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Summary

Impedancamatrices are obtained for radially inhomogeneous structures using the Stroh-like
system of six first-order differential equations for the time-harmonic displacement-traction
6-vector. Particular attention is paid to the newly identified solid-cylinder impedance matrix
Z(r) appropriate to cylinders with material at= 0, and its limiting value at that point, the
solid-cylinder impedance matriXg. We show thatZg is a fundamental material property
depending only on the elastic moduli and the azimuthal ordehatZ(r) is Hermitian and

Zg is negative semi-definite. Explicit solutions f@g arepresented for monoclinic and higher
material symmetry, and the special casesicE 0 and 1 are treated in detail. Two methods
are proposed for finding(r), one based on the Frobenius series solution and the other using
a differential Riccati equation witlZg as initial value. The radiation impedance matrix is
defined and shown to be non-Hermitian. These impedance matrices enable concise and efficient
formulations of dispersion equations for wave guides, and solutions of scattering and related
wave problems in cylinders.

1. Introduction

Impedance provides a useful tool for solving dynamic problems in acoustics and elasticity. A single
scalar impedance is usually sufficient in acoustics, whereas a matrix of impedance elements is re-
quired to handle the vector nature of elastic wave motion, particularly in the presence of anisotropy.
The use of impedance matrices can offer new insight because their properties are intimately re-
lated to the fundamental physics of the problem, as, for instance, the Hermitian property of the
impedance matrix which is directly linked to energy considerations. A classical example is surface
impedance matrix of Lothe and Barnett 2), which proved to be crucial for understanding surface
waves in anisotropic homogeneous half spaces, with the result that it provides perhaps the simplest
method for finding the Rayleigh wave speed. Biryuk8y4) has developed a general impedance
approach for surface waves in inhomogeneous half spaces based on the differential Riccati equa-
tion, see alsog). Direct use of the impedance rather than the full displacement-traction wave field
provides an efficient and stable procedure for computing high-frequency dispersion spectra. Several
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numericalschemes for guided waves and scattering in multilayered structures have been developed
on this basis§ to 8). These involve the 83 impedance matrix often called the surface impedance,
although it actually differs from the 33 surface impedance of a half space. It is useful to fur-

ther distinguish the familiar 83 (conditional) impedance from ax® (two-point) matrix more

closely related to the matricant of the system equations. The nature of these impedances has been
analyzed using the Stroh framework for homogeneous and functionally graded plat8s. (9js
noteworthy that both impedances are Hermitian under appropriate physical assumptions; however,
their hermiticity implies a somewhat different energy-flux property than the hermiticity of the half-
space impedance. Bibliographies on the impedance matrices for piezoelectric media are available
(4,11).

The above review concerns rectangularly anisotropic materials and planar structures. The objec-
tive of this paper is to provide an equally comprehensive impedance formalism for time-harmonic
modes ofnth azimuthal order in radially inhomogeneous cylindrically anisotropic materials of
infinite axial extent and various circular configurations. An important element in this task is the
Stroh-like state-vector formalism developed for such materials by ShuvEXvHis results, which
are based on the matricant in a Peano-series form (particularly the definition of the ‘two-point’
impedances similar to the case of planar structures) are however only relevant to a cylindrical an-
nulus with no material around the central paint= 0. The intrinsic singularity of elastodynamic
solutions at the origin of the cylindrical coordinate system, which rules out the Peano series, is an
essential distinguishing feature as compared to the Cartesian setup. The problem can be readily
handled in (transversely) isotropic homogeneous media with explicit Bessel solutions; however, it
becomes considerably more intricate for cylindrically anisotropic and for radially inhomogeneous
solid cylinders. The main analytical tool in this case is the Frobenius series solution. The mile-
stone results on its application to homogeneous and layered cylinders of various classes of cylin-
drical anisotropy includel@ to 18); see also the reviewl9). The state-vector formalism based
on the Frobenius solution for the general case of unrestricted cylindrical anisotropy and arbitrary
radial variation of material properties (20) is of crucial importance to the present study. Another
vital ingredient is the differential matrix Riccati equation for an impedare To the best of
the authors’ knowledge, this equation has only recently been used for the first time in elastic-
ity of cylinders by Destradet al. (21) who numerically solved it for an elastostatic problem in
tubes.

The presence of the special point= 0 distinguishes the solid-cylinder case from its Cartesian
counterpart in many ways. Apart from the usual radiation condition at infinity, a similar kind of
condition has to be applied at= 0. The Riccati equation simultaneously determines the central
impedance at = 0 in a consistent manner while requiring it as the initial value for obtaining
the solid-cylinder impedance. No other auxiliary (boundary) condition applies=a0, which is
(again) unlike the surface or conditional impedance for, say, a traction-free pland. These
observations point to the fundamental role of the impedance formalism in cylindrically anisotropic
elastodynamics and actually call for a new type of the impedance matrix appropriate for solid cylin-
ders. The concept, properties and calculation of the solid-cylinder impedance are among the main
results of this paper.

The outline is as follows. Background material on the matricant, impedance matrices and Riccati
equations is presented in sectidrin a general context not specific to cylindrical configurations.

In section3, the governing equations for cylindrically anisotropic elastic solids are reviewed and
the first-order differential system for the displacement-traction vector is described. Some examples
of the use of impedance matrices are discussed in settiand in the process, the solid cylinder
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and the radiation impedance matrices are introduced. Methods for determining the solid-cylinder
impedance are developed in sectnThis section provides a detailed description of the Frobe-
nius solution and its properties and also discusses the Riccati solution. Both methods involve the
crucial central-impedance matrix, to which sect®is devoted, where explicit solutions are pre-
sented and general attributes delineated, including the important Hermitian property. The radiation
impedance matrix is analyzed in secti@dnExplicit examples are presented in sect®for the
central-impedance matrix in different types of anisotropy, and the solid-cylinder impedance is ex-
plicitly presented for transverse isotropy. Numerical results illustrating the Riccati equation solution
method are also discussed. Concluding remarks are in séction

2. The matricant, impedance matrices and Riccati equations

For the moment, the development is independent of the physical dimension and the underlying
coordinates. Consider a system afi Bnear ordinary differential equations

dn ) (Ql Qz) (U)

— = W|th = s = . 2.1

ay = M=o, i) 1T\ @y
The m-dimensional vectors), V and them x m submatriceXj, j = 1,2, 3,4 all possess uni-

dimensional spatial dependence pnwhich may be a Cartesian or radial coordinate. The system
matrix Q displays an important algebraic symmetry, which is a consequence of a general flux conti-
nuity condition. The derivative of the scalar quanityT», where superscript ‘+’ means the adjoint
(complex conjugate transpose) ahthas block structure with zero submatrices on the diagonal and
off-diagonalm x m identity matrices, can be identified with the divergence of the flux veRtor

(to be defined more specifically later). Thyd,/dy) (,I+-|—,,) ~ divP, and hence, X 1) implies the
connection between flux continuity and symmetry of the system matoix (

Q=-TQ"T & divP=0. (2.2)

The vanishing of di? = 0 assumes certain physical restrictions that will be described when the
elasticity problem is considered in sectidn

The 2mx 2m matricantM(y, Yo) is a function of two coordinates defined as the solution of the
initial value problem:

dm
d—y(y, Yo) = Q(Y)M(Y, Yo), M(Yo, Yo) = | 2m)- (2.3)

The matricant may be represented formally as a Volterra or multiplicative integral evaluated by
means of a Peano serig®], alternatively it may be expanded in a Frobenius se?igs Lety, (Y)

(@ =1,2,...,2m) be a set of partial solutions, that is, a complete set of independent solutions of
the homogeneous system (2.1), théqy, yo) = N (Y)N 1(yo), whereN is the integral matrix (a
first-rank tensorV'(y) = (g1, ..., n2m). The propagator nature of the matricant is apparent from
the propertyM(y, y1)M(y1, Yo) = M(Y, Yo), and in particulaM(y, yo) = M(Yo, y)~%, while the
symmetry (2.2) implies

M(Y, Yo) = TM*(yo, )T. (2.4)
HenceM is T-unitary (22), that is,

M1y, yo) = TMT(y, yo) T. (2.5)
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In solving problems, one is often not interested in the individual fielg® andV(y), but rather
in their relationship to one another, and perhaps only at one or two positions such as boundary
values ofy. Accordingly, we introduce then x m conditional impedance matrix defined such
that:

V(y) = —iz(y)U(y). (2.6)

The conditional nature of this impedance arises from an auxiliary condition at another coordinate
Yo (9, 10),and may be understood from an equivalent definition of the matricant

U(Y)) (Ml Mz) (U(YO)> (Ml Mz)

= ,  whereM(y, yo) = . 2.7
<V(y) YRV ARVAS 30 = Mg My o
Now suppose(yp) is the conditional impedance g, then

U(y) = (M1 —iM2z(y0)) U(Yo), V(Y) = (M3 —iMa4z(yo)) U(yo),
andthe conditional impedance gtis therefore

2(y) = i(M3 —iM4z(y0)) (M1 — iM2z(y0)) " (2.8)

In practice,z(yo) is often associated with boundary conditions on the level surfaee yp. For
instance, ‘zero traction’ and ‘rigid boundary’ conditions are specified by vanistiiagd U, re-
spectively, with conditional impedances

" iMagM;!  zerotraction(V(yo) = 0),
z(y) =
iM4M 2_1 rigid boundary(U(yp) = 0),

whereMj = M (y, yo) in (2.7)—(2.9).

While itis possible to define the conditional impedance in terms of solutions oftixeen linear
system (2.1), the same system leads through a process of elimination to a quadratically nonlinear
equation for the matrix: the differential Riccati equatior):

j; 4+2zQ1—Quz—izQz—iQ3=0. (2.10)
In this context, the auxiliary impedanegyg) senes as an initial condition at = yg which once
specified uniquely determinegy) at other positions. The symmetr2.2) renders(2.10) self-
adjoint in the sense that i is a solution then so ig", which does not imply their equality. It
does however imply that the differential Riccati equatidriQ) produces a Hermitian impedance,
z(r) = z*+(r), as long as the initial condition is Hermitian(yo) = z* (yg). We will also find useful
the algebraic Riccati equation associated with (2.10),

ZQ]_ — Q4Z — iZQzZ — iQ3 =0, (2.11)

the solution of which determines limiting values of the impedance, for examplg) as oo, and
can serve as the initial value for the differential equat®10).
We also introduce a ‘two-point’ impedangey, yo) distinguishedrom the conditional impedance
by its explicit dependence upon two arguments, and defined such that it relates the constituent parts
of the 2n-vector aty andygp accordingo (9, 10):

V(yo) ) _ . U(Yo)
(2vip) =200 () 212

(2.9)
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Comparing (2.6) and2(12) one might be tempted to surmise that the two-point impedance is
composed simply of block diagonal elementgy, yo) andZ4(y, Yo) identifiedasz(yp) and—z(y),
respectiely, wherez is the conditional impedance, and with zero off-diagonal blo2ZksandZ ).

