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Acoustic metafluids are defined as the class of fluids that allow one domain of fluid to acoustically
mimic another, as exemplified by acoustic cloaks. It is shown that the most general class of acoustic
metafluids are materials with anisotropic inertia and the elastic properties of what are known as
pentamode materials. The derivation uses the notion of finite deformation to define the
transformation of one region to another. The main result is found by considering energy density in
the original and transformed regions. Properties of acoustic metafluids are discussed, and general
conditions are found which ensure that the mapped fluid has isotropic inertia, which potentially
opens up the possibility of achieving broadband cloaking.
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I. INTRODUCTION

Ideal acoustic stealth is provided by the acoustic cloak, a
shell of material that surrounds the object to be rendered
acoustically “invisible.” Stealth can also be achieved by
“hiding under the carpet,”1 as shown in Fig. 1. A simpler
situation but one that displays the essence of the acoustic
stealth problem is depicted in Fig. 2. The common issue is
how to make one region of fluid acoustically mimic another
region of fluid. The fluids are different as are the domains
they occupy; in fact, the mimicking region is typically
smaller in size, and it can be viewed as a compacted version
of the original.

The subject of this paper is not acoustic cloaks, or car-
pets, or ways to hide things, but rather the type of material
necessary to achieve stealth. We define these materials as
acoustic metafluids, which as we will see can be considered
fluids with microstructure and properties outside those found
in nature. The objective is to derive the general class of
acoustic metafluids, and in the process show that there is a
closed set which can be mapped from one to another. Acous-
tic metafluids are defined as the class of fluids that (a) acous-
tically mimic another region as in the examples of Figs. 1
and 2, and (b) can themselves be mimicked by another
acoustic metafluid in the same sense. The requirement (b) is
important, implying that there is a closed set of acoustic
metafluids. The set includes as a special case the “normal”
acoustic fluid of uniform density and bulk modulus. Acoustic
metafluids can therefore be used to create stealth devices in a
normal fluid. But, in addition, acoustic metafluids can pro-
vide stealth in any type of acoustic metafluid. The reciprocal
nature of these fluids make them a natural generalization of
normal acoustic fluids.

The acoustic cloaks that have been investigated to date
fall into two categories in terms of the type of acoustic
metafluid proposed as cloaking material. Most studies, e.g.,
Refs. 2-7, consider the cloak to comprise fluid with the nor-
mal stress-strain relation but anisotropic inertia, what we call
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inertial cloaking. Particular realization of inertial cloaks are
in principle feasible using layers of isotropic normal
ﬁuid,gf11 the layers are introduced in order to achieve a ho-
mogenized medium that approximates a fluid with aniso-
tropic inertia. An alternative and more general approachlz’13
is to consider anisotropic inertia combined with anisotropic
elasticity. The latter is introduced by generalizing the stress
strain relation to include what are known as pentamode14
elastic materials.'*">"? Clearly, the question of how to design
and fabricate acoustic metafluids remains open. The focus of
this paper is to first characterize the acoustic metafluids as a
general type of material. In fact, as will be shown, this class
of materials contains broad degrees of freedom, which can
significantly aid in future design studies.

The paper is organized as follows. The concept of acous-
tic metafluids is introduced in Sec. II through two “acoustic
mirage” examples. The methods used to find the acoustic
metafluid in these examples are simple but not easily gener-
alized. An alternative and far more powerful approach is dis-
cussed in Sec. III: the transformation method. This is based
on using the change in variables between the coordinates of
the two regions combined with differential relations to iden-
tify the metafluid properties of the transformed domain. Le-
onhardt and Philbin'® provided an instructive review of the
transformation method in the context of optics. The transfor-
mation method does not, however, define the range of mate-
rial properties capable of being transformed. This is the cen-
tral objective of the paper and it is resolved in Sec. IV by
considering the energy density in the original and trans-
formed domains. Physical properties of acoustic metafluids
are discussed in Sec. V, including the unusual property that
the top surface is not horizontal when at rest under gravity.
The subset of acoustic metafluids that have isotropic inertia
is considered in Sec. VI, and a concluding summary is pre-
sented in Sec. VIL

Il. ACOUSTIC MIRAGES AND SIMPLE METAFLUIDS

The defining property of an acoustic metafluid is its abil-
ity to mimic another acoustic fluid that occupies a different
domain. The simplest type of acoustic illusion is what may

© 2009 Acoustical Society of America. 839



FIG. 1. (Color online) Three ways to acoustically hide something: envelope
it with a cloak (top), hide it under a carpet (middle), or hide the object in the
corner. In each case the acoustic metafluid in the cloaking layer emulates the
acoustic properties of uniform fluid occupying the layer plus the hidden
region.

be called an acoustic mirage where an observer hears, for
example, a reflection from a distant wall, but in reality the
echo originates from a closer boundary. Two examples of
acoustic mirages are discussed next.

