = −c44 k2r J ′

n(k2r )/Jn(k2r ), see (8.9)2, has no large-r limit.
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28of 35 A. N. NORRIS AND A. L. SHUVALOV

8. Explicit examples of the solid impedance

The central impedanceZ0 is first presented for several cases of material symmetry, including mon-
oclinic and orthorhombic. A semi-explicit form forZ(r ) is possible if the material is transversely
isotropic, providing a check on the numerical calculations in section8.3.

8.1 The central impedanceZ0

It follows from its definition throughg0(0) thatZ0 dependsat most on 15 of the 21 possible elastic
moduli. The six redundant moduli are those with suffix 3 in the Voigt notation.

8.1.1 Monoclinic symmetry For monoclinic symmetry with the symmetry plane orthogonal to
thez-axis, the impedance has the structure

Z0 =



 Z⊥0
0

0
0 0 Zz0



 , (8.1)

whereZ⊥0 and Zz0 arethe in-plane and out-of-plane impedances, respectively. The out-of-plane
scalar impedance follows from (20, equations (37) and (38)) as

Zz0 = −n
√

c44c55 − c2
45. (8.2)

For n > 1, the in-plane impedance can be expressed in semi-explicit form in terms of the eigen-
valuesλ j , <λ j > 0, j = 1,2, of the 2×2 matrixg⊥0(0) formedfrom the upper left block ofg0(0).
By use of the following identity for 2× 2 matrices,

λλλ + λ1λ2λλλ
−1 = (λ1 + λ2)I (λ1λ2 6= 0),

the formulae in (6.27) may be combined to eliminate the explicit dependence on the eigenvector
matrix, with the result

Z⊥0 = −
1

2
(R̃0 + R̃+

0 ) − (Q̂−1
0 + λ1λ2T̃−1

0 )−1
[

(Q̂−1
0 − λ1λ2T̃−1

0 )
1

2
(R̃0 − R̃+

0 ) + (λ1 + λ2)I
]

.

Notethat the matrices on the right-hand side are all 2×2, that is,̃R0 = R̃⊥0, etc., and the eigenvalues
are the two roots of the quartic det333⊥ = 0 from (6.14) with positive real parts. The block impedance
Z⊥0 dependsupon the six in-plane moduli,cμδ (μ, δ = 1,2,6).

Forn = 1, the in-plane impedance possesses a null vector as described in section6.4.3, and based
on the required hermiticity, it must have the form

Z(1)
⊥0 = z(1)

(
1 i

−i 1

)

= z(1) e+e, e = (1, i ). (8.3)

Thealgebraic Riccati equation (5.18) then reduces to

{(z(1)e− i eRT
0 )Q̂−1

0 (z(1)e+ + i R0e+) − eT̂0e+}e+e = 0,

implying a quadratic equation forz(1),

z(1)2 (c11 + c66) − 2z(1)(c11c66 − c2
16 − c12c66 + c16c26)

− (c11c22c66 + 2c12c16c26 − c11c
2
26 − c22c

2
16 − c2

12c66) = 0.
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The unique physicalz(1) is, according to section6.3, provided by the negative root. We note that
the eigenvalues for the in-plane modes areλ

(1)
1 = 0 andλ

(1)
2 , that is, the physical (positive real part)

root of

λ2(c11c66 − c2
16) + 2i λ(c11c26 − c12c16) + (c16 − c26)

2

+ c66 (2c12 − c11 − c22) − c11c22 + c2
12 = 0. (8.4)

For n = 0, the general expression (6.29) reduces to

z(0) = −c12 +
c16c26

c66
−
√

(c11 − c2
16/c66)(c22 − c2

26/c66).

8.1.2 Orthorhombicand tetragonal symmetryFor the orthorhombic symmetry andn > 1, the
in-plane impedanceZ(n)

⊥0 is given by the upper 2×2 block of (6.27),

Z⊥0 =

(
−c12 −i nc12

−i nc66 c66

)

−

(
c11 0

0 c66

)

A⊥

(
λ1 0

0 λ2

)

A−1
⊥ , n > 1, (8.5)

whereλ1,2 arethe physical roots of the equation

λ4c11c66 − λ2[n2(c11c22 − c2
12 − 2c12c66) + c66(c11 + c22)] + c22c66(n

2 − 1)2 = 0,

andA⊥ = (a1⊥, a2⊥) is composed of the null vectors of the matrix333⊥(λ), and can be expressed

A⊥ =

(
λ2

1c66 − c66 − n2c22 −i n[λ2(c12 + c66) − c22 − c66]

−i n[λ1(c12 + c66) + c22 + c66] λ2
2c11 − c22 − n2c66

)

.

For n = 1, the scalar in-plane impedance is

z(1) =
c66

c11 + c66
(c11 − c12 − c11λ

(1)
2 ),

whereλ
(1)
2 =

√
(c11c22 − c2

12 + c11c66 + c66c22 − 2c12c66)/(c11c66) is the (physical) root of (8.4)
simplified for the orthorhombic case.

For tetragonal symmetry withc16 = c26 = 0, the in-plane impedance is unchanged from (8.5),
and the out-of-plane impedance (8.2) further simplifies due toc44 = c55 (ontop of the orthorhombic
conditionc45 = 0).

8.1.3 Transverse isotropy and isotropyThe central-impedance matrix reduces for transversely
isotropic symmetry to

Z0 =






2c66(c66 − nc11)/(c66 + c11) 2i c66(nc66 − c11)/(c66 + c11) 0

−2i c66(nc66 − c11)/(c66 + c11) 2c66(c66 − nc11)/(c66 + c11) 0

0 0 −nc44




 , n 6= 0,

(8.6)

Z(0)
0 = −2(c11 − c66)






1 0 0

0 0 0

0 0 0




 ,

which applies, of course, to isotropy(c44 = c66). Equation (8.6) is also derived in section8.2.
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8.2 Thesolid-cylinder impedanceZ(r ) for transverse isotropy

The constitutive relation fortr combinedwith (3.2) and (5.12)3 impliesfor any material anisotropy,

Z(r ) = −R̃ − ikzr P − Q̂
(

r
d

dr
Û1

)

Û−1
1 , r > 0, (8.7)

wherethe matrixÛ1(r ) is any unnormalized triad of independent physical solutions. The radiation
impedance is obtained if the matrix is replaced withÛ+(r ) comprisinglinearly independent radi-
ating solutions. The difficulty in applying (8.7) is that explicit matrix solutions for̂U1 or Û+ are
not generally available except under certain restrictions on material symmetry, such as transverse
isotropy.

Assuming transverse isotropy, solutions for the displacements that are either regular atr = 0
or radiating to infinity can be constructed in terms of cylinder function by adopting Buchwald’s
representation (40) (see also (41)). Thus,

Û(r ) =






C′
n(k1r ) C′

n(k2r ) −i [n/(k3r )]Cn(k3r )

i [n/(k1r )]Cn(k1r ) i [n/(k2r )]Cn(k2r ) C′
n(k3r )

i (κ1/k1)Cn(k1r ) i (κ2/k2)Cn(k2r ) 0




 ,

wherethe principal wavenumbersk1, k2, k3, and auxiliary wavenumbersκ1, κ2, are

k2
1,2 =

a ∓
√

a2 − b

2c11c44
, k2

3 =
ρω2 − c44k2

z

c66
, κi =

c66k2
3 − c11k2

i

kz(c13 + c44)
(i = 1,2),

a = (c11 + c44)ρω2 + (c2
13 + 2c13c44 − c11c33)k

2
z, b = 4c11c44(ρω2 − c33k

2
z)(ρω2 − c44k

2
z),

andCn = Jn for displacements regular atr = 0 , Cn = H (1)
n for radiating solutions.

Evaluating (8.7) and simplifying terms using the identitiesc44κ1κ2 + c66k2
3 = 0 andc11(κ1k2

2 −
κ2k2

1) = c66k2
3(κ1 − κ2), we find thatZ for transverse isotropy is

Z(r ) =






2c66 i n2c66 i kzr c44

−i n2c66 2c66 0

−i kzr c44 0 Zz




+ c0






ξ3(y1 − y2) i n(y1 − y2) i ξ3(ξ1 − ξ2)

−i n(y1 − y2) ξ2y1 − ξ1y2 n(ξ1 − ξ2)

−i ξ3(ξ1 − ξ2) n(ξ1 − ξ2) 0




 ,

(8.8)

Zz = c44

(
n2(ξ1y1 − ξ2y2) − ξ1ξ2ξ3(y1 − y2)

ξ3(ξ2y1 − ξ1y2) − n2(y1 − y2)

)

, c0 =
c66k2

3r 2

ξ3(ξ2y1 − ξ1y2) − n2(y1 − y2)
,

with dimensionless quantitiesy1 = κ1r , y2 = κ2r andξ j = kj r C′
n(kj r )/Cn(kj r ), j = 1,2,3.
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The central-impedance limit may be extracted from (8.8) by writing it in block form

Z(r, kz) =



 Z⊥(r, kz)
i (kzr c44 + cξ3)

nc
−i (kzr c44 + cξ3) nc Zz(r, kz)



 , c = c0(ξ1 − ξ2),

Z⊥(r, kz) = 2c66

(
1 i n

−in 1

)

+ c66k
2
3r 2

(
(ξ2y1 − ξ1y2)/(y1 − y2) −i n

in ξ3

)−1

,

wherethe dependence on bothr and kz is emphasized. Forkz = 0, we havekj = ω/cj with
ρc2

1 = c11, ρc2
2 = c44, ρc2

3 = c66, and the impedance reduces to

Z(r, 0) =



Z⊥(r, 0)
0

0
0 0 Z z(r, 0)



 , with Zz(r, 0) = −c44 k2r
C′

n(k2r )

Cn(k2r )
, (8.9)

Z⊥(r, 0) = 2c66

(
1 i n

−in 1

)

+ c66(k3r )2

(
k1r C′

n(k1r )/Cn(k1r ) −i n

in k3r C′
n(k3r )/Cn(k3r )

)−1

.

Taking the limitr → 0 of (8.9) with the interior cylinder functionsCn = Jn gives (8.6).

8.3 Numerical example

A procedure was outlined in section5.3 for calculating the solid-cylinder impedance using two
separate numerical solutions. The Riccati equation (5.17) is first integrated starting fromr = 0 with
the central-impedance matrixZ0 asinitial condition. The integration proceeds up tor = r1, where
r1 liesbelow the first singularity ofZ(r ). Forr > r1, the impedance is obtained from (5.20)2 asthe
solution of the matricant-based system (5.19), with the Riccati solution atr1 servingas the initial
condition. To illustrate its practicality, the two-stage algorithm was implemented with representative
results plotted in Fig.2.

The initial step in the computation requires the value of the central impedance, which was cal-
culated using (6.28) and (6.29) forn = 0 and the formulaZ0 = i L1A−1

1 for n > 0 (see (5.13)2),
with A1, L1 definedby the numerical spectral decomposition ofg0(0) andthe appropriate selection
of its three eigenvalues with positive real part. It was confirmed that the computedZ0 satisfiedthe
algebraic Riccati equation (5.18), with error always less than 10−12. Numerical integration of (5.17)
and (5.19) was accomplished using the Runge–Kutta (4,5) routine in Matlab. In order to assess the
accuracy of the numerical results, the computed matrixZcomp(r ) andthe analytical solution forZ(r )
of (8.8) were compared. For the examples shown in Fig.2, it was found that the spectral norm of
the difference satisfied‖Zcomp(r ) − Z(r )‖2 < 10−4 at all points. The curves in Fig.2 user = 1
as the ‘cross-over’ coordinate, but similar accuracy was found for other values as long as they lie
below the first singularity ofZ(r ), which for the parameters considered isr∗ > 2. In all cases, the
transition from the Riccati to the matricant-based solution was found to be smooth.

This numerical procedure is designed to handle the coordinate-based singularity present in the
system equations (3.3) atr = 0, and can be continued, in principle, to any finiter . At the same time,

 at R
utgers U

niversity Libraries/T
echnical S

ervices on July 22, 2010 
http://qjm

am
.oxfordjournals.org

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org


32 of 35 A. N. NORRIS AND A. L. SHUVALOV

Fig. 2 The curves show(n3+1)−1| detZ(r )| for n = 0,1, . . . ,5. The material is isotropic with{c11, c66, ρ} =
{4,1,1} and{ω, kz} = {1,0.2}. The Riccati equation (5.17) forZ(r ) was integrated to obtain the curves for
0 < r 6 1, starting fromr = 0 with the knownZ0 of (8.6). Forr > 1, the system (3.6) was integrated and
(5.19) and (5.20) used to findZ(r ), starting from the Riccati solution atr = 1

the computed impedanceZ(r ) will grow without bound at discrete values ofr > 0 associated with
waveguide modes of the traction-free cylinder. The point of the algorithm is that it will continue to
provide accurate solution regardless of the presence of two distinct types of singularity atr = 0 and
at finite values.

9. Conclusion

Impedance matrices appropriate to cylindrically anisotropic radially inhomogeneous elastic mate-
rials have been defined and procedures for their determination developed. In the process, a new
impedance matrix has been revealed as of central importance for wave motion in cylinders with on-
axis material. The solid-cylinder impedance matrix is a characteristic property of the cylinder, with
no free parameters apart from frequency and axial wavenumber. The impedance may be defined as
the unique continuation of its on-axis limit, the central-impedance matrix, which is a simpler object
dependent only on (a subset of) the elastic moduli. Two methods have been described for construct-
ing the solid-cylinder impedance atr > 0, one based on a Frobenius series solution, the other
using a differential Riccati equation. In addition to providing practical means for computation, as
has been demonstrated for the latter approach, the methods shed light on the structural properties of
the impedances. The Frobenius solution offers direct proof of uniqueness and hermiticity, while the
Riccati solution provides a stable method to integrate the otherwise singular system of equations
at r = 0. The radiation impedance matrix, suitable for infinite radial domains, has been defined
and its properties delineated. We have found it instructive to compare the cylindrical impedance
matrices with the surface wave impedance for a homogeneous half space. The central-impedance
matrix is the negative semi-definite counterpart of the static surface impedance, and the larger limit
of the radiation impedance is closely related to the surface wave impedance withv = ω/kz.
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One purpose in developing these impedance matrices is the significant advantage offered by the
impedance approach in solving boundary value problems. The solid-cylinder impedance matrix
provides perhaps the simplest method to arrive at the dispersion equation of a radially inhomo-
geneous solid cylinder. In this regard, we note that, by analogy with the conditional(3 × 3) and
two-point (6× 6) impedances of an annulus (12), the eigenvalues of the solid-cylinder impedance
should be monotonic inω at any fixedkz, which can be helpful for finding numerical solutions of
the dispersion equation. In a wider context, the impedance matrix in conjunction with the radiation
impedance, can serve in formulating scattering of acoustic and elastic waves from solid cylinders.
Other applications that we envisage include the use of impedance matrices for solving problems
with distributed forces within the cylinder, and applications involving 2D inhomogeneous or later-
ally bounded planar and cylindrical waveguides (42, 43), where the algebraic impedance matrices
discussed here become differential operators.

Another no less important reason for investigating the impedance matrix in the cylindrical context
is that it affords new insights on the nature of elastodynamic solutions in anisotropic elasticity. It
is remarkable, for instance, to find the Riccati equation appear as a natural method for solution in
cylindrical elastodynamics. The Riccati equation, in fact, implies that the central impedance solves
an algebraic Riccati equation, which in turn leads to direct methods for its evaluation using analogies
with the surface wave impedance. Differential Riccati equations have been found useful in a few
elastic wave settings (3, 4, 5, 21,42). Its appearance here suggests it has wider potential application
in computational elastodynamics.
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