Acoustic metafluids made from three acoustic fluids
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Significant reduction in target strength and radiation signature can be achieved by surrounding an
object with multiple concentric layers comprised of three acoustic fluids. The idea is to make a
finely layered shell with the thickness of each layer defined by a unique transformation rule. The
shell has the effect of steering incident acoustic energy around the structure, and conversely,
reducing the radiation strength. The overall effectiveness and the precise form of the layering
depends upon the densities and compressibilities of the three fluids. Nearly optimal results are
obtained if one fluid has density equal to the background fluid, while the other two densities are
much greater and much less than the background values. Optimal choices for the compressibilities
are also found. Simulations in 2D and 3D illustrate effectiveness of the three fluid shell. The limited
range of acoustic metafluids that are possible using only two fluid constituents is also discussed.

© 2010 Acoustical Society of America. [DOI: 10.1121/1.3479022]

PACS number(s): 43.20.Fn, 43.40.Sk, 43.20.Tb [AMID]

I. INTRODUCTION

The idea behind transformation acoustics is that a coor-
dinate transformation makes it possible to have one region of
an acoustic fluid mimic another region. Fluids that have this
property have been called acoustic metafluids. In transforma-
tion optics the transformation uniquely defines the material
properties, but this is not the case in acoustics, and there is
an added degree of freedom in the makeup of the acoustic
metafluid. The range of possible acoustic metafluids has been
derived,' and includes fluids with anisotropic inertia and pen-
tamode materials.

Interest in transformation acoustics has been motivated
by the possibility of acoustic cloaking. The first electromag-
netic wave cloaking device® uses transformation of coordi-
nates in the governing wave equation to steer energy around
the cloaked object. It was subsequently demonstrated that the
same methods should work for the acoustic wave equation.3’4
The acoustic cloak corresponds to the limiting case of a point
transformed into a finite region, and it has unavoidable
physical singularities associated with the extreme nature of
the transformation. Different types of singularities are ob-
tained depending on whether the transformed metafluid is
purely inertial with anisotropic density and a single bulk
modulus, or in the other limit, purely pentamodal with iso-
tropic inertia. The distinction is important for cloaking, for
which it is known that use of only fluids with anisotropic
inertia (inertial cloaks) requires infinite mass, and is there-
fore not a realistic path toward acoustic cloaking.5 Despite
this limitation, it is possible to achieve almost perfect, or
near-cloaking, using layers of anisotropic fluids that approxi-
mate the transformed medium, without the singularity. For
instance, Torrent and Sénchez-Dehesa® partition the shell
into many small but equally thin layers where the local prop-
erties are defined by two normal fluids, with density and bulk
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moduli {p;,K;}, j=1,2, such that the averaged quantities p,
=1/2(p1+py), pr=[1/2(p;"+p;")I"" and  K=[1/2(K;"'
+K, ]! yield the anisotropic metafluid properties
{p,(r),p,(r),K(r)} proposed by Cummer and Schurig.’ In
order to achieve this equivalence it is necessary to make
{p;.K;}, j=1,2, functions of r, with the result a large number
of distinct fluids is necessary: 100 and 400 for the two nu-
merical examples reported by Torrent and Séanchez-Dehesa.’

The purpose of this paper is to demonstrate that signifi-
cant reduction in target strength can be achieved using layers
comprised of only three acoustic fluids. The idea is to make
a finely layered shell that surrounds the structure, with each
layer being one of the three fluids, but instead of prescribing
the relative thickness of each layer we allow it to be a func-
tion of r. The transformation formulas then imply unique
values for the relative concentrations as functions of r, in
both two (cylinder) and three (sphere) dimensions.

The outline of the paper is as follows. The homogenized
layered shell and the transformation metamaterial are intro-
duced separately in Sec. II in the context of an N-fluid ma-
terial. The remainder of the paper concentrates on the 3-fluid
(N=3) configuration. General results for both cylindrical and
spherical shells are derived in Sec. III, including the unique
transformation formulae. Dependence of the cylindrical
transformation metamaterial on the constituent properties of
the 3-fluids is explored in Sec. IV. The explicit nature of the
transformation formulae for 2D suggest optimal choices for
the fluid densities and compressibilities. These findings are
confirmed in Sec. V where examples of cylindrical and
spherical 3-fluid metamaterials are presented. Numerical
simulations showing their effectiveness in reducing scatter-
ing strength in 2 and 3 dimensions are also presented in
Sec. V.

Il. PRELIMINARIES

We consider radially symmetric configurations, cylindri-
cal in 2D and spherical in 3D. A fluid annulus or shell occu-
pies 0<r,=r=r,,, and is surrounded by a uniform acoustic
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medium with density and sound speed p,,; Coup 10 7> 1y
The shell is assumed to be made of a finite number, N, of
distinct fluids arranged in a well defined stratification that
results in an effective material with smoothly varying prop-
erties in the radial direction. We are particularly interested in
finding the smallest number N for which it is possible that
the stratification has the properties of an acoustic metafluid.
An acoustic metafluid is defined here as a material with de-
sirable effective properties that cannot easily be obtained
with a single, physical fluid. This definition obviously in-
cludes materials obtained by a coordinate transformation of a
larger region of uniform acoustic fluid with properties equal
to those of the exterior fluid in r>r,,,.