A. 1D mirage

Consider perhaps the simplest configuration imaginable,
a one- dimensional (1D) semi-infinite medium. The upper
picture in Fig. 2 shows the left end of an acoustic half-space
x=0 with uniform density p, and bulk modulus «j. The
wave speed is cy=1\k,/py. Now replace the region 0<x
<b with a shorter section 0<b—a<x<b filled with an
acoustic metafluid. The acoustic mirage effect requires that
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FIG. 2. (Color online) The top shows waves in a semi-infinite medium x
=0. The wave incident from the right reflects from a perfectly reflecting
boundary at x=0. The lower figure shows the same medium in x> b with the
region 0 <x <b replaced by a shorter region of acoustic metafluid. Its prop-
erties are such that it produces a perfect acoustic illusion or “mirage.”

840  J. Acoust. Soc. Am., Vol. 125, No. 2, February 2009

Lo, Ko
eozm-.
b
/
€2
P1, P2 00, Ko
T
K
\
a

FIG. 3. (Color online) The same as Fig. 2 but now for oblique incidence.
The same strategy used for the 1D case is no longer adequate; however, a
solution may be found if the metafluid in the layer of thickness a is allowed
to have anisotropic inertia defined by the inertias p; and p, in the x; and x,
directions.

an observer in x> b hears a response as if the half-space is as
shown in the top of Fig. 2. This occurs if the metafluid region
is such that (i) no reflection occurs at the interface x=b, i.e.,
the acoustic impedance in the modified region is the same as
before; and (ii) the round trip travel time of a wave incident
from the right is unchanged. The impedance condition and
the travel time requirement ensure that the amplitude and
phase of any signal is exactly the same as in the original
half-space, and hence the mirage is accomplished.

Let the acoustic metafluid have material properties p and
K, with speed c=\k/p. Conditions (i) and (ii) are satisfied if

a b

pc=poco, =", (1)
C Co

respectively, implying the density and bulk modulus in the
shorter region are

b
p="po, (2a)

a

a
= 2b
K bKO ( )

In this example the acoustic metafluid is another acoustic
fluid, although with greater density and lesser bulk modulus.
Note that the total mass of the metafluid region is unchanged
from the original: pyb=pa.

B. 2D mirage

Consider the same problem in two dimensional (2D) un-
der oblique wave incidence, Fig. 3. A wave incident at angle
6, from the normal has travel time b/(c, cos 6,) in the origi-
nal layer. If the shortened region has wave speed c, then the
modified travel time is a/(c cos 6), where 6 is defined by the
Snell-Descartes law, (1/c¢)sin 8=(1/cy)sin 6,. At the same
time, the reflectivity of the modified layer is R=(Z-Z)/(Z
+Z,), where Z=pc/cos 6. The impedance and travel time
conditions are

Andrew N. Norris: Acoustic metafluids



pc PoCo a b
cos@® cosf, ccosf ccosby

3)

Solving for the modified parameters implies « is again given
by Eq. (2b) but the density is now

b po { [ a ., }
=————|1+/1-— 26, |. 4
P a?2 cos® 6, b? S =% “

The mirage works only for a single direction of incidence,
6y, and is therefore unsatisfactory. The underlying problem
here is that three conditions need to be met: Snell-Descartes’
law, matched impedances, and equal travel times, with only
two parameters, p and k. Some additional degree of freedom
is required.