But the two-point impedance is more fundamental and thereby richer, as one can see by comparing

(2.7) and 2.12), implying:

21 Zp\ _. —M5M; Myt dotz — JEtEM3) (2.13)

Z3 Z4 MsM3™M1 = M3 —MgM;t) detMy '
<M1 Mz> _( -Z'za iz;" dory — detZs

M3 Ma)  \iZ3-iZ42;'20 -2425')° " detzy’

whereMj = Mj(y, Yo), Zj = Zj (Y, Yo). The identity @.4) then implies the important properties
that the two-point impedance is Hermitian, and that the matricant determinant is of unit magnitude,
that is,

equation (2.2) = Z=2T, detM =¢€? whereg = amgdetMiMy). (2.14)

It follows directly from (2.3) andJacobi’s formula that the phase satisfies the differential equation
d¢/dy = —i tr Q with initial condition¢ (yp) = 0. The matricant is therefore unimodul@etM =

1) if tr Q vanishes. Further properties of the impedance may be deduced by swapping the ‘running’
and ‘reference’ pointy andyp in (2.12) (that is, inJ, V andZ), implying the reciprocal form:

vViy) \ _ . u(y)
<—V(YO)) = 12000, (U(yo)> ’

whencefollows an obvious relation

Z(Yo, Y) = —TZ(Y, Yo)T. (2.15)

Thetwo-point impedance therefore has the structure

Z1 Zz) with Z1(Y, Yo) = —Za(Yo, ¥), (2.16)

Z(y, yo) =
(¥:30) <Z3 Zy Z3(Y, Yo) = —Z3(Yo, ¥).

As an alternative to4.8), the conditional impedance gtmay be expressed in terms of the
impedance ayp by using the two-point impedance,

2(y) = —Z4 — Z3(2(yo) — Z1) "' Z2, (2.17)

whereZj = Zj(y, yo). Note thatz(y) is Hermitian ifz(yo) is.
In the same way that the matricavit y, yp) satisfiesan ordinary differential equation iy, (2.3),
it is possible to express the dependenc&(©f, yo) ony in differential form. Differentiating2.12)
with respect toy and using 2.1) to eliminate the traction vectors yields an equation for the two-point
impedance,

dz . . 0 0
d7y + 231 — I Z +1232Z +1J3 =0, whereJ, = (O Q; (y)> . (2.18)
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The self-adjoint property of this equation is obvious because the two-point impedance is itself
self-adjoint (Hermitian). Direct integration of the differential syste2ril8) subject to initial con-
ditions aty = yp is problematic because of the fact that all submatriceZ(of, yp) are of the

form i (f% dsz)_1 as|ly — yo| — 0, and hence undefined. Differential equations with well-

defined (finite) initial value conditions can be obtained for the block matﬂ-_és(j =1,2,3,4)

by simple manipulation of (2.18), but we do not discuss this further here. It is interesting to note,
however, that inspection of the block structure #f18) shows that the equation fdy decouples

from the other submatrices and it is the same as the differential Riccati equati@) for the con-
ditional impedance (under the intercharfye< —z). Furthermore, sincg, becomesinbounded

asy — VYo, (2.18) implies that the submatrixZ, is the conditional impedance with the auxil-
iary condition of rigid (infinite) impedance gt = yp, an observation that is verified bp.0)
and(2.13).

3. Cylindrically anisotropic elastic solids
3.1 Equations in cylindrical coordinates

The dynamic equilibrium equations for a linearly elastic material when expressed in cylindrical
coordinates are (24):

0 -1 0
ri0te) . +r Yoo +Ktg) +t2=pi withk = |1 0 Of. (3.1)

0O 0 O
Here,p = p(X) is the mass density = u(x, t) the displacement, and the traction vectgrs=
ti(x,t),i =r,0, z, are defined by the orthonormal basis vect@s ey, e,} of the cylindrical co-

ordinates{r, #, z} according toti = go (i = r,0, 2), wherea (x, 1) is the stress, and a comma
denotes partial differentiation. With the same basis vectors, and assuming the summation conven-
tion on repeated indices, the elements of stressiqre: Cijki e, wheree = 3(Vu + VuT) is the
strain,Gijki = Gijk (X) areelements of the fourth order (anisotropic) elastic stiffness tensorTand
denotes transpose. The traction vectors agg; (

t, O R P Uy Q=(a&), S= (&),
to|=|RT T s||rius+kw|, T=(@e) P=(@e),
t, PT ST M u,z M = (e,€,), R = (& &),

where, in the notation of {), the matrix(ab) has componentgéab)jx = aicjjk b for arbitrary
vectorsa andb. The explicit form of the various matrices is apparent with the use of Voigt's notation
Cijkl = Cop (a, f € {1,2,...,6})

Ci1 Cie Cis Ce6 C26 Ca Css  C45 Czs
Q=|Cw6 Co6 Cs6|, T=|Cs C2 Ca|, M=|Cs Cag Casf,

Ci5 Cs6  Css Cae C24 C44 C3s C34 Cz3

Cse  Cs6  Czs Cis Cisa C13 Cie Ci2 Cisg
S=|Cxs Cx4 C3|, P=|Cs6 Cs6 C3|, R=|Cs6 Co6 Ca6

Cs5 C44 Czg Cs5 C45 C35 Cse C25 Cs5
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3.2 Cylindrically anisotropic materials

The concept of cylindrical anisotropy, which apparently originated with Jean Claude Saint-Venant,
and has been elaborated by Lekhnitskii (25), demands the angular independence of material con-
stants in the cylindrical coordinates, but admits their dependencendz. We consider materials

with no axial dependence whose density and elasticity tensor may depend,ypea p(r) and

Cijkl = Gijui (r) foralli, j,k,l er, 0, z. We seek solutions in the form of time-harmonic cylindrical
waves as:

U= U(n) (r)ei (n9+kzz—mt)’ t = —r(n) (r)ei (n9+kzz—wt)’ (3_2)

wheren = 0,1, 2, ... is the circumferential number.
The dependence of the displacement and traction on the single spatial coordatlates the
elastodynamic equations to be reduced to the canonical forégh Df (L 2):

d ey b M
170 = 6O ), (3.3)
wheren™ isa 6 x 1 vector
uM(r) _ .
") = (Vm)(r) . with VO @) =irr (), (3.4)

andthe 6x 6 system matridG is defined by:

(1} 02
iG(r)=go(r)+rgl(r)+rzgz(r)=(g € g (r)).

ig®r)  —gtr)

Theindividual 6 x 6 matrices are

do = (gé’l} % ) g =ik (9{11} 0 ) 92—< 0 0)
- . 5 - Z . s - . 13 s
igy) —go!t ig? o' gy’ 0

with the 3x 3 matrices

{1} {2}

. 1 3 3

g% =g +ikrgl¥ +r2gf.
Theconstituent 3x 3 matrices are:
ol = -9 IR, o = 0P,
o = Q7 =g, o = PTQR -5 (PTQ IR - §)" = —g’",
o =T-RTQWR=gF", ¢ =1kEMNM -PTQP)— po?l =g,
where

R=Rx, S=«xS, T=xtTe=T", k=K+inl = —«t.

The matricesgg} and gf)g} are negative definite and positive semi-definite, respectively, for real-

valued and positive definite elastic moduli. Note that title order modal solution™(r) is a
function of the radial coordinate, but it is also an implicit function of the frequeneaypd the axial
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wavenumbekz, the dependence of which is here kept tacit. In the same manner, the dependence of
G(r) uponn, w andk; is understood. The superscrigh)’ is omitted henceforth, with the exception
of the specific cases= 0 andn = 1, as required.

3.3 Cylindrical elasticity in the general context

The results of sectioB.2, particularly 8.3) and (3.4), show that the cylindrically anisotropic system
of azimuthal orden is a special case of the formulation of sectgenerally withm = 3, and
{y,U,V, Q} — {r,U,ir Y, ir ~1G}. The physical restrictions required for the hermiticity condition
(2.2) are real-valued, k, andmaterial constants (more precisely, Hermitian elastic maziyli=

Cha suffice (11)). Under these conditions, thex@® matrixG(r) displays the symmetry

G=TG'T. (3.5)

The6x6 matricantM(r, ro) is the solution of the initial value problem

i d
(: G(r) — dr) M(r,rg) =0, M(ro,r0) =l@), I, ro#0. (3.6)

Thecondition thatr andrg arestrictly positive is important since the case of zero radial coordinate
needs to be handled separately, which is discussed at length below. Note that we do not specify
whetherr orrg is the greater or lesser of the two radii. The matricant allows us to express the state
vectorn(r) of partial modes in a cylinder as

n(r) = M(r,ro)n(ro), r,ro#0. (3.7)

Thepointwise elastodynamic energy balancd§ydt +divP = 0, wheref is the energy density
per unit volume andP is the energy flux vector. The pertinent form of (2.8)r cylindrical elasticity
is divP = r=1d(r P)/dr = 0, whereP; = (P); - & is the time-averaged radial component for
azimuthal mode,

Pr(r) = = 1" ) Tn(0), (3.8)

which together with the system equation (3.3) implies the symmatB) for G (see (12)).

The conditional impedance matrixrelates traction and displacement at a particular value of
but specificallyr # 0, according to (2.6). The poimt = O requires a separate discussion, and
indeed a newly defined impedance, introduced in the next section. For the moment, we note that
z(r) is contingent upon the definition of the (one-point) impedance at some radial coordinate, say
z(ro) = 2p. The traction at other values pbfis then unambiguously related to the local displacement
by either the matricant or the two-point impedance matrices, ugr®) or @.17). By rewriting
(3.8), we see that the conditional impedance determines the pointwise flux,

P(r)= —%S{U‘L(r)z(r)U(r)}, (3.9)

which is zero for allU(r) only if z is Hermitian. This in turn is the case onlyiirg) = zp is
Hermitian,that is, if there is no flux across the surface: ro. On the other hand, thex® two-point
impedance matrix(ro, r1) of (2.12) defines the global energy flow into or out of the finite region
between the two radial coordinates < r». Let E(t) be the total energy in the shell cross-section
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per unit length of the cylinder for azimuthal moddts increment over one period of time-harmonic

motion is
2z r 2 [ (VD" U(ry)
AE = _2”; (P =—-22"3 { (U(r2)> Z(ra,r1) (U(rz)) } (3.10)

which is identically zero for reab, k; andHermitian parameters, that is, wh&nis Hermitian. If
the material in the slab is lossy, th&GZ — ZT) shouldbe positive definite in order thd is not
increasing with time.