For simplicity, but with no lack in generality, we set
rou=1, ¢, =1 and p,,=1, which is equivalent to choosing
units for length, time and mass, respectively. For the remain-
der of the paper all quantities are non-dimensional.

We first consider the homogenized shell composed of a
layering of N distinct fluids defined by their mass densities,
P1s...,py, and the compressibilities Cy,...,Cy. The com-
pressibility is C;=K; ! where K; is the bulk modulus, and the
wave speeds are c¢;= \r’m, and the impedances are z;
=\K;p;, i=1,...,N. We define, for later use, SfpiCi, or al-
ternatively, S,-=ci_2, so that we may identify \S; as acoustic
slowness in fluid i.

The layering yields an effective fluid with compressibil-
ity C, and anisotropic inertia defined by radial density p,,
and circumferential density p . The parameters of the effec-
tive fluid are defined by homogenization of the stratified me-
dium as’

Pr p)
pl =™ |, (1)
C. (C)

where (-) is the local average over the volume fractions of
the N-fluids,

N
(xy=>, ¢ix;,  with (1)=1. (2)
i=1

It is assumed that ¢;=¢;(r), so that the averages (1) define
parameters p,(r), p,(r), and C.(r). This type of inhomoge-
neous or localized homogenization may be achieved by al-
lowing the layering to be sufficiently fine, and will be illus-
trated by numerical examples later.

The transformation from the current (physical) domain
to the mimicked one makes the shell appear acoustically as if
it is a larger shell of fluid with uniform properties equal to
the exterior fluid. The key is a transformation function, r
— R=R(r), such that the range of R exceeds its domain, i.e.,
the inverse mapping R — r physically contracts space. To be
specific, the outer boundary is mapped to itself, r=R=1, and
the inner boundary r=ry is mapped to R=R,, with 0<R,
=R(ry) <ry. The perfect acoustic cloak is defined by R,=0.
The transformed material has properties p,7, p, 7, and C.p,
with values uniquely defined by the transformation in
d-dimensions as
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Prr (r/R)d_l
pllT =R'| (rR)* |,
C.r (r/R)'

and where R'=dR/dr.

The connection between the homogenized material (1)
and the acoustically transformed material (3) is now made
explicit by requiring p,;=p,, p,7=p, and C.;=C, (and we
drop the subscript 7). Our objective is to find families of
transformation functions R=R(r), ¢;=¢;(r) for which this
equivalence can be achieved. It depends, of course, on the
choices of material properties {p;, C;}, i=1,...,N, and not all
combinations will work. Among the requirements are that the
transformation function is one-to-one, and that the volume
fractions are all between zero and unity. We therefore require
that ¢ € @, where ¢ is the N-dimensional vector of volume
fractions, and ®, the N—1 dimensional surface on which it
must lie,

®N={¢izo,2¢i=1, i:l,...,N}. (4)

d=2 or 3, (3)

lll. THE THREE FLUID MATERIAL
A. Algebraic formulation

The first two relations in (1) and the identity (2), may be
written in matrix form for N=3,

1 1 1 b, 1
pr P2 P3|l |=| P | (5)
pit p eyt \es) \pl!
This can be solved to give the 3-vector of volume fractions

in terms of p, and pll. Substitution into the third relation in
(1) yields an expression for C, in terms of p, and pll. Thus,

d=fo+pfi+pfs (6a)

C.=a+Bip,+Baop7 (6b)

where the 3-vectors in (6a) are

P2 _Ps3
Pz P2
& o b
3 1
¢: ¢2 5 fO:D p__p_ 5
1 3
®3
P P2
P2 P1
1 1
P2 P3
1 1 P3— P2
flzD - s f2:D P1—P3 | (7)
pP3  P1 _
l l P2—P1
P P2

with D=p;p2p3/[(p1 = p2)(p2—p3)(p3—p1)], and the scalars a,
B and B, in (6b) are
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CY:CTfo, 31=CTf], :82=Csz’ (8)

with CT= (C1 . Cz, C3)

B. The transformation function
1. Differential equations

Eliminating C,, p, and p7' from (6b) using the identities
(3) yields a differential equation for the transformation func-
tion,

R r

-1
—=B=] . 2D,

dR a(r 'BR)
5_ R? r -1 ’ ©
11(7—131]?—,32) , 3D,

subject to the boundary condition R(1)=1. The parameters 3
and, for later use, N\, u, are defined

N=a+B, wpu=-—. (10)

R I®

B=pBi+ B,

2. 2D solution

We first consider the 2D equation (9),. Let x=r% X
=R?, then Eq. (9); becomes
B

dx X
X—+=x="=,
a a

o x(1)=1. (11)

Integrating yields

(R2+()\— 1)R2“>”2
r=\—————/| .

N (12)

The 2D transformation function is therefore completely de-
fined by the two parameters A and w, given in explicit form
in (A6).

3. 3D solution

The 3D equation (9), becomes, with the change of vari-
able s=r/R,
4

=> Y RO)=1.,

=1 S5

1dR - as’
Rds  Bis*t+as’+ B> -1

(13)

where the four roots s; and the coefficients vy, i=1,2,3,4,
are defined by

4
gl (s—sj)=,81s4+as3+,82s2—1, (14a)
J=1
_ ey (14b)
Yi= .
BIH (si— Sj)

J#Fi

Note that Ei')/[:(), Eisi=—a/ﬂ1, E[’y,-S,:—a'/ﬁ], Z[’y,»siz
=(a/B;)*. Integration of (13) yields
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(15)

This provides an implicit formula for R and r, in terms of the
three parameters a, B; and (B,. Using the fact that 1=s
=s,, where s, is defined in the next subsection, Eq. (15)
gives R as a function of s, from which r=sR is obtained.

C. The inner radii ry and R,

It follows from continuity of the solution of the differ-
ential Eq. (9) that the values of the inner radii r, and R,
should correspond to a point on the edge of the triangular
region @3, see Fig. 1. The actual radial values can be deter-
mined from Eq. (5), using p, and p, as defined in (3) and
keeping the parameter s=r/R to express ¢; of (6a) in the
form

b= pl(s™" + PijS3_d)R' = (p;+pu)]
l (pi— Pj)(Pi - P

where i # j#k#i. Replacing R’ by (9) and setting (16) to
zero implies an algebraic (polynomial) equation for s. In
principle there are three possible solutions, corresponding to
each of ¢,=0, i=1,2,3. However, in practice for a given set
of 3-fluids only one is important, and we choose the 3-fluid
properties so that it is the root for ¢,=0. We consider first
d=2.

In the 2D cylindrical configuration the equation ¢,=0 is
a quadratic in s with a single positive root greater than unity
(corresponding to ry>R,), which combined with (12) im-
plies R, and r, in explicit form as

; (16)

S\ TR0
Ro= {o\— 1)(’”2—_ﬁ‘)] , (17a)
l_pr2
-1 -12
ro= N”lz—“)] Ro. (17b)
-
where
+
pi= TP ikt (18)
L+ pjpy

Figure 2 illustrates the significance of the p,; parameters.

A. N. Norris and A. J. Nagy: 3-fluid metafluids

Downloaded 09 Nov 2010 to 192.12.88.9. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



N 1
¢,

FIG. 2. The range of ¢ for the 3-fluid in the cylindrical configuration. The
dashed lines show the possible straight line paths as a function of p,. In
practice, the path begins at some point inside the triangular region (r=R
=1) and ends at ¢,=0 (r=r,, R=R,).

For the 3D spherical case the equation ¢, =0 becomes a
biquadratic in s. We find

4
— 5.\
R0=H<S0 l) . r0=s0R0, (19)

=1\ L=

where s is a positive root of

s*la+ Bi(p1 + p3)]+ s [apips + Balpy + p3)] = (p1 + p3)
= 0. (20)

The transformation requires sy>1, and numerical experi-
ments (see Sec. V) indicate that a single real root greater than
unity exists in all the cases considered.

D. Total mass and average density

The total mass m of the 3-fluid shell is the integral of the
local average of the density, (p). Therefore, m follows from
Eq. (1) as the volumetric integral of p,(r). Substituting from
(3), and using (9), the integral can be expressed in closed
form for the 2D case, and reduced to an integral in s=r/R for
the 3D case. We find

E{I—R3+—()\_1)(1—R§“)},
A M

a [
4r— J

Bi
from which the average density in the shell, p=3m/[m(d

+1)(1 —rg)], can be found. For 2D we find, after some sim-
plification,

- .o

o1T (5—5)
,1_{ (1—s)3% ds, 3D

1 1({1-R?
p=— —( f), 2D. (22)
mo B\1-ry
E. Summary

We have shown that the three fluid shell is uniquely
related to possible transformation functions in both 2- and
3-dimensions. The connection is still somewhat tentative,
since we must confirm that the functions are physically real-
istic. This requires among other things that the volume frac-
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tions are all positive and between zero and unity, i.e., that
¢ € d; where the equilateral triangle surface @5 is defined
by (4). We must also confirm that the inner radii are actually
given by Egs. (16) in 2D and (19) in 3D. Optimally, both of
the inner radii should be small, since Ry<<1 means that the
mapped region Ry=R=1 is almost the entire interior of the
cylinder/sphere of radius 1, while Ry<<r, implies that the
shell rp=r=1 in physical space occupies a relatively small
proportion of the mapped region. In the next Section we
consider the 2D shell for which these questions can be an-
swered in explicit form.

The results for the 3-fluid shell indicate that there are no
free parameters for a given set of fluids. This suggests that
the transformation property cannot be achieved with only
two fluids. It is shown in Appendix B that the 2-fluid case is
too constrained, although it does display some interesting
physical properties, even if it cannot provide acoustic cloak-
ing.

IV. THE THREE FLUID MATERIAL IN 2D
A. Range of material parameters

The relation p,p, =1, which holds only in 2D [see Eq.
(3)], considerably simplifies the algebra of the problem as
compared with the 3D case, allowing clearer understanding
of parametric dependence. We refer the reader to Appendix
A for the details and provide only the main findings here.

With no loss in generality, see Appendix A, we assume

p1=>p2>p3 with p>1, p3<l (23)

The density with the intermediate value, p,, may be less
than, equal to, or greater than unity. In order to distinguish
these two cases without being specific as to the particular
one, we define p, as the density with value on the same side
of unity as p,. We assume for the moment that p, # 1; the
special case of p,=1 is discussed separately below.

The main result is that the physically obtainable material
properties can be parameterized in terms of the radial density
p,, which has a well defined range itself. Thus, ¢ e ®; for
Prp=P;= py2» Where p,; are defined in (18). The lower bound
is not achieved in practice but is instead set by the value of
p, at r=1, see Appendix A. The physically reachable values
of the volume fractions, compressibility and density p, are
therefore defined through p, as

¢ d)rp ( >(¢r2 ¢rp)7 (243)
Pr2— prp
c*=c*p+< Pr=Prp. )(c*z—c*p), (24b)
Pr2— prp
-1 44
PL=Pr > for 1- = Pr = Pr2s (240)

where the critical values p,; of the radial density are defined
in (18), and the critical values of the concentrations ¢, and
compressibilities C,;, are

¢r1 = ¢|pr=p”.; C*i = C*|pr=p”- = CT¢ri' (25)
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Based on the sensitivity analysis in the Appendix A, the
radial density p, has its greatest range, defined by Ap,=p,,
—p,p, if py is large, p, is close to unity, and p; is small. Thus,

pi—1
L+ pip;

p1>py=1>p3=Ap. = (26)

The optimal strategy seems to have three fluids with proper-
ties in line with (26). For instance, if (p;,ps,p3)
=(10,1.1,0.01), then Ap,=8.002 as compared to 8.182 ac-
cording to (26). The scalings of (26) also imply that the
relative magnitudes of the concentrations of the light and
heavy fluids are

$3(r) = p1p3 i (r). (27)
It is also shown in the Appendix A that
(C*2 - pr2)(C*p - prp) = O, (28)

which places another constraint on the choice of the three
fluids involving their compressibilities. We next consider
these extra degrees of freedom in the context of a special
case of (26) which makes the parameterization simpler.

B. The case of p,=1 and other limits

The previous results, in particular the suggested optimal
strategy for choosing the densities of the three fluids, sug-
gests that the results will not depend strongly on p, if it is
close to unity. It is therefore reasonable to simply take p,
=1, which leads to other simplifications which we now ex-
amine.

The reachable line in @5 has one end at the vertex ¢,
=1, and (23) becomes

0 0 |
d={1+|b,-|1 (p—1> (29a)
0 0 Pr2
pr_l
C.=Cy+(Cip— Cz)( ), (29b)
pr2_1

for the same range of p, as in (23), and with

) (1-p3p, C

r2

¢r2 = P2 _ p2 0 s C*Z = ¢;r2 0
b\ (ol - Dps G

The two parameters in the transformation function (12) sim-
plify, using, (A6), to

(p1 =D = p3)(p1 = p3)S,
(1=p)S1+ (o} = 1S3 = (p} = p)S5”

)\=Sz, M=1+

where S;=p;C;, i=1,2,3. Equations (17) simplify for p,=1,
using (A12), to give

. S,—1 1/[2(1-w)] R
0 SSSZ—I s 0 020>

(30a)
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2 2 -112

S0= { (L=p3)S1 + (i 1)S3} . (30b)
P1~=P3

We next examine these exact results for some limiting values
of the other 3-fluid parameters.

Both quantities in (30) should be small. Based on the
assumed density scalings (26), it follows that Rj/rj can be
small only if both §;=0(1) and S;=0(1). Under these cir-
cumstances, Eq. (28), which is now (Sz—l)(l—R%/r%)>0,
requires S,>1, and (30), implies in turn that w=0. We
therefore have, in addition to (26) for the densities, that the
quantities S;, i=1,2,3, should satisfy S§;=0(1), S,>1 and
Sy<1.

1. The case p,=1, p;=p3'

Further simplification results from setting p;= p[l, still
with p;>1. For instance, the volume fractions of phases 1
and 3 are equal,

cp= Lyt
b= =1 ¢2)-2(pr2_1), (1)

and p,, reduces to p,,=1/[2(p;+p;")].

2. Summary

Based on the analysis above it appears that optimal
choices for the properties of the three fluids are

pi>p=1>p; §=0(), $>1, S3<1, (32)

implying A=S,, u=0. Under these circumstances, (30) pro-
vides the relatively simple approximations for the values of
the inner radius r(, and its pre-transformed value, Ry,

(33a)

1 12

2
The value of r, can be made to be close to unity by further
requiring

S, >1=rg~1- L, Ry = (S3+S,p,9)"2. (34)
PAYS

For this range of parameters the thickness of the physical
shell, 1-ry=1/(25,), depends only on the squared slowness
S,, while the image of the inner radius, R, is dependent on
the other two slownesses, and the density p;. While the pa-
rameters r, and R, are insensitive to the densities p,=O(1)
and p3=o(l), the other quantities, such as C, and ¢ can
depend on these. However, if p;=1/p; then the concentra-
tions of fluids 1 and 3 are everywhere the same.

V. NUMERICAL RESULTS
A. Example of three-fluid shells

The range of possibilities for the 3-fluid metamaterials is
extensive given that there are 3 X 2=6 independent variables
at our disposal. However, based on the estimates in Sec. IV,
particularly (32), it seems reasonable to take p,=S;=1. We
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TABLE I. The four cases of three-fluid material considered.

Case P1 P2 P3 Sy S, S3
1 10 1 0.2 1 10 0.1
2 10 1 0.2 1 10 0.01
3 100 1 0.02 1 10 0.01
4 1000 1 0.002 1 10 0.01

further take p;=2/p;, in keeping with (32). Also, considering
(34) we choose S,=10, which leaves two parameters: p; and
S3. Four distinct 3-fluids are considered according to the four
sets of parameters in Table I with different combinations of
p; and S3. The transformation functions and the concentra-
tions of the three fluid constituents are illustrated in Figs.
3—6. The curves R=R(r) illustrate the transformation, which
maps the original region Ry=R=1 to the physical domain
ro=r=1, and the values of the inner radii, r, and R, are
given in Table II. Note that R=r, as expected. Also, the
concentrations for the 2D shells, in Figs. 3(a), 4(a), 5(a), and
6(a), satisfy ¢p3;=2¢,, in accordance with (27) since p;ps
=2. The most important aspect is the relative values of ry and
Ry, in that it is desirable to have r, close to unity while R
should be close to zero. The value of r, is smallest in Fig. 3
and largest in Fig. 6, and it appears to increase with p;. In
order to obtain a value of ry close to unity, and in good
approximation with the estimate (34),, it is necessary to have
a large value of p,, see Figs. 5 and 6. Although only two
values of S3 are considered here, numerical experiments in-
dicate that the value of R, is more sensitive to this parameter,
with R, decreasing as S5 is increased. It is also found that
better results, i.e., smaller R, larger r(, are obtained when S,
becomes very large. For instance, ry=0.989, R,=0.031 is
obtained in 2D with p;=S,=10°, S3=1073.

0.8} o (@ R

0.6
0.4r ¢1

0.2

0.8f R
0.6f
0.4f

0.2

%
0 : ‘

0.6 0.7 0.8 0.9 1
r

FIG. 3. (Color online) The curves show the concentrations of the three
fluids and the radius R as functions of the physical radial coordinate r for the
fluid parameters of Case 1 (see Table I). (a) the 2D cylindrical configuration;
(b) the 3D spherical shell.
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0.8t R

0.6

0.4f ¢1

0.2 ]
—— %

0.4 0.5 0.6 0.7 0.8 0.9 1

(b)
0.8} R

0.6
0.4

03

0.2

0 ‘ ‘ %
0.4 0.5 0.6 0.7 0.8 0.9 1
r

FIG. 4. (Color online) Case 2. The parameters are the same as in Fig. 3 with
the exception that now S;=0.01.

B. Discrete layering algorithm

The inhomogeneous nature of the homogenized material
is captured by layering the shell on two scales. The first scale
is a fine layering of L distinct bands defined by the regions
between ry<r;<r,<...<rp=r,,=1. The second scale of
layering defines three sub-regions between neighboring radii.
Let r, ;=r,, and define

d d

Tnn = Tnm—1— ¢m—1(rn)Am m=23, (35&)
A}’l:rz_rZ—h n=1,2, ~--9L7 (35b)

where (7/3)(d+1)A, is the area or volume between the in-
ner and outer radii of the band [r,_;,r,]. The three regions

0sf (@ R

0.6 % o,
0.4} o,

02}

0 i i i i i
0.88 0.9 0.92 0.94 0.96 0.98 1

r
1 T T T T
0.8F (b) 3 R
0.6f , L L
041
0.2 ¢3 i
P88 09 092 094 096 098 1
r

FIG. 5. (Color online) Case 3. The parameters are the same as in Fig. 4
except that p;=100, p;=0.02.
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FIG. 6. (Color online) Case 4. As in Fig. 5 except that now p;=1000, p;
=0.002.

(rn2s7n1ls (rn3,r,0] and (r,,_y 1,7, 3] have fractional volumes
&1(r,), Pa(r,) and ¢5(r,) of the band, respectively, and are
therefore occupied by the respective fluids, see Fig. 7. The
choice of the ordered set {r,,n=1,2,...,L—1} is relatively
arbitrary as long as it is finely spaced for large values of L.
For simplicity we take A, constant, independent of n, in
which case A,=(1 —rg)/ L=A and the radii become

rif,1=r§+nA, n=12,...,L, (36a)
d _ d _
Tnom = Tnm—1— ¢m—l(rn,1)As m=2,3. (36b)

C. Scattering from a three-fluid shell

We consider plane wave incidence in the uniform exte-
rior fluid > 1, with time harmonic dependence e (hence-
forth omitted). The 3-fluid shell in ry<<r<1 is defined by the
discrete layering algorithm, and is assumed to surround a
rigid object of radius r. The scattered pressure is expressed

p(r,0) = 2 A,(NA,(6),

n=0

(37)

FIG. 7. The discrete layering algorithm to reproduce the local homogeniza-
tion properties of the 3-fluid shell.

where 6 is the polar angle with respect to the incident direc-
tion, {¢,(r), A,,(0)}={H " (kr),cos n6} in 2D and {h\"(kr),
P,(cos 0} in 3D, and k= w is the nondimensional wavenum-
ber. In the shell region the pressure p and radial velocity v
are expressed in modal form

(p(r.0).0(r.0) = 2 ()., (NAD), ro<r<L.
n=0

(38)

The 2-vector U(r)=(p,(r),r* 'v,(r))" satisfies the ordinary
differential equation (ODE)

(:1—1:=Q(r)U(r), ro<r<1, (39)
where
. 0 p
iw
Qm:ﬁ r2d—4(r_2_i> ol (40)
K wzp

and x*=n?,n(n+1) in 2D and 3D, respectively. The density
p(r) and bulk modulus K(r) are piecewise constant, defined
by the 3-fluid material properties at each value of r according
to the discrete layering algorithm.

1. Computational scheme

Three different numerical methods are employed to find
the scattered pressure (37): (i) by solving for the matricant;
(ii) using a global matrix; and (iii) by solving the matricant
of the homogenized radially dependent anisotropic fluid. In
the first method the matricant,® or propagator matrix, is
found by numerical integration of the matrix equation

TABLE II. Results for the four cases of Table I. p is the average density in the shell ro=r=1. oy is the relative
value of the total scattering cross section at kry=3 of a rigid cylinder/sphere surrounded by the three-fluid shell
with 500 layers. A value of 100% corresponds to the bare rigid target.

2D 3D
) )
To Ry p (%) To Ry p (%)
1 0.60 0.20 3.12 25.8 0.66 0.26 5.41 4.55
2 0.41 0.06 3.13 2.37 0.59 0.19 5.69 2.20
3 0.88 0.09 19.17 0.69 0.88 0.11 57.7 0.033
4 0.94 0.09 40.22 0.69 0.96 0.096 192 0.012
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FIG. 8. (Color online) Case 1. The magnitude of the scattered pressure for
an incident wave of unit amplitude for the 2D (top) and 3D (bottom) 3-fluid
shells. In each case kry=3 and L=500. The inner dark circular region de-
picts the rigid target of radius rj, surrounded by the shell of unit outer
radius.

dM/dr=0M subject to the initial condition M(ry)=I, the 2
X 2 identity matrix. Then using the continuity conditions at
r=1, and the rigid boundary conditions at r=ry, it is possible
to express the scattering coefficient A, in terms of M(1).
Solution (ii) using the global matrix method, e.g., Ref. 9, is
obtained by creating a large system of simultaneous equa-
tions which can be cast as a matrix equation of size 6L. The
third method (ii) is based on the equations of motion of an
anisotropic acoustic fluid, e.g., Ref. 5, with radially varying
parameters p,, p; and C,. given by the exact transformation
formulas (3). The equations of motion can be transformed
into the form (39) with Q — Q.. where
iw 0 Pr
Q*(r)zﬁ 2d—4< 7'2 X2 > s (41)
r r - 0
K, o'p,

and K,=C;". Using an ODE solver it is again possible to find
the scattering coefficient A,. Details of numerical schemes (i)
and (iii) will be provided in a forthcoming paper.
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FIG. 9. (Color online) Case 3. The same as for Fig. 8: 2D and 3D simula-
tions are in the upper and lower plots, respectively.
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2. Numerical results

Figures 8 and 9 show the magnitude of the scattered
acoustic field for an incident wave of unit amplitude. Since
the radius of the object being cloaked changes for each of the
four cases of Table I we take the nondimensional character-
istic value kry=3 in each scattering simulation. This allows
us to compare the total scattering cross-section between the
four cases even though the values of r, are different. Figure
10 shows the response of the bare 3D spherical rigid target
based upon case 3 in which r,=.88. The total scattering
cross-section for the “cloaked” rigid object was calculated
using the coefficients A,, and compared with the cross-
section for the bare rigid object. In each case, as Table II
shows, the relative cross-section is diminished, and for cases
3 and 4 the reduction is significant. Note that the reduction in
target strength is greater in 3D as compared with 2D, in
agreement with the general findings of Ref. 5. The numerical
methods (i) and (ii) were found to be in agreement with one
another, and with method (iii) when L is very large. For
instance, the cross-section found using method (iii) is 0.3%
larger than that of method (i) for the 2D example in Fig. 8.
Finally Fig. 11 shows the effect of the number of layers L on
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FIG. 10. (Color online) 3D pressure map solution for a rigid cylinder; kr
=3, ry=.88.

the relative value of the total scattering cross section for case
3. A curve fit of the power function aL”+c shows that for this
particular case at this particular frequency the cross-section
decreases as oy~ L™>2. More layers provide a better approxi-
mation to the homogenized limit, as expected. For small
numbers of layers the layering algorithm used here could be
improved using various optimization strategies, but we do
not pursue that here.

V1. CONCLUSION

The main finding of this paper is that it is possible to
achieve cloaking-like behavior with as few as three distinct
acoustic fluids. Using transformation acoustics, we find that
for a given set of three fluids the layered shell ry<r<1 is
uniquely determined, with the inner radius r, given by Eqgs.
(17) and (19) for 2D and 3D, respectively. The shell is made
of fine layers of the three fluids with relative concentrations
as a function of r determined from Eqgs. (3), (6a), and (9).

—2D
—3D

s Fit 2D
© Fit 8D :

-
O_‘
T

Ll

©

VLG

Relative Scattering o, (%)
IS

10 20 30 40 50 60 70 80 90 100
Layers

FIG. 11. (Color online) The relative value of the total scattering cross sec-
tion for case 3 vs the number of three-fluid layers in ry<r=1. The dashed
lines are curve fits of the form al’+c for 5=L=100. The parameters
(a,b,c) and the root mean squared error (RMSE) were found to be (3716,
—2.221, 0.9924), 0.290 for 2D, and (6435, —2.258, 0.1324), 0.278 for 3D.
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Obviously, the overall effectiveness and the precise form of
the layering depends upon the relative densities and com-
pressibilities of the three fluids. The best results are obtained
if one fluid has density equal or close to the background or
host fluid density, while the other two densities are much
greater and much less than the background value. Numerical
simulations of the scattering from specific layering realiza-
tions confirm the theoretical predictions and show the effect
of the finite number of layers. Many questions remain as to
the optimal choice of fluids in general, and what can be
achieved using existing fluids specifically.
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APPENDIX A: PROPERTIES OF THE 2D 3-FLUID
MATERIAL

1. Density and compressibility

We begin with the density implications. Equation (6a)
reduces, using p,p, =1, to give
_ pilpi+ PPy = pri)

prilpi = Pj) (p;i = pi) '

®; iFjFk+i, (A1)
where the critical values of p, are given by (18). Based upon

the identities (A1), we note that

1-p}
¢f|Pr:Pn' =0, ¢j|P,-:Pri = pjpfi( 2 2 /> (A2)
Pj — Pk

where i # j # k#i. The points defined by (A2) are the inter-
sections of the line (A1) with the planes e;- $=0. In order to
have some ¢ e @5 at least one of the intersections must lie
on the boundary of ®;. Consider p,; of (18), then ¢; and ¢,
must both be positive, which occurs if and only if one of
(pj»py) is larger than, and the other is less than, unity. This
gives an important necessary condition: At least one of the
three densities is larger than unity, and conversely, at least
one must be less than unity. This condition must hold in
addition to the obvious requirement that the three densities
are distinct, since otherwise the system (5) is not solvable.

Introduce the density values p,, p,. {p#m}e{l,3},
such that

(2= 1)(p,~ 1) >0,

with 2 #p#+m# 2.
We note some other properties of the critical values of
the densities:

(p2—1(p,—1) <0, (A3)

(p;—p)(1-pp)

Pri = Prj = PriPrj > (A4a)
! H(pi+ P (pj + pr)
—1)(1 -
- 1=— Pri (pr )( prk) i (A4b)

prj + Prk

where i # j# k # i. These imply, respectively, that p,,>p,,
> s and pp>1, p,,> 1 and p,,,,<1. Combining these with
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the previous inequalities, we surmise the ordering p,, > p,,
>1>p,,. Thus, for instance, if p,>1, then the possible
range of p, is p,; =p,=p,. If p, <1 then itis p3=p,=p,,.

Any value of p, in the range p,,<p,=p,, therefore
yields a triple of concentration values satisfying ¢ € ®@5. At
the upper (lower) value, p,=p,, (=p,,), the concentration ¢
lies on the boundary of the triangle with ¢,=0 (¢,=0). But
these limiting values are not necessarily achieved. Thus, at
r=R=1 the differential equality (9) implies that p,=a/(1
—B), see Eq. (A9). This is the practical lower bound on the
range of p,. Equations (24) and (25), then follow.

By analogy with Eq. (24) for the volume fractions, the
effective compressibility of (6b) can be expressed in the
form (24b). Alternatively, Eq. (6b) implies C.=a+ Bp,, and
therefore we deduce that o and 8 may be expressed
prZC*E - prgC*Z

Pr2= Prp |

Ciy=C.
=——" (AS)

Pr2— prp .

These lead in turn to explicit expressions for the two param-
eters that define the transformation function, (12),

A=, (1-py)(1 = p3) , (1-p3)(1-py)
(p1 = p2)(p1 = p3) (p2=p3)(p2—p1)
(1-p)(1-py)
3(P3—P1)(P3—P2)’

PS03 = p3) + P Sa(p3 = p1) + pa S3(pT = p3)
S1(p3 = p3) +S2(p3 — p7) + S3(pi — p3)

(A6)

where S;=p,C;, i=1,2,3.

a. Sensitivity

The reachable range of p, is, from (9), p,,<p,<p,,
+Ap, where

(p,— p2)(1-p;)

AprEpr ~Prp= . (A7)
2T (14 pap)(1+ pypy)
Hence,
2
ddp, __(1-p))
apy  (1+pop,)*
2

aApr _ (1 - pm)
ap,  (1+p,p,)*
dAp, - 1+p2 +p,+2 »

pr__ (pp=pP)(L+p,)(pa+ pp+ 2p2ppp, ). (A8)

P (14 p2p,)*(1+ ppp,)°

If p=1 these are, respectively, <0, >0, <0. Conversely, if
p=1 they are >0, <0, >0. Hence, whether p=1 or p=3 it is
clear that Ap, is greatest if p, is large, p, is close to unity,
and p; is small.
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2. Transformation function

a. Necessary conditions for the three-fluid
parameters

Since R(1)=1 at the outer radius r=1, we have

R'<1>=p,<1>:c*<1>=ﬁ, (A9)
that is,
p(1) = C,(1) = —P2Cr =P (A10)

P2~ prp + C*p - C*2 .
But we require that p,,<p,(1) = p,,, or, since p,,—p,,>0,

pr(l) ~Prp - C*p —Prp

>0,
Pr2= Prp Pr2= Prp + C*p - C*2
- p,(1 -C,
pra=pA1) _ pro=Cua -0, (A1)
Pr2— prp Pr2— prp + C*p - C*Z

Hence, (28) must hold, or, explicitly

1-p3 . pi-1l
(S12 2 +S3 5 ——> -1
P1=P3 P1—=P3

pr—1

2 2
" 3= Py

1_ 2
X (sz Pms
P2~ Pm

- 1) <0. (A12)

b. The case p,=1
In this case the p/m distinction is unnecessary since
P2 = 1’

1 Sprspr2'

pn=ps=1 for
= ¢ e P; for

This implies that the reachable quantities reduce to (29a).

APPENDIX B: THE TWO FLUID MATERIAL

1. General theory

The 2-fluid version of Eq. (5) is
1 1

1
P P2 o
( ) =\ Pr (B 1)
1 1 b, )
- Py
P P2
This implies that the concentrations are
Pr=P2 P1—Pr
b=""", p=""7, (B2)
P1= P2 Pr= P2

and the densities p,, p, are related by the compatibility con-

dition for (B1),
P+ PIP2pT =P+ P2 (B3)

The effective compressibility, which follows from (B2) and
the third relation in (1), satisfies
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(p1 = p2)Ci+ (C = C1)p, = p Cy = poCy. (B4)

Equation (B2) provides relations for the volume fractions in
terms of the radial inertia p,. One can also interpret Egs. (B3)
and (B4) as defining p, and C,, respectively, in terms of p,.
Therefore, all parameters in the two-fluid material can be
defined by a single quantity, in this case p,.

However, in order to relate the two-fluid material to a
transformation it is necessary that there exists a function R
which satisfies the three differential identities (3). Substitu-
tion of these into Eqs. (B3) and (B4) gives a pair of equa-
tions which can be considered as algebraic equations in two
unknowns: R" and R/r. Solutions for both of these quantities
can be found in terms of the two-fluid properties
P1,P2,C1,C,, but the solutions are not of practical interest.
The reason is that the constant values of R’ and R/r that are
found, say R'=a, R/r=b, must be equal, leading to trivial
cases. The main conclusion from the study of the N=2 case
is that the 2-fluid material is overly restrictive.

2. A special case of a uniform 2-fluid material

While it is not possible for the 2-fluid material to repro-
duce a transformation material, it is possible to make some
interesting uniform fluids with anisotropic inertia. The idea is
to seek constant values of p,, p, and C, which also match to
the exterior fluid in r>1. This requires that R=1 at r=1.
Enforcement of (3) then requires the three parameters in the
left vector be equal to R’. Substituting into Egs. (B3) yields

pr:pll =C*=pr3' (BS)

The volume fractions follow from (B2) as

1- p2 1- p2
(f)] :plpr3( 2 22>5 ¢2:p2pr3(2—12 s (B6)

P1—=P2

P2— P

which are both positive if and only if (1-p;)(1—p,) <O0. The
one remaining condition, for the compressibility, implies us-
ing (B4) and (B5) that the two compressibilities must be
related such that

Cipi(1= p3) + Capa(pi — 1) = pi - p3. (B7)

The anisotropic fluid (B5) is defined by the parameter
p3=p,3(p1,p2), and is composed of volume fractions ¢;
=¢,(p;,p,) of fluid i=1,2. Denote any pair satisfying the
relation (B7) as C;=Cy(p,,p,), i=1,2. It is interesting to note
that these functions are invariant under the interchange
{P] s P25 ¢1 ’¢2’C1 ’CZ}_>{p£19le’¢2’¢l ’CZsCI}'
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a. Examples

If, for instance, C;p;=C,p, then (B7) implies that
Cyp;=C,p,=1. Both fluids have the same wave speed as the
background fluid. They differ only in their impedances,
which in this case are z,-=p,-=Ci"1, i=1,2.

Conversely, if C,/p;=C,/p, then (B7) implies that
C,/p;=C,/p,=1. The two fluids have the same acoustic im-
pedance as the background fluid, and differ only in their
wave speeds, which are ci=pi'1=Ci'1, i=1,2.

3. A two and a half fluid material

As a case intermediate between the strictly 2-fluid and
3-fluid cases, consider the 2D case, for which (r/R)R'=p,,
see (3);. It follows from (B3),, i.e., p,=p', that p,=p,3, a
constant. Taking into account the boundary condition R(1)
=1, the unique mapping is

R(r) =rPr3. (B8)
Equation (B4) combined with (3); then implies
(1-p)S; + (p1 = 1Sy = (p7 — p3)r 2PV (B9)

This cannot be satisfied if the two fluids have properties
independent of r. However, if we still require that the densi-
ties are fixed, but the compressibilities could vary with r,
then (B9) suggests that a mapping can be realized if one or
both S, S, are such that the equality holds for some range of
r. It is well known that adding a small concentration of
bubbles to a liquid results in an increase in the compressibil-
ity without significant change in the effective density. Hence,
it might be possible, in principle if not in practice, to add a
third fluid whose only role is to enhance compressibility. In
this sense it is half of a fluid, since its inertial properties are
not used.
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