1. Anisotropic inertia

One method to resolve this problem is to introduce the
notion of anisotropic mass density, see Fig. 3. The density of
the metafluid region is no longer a scalar, but becomes a
tensor: p— p. The equation of motion and the constitutive
relation in the metafluid are

pv=—Vp, p=—«kV -v, (5)

where v is the particle velocity and p is the acoustic pressure.
Assuming 2D dependence with constant anisotropic density
of the form

P1 0}
= ()
P {0 P2 ©

and eliminating v imply that the pressure satisfies a scalar
wave equation

p-cipi—c3pan=0, (7)

where ¢;= V’ij, j=1,2. Equations (5) and (7) are discussed
in greater detail and generality in Sec. V, but for the moment
we cite two results necessary for finding the metafluid in Fig.
3: the phase speed in direction n=ne;+n,e, is v, and the
associated wave or group velocity vector is w, where

22, 22
v? = ciny + cons, (8a)

w=0v"(c3ne, + cnse,). (8b)

2. Solution of the 2D mirage problem

The travel time is a/w-e;, and the impedance is now
Z=pv/cos 6, where, referring to Fig. 3, ny=cos 6 and n,
=sin 6. Hence, the conditions for zero reflectivity and equal
travel times are

PV Poco

= 9
cos 8 cos 6, (9a)

av b

= ) 9b
c% cos @ ¢(cos 6 (96)

Dividing the latter two relations implies « is given by Eq.
(2b). Snell-Descartes’ law, v~ sin 0=c51 sin 6,, combined
with Eq. (9a), yields that
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while Snell-Descartes’ law together with Eq. (8a) implies

2
¢y ¢
0 0—p1+<1—&>sin2 fo. (11)
2]
Comparison of Egs. (10) and (11) implies two identities for
p1 and p,. In summary, the three parameters of the modified
region are

a b a
K=ZK0, P1="Po» P2=7Po- (12)
a

b

These give the desired result: no reflection and the same
travel time for any angle of incidence. The metafluid layer
faithfully mimics the wave properties of the original layer as
observed from exterior vantage points.

3. Anisotropic stiffness

An alternative solution to the quandary raised by Eq. (4)
is to keep the density isotropic but to relax the standard
isotropic constitutive relation between stress o and strain &
=[Vu+(Vu)"]/2 to allow for material anisotropy. Thus, the
standard relation o=—pl with p=«tr € is replaced by the
stress-strain relation for pentamode materials"

o=«(Q:¢£)Q, (13a)

divQ=0. (13b)

The physical meaning of the symmetric second order tensor
Q is discussed later within the context of a more general
constitutive theory. The requirement div Q=0 was first noted
by Norris'? and is discussed in Sec. V. Standard acoustics
corresponds to Q=I.

Rewriting Eq. (13a) as o=—pQ and using the diver-
gence free property of Q, the equation of motion and the
constitutive relation in the metafluid are now

pv=—QVp, p=-kQ:Vv. (14)
Eliminating v yields the scalar wave equation
p-xQ:V(p~'QVp)=0. (15)

General properties of this equation have been discussed by
Norris'? and will be examined later in Sec. V. For the pur-
pose of the problem in Fig. 3, Q is assumed constant of the
form

0, 0
Qz[o QJ’ (16

then it follows that the phase speed and group velocity in
direction n are

222 22 “1 2 2
v =Ciny+GCony, w=v" (Cinje; + Congey), (17)

where C;=Q j\e“'Fp, j=1,2. Proceeding as before, using
Snell-Descartes’ law and the conditions of equal travel time
and matched impedance yields
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Since the important physical quantity is the product of « with
Q®Q, any one of the three parameters «, Q;, and Q,, may
be independently selected. A natural choice is to impose
div Q=0 at the interface, which means that the “traction”
vector Qn is continuous, where n is the interface normal. In
this case n=e; so that Q;=1 and

10

b a
Q= 0 b (18)
a

p=""pPo, K=7Ko
a

b

Comparing the alternative metafluids defined by Egs.
(12) and (18) note that in each case the density and the stiff-
ness associated with the normal e; direction both equal their
ID values given by Eq. (2). The first metafluid of Eq. (12)
has a smaller inertia in the transverse direction e,(p, <p;).
The second metafluid defined by Eq. (18) has increased stiff-
ness in the transverse direction (Q,> Q). The net effect in
each case is an increased phase speed in the transverse di-
rection as compared with the normal direction (c,>c;,C,
>C)).