The differential Riccati equation satisfied byollows from (2.10) as:

r % +zgV + gtz 4 29?2 4 ¥ = 0. (3.11)
Theinitial value problem forz(r) is therefore
r%?-p+(§+mﬂmﬂ64p+ﬁ+wﬂﬂ+eayza r>0, z(o) =2, (3.12)
where
B(r) =T +ikst (S" —S)+r2(k2M — pa?l) = B*(r). (3.13)

Equation(3.12) shows the explicit dependence upgrk, andthe elastic moduli. The exclusion of
the distinguished point = 0 at the cylinder centre is addressed next.

4. Wave impedance matrices for cylinders

In this section, we describe typical uses of impedance matrices, and in the process introduce the
solid-cylinder impedancg(r) and the radiation impedan@g.q4(r ). We consider the three distinct
configurations depicted schematically in Fig.

4.1 Solid-cylinder impedance matrix(r)

A solid cylinder, by definition, is one that includes the axis- 0. A new impedance matrix is in-
troduced to handle this situation. The solid-cylinder impedat(c¢ is defined in the usual manner
by its property of relating the traction and displacement 3-vector8.8j,(

V(r)=—iZ(r)u(), r >0, (4.1)

although this is not a conditional impedance matrix because of the absence of an auxiliary impedance
condition at some other coordinate. Instead, the solidity of the cylindeea0 dictates the char-

acter ofZ(r) (and one could argue that it is ‘conditional’ in that sense). The limiting value of the
solid impedance at = 0 plays a crucial role, and we accordingly define the central-impedance
matrix:

Zo = Z(0). 4.2)

Theproperties of the central impedance are discussed in detail in séctftar we develop methods
for finding the solid-cylinder impedance matrix in sect&n
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T2

/T2

Fig. 1 Three types of cylindrical structures definedrgy< r < ro: the annulug0 < rq < ry < 00), the solid
(r1 = 0) and the exterior regiofr, = 0o)

As an example application, consider the task of finding the dispersion equation for guided waves
of frequencyw and wavenumbek,. We suppose, quite generally, an interface condition on the level
surfacer = ry of the form

V(r2) = —izoU(r2), (4.3)

wherez, is considered as given. It could be zero (traction-free condition), infinite (rigid bound-
ary), or it could be defined by some surrounding material, whether finite or infinite in extent. For
instance, if the solid cylinder is surrounded by a shell of cylindrically anisotropic material in lubri-
cated contactat=rp andfree at =r3 > rp, thenz; = z11(r2)& e,T wherez(r») is the conditional
impedance with the auxiliary conditianrz) = 0. Assuming 4.3) describes the condition at the
outer surface, the desired dispersion equation is:

det(Z(r2) — z2) =0. (4.4)

It is instructive to compare (4.4) with the dispersion equation for a (possibly functionally graded)
layery e [0, y2] with the traction-free surfacg = 0 on a homogeneous substrgte- y, which
may be written in the form (26)

det(z(y2) — Z2) =0,

whereZ; is a (constant) impedance of the substrate &iyg) is the conditional impedance of the
layer satisfying the reference conditia0) = 0. If the surrounding material beyond a rigid (say)
interfacer = r» is infinite, then there are Stoneley-like waves defined by the dispersion equation
(4.3) withzy = Za4(r2), whereZa4(r) is the radiation impedance discussed in secfion

The solid-cylinder impedance also provides a means to compute the modal displacement vector
U(r) for all 0 < r < rpif the dispersion equation (4.4) is satisfied. By analogy with the case of an
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annulus (21), the unnormalized displacement follows fr8B8) and the definition oZ(r) in (4.1)
as the solution of the initial value problem

du -~ ~
rd—r+Q‘1(R+ikzP+z)U(r)=o, 0<r <ry  U(rp) = U, (4.5)

whereUg is the null vector of the surface impedance conditiGf(r2) — z2)Ug = 0. Note that
the solution of 4.5) remains well behaved even as the matricant solution = (M1(r,r2) —
iMa(r, r2)Z(r2))U(r2) is numerically unstable(see sectibr.2).

4.2 Impedance matrices for cylinders of infinite radius

Consider a cylinder extending to infinity in the radial direction, with inner surface-at, (Fig. 1).
A wave incident front > rq resultsin a total field that can be expanded in terms of partial waves
of the form @.2). The amplitude of theth azimuthal mode is:

U(r) = Uine(r) + Uscafr), r >r1, (4.6)

wherethe scattered amplitudés a(r ) satisfiesa radiation condition at — oco. Thisin turn requires
that the following condition prevails on the interface:

Vscall') = —1Zrad(r )Uscafr), I =Tr1, 4.7)

wherethe radiation impedance matfB,q4(r) is defined by the radiation conditions (see secfipn
The scattered field is then uniquely determined by the condition=at 1, which we assume is of
the generalized form (4.3) with prescribed interface impedancehen,

—Zinc(r1)Vinc(r1) — Zrad(r1)Uscalr1) = _Zl(Uinc(rl) + Uscat(rl)),

whereZinc(r) is the impedance of the incident wave, which follows directly from the equations of
motion. The scattered amplitude on the interface is therefore

Uscalr1) = (Z1 — Zrad(r1)) (21 — Zinc(r1)) Uinc(r1), (4.8)

which provides the initial condition to determine the entire scattered fieldir 1. Further details
on the radiation impedance matrix are provided in sectidncluding its asymptotic properties for
larger.

4.3 An annulus of finite thickness

The case of the annulus @ r1 < r < rp fits readily into the general theory. Again consider the
task of finding the dispersion equation for guided waves, which may be found by simultaneous
satisfaction of the conditions on the two radial surfaces. Suppose the conditions are both of the
generalized formV/(rj) = —izjU(rj) (j = 1,2) wherezj (j = 1,2) areknown quantities. The
conditional impedance(r) is determined (numerically) by integrating.6) from (sayy = ry with

initial conditionz(r1) = z; to give

z(r) =i (M3(r, r1) — iMa(r, r1)z1)(M1(r, r1) — iMa(r, r1)z1) ™2 (4.9)

Theinterface condition at = r, requiresthat—z,U(r2) = —z(r2)U(r2), which implies the disper-
sion equation:

detf (M3(r2, r1) —iMa(r2, r1)z1)(M1(r2, r1) — iMa(r2, r1)z1) 1 — 25} = 0. (4.10)
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Variants on this equation may be obtained using the two-point impedance instead of the matricant.
Thus, from g.16) we have the equivalent condition

detizo + Za(ra, r1) + Z3(r2, 1) (21 — Z1(r2, 11)) *Z2(r2, r1)} = 0.

The examples considered in this section illustrate the usefulness of wave impedance matrices
for cylinders of finite and infinite radial extent. Solutions to problems of practical concern can be
formulated concisely in terms of impedance matrices, such as the dispersion equation for guided
waves and the scattering of waves from a cylindrical region. Calculation of the impedance matrices
is relatively straightforward using the matricant or two-point impedance matrd@skut only as
long as the points = 0 orr = co are not involved; otherwise the solid-cylinder impedance and/or
radiation impedance matrices are required. Determination of the solid-cylinder impedance matrix
Z(r) is discussed next.

5. The solid-cylinder impedance matrix

In this section, we develop methods to calculate the solid-cylinder impedance matrix for a radially
inhomogeneous cylindrically anisotropic cylinder with material at 0. Two principal approaches
are considered: a semi-explicit solution as a Frobenius series, and an implicit solution in terms of a
differential Riccati equation.

Unlike the conditional impedance that can be determined directly from the mathitahbng
with the prescribed reference value, the matricant is not of direct use here because of its divergence
atr = 0. This introduces the need to identify ‘physical’ and ‘non-physical’ constituents of the solu-
tion near = 0, which is performed explicitly for the Frobenius solution. In the Riccati approach,
the displacement and traction fields are not considered explicitly and the divergence @tis
taken care of by the initial value of the impedance.

5.1 Frobenius expansion

We take advantage of the fact that the fundamental solution can formally be written in terms of
a Frobenius series, which is an explicit one-point solution valid atrafigcludingr = 0). As a

result, the Frobenius series approach provides a constructive definign)ofThe Frobenius series
solution can be obtained via a recursive procedure with the number of numerically required terms
increasing withr. Before we present the formal solution fé(r), we review and develop some
properties of the Frobenius series for cylindrically anisotropic materials, following the analysis of
Shuvalov g0).

5.1.1 Background material The Frobenius solution is based on the integral matrix solution
N(y) = (g1, ..., ne) of (3.3), which can always be defined through the Frobenius series for any
r > 0. The pivotal role in constructing this series belongs to the eigenspectrum oftitenatrix

0o(0) with the symmetry

which follows from (3.5). Denote the eigenvalues and eigenvectorgo@®) by 1, andyo, =
(@, 1)T (@ = 1,...,6), and introduce the matrikg = (yo1, ..., ¥ 06). Barring extraordinary
exceptions, ifn > 1 then (i) no two eigenvalueg, of go(0) differ by an integer, and (ii) all,,
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normally are distinct (and non-zero). Let us first consider theicaséd,, otherwise see secti@nl.2.
By virtue of (i), the integral matrix may be written as:

N()=D(@)IoC, Dr)=I+> Dmr™, (5.2)

m=1

whereC is the Jordan form of the matrix%(©, which is diagonal when (i) holds, an@(r) is
defined recursively througB(r) (20, equations (9)—(13)).

The arguments underlyin@ ) imply that the matrixA/* (r)TA/(r) is a constant independent
of r, and according t03.8) this matrix defines the flux properties of the constitugnis. ., ne,
of N(r). For the present purposes, we wish to split them into a pair of triplets: a physical set
(e = 1,2,3) and a non-physical tripleia = 4,5, 6), where the only non-zero flux interactions
occur betweem anda + 3 (a« = 1,2, 3), thus ensuring the crucial property th&t™ (r)TAN(r)
hasnon-zero elements confined to the main diagonal of the off-diagonal blocks. The partitioning is
accomplished through appropriate arrangement of the eigenspectga®@pas(20, equation (44))

dg=—2rz Wi >0, a=123 (5.3)

Combining (5.1) andH.3) and adopting the normalizatiqwrﬁ{aTy 0z+3 = 1yields the orthogonal-
ity/completeness relation for the eigenvectors in the form

Tl =T. (5.4)
It follows from (5.1)—(5.4) thal/* (0)TA (0) = T andhence the flux matrix atis T,
NTOTNE) =T (= NOTNT ) =T). (5.5)

Notethat (5.4) yieldD*TD =T.
In order to further clarify the structure &f we represent the 6&matricesD, I'p andC in terms
of 3 x 3 submatrices,

D1 D AL A diag (r*« 0
o= (P P2\ poo (A A2} o (dmal) 0 g
D3 Dy L1 L» 0 diag —*«)

wherea = 1,2, 3 andC is diagonal fom > 1. Consequently) has block structure

01 02 D1 D» Aldiag(riat) Aodiag( _;”;)
N =1~ ~ | = . 1 . e |- (5.7)
Vi Vo D3 Dg4 Lidiagf*«) Lodiagf *«)

Notein particular that the integral matri%’(r) consists of two distinct 83 matrices,

Us(r) o
~ = (91,12, n3) = D(y 01, Y 02, y 03)diag ),
Vi(r)

(5.8)

*

OZ(r) . )
~ = (14, M5, ne) = D(y 04, ¥ 05, ¥ 0e)diag ~"«),
Vo(r)
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theformer with the columng, (r) tendingto zero ag — 0, and the latter with colummg,  5(r)
diverging ag — 0. The block structure of(4) and §.5) is
(0 1 (5.9
~\r o) '

e AP LT\ (L1 Lo
0t 0= \ar 1) A A
2 2 1 2

N N

NHOTN ) = (91 Yl> (Yl Yz> _ (O ') . (5.10)

Uy vJ/)\u1 U I 0

The latter explicitly shows that the normal energy flux of the displacement-traction wave (i¢ld
comprising an arbitrary superposition of either the three mggés) or three modeg,+3(r) with
a = 1,2,3is zero at any . This specific arrangement & may be interpreted as the general-
ization of the isotropic case with solutions cast in terms of the cylinder functigrend —i Y,
correspondingo the physical and non-physical triplets, respectively, each of which yields zero
flux individually. This partitioning will be crucial in developing an explicit solution for the solid
impedance matrix.

5.1.2 Overview of the cases = 0 and n = 1 Let us return to the two assumptions made
above which are that (i) no two eigenvalugs of go(0) differ by an integer and (ii) alk, are
distinct, hencego(0) is semisimple (diagonalizable). Violating (i) invalidates the relatively simple
form (5.2) of the Frobenius fundamental solution to the governing equati®n Yiolation of (ii),

or more precisely, the occurrence of degenergtehat makesgo(0) non-semisimplealters the
orthogonality/completeness relations and the compositiok given above fom > 1. The cases
affected aren = 0 (axisymmetric modes) amd= 1 (lowest-order flexural modes): specifically, the
property (i) does not hold fan = 0, and the property (ii) does not hold for bath= 0 andn = 1.
From a physical point of view, the cases= 0 andn = 1 stand out because they are related to
the rigid-body motions producing zero stress28, equation (19)). Note also thgd(0) admitsa
zero eigenvalue ifi = 0, 1 (20, equation (3@) and thati(®1 = 0 is always a double eigenvalue
renderinwéo’l)(O) non-semisimple.

Considerthe axisymmetric case = 0. The six eigenvalueg® of ggo)(O) areA9 = {0,0,+£1,
+x}, wherex = 1 for trigonal or tetragonal symmetry withg = 0 (24, equations (3.12), (3.13)). It
is seen that, whatever the symmetry, the sélg@fincludespairs different by an integer. As a result,
the integral matrixA/(r) is now defined througggo)(O) in a rather intricate form elucidated in (20,
equations (A2), (A.4)). This observation is essential for treating inhomogeneous and low-symmetry
homogeneous cylinders. At the same time, if the cylinder is homogeneous and has orthorhombic or
higher symmetry with the exception of trigonal and tetragonal with= 0, thenA\/ (r) decouples
into the solutions described by Bessel functions and/or by a simple Frobenius form (5.2).

Considetthe casen = 1. The matrixggl)(O) hasa doubly degenerate eigenvalifé) = 0 which

makesggl) non-semisimplé20, equation (36)). This does not preclude taldW( ) in the form 6.2)

1 Orthorhombicor higher symmetry enables uncoupling of the pair of torsional modes described by the Bessel solutions
stemming fromi(® = +1. The four sagittal modes are associated Wifh = {0, 0, £}, wherex # 1 for symmetry lower

than the trigonal or tetragonal withg = 0. Whenk = 1, so that the above quartet o involves pairs with an integer
difference, the sagittal problem admits explicit Bessel solutions for the isotropic or transverse isotropic symmetry due to
uncoupling of potentials. Note that double eigenvalif®s = +1 atx = 1 do not bring non-diagonal blocks into the Jordan

form of g(()o)(O).
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but the matrixC is now not diagonal. As a result, the triptet= 1, 2, 3 of physical modes (with one

of the modeg;(V associateavith () = 0) retains its form §.8);, whereas the non-physical triplet

a = 4,5,6 is no longer of the formJ.8), dueto one of its modes involving both eigenvectors, the
proper and the generalized oned) andy Y, associated witti ") = 0 (20, equations (51), (61)). It

is thus evident that the physical modes satisfy the same orthogonality/completeness relations as for
n > 1; moreover, subject to the optional conditipf+ Ty D = 0, the non-physical modes may

be shown to do so as well. The relatioBs4) and (5.5) for the case= 1 are accordingly modified

into a slightly different form,

I{Tro=E, NTOTN(I)=E (n=1), (5.11)

which differs from (5.4) and§.5) only in the replacement of the right-hand maffiby E, whose
non-zero elements are also confined to the main diagonal of the off-diagonal blocks but they cannot
now be all normalized to 1 (20, equation (49)).

The overall conclusion is that both cases= 0 andn = 1 preserve the partitioning of the six
linear independent Frobenius solutiopsr) = (Ug, V)" within A'(r) (& = 1,..., 6) into the
physical and non-physical triplets = 1,2,3 anda = 4,5, 6. The partitioning is based 05.3)
supplemented by including the (double) eigenvallfel) = 0. The vectorsU, (r) andV,(r) are
certainlyregular ag — 0 for bothn = 0 andn = 1, although the limiting trend fon = 0 is not
of the form that results fromb(2), see 20, equation (A4)). Equation$ 8)—(5.10), which are valid
for anyn > 0, enable treating the solid-cylinder impedaige) for n = 1 on the same grounds as
for the ‘ordinary’ casen > 1. The impedanc&(r) for n = 0 needs special attention because the
casen = 0 may not satisfy.2). We are now ready to derive the explicit form of the solid-cylinder
impedance for alh.

5.2 Explicit solution of the solid-cylinder impedance

5.2.1 The solid-cylinder impedance for arbitrary nThe definition (4.1) of the solid-cylinder
impedanceZ(r) tacitly assumedJ(r) andV(r) are regular function of. This is always so for

n(r) = (U, V)T comprisingan arbitrary superposition of, specifically, the physical Frobenius
modesy, (r) = (U,, V)T, which satisfy 6.3) supplemented by the optidgf>)) = 0forn =0, 1

(see sectiorb.1.2). Thus, the solid-cylinder impedance may be defined by any of the equivalent
expressions:

Vo) = —iZ(NUu(r) (e =1,2,3) & V() =—izZ(nNU(r) o Z(r)=iVir)Uir).
(5.12)

This yields a finite value if delﬁl(r) # 0, otherwise the impedance is associated with a ‘rigid’
condition atr (conversely, the determinant of its inverse—the admittance matrix—is zero). The
occurrence of infinities is in no way anomalous but rather a natural consequence of the definition of
the impedance matrix.

Consider firsth > 0. Based on the definitiorb(12) and the representation (5.8pr the 3x 3
matricesU; andV1, we obtain an alternative form for the solid-cylinder impedance,

Z(r) =i(Da(r) —iDa(r)Zo) (D1(r) — iDz(I’)Zo)_l wherezZo =LA (5.13)
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hermiticity of the solid-cylinder impedance follows fron.00) and $.11), which imply that
UfVi+ ViU = —iUf (Z = Z*) Uy = 0,whence

Z(r) =2t (). (5.14)

Theexpression (5.13) is reminiscent of the representation of the conditional impedance, for exam-
ple, (4.9), except that the role of the two-point matrickr, ro) is replaced byD(r). Note that
detA1 # 0 may be deduced from the integral representatiabpbee 6.17), by reasoning similar
to that in @): if two of the eigenvectors are parallel, sayanday, then so are the traction vectors
l, = —iZpa, contraryto the assumed linear independence oindy ».

Now considem = 0. Violation of (5.2) forA"©(r) invalidates the definitions(13) for the cen-
tral impedancezgo). At the same timeZéO) canreadily be found by means of a direct derivation
given in sectior6.4.2, specifically (6.28), which is clearly Hermitian regardless of anisotropy. Con-
sequentlyZ @ (r) is Hermitian for anyr due to the self-adjoint property of the differential Riccati
equation of whictZ @ (r) is the unique physical solution (see sectfB).

5.2.2 The link between the solid-cylinder and the conditional impedancésis evident from
the previous discussion thZ{r) can formally be defined as the conditional impedangé with
initial value atrg — 0. Assume for brevity thah > 1, then using the representatibiy, yo) =
N (Y)N ~1(yp) for the matricant and (5.5)5(7), we have

M(r.To) — Uiy U2 (VECo) 0o\ _ (U1)VE(o) Uar)U3 (ro)
%S0 \Vir) Va) 0 0 ) T \Vi)Wico Vin)0i(ro) ro—>0.

Thisillustrates that even though the matrictr, ro) diverges asg — 0, as expected, it provides
the correct limit

20) = (M3 —iM4z(0) M1~ IM22(0) ™! = Va0 1) =Z(r). (5.15)

Formal consistency requires the limiting valuezgfg) asro — 0 be set equal t@y. However, the
definition (5.15) ofZ(r) is actually of no value for practical calculations because of the divergence
of M(r, rg) asro — O.

At the same time, in the limit as — 0, the conditional impedancar) with any initial value
z(ro), such thaz(ro) — Z(ro)| > 0, should tend to the non-physical central impedafigg(0) =
iL2AS Y Similarly to (5.2.2),

Mirre) - (° 920 Vit U300\ _ (D20)Vio)  Oa()0f (ro)

C 00 Vo)), o \Viro) Ui (ro) Vor)Vi(ro) Va(Ui(ro)),
Hencefrom (4.9),

2(r) =1 (M3 = 1M4z(0)(M1 —M2z(0) " — ilV2") U7 ("lis0 =iL2A7%.  (5.16)

If z(ro) is precisely the solid impedancerat then (5.16) reproduceshe solid impedance,(r) =
Z(r) forr > 0. But the limit atr = 0, formally Z(0) = Zg, cannot be achieved in practice, a
reflection of the fact that the matricant-based solut@iT) in cylindrical coordinates is uniquely
ill-posed at this point (see also sectiod).
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5.3 Riccati equation solution

An alternative to the Frobenius approach is to consfde) as a solution of the differential Riccati
equation with initial valueZg extended to the case when the initial value occurs at 0. The
solid-cylinder impedance is then the solution of the initial value problem,

dz ~ ~ =~
rop =2+ Rikr P)"IQ7YZ+R+iksP] =B(r), r>0; Z(0)=2Zo, (5.17)
whereB(r) is defined in 8.13). The central-impedance matdy, as discussed in secti@n2, is de-
fined by the eigenvectors gh(0), see b.13). Alternatively, noting that a non-physical singularity
is introduced unless the right-hand side 5f1(7) vanishes at = 0, we conclude that the central
impedance must satisfy the algebraic Riccati equation

(Zo+R$Qp (Zo + Ro) — To = 0. (5.18)

While it is expected that the solutiori(r) is well behaved in some finite neighbourhood of
r = 0, the Riccati solution will inevitably develop singularities. These are associated with guided
waves of a cylinder of radius with clamped surface (zero displacement condition). For given
andkz, the singularities occur at values pfsuch that de@l(r) = 0 (see b.12)). Thus, one can
integrate the differential Riccati equation only as far as the first singularity at (sayy.. The
problem is evident from the example of the out-of-plane impedance deriveddp,(Z,(r, 0) =
—Caakaor J;(kar )/ In(kor), which blows up wherkor is a zero of the Bessel functiady. The effect
of singularities may be circumvented in practice by integrating the Riccati equation to some finite
r short of the first singularity and then to switch to some other solution method that is regular
in the vicinity ofr = r,. One approach3) is to consider the admittance (inverse of impedance)
Y(r) = Z71(r) which will be well behaved at = r,. Its differential Riccati equation, which
is easily found from %.17), can therefore be integrated without incident through the singularity
atr = r,, but the admittance then has its own singularities at positions different from those of
the impedance, so in general this approach requires switching back and forth between two Riccati
equations. While certainly feasible, the procedure is complicated by the fact that one does not know
the singularitiesa priori. Note that the admittance Riccati equation is not suitable for starting at
r = 0 because as discussed in the next sectiodglet 0 and henceéry = Y(0) is undefined for
n=20,1.

A more practical approach to deal with the unavoidable singularity problem is to use the Riccati
solution to generate initial conditions for the fulb66 system at = r1 < r,, with which one can
integrate (again numerically) to arbitrary> r1 using(4.9). In practice, one only needs to solve for
a 6 x 3 matrixQ(r), satisfying

d i I
d—ra(r) = FG(r)Q(r), r>ry; Q@) = <—iZ(r1)> . (5.19)

AlthoughQ(r) doesnot describe the complete wave field it is sufficient to determine the impedance,
since

Q I
Q(r):(gl):M(r,rl) (_iz(m> = Z(r) =M (), (5.20)

forr > rq1. The value ofr at which one switches from the differential Riccati equation to the
matricant-based solution is a free parameter, and arbitrary as long as it is below the first singularity
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in the impedance. This can be estimated from the separable solutions in Seationw?s3,, —
kg)l/2 ~ 1, wheresmax is the largest plane wave slowness at 0.

5.4 Discussion

We have described two principal ways for finding the solid-cylinder impeda(e The Frobenius
series method is summarized ;:112) and §.13). Taken together, these equations provide a basis for
calculating the solid-cylinder impedance for- 0 and arbitrary via the Frobenius series solution.
The Riccati equation method determir&s ) for arbitraryn by integrating the differential Riccati
equation (5.17) subject to an initial condition defined by the central impedasncéhe Riccati
approach is strictly valid only for less than the first singularity of the solid-cylinder impedance.
The initial valueZg canbe evaluated from513) or by other methods discussed in sectérior

n = 0, the form ofz{” is explicit ((6.28) below) and ©)(r) maybe determined by, for instance,
integration of the Riccati equation discussed in seddi@ The physical solution to the initial value
Riccati equation can be continued through and beyond the first and subsequent singularities by
using the matricant solution to generaé ) as a conditional impedance. Strictly speaking, the
practical value of the Riccati method is confined to the neighbourhood=of0. The differential

Riccati equation provides a regularization of the system of equat®$, (vhich are singular at

r = 0. Once this singularity has been taken care of, there is no need to use the Riccati equation,
particularly since the Riccati equation has its own singularities—in fact an infinite number of them.
Note that satisfaction of the algebraic Riccati equatii§) is essential to ensure regularization

of the initial value problem.17) atr = 0. The differential Riccati equation cannot generally
recover the central impedan&g by ‘backward’ integration t& = 0 from some initialrg > 0
becausdhe system possesses the same ill-posed property observed with resget6}pif this

case associated with the fact that the non-physical central impedap@ (= i LZAE1 forn > 1)
alsosolves 6.18).

Both the Frobenius and Riccati methods generate a Hermitian solid-cylinder impedance. Her-
miticity of Z(r) is a consequence of the fact that it is built from the triplet of physical modes
that produce zero normal fluxes both of their own and due to their cross-coupling. Note that the
non-physical impedancgnp(r) = i\72051 is Hermitian as well, which is similar to the case of a
half-space; however, the physical and non-physical impedances of a cylinder are generally no longer
negative transpose of each other as they are for a half spaca. ¥ot, the two impedances are
related by

Z(r) — Znp(r) =1 (U102, (5.21)

with normalizedUl, Ug on the right-hand side, as follows from (5;5nd(5.10). The Hermitian
nature ofZ(r), r > 0 can also be viewed as a consequence of the fact that it solves the Riccati
equation 5.17) with an Hermitian initial valueZg. It is also noteworthy that neither the definition
(5.12) ofZ(r) nor its Hermitian property requires any specific normalization of the eigenvecjors

of go(0) oncethey have been ordered into physical and non-physical triplets.

While the solid-cylinder impedance is quite distinct in nature, itis in a certain sense, a conditional
‘one-point’ impedance, for it depends on the initial conditiom at 0. However, there is another,
more essential aspect, which actually s&ts) apart from the two-point impedan@er, rp) andthe
general conditional impedanadr). It is thatZ(r, ro) andz(r) involve all six linear independent
partial solutions, wheread(r) involves only half of them and discards the other half on the basis
of certain partitioning at = 0 (physical/non-physical). As a result, the hermiticity Zf, ro)
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andz(r) and that ofZ(r) have different origins. Hermiticity of botH&(r, ro) andz(r) (the latter
subject to hermiticity of the initial condition) follows from dt= 0 while hermiticity ofZ(r) is a
consequence d? = 0.

6. Properties of the central-impedance matrix Z

The central-impedance matrix depends only on the elastic moduli fqaehd is simpler than the
solid-cylinder impedance, its continuation away from= 0. At the same time, the value of the
central impedance is requiredpriori in order to calculat&(r) using the Riccati equatiorb(17).

In this section, we describe some propertieZ gf develop procedures for its determination, and
consider its behaviour for large

6.1 Integral formulaforZgwithn > 1

6.1.1 The Lothe—Barnett integral method using the matrix sign functi®he surface impedance
matrixZ(v), whereo is the velocity, plays a central part in the theory of surface waves in an elastic
homogeneous half space. It was first identified in that context by Ingebrigtsen and To28jng (
and subsequently developed as a crucial ingredient for proving the uniqueness and the existence
conditions for surface waves (2), see alsod9,27). The central-impedance matiy of a cylinder
has a close relationship to the staticf00) surface impedance matrix. The similarity allows us to
use some of the considerable array of results for the latter. Here we draw directly on the integral
formalism for the surface impedance of a half space first outlined by Barnett and B6tl34), and
later presented in full (129). We show how this formalism can be modified to describe the cylinder
central impedancgg for n > 1, and we discuss the exceptional cases; 0, 1.

Assumen > 1, so that the eigenspectrum gf(0) lies on either side of the imaginary axis in
accordance with (5.3). The restrictionria> 1 will be clarified below. The matrix sign function is
then uniquely defined

signgo(0) = go(0) (g3(0))~ 2, (6.1)

wherethe principal branch of the square-root function with branch cut on the negative real axis is
understoodz = (z%)1/2 signz with signz = +1(—1) if %z > 0(< 0). As a result, the sign matrix
satisfies

(signgo(0))y o = £y, for X1, = 0. (6.2)

The matrix sign function was first introduced by Rober82) as a means of solving algebraic
Riccati equations and has become a standard matrix fun@&84); the simple relationg(1) was

first noted by Higham35). Using the spectral decomposition defined by the matrix of eigenvectors
I’ yields

go(0)=l"0Aol"a1 = signgo(O)=l‘0(signAo)1“al with

B diag(/,) 0 i (! O
Ao_< 0 diag(—i;)) = S|gnAo_<0 _|>. (6.3)

The explicit structure of the sign matrix follows from the normalization conditi@d)(and the
submatrices defined in (54)
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i ) n S iH )
signgo(0) = Lo(signAg) TT T = 5 _st with

S=2A1L -1 =1-2ALT, H=-2A1A} =H", B=-2iL1L =B". (6.4
Additional relations are obtained from the involutory property of the sign matrix function,
(signgo(0)>’=1¢ = S —HB =1, SH= (SH)", BS= (BS)*. (6.5)

The connection with Barnett and Lothe’s theory is established via the integral expression for the
matrix sign function 82, 34)

2 o0
signgo(0) = ~6o(0) [~ dt (1 + GB0)) 66)

A simple change of integration variable and separation into partial fractions yieldgo$ijrasan
averaged matrix,

. 1 (7
signgo(0) = — /0 dp oy = (9, (6.7)

whereg(¢’) = (cosp | — i sing go(0))~1(coss go(0) — i sing 1). The latter can be simplified by
o S¢ ¢ S ¢

noting

90(0) = (Ao — Bo) "“J(Ao + Bo), (6.8)
with
=i % ! Ao — Bo = Qo A+B—_fo (6.9)
o\ o) TOTEOT LR o) O T LR ) '
Therefore,
0¥ = (Ao — §299Bg)"13(Ag + €279By), (6.10)
anddefining, by analogy with (6.9),
o 0, 0 s T4 O
Ao — 2Py = 8¢ . Ag+€2By=| ¢ , (6.11)
—iR} | —iRy |

thenthe matrixgg/’) canbe expressed in exactly the same structural forgpé3) in terms of 3x 3

matrices, as

A-15 ‘A-1
o) = ( % 5¢1~ 9 1), (6.12)
i (T¢ — R;Q; R¢) R;ﬁQ;
wherethe z -periodic submatrices are:
Qs =QJ =cof¢Q+siP¢T +isingcosp(R—RT) =Tyir2,
Ty=T) =cod¢T +si$Q —isingcosp(R — RY) = Qpyn/2. (6.13)

Ry = cos ¢ R+ si’ g R* +ising cosp(Q - T) =R, .
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The submatrices defined in (6.4) therefore have alternative integral expressionsgfigrand
(6.13),

S=—(Qy'Ry), H=—(Q;) ., B= (T —RJQ;'Ry).

Crucially, 6¢ is positive definite fom > 1. In order to see this, first note the obvious positive
definitenes®)y > 0, if sing = 0. For sinp # 0, we have

Qg = —SiP pA(—i cotg) where A(1) = 12Qo+ A(Ro — RY) — To, (6.14)

which is positive definite because det(l) = 0 does not admit pure imaginary roots o120,
section 3.2.1). By the above arguments, the matiit@sdB are negative and positive definite, re-
spectively. Consequentlid andB are invertible, and so the identit§.6), impliesthat the matrices

| — $? andhencel — S™2 arealso invertible. Note that the positive definitenes®afonfirms that
detB # 0 forn > 1, which is when there is no stress-free modes. The case$, 1 are discussed
in section6.2.

6.1.2 The impedance matric& andZo,p, We are now in a position to express the impedance
matrices in terms of the integrals. As before, wewet 1,2,3 anda = 4,5, 6 for the physical
and non-physical triplets, respectively. Inserting= —iZpA1 andLy = —iZgnpA2 in (5.6 and
usingthe same argument as ih)(to maintain that dek; » # 0 implies

| | A1 O
To=| . _ , (6.15)
—iZ —IZOnp 0 Ao

which, together with (6.3) ands(4), yields the matrix identity

S iH | | (] — 6.16
iB —St)\-iZo —iZonp) \—=iZo iZonp)" (6.16)

Thefirst line yields explicit expressions for the impedanzgsandZonp,

Zo=H1t—H'S, Zgp=-H1-HIS, (6.17)
andthe second line gives the equivalent expressions
Zo=—(+SH 'B=-B(+5S)71, Zonp= (1 —S"HB=B(1-9)% (6.18)
Hence Zg andZgnp areHermitian by virtue of 6.17) and 6.5),
Zo=2§, Zonp= zgnp. (6.19)
Using(6.17) and §.4) implies
Zo—Zonp=2H"1 =i (A1A}) " = —i (A2AF) (6.20)
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respectively, the non-physical and physical half-space impeda@gen (1); however, the two ad-
dends in the right members d@.(L7) are generally not the real and imaginary parts of the impedance


http://qjmam.oxfordjournals.org

22 of 35 A. N. NORRIS AND A. L. SHUVALOV

asis the case in the expressions bj.(Consequently, the non-physical central impedance is not mi-
nus transpose of the physical one, unlike the half-space impedance d(gre- —le(o) Q).
Another noteworthy difference is that the expressions simila61b8) are not unreservedly valid
for the dynamical(v) because the analogue®fas zero determinant at the Rayleigh speed.

The above results can in the main be obtained by following the alternative method of deriving the
Lothe—Barnett integral formalism that was proposed Mielke andBBu (

6.2 Remarksonn=0andn=1

Let us now discuss the implication of the special carsesO0, 1 in the present context. Occurrence of
a non-semisimplep(0) dueto a pair of degenerate eigenvalué$) = 0, which are split between
physical and non-physical triplets, makes the cases), 1 tantamount to the limiting state= v of
the elastodynamic problem for a half spaceX,29) (more specifically, to the so-called exceptional
limiting state in view of the zero-traction mode correspondingt! = 0). The Lothe—Barnett
integral formalism on the whole is well definedvak ». Any difficulties occurring ab = v are due

to the non-integrable dlvergence acquired at v by the angularly varying Stroh matrN(u ?),
which is a counterpart qjo . A similar exceptlon arises W|tgo¢) forn = 0,1 due toQ . The

argument underlying positive deﬁmtenessQ}J for n > 1 no longer applies for the casas= 0
1, which admit rigid-body motion. This can be ascribed to the fact that@ét = in(n® — 1) =
sothat detA(2) = 0 has the roo£ ) = 0, whereA (%) is given by (6.14). ThusQ, for n = 0
1is positive semi-definite, with dQ¢ = O at cosp = 0. That is why the cylinder’s version of the
integral formalism cannot generally be extended to the cases0, 1. The exception when this
is yet possible is the case= 0 for a cylindrically monoclinic material with the symmetry plane
orthogonal to the-axis. This case simplifies due to the simultaneous occurrenegaxthe null
vector ofx© andof the uncoupling of thez components. Hence, the upper 2 klocks of the
integral-formalism relations remain valid. Such a state of affairs also has a direct analogy with the
theory of surface impedance in a half space, namely, with the case of a symmetrical sagittal plane,
which is when the in-plane modes are unaffected by the limiting stafeof the uncoupled shear-
horizontal mode (3738). A careful remark is in order regarding (6.18). lroe 0, the rigid-body
displacement corresponding” = 1 and parallel tay is the null vector oB and the eigenvector
of S with the eigenvalugi®)) = 1. Hence, the uppers2 blocks ofB, | —Sand| — St are
singular whereas those df+ Sandl 4+ St arenot. Thus 6.18) is not valid folZ gnp, even for the
monoclinicn = 0 case.

Finally, it needs to be added that analysis of the half-space integral formalism-aso (1,
29, 27, 39) shows that although the formalism diverges on the whole in this limit, the integral
expressions for the surface impeda@¢e) remain well defined at = v. This asymptotic property
of Z(v) is not however directly relevant to the central impedafgef a cylinder since the diverging
casem = 0, 1 cannot be approached ‘continuouslyninA more appropriate treatment is either
asymptotic analysis a(r) — Zg asr — 0 or else other, explicit, methods of deriviy for
n = 0, 1(see sectioB.4).

6.3 Definiteness of g for n > 1 and semi-definiteness for-a 0, 1

It has been noted above that the structure of the physical and non-physical central impedances
(6.17) resembles that of, respectively, the non-physical and physical surface impedgnices (
a half space. This suggests the inverse correspondence of their sign properties. We will outline a
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formal proof. Similarly to the Lothe—Barnett theory for a surface impedance, the insight does not
follow from the integral formalism but relies instead on static energy considerations.
Assume first thah > 1. The central impedance is relatedgg(0) independentf » andk,
thereforewe can invoke the two-dimensional (2D) static soluti§fitr) = I diag (ria) (0 = 0,
k; = Ois tacit below). The associated time-averaged energ®Gisgquation (21)):
i d
W=-—— (U'V-V*tu). 6.21
8r dr ( ) ( )
Insertingthe physical solutions with eigenvaluid,, > 0 and eigenvectorgo, = (a4, l4)" (@ =
1,2, 3) of go(0) from section5.1.1and using the central impedanZe = ZJ leadsto

ro 1 3
/ Wrdr = ~2 Z(fgzm“ - rlzm“)a;Zoaa >0 forallry > ryq. (6.22)
M a=1

Hence,Zg for n > 1is negative definite. The same consideration using the non-physical solutions
with R4, < 0,a = 4,5, 6, implies thatZonp for n > 1 is positive definite. As expected, this is
opposite to the sign properties of the physical and non-physical surface impeddngezgnp(v)
for the static limity = 0.

In the casen = 1, the above proof applies unchanged for the physzéjéﬂ except that it is
negative semi-definite due to the presence of the rigid-body motion mode. In th& casé,
the same conclusion of negative semi—defim@) follows from an explicit calculation oZ((JO) =
lim, -0 Z©(r) presentedn section6.4.2. It is noted that the rigid-body displacements causing

detZo=0 forn=0,1 (6.23)

are related to the existence of low-frequency (long wavelength)-guided waves in rods: longitudinal,
torsional (n= 0) and flexuralif = 1), see sectioh.1.2and (20).
6.4 Explicit expressions for the central-impedance matrix
Here, we develop other procedures for determirdggincluding whenmn = 0 andn = 1.
6.4.1 Zoforn > 0 The central impedancgg for n > 0 is defined by any of the optional
relations (including (5.13) that may be written similarly to512) as

l, =—iZoa, (=123 & I=-iZopa & Zo=ilL1A7} (6.24)

wherey = (a,)T isan arbitrary superposition of the physical eigenveciors= (a,, )" of go (0)
witha = 1,2,3. The matrice®1 = (a1, ap, ag) andL 1 = (I1, |2, I3) maybe related to one another
using identities such a0, equations (24) and (26)),

ly =1(2«Qo+Ro)a, (¢ =1,2,3),
implying
L1 =i(QoA14 4+ RoA1), whered = diag(ja, 12, A3). (6.25)
Theeigenvectors, (o = 1,2, 3) arenull vectors ofA(4,), see (6.14), and consequently,

éoAlﬂ.z + (ﬁo — ﬁa—)Alﬂ, - ToAl =0. (626)
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Equationg6.25) and §.26) provide a pair of expressions for the central impedance, each in terms
of the displacement eigenvector matrix only,

Zo=—Ro— QoA1AAT! = —RY — ToA11 AT (6.27)

Thefreedom afforded by these simultaneous identities will prove to be useful when material sym-
metry reduces the matrix size to22, see sectioB.1.1.

6.4.2 The central impedance fora 0 The algebraic Riccati equation (5.18) foe= 0 leads to
a constructive solution fa ©, which must satisfy

Cl2 C%  Cs Ciz —C O —C22  C2
Zéo)—l- —Ci6 —Cs6 —Csp 651 Z((JO)+ C6 —Cog Ofl+]| c26 —Cog O =0.
0 0 0 Cs —Cs6 O 0 0
Noting that
0 0 0 0 cie O 0 0 O
ci6 Ces Cse| Qpt=0Q; [0 s 0|=]0 1 0],
0 0 0 0 cs6 O 0 0 O
it is clear that the solution of the algebraic Riccati equation is of the form
zZ® 0 o0
z29= o0 o of, (6.28)
0O 0 O

where the scalar(? satisfiesa quadratic equation
% +p)"Q (2% +p) —c22=0, withp' = (c12, Co6, C25).
Thephysical root must have negative real part in order to be consistent&&)(below, implying

29 = % [_Ql - \/ 7 + (C22— pT9)(QgH11|. whereq = Qy’p. (6.29)
Q7)1
An alternative method is to take the limit— 0 of the known solution fa (20, equation (A4)).
The result is againg(28) where, by definitiorg© is (i?r) timesthe ratio of radial components of
the traction and displacement of the eigenvegt8t of go(0) correspondingp its eigenvalug. = «.
These were found by Ting (24), from which

0 __ W+VYQ

5 (6.30)
Cs5C66 — Cog

follows, whereQ = det@o and,using Ting’s notation (24),

Ci2 Cz6 C25 C22 C26 C25
W=det|cig Co6 Csg|, Y =det|Cxp Co6 Cs6
Cis GCse  Css C5 GCs6  Css

Equivalence of the expression6.29) and (6.30) follow from identities such gs = W/Q and
(C22—p' D (QgH11 = (QY — W?)/Q?. Note thatQY > W?2 (24, equation (B2)).
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6.43 Zoforn=1 The physical triplet of eigenvalug$? andeigenvectory (V) = (all, |§,}>)T

of go(0) (& = 1,2,3) includesA™ = 0. It corresponds to a rigid-body rotation about thexis
with displacement vecta™ = (1,i, 0)T andzero tractiod® = 0, see R0, equation (52)). Hence
by (5.13) z§Pa® = 0, that is,a® is the null vector ofZ$" for any anisotropy. This property,
combined with (6.23), implies thitél) hasthe structure

a ia c

@ . . . a ¢C . .

Zy’=|—-ia a —ic| with ¢ b negative definite (6.31)
c* ict b

The 2x 2 matrix becomes diagoné = 0) for symmetry as low as monoclinic and an explicit form
of Zél) canthen be found, see secti@nl.1.

6.5 The matrixZg at large azimuthal order n

Forn > 1, we assume an asymptotic expansion of the impedance in inverse powers of

Zo=nzo+z1+n" 1o+ ..., (6.32)
wherezy, 73, .. ., are independent of Substituting into%.18) and comparing terms of like powers
in n yields a sequence of matrix equations, the first of which is

(2o —iR$)Qg(z0 +1Ro) — To = 0. (6.33)

This algebraic Riccati equation can be identified 24 1) with system matrix)Q = ikgN, where
ko = n/r andN is the (static) Stroh matrix for the sagittal plane definedghyey = n, m. The
subsequent identities are inhomogeneous Lyapunov equations,

E*zj +zjE+fj(20,21,...2j-1) =0, j=1,2,..., (6.34)

with the constant matrix operat&r—= 651(20 + iRo), where
f1 =iToK +iKTo+ ETRoK + KRJE, etc. (6.35)
The leading order impedanesg is the solution of the matrix algebraic Riccati equati@n3),

and may be determined by the methods discussed above (via the eigenvectors and eigenvalues, or

the integral representation). Subsequent texmg = 1,2, .. ., satisfy a Lyapunov equation (6.34)
with different right-hand sides but the matrix Lyapunov operator is the same forje@ble solution
of this equation depends upon the spectrur odind since the eigenvaluesbBhave negative real
part, it follows that the unique solution is:

o0
Z :/0 ds 657 f; e (6.36)

Theasymptotic sequence in inverse powers afin thus be evaluated to any desired order.

7. Radiation impedance matrix

The radiation impedance is relevant, for instance, in a configuration of infinite outer extent in which

the cylinder is inhomogeneous iin< rgq for finite rg anduniform otherwise. It is always possible

to split the linear total field into incident and scattered components, such that the scattered solution
inr > ro hasonly positive radial energy flux. The radiation impedance is defined by the subset of

wave solutions with this radiation property.
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7.1 Explicit form ofZaq(r)

An alternative partitioning of the integral matrix is required to account for the separate radiating,

non-zero flux, modes. This may be accomplished by a change of basis that brings about the diagonal

form of the flux matrix A+ (r)TA/(r) (12). Proceeding from the integral matri) that satisfies
(5.5), and hence composed of modes with zero radial flux, we first cohverdiagonal form by
an orthogonal transformation,

-1 0 1 /1 1
T =WIwH, J=<0 |>’ W=ﬁ<_| |> WTW = ). (7.1)

Thenreferring to the notations(7) for N satisfying(5.5), we are led to the following partitioning
of the integral matrix,

U, O_ 1 {0;-0, 0,40
N =NOWw=|_" " )=—(1t"2 *tT72) (7.2)
Vi Vo V2 \Vi-V2 Vi4+V,

The + and — sufiices indicate modes that have positive and negative flux in the radial direction,
which is evident from the sign of the flux defined 8.§), and the flux condition5(5), which
becomes

NIOTNi(r)=J forn>1 (= N1()INT@) =T). (7.3)

Extensionof this identity to the special casas= 0, 1 is contingent on the details of the Frobenius
solutions(see sectiob.1.2). In the cases of transverse isotropy and isotropy,4thand —
modes correspond to radiating (outgoing) and incoming Hankel function solukighsand Héz),
respectiely.

The wave-based partitio7 ) provides the required modes to express the radiation impedance,
defined in (4.7), witlUscas Vscat— Uy, V4,

Zradr) =iV, UTY 1 >o0. (7.4)
It is important to note that the radiation impedance is not Hermitian, since, #@ (
Zrad— Zhg= -1 (ULUDH 7T £0, (7.5)

whichimplies in fact that (Zyaq — Z %) is Hermitian and positive definite.

As an example, consider SH wave motion in a uniform isotropic solid Witk 0, for which
the scalar radiation impedancedgy(r) = —Caqkr H,El)/(kr) /Hrﬁl)(kr), wherek = w./p/C44, SEE
(8.9). For this case, known properties of cylindrical functions yield:

i (Zrad— Zihg) = 4 Leas H{P (kr)| 72 > 0.

Notethat the SH radiation impedanceds,q(r) = —ikrcgq + %044+O((kr)‘1) askr — oo.

7.2 Asymptotic form 0F54(r) asr — oo

Assume that the cylinder material is homogeneousrfox r < oo, for some finite radiusy.
Asr — oo, the impedance a4(r), which we recall is defined with generalized traction vector
V = irY(r), may grow without bound while ~1Z,4(r) tendsto a planar limit. This behaviour

0TO0Z ‘2z AInC uo S82IABS [edluyda | /salelqi Alsianiun siabiny 1e Bio sjeulnolpioixo:wewlby/:dny woiy papeojumoq


http://qjmam.oxfordjournals.org

WAVE IMPEDANCE MATRICES FOR ELASTIC SOLIDS 270f 35

is evident for the SH radiation impedance considered in segtibnwhich is proportional to as
r — oo. We therefore assume thag,q hasthe form
Zrad(r) =kt Zoo + O(1), Tt — o0, (7.6)

wherek,Z o, is a constant matrix. This can be found by considering the latimgit of the differen-
tial system (3.3), which reduces to its plane wave asymptotervwitaying the role of a rectangular
coordinate,

d .
380 =ifop(r), (7.7)
whereg(r) is a 6-vector andiy a matrix constant (12)
A0 ) W - g{l“ g
¢(r) - (V(r)) > V(r) - II(Z T(r)a fO - I<Z ( Z gz } gll}+ (78)

Thesix independent solutions t@.8) may be separated into triplets according to their flux proper-
ties, withU_., V; signifying the outgoing or radiating solutions. The limiting radiation impedance
is then defined by analogy witf7 @) as

Zoo =iV UL (7.9)

Propertiesnf Z,, canbe deduced by noting that the system7( is equivalent to that for a half
space with the identificatiofy = k;N(v), wherev = w/k; andN(v) is the elastodynamic Stroh
matrix for the sagittal plangs, e;} = {n, m}. This enables us to equate the limiting radiation ma-
trix Z . with the surface impedance mat%(v) for a homogeneous half space (2). Consequently
Zo = ZZ, for subsoniw, that is, 0< v < 9. The possibilityof Z,, beingHermitian seems at
odds Wlth the conclusion?(5); however, it should be borne in mitidat Z, is only the leading
order term in the asymptotic series implicit in.§). The subsonic situation may be understood in
the context of the SH radiation impedance example above with the wavenkrdoerally taken as
imaginary, in which case the Hankel function is replaced with the modified Bessel function of the
second kind via the identity,-lrﬁl)(x) = 27~ 1(—i)™1K,(—ix). ConverselyZ, is not Hermitian
foro > 6 (2). The equivalence with the half-space problem also imptiatZ ., is a solution of the
algebraic matrix Riccati equation:

Zoo —iPHQ:HZ oo +iPe) — M + pev?l =0, (7.10)

wherethe suffixc indicates the constant valuesrin- rg. Equation (7.10) can be deduced by anal-
ogy with (6.33), noting the presence of the additional dynamic tegnt! in fo andhence in (7.10).
The Rlccatl equation indicates thatlgs— 0 the matrixk,Z oo — Zs00, whereZooOQC 000 =
—pe?l, with a unique solution satisfying (7.5), and hence

L1 2A1/2
Nim 1 74Zg(r) = —iwpt?QL? fork, = 0.

Note that taking(AgC with ¢15 = c56 = 0 andcyg = cs5 factors out the asymptotic forid,, =
—ikrcyq of the above-mentioned scalar radiation impedangg for the SH waves in an isotropic
solid.

Finally, it is emphasized that developments in this subsection are irrelevant to the solid-cylinder
impedanceZ(r) which, by construction, is Hermitian at amyand for anyo ( = w/kz). This in
fact implies thatr ~1Z(r) cannotbecome constant as — oo because otherwise the arguments
subsequent to7(6) would violate the unconditional hermiticity &{r). For instance, the out-of-
plane impedanceZ;(r, 0) = —caakor J,(kor)/ In(kor ), see (8.9), has no large-limit.
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8. Explicit examples of the solid impedance

The central impedancgy is first presented for several cases of material symmetry, including mon-
oclinic and orthorhombic. A semi-explicit form fak(r) is possible if the material is transversely
isotropic, providing a check on the numerical calculations in se@idn

8.1 The central impedancgg

It follows from its definition througlgo(0) thatZg dependsat most on 15 of the 21 possible elastic
moduli. The six redundant moduli are those with suffix 3 in the Voigt notation.

8.1.1 Monoclinic symmetry For monoclinic symmetry with the symmetry plane orthogonal to
the z-axis, the impedance has the structure

0
Z
Zo= 09 ], (8.1)
O O ZZO

whereZ ¢ and Z, arethe in-plane and out-of-plane impedances, respectively. The out-of-plane
scalar impedance follows from (20, equations (37) and (38)) as

Z0 = —N4/ C44C55 — C§5. (82)

Forn > 1, the in-plane impedance can be expressed in semi-explicit form in terms of the eigen-
valuesij, ®1j > 0, ] = 1,2, of the 2x 2 matrixg, o(0) formedfrom the upper left block ofg(0).
By use of the following identity for 2 2 matrices,

A4 212247 = Q1+ 22)l (A1d2 #0),

the formulae in (6.27) may be combined to eliminate the explicit dependence on the eigenvector
matrix, with the result

1~ =~ A ~1q Al ~ g 1l =
Z10=—5(Ro+R) = Q" +/1/2TgH ™ [(Qol —2172Tg1)5Ro—RY) + U1+ 22l | -

Notethat the matrices on the right-hand side are alP2that is,ﬁo = ﬁio, etc., and the eigenvalues
are the two roots of the quartic det, = Ofrom (6.14) with positive real parts. The block impedance
Z o dependsipon the six in-plane modul,s («, 6 = 1,2, 6).

Forn = 1, the in-plane impedance possesses a null vector as described in etiipand based
on the required hermiticity, it must have the form

1 i
zM =70 < 1) =zWete, e=(1,i). (8.3)

—i
Thealgebraic Riccati equation (5.18) then reduces to
{(zPe—ieR))Qyl(zVet +iRpet) — eToelete =0,
implying a quadratic equation fa®),
2V (c11 + cos) — 229 (craces — C26 — C12C66 + C16C26)

2 2 2
— (C11C22Ce6 + 2C12C16C26 — C11C56 — C22C7g — CToCes) = O.
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The unique physicat is, according to sectioB.3, provided by the negative root. We note that
the eigenvalues for the in-plane modes}a?é =0 andigl), that is, the physical (positive real part)

root of
22(C11C66 — Cg) + 2i A(C11C26 — C12C16) + (C16 — C26)°
+ C6 (2C12 — €11 — C22) — C11C22 + €3, = 0. (8.4)

Forn = 0, the general expressiof.29) reduces to

C16C26
Ceo

29 = —cip+ \/ (11 — cfg/Co6) (C22 — C5¢/Co6).

8.1.2 Orthorhombicand tetragonal symmetryFor the orthorhombic symmetry amd> 1, the
in-plane impedancz(l% is given by the upper 2 block of 6.27),

—C12 —i Nncy2 C11 0 1 0 1
Zio= . — Al AT, n>1, (8.5)
(—Incees Ce6 ) ( 0 Cee) (0 iz) +

wherel1 > arethe physical roots of the equation
AAc11066 — A2[N?(Cr1C22 — €%, — 2C12Cs6) + Co6(C11 + C22)] + C22Ce6(n? — 1)? =0,

andA | = (a11, a21) is composed of the null vectors of the matfix (1), and can be expressed

_ A2Ce6 — Cop — N2C22 —in[A2(Cc12 + Cep) — C22 — Cog]
J_ - _- i 12 _ _ 2 .
in[A1(c12 + Cep) + C22 + Cee) 5C11 — C22 — N“Cep
Forn = 1, the scalar in-plane impedance is
1 _ _ Ces ()
2 = ——(c11 —C12—C1143 ),
C11 + Ce6 2

where/l(zl) = \/ (C11C20 — c{z ~+ C11Cs6 + Cs6C22 — 2C12Cs6)/(C11Ce6) IS the (physical) root of§.4)
simplified for the orthorhombic case.

For tetragonal symmetry witthg = Co6 = O, the in-plane impedance is unchanged fr@rb],
and the out-of-plane impedance (8.2) further simplifies dwate= cs5 (ontop of the orthorhombic
conditioncys = 0).

8.1.3 Transverse isotropy and isotropyThe central-impedance matrix reduces for transversely

isotropic symmetry to

20s6(Ce6 — NC11)/(Ce6 + C11)  2iCse(NCes — C11)/(Ces +C11) O

Zo = | —2ices(NCes — C11)/(Ce6 + C11)  2Ce6(Ce6 — NC11)/(Co6 + C11) 0], n#Q,
0 0 —NCy4
(8.6)
1 0 O
zY =-20cu—ce) [0 0 0],
0O 0 O

which applies, of course, to isotrofgs4 = Cse). Equation (8.6) is also derived in sectiBr.
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8.2 Thesolid-cylinder impedancg(r) for transverse isotropy

The constitutive relation far, combinedwith (3.2) and (5.12) impliesfor any material anisotropy,

Z(r) = —R —ikrP — (5<r§rol> url, r>o, 8.7)

wherethe matrixUl(r) is any unnormalized triad of independent physical solutions. The radiation
impedance is obtained if the matrix is replaced with(r) comprisinglinearly independent radi-
ating solutions. The difficulty in applyingB(7) is that explicit matrix solutions fdd; or U, are
not generally available except under certain restrictions on material symmetry, such as transverse
isotropy.

Assuming transverse isotropy, solutions for the displacements that are either regular @t
or radiating to infinity can be constructed in terms of cylinder function by adopting Buchwald’s
representation (40) (see algtl]). Thus,

R Cr (kir) Ci (kar) —i[n/(ksr)]Cn(kar)
Ur) = | i[n/(kir)]Cn(kar) i[n/(kar)]Cn(kar) C/ (kar) ,
i (rc1/K1)Cn(Kar) i (2/k2)Cn(kar) 0

wherethe principal wavenumbeig, ko, k3, and auxiliary wavenumbers, x>, are

K2 _aFvai-b kz_pw2—044k§ ._M (i=1,2)
A T 6 kg(Ci3+ Caq) S

a = (C11 + C44)pa® + (C33+ 2C13Ca4 — C11C33)K2, b = 4c11Caa(pa® — c33kd) (pw?® — Cauk?),

andC,, = J, for displacements regularat=0,Cy = H.ﬁ” for radiating solutions.
Evaluating 8.7) and simplifying terms using the identitiegyc1x> + ceeks = 0 andcll(x1k§ —
K2k?) = Ceek3 (1 — x2), we find thatZ for transverse isotropy is

2Ce6 in2Css  ikarCas &Gy1—Yy2)  in(yi—Yy2) & —&)
Z(r)= | —in2ces  2Cs6 0 +C | —in(yi—Y2) &SEyi—&Gy: né—<&) |,
—iKyrCaq 0 Z; —i&E—-&) né—&H) 0
8.8)

n?(1yr — &aYa) — &1éada(yr — Y2)> Caok3ar 2

ZZ = = 5
C44< &3(E2y1 — C1Y2) — N2(y1 — Y2) &3(E2y1 — C1Y2) — N2(y1 — Y2)

with dimensionless quantitieg = x1r, y» = xor and&j = kjrC,(kjr)/Cn(kjr), j =1,2,3.
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The central-impedance limit may be extracted fr@mj by writing it in block form

i (Kzr Cas + C&3)
Z(r, k) = 2.0 ka) nc . c=cE— &),
—i(kzrcaa+cé3) nc Z5(r, kz)

. N
1 — —
Z,(r,k;) = 2cs6 ( in T) + Copkar? <(é‘2)I1 é‘l)i/i)/(yl Yy2) ;3”) ,

wherethe dependence on bothandk; is emphasized. Fok; = 0, we havek; = w/cj with
pC2 = C11, pCZ = Caa, pC3 = Cop, and the impedance reduces to

Z.(r,0) Ch(kar)

Z(r,0) = 0 , Wwith Z,(r,0) = —cCagkor , (8.9)
0 0 Zzr,0) Cn(kar)
-1
1 in o (Kar Cl(kar)/Cn(kar) —in
Z21(r, 0) =26 (—in l) + Ces(kar) < in Kar C;,(kgr)/Cn(kgr)>

Taking the limitr — 0 of (8.9) with the interior cylinder function§, = J, gives 8.6).

8.3 Numerical example

A procedure was outlined in sectidh3 for calculating the solid-cylinder impedance using two
separate numerical solutions. The Riccati equatioh?) is first integrated starting from= 0 with
the central-impedance matrg asinitial condition. The integration proceeds uprte= rq, where
ry lies below the first singularity oZ(r). Forr > rq, the impedance is obtained frofs.20) asthe
solution of the matricant-based systefl@), with the Riccati solution at servingas the initial
condition. To illustrate its practicality, the two-stage algorithm was implemented with representative
results plotted in Fig2.

The initial step in the computation requires the value of the central impedance, which was cal-
culated using.28) and 6.29) forn = 0 and the formul&y = iLlAI1 forn > 0 (see 6.13)),
with A1, L1 definedby the numerical spectral decompositiorggf0) andthe appropriate selection
of its three eigenvalues with positive real part. It was confirmed that the compytsatisfiedthe
algebraic Riccati equatiofs(18), with error always less than1¥. Numerical integration of (5.17)
and (5.19) was accomplished using the Runge—Kutta (4,5) routine in Matlab. In order to assess the
accuracy of the numerical results, the computed maighp(r ) andthe analytical solution faZ(r)
of (8.8) were compared. For the examples shown in Ejdgt was found that the spectral norm of
the difference satisfiefiZcomp(r) — Z(r)ll2 < 104 atall points. The curves in Fi user = 1
as the ‘cross-over’ coordinate, but similar accuracy was found for other values as long as they lie
below the first singularity oZ(r), which for the parameters considered.js> 2. In all cases, the
transition from the Riccati to the matricant-based solution was found to be smooth.

This numerical procedure is designed to handle the coordinate-based singularity present in the
system equations (3.3) at= 0, and can be continued, in principle, to any fimitét the same time,
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05 - I \\ i

Fig. 2 The curves shown3+1)~1|detz(r)|forn = 0,1, ..., 5. The material is isotropic witfc1 1, Cgg, p} =
{4,1,1} and{w, kz} = {1,0.2}. The Riccati equation (5.17) fa&(r) was integrated to obtain the curves for
0 <r < 1, starting fromr = 0 with the knownZg of (8.6). Forr > 1, the system3.6) was integrated and
(5.19) and §.20) used to fin& (r), starting from the Riccati solution at= 1

the computed impedan&r ) will grow without bound at discrete values iof>- 0 associated with
waveguide modes of the traction-free cylinder. The point of the algorithm is that it will continue to
provide accurate solution regardless of the presence of two distinct types of singulartyand

at finite values.

9. Conclusion

Impedance matrices appropriate to cylindrically anisotropic radially inhomogeneous elastic mate-
rials have been defined and procedures for their determination developed. In the process, a new
impedance matrix has been revealed as of central importance for wave motion in cylinders with on-
axis material. The solid-cylinder impedance matrix is a characteristic property of the cylinder, with
no free parameters apart from frequency and axial wavenumber. The impedance may be defined as
the unique continuation of its on-axis limit, the central-impedance matrix, which is a simpler object
dependent only on (a subset of) the elastic moduli. Two methods have been described for construct-
ing the solid-cylinder impedance at > 0, one based on a Frobenius series solution, the other
using a differential Riccati equation. In addition to providing practical means for computation, as
has been demonstrated for the latter approach, the methods shed light on the structural properties of
the impedances. The Frobenius solution offers direct proof of uniqueness and hermiticity, while the
Riccati solution provides a stable method to integrate the otherwise singular system of equations
atr = 0. The radiation impedance matrix, suitable for infinite radial domains, has been defined
and its properties delineated. We have found it instructive to compare the cylindrical impedance
matrices with the surface wave impedance for a homogeneous half space. The central-impedance
matrix is the negative semi-definite counterpart of the static surface impedance, and thditaitge

of the radiation impedance is closely related to the surface wave impedanag withy k.
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One purpose in developing these impedance matrices is the significant advantage offered by the
impedance approach in solving boundary value problems. The solid-cylinder impedance matrix
provides perhaps the simplest method to arrive at the dispersion equation of a radially inhomo-
geneous solid cylinder. In this regard, we note that, by analogy with the condit@naf3) and
two-point (6 x 6) impedances of an annulus (12), the eigenvalues of the solid-cylinder impedance
should be monotonic im at any fixedk,, which can be helpful for finding numerical solutions of
the dispersion equation. In a wider context, the impedance matrix in conjunction with the radiation
impedance, can serve in formulating scattering of acoustic and elastic waves from solid cylinders.
Other applications that we envisage include the use of impedance matrices for solving problems
with distributed forces within the cylinder, and applications involving 2D inhomogeneous or later-
ally bounded planar and cylindrical waveguidé®,43), where the algebraic impedance matrices
discussed here become differential operators.

Another no less important reason for investigating the impedance matrix in the cylindrical context
is that it affords new insights on the nature of elastodynamic solutions in anisotropic elasticity. It
is remarkable, for instance, to find the Riccati equation appear as a natural method for solution in
cylindrical elastodynamics. The Riccati equation, in fact, implies that the central impedance solves
an algebraic Riccati equation, which in turn leads to direct methods for its evaluation using analogies
with the surface wave impedance. Differential Riccati equations have been found useful in a few
elastic wave setting$(4, 5, 21,42). Its appearance here suggests it has wider potential application
in computational elastodynamics.
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