The 1D and 2D mirage examples illustrate the general
idea of acoustic metafluids as fluids that replicate the wave
properties of a transformed region. However, the methods
used to find the metafluids are not easily generalized to arbi-
trary regions. How does one find the metafluid that can, for
instance, mimic a full spherical region by a smaller shell?
This is the cloaking problem. The key to the generalized
procedure are the related notions of transformation and finite
deformation, which are introduced next.

lll. THE TRANSFORMATION METHOD

A. Preliminaries

Let ) and o denote the original and the deformed do-
mains (the regions 0<X<b and b—a<x<b in the ex-
amples of Sec. II. The coordinates in each configuration are
X and x, respectively; the divergence operators are Div and

div, and the gradient (nabla) operators are V and V. The
upper and lower case indices indicate components, X, x; and
the component form of div A is dA;/dx;=A;; or dA;;/dx;
=A;;; when A is a vector and a second order tensorlike quan-
tity, respectively, and repeated indices imply summation
(case sensitive). Similarly Div B=By; .

The finite deformation or transformation is defined by
the mapping () — w according to x=x(X). In the terminol-
ogy of finite elasticity X describes a particle position in the
Lagrangian or undeformed configuration, and x is particle
location in the Eulerian or deformed physical state. The
transformation )y is assumed to be one-to-one and

invertible.'” The deformation gradient is defined F=Vx with
inverse F~'=VX, or in component form F;=dx;/ dX,, F,_l-1
=0X,;/dx;. The Jacobian of the finite deformation is A
=det F=|F , or in terms of volume elements in the two con-
figurations, A=dv/dv. The polar decomposition implies F
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=VR, where the rotation R is proper orthogonal (RR’
=R'R=I, det R=1) and the left stretch tensor V € Sym* is
the positive definite solution of V2=FF'. Note for later use
the kinematic identities'®

div(A~'F) =0, (19a)

Div(AF ) =0, (19b)

and the expression for the Laplacian in X in terms of deriva-
tives in X, i.e., the chain rule®

Vf=Adiv(A'VEV f). (20)

B. The transformation method

The undeformed domain () is of arbitrary shape and
comprises a homogeneous acoustic fluid with density p, and
bulk modulus «,. The goal is to mimic the scalar wave equa-
tion in (),

= (ko/pp)V?p=0, X eQ, (21)

by the wave equation of a metafluid occupying the deformed
region . The basic result®®!” is that Eq. (21) is exactly
replicated in w by the equation

p—xdiv(p'Vp)=0, xe o, (22)

where the bulk modulus and inertia tensor are
k=K, p=poAV~Z. (23)

The equivalence of Eq. (21) with Egs. (22) and (23) is
evident from the differential equality (20). The idea is to use
the change in variables from X to x to identify the metafluid
properties. Equation (23) describes a metafluid with aniso-
tropic inertia and isotropic elasticity. It can be used for mod-
eling acoustic cloaks but has the unavoidable feature that the
total effective mass of the cloak is infinite. This problem,
discussed by Norris,'? arises from the singular nature of the
finite deformation in a cloak which makes AV~2 noninte-
grable. This type of fluid, which could be called an inertial
fluid, appears to be the main candidate considered for acous-
tic cloaking to date. The major exception is Milton et al.”
who considered fluids with properties of pentamode materi-
als, although as we will discuss in Sec. IV, their findings are
of limited use for acoustic cloaking.

1. Pentamode materials

Norris'? showed that Eq. (20) is a special case of a more
general identity:

Vp=AQ:V(AT'Q'V?V p), (24)

where Q is any symmetric, invertible, and divergence-free
(div Q=0) second order tensor. The increased degrees of
freedom afforded by the arbitrary nature of Q means that Eq.
(21) is equivalent to the generalized scalar wave equation in
w,
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p-kQ:V(p'QVp)=0, Xxe o, (25)

where the modulus « and the inertia follow from a compari-
son of Egs. (21), (24), and (25) as

k=Ko, p=p AQV2Q. (26)

As will become apparent later, these metafluid parameters
describe a pentamode material with anisotropic inertia. For
the moment we return to the acoustic mirages in light of the
general transformation method.

C. Mirages revisited

The 2D mirage problem corresponds to the following
finite deformation x;=b—a+ab™'X,, x,=X, for 0<X,<b,
—oo < X, <. The deformation gradient is

a
F=|b |, 27)
0 1

implying R=I, V=F and A=a/b. Equation (23) therefore
implies
b
—po O
a
K=—Ky P= . (28)
b 0 a
bPo

These agree with the parameters found in Sec. II, Eq. (12).

Using the more general formulation of Egs. (25) and
(26) with the arbitrary tensor chosen as Q=A"'V yields the
metafluid described by Eq. (18). It is interesting to note that
although p of Eq. (26) is, in general, anisotropic, it can be
made isotropic in this instance by any Q proportional to V.
Keeping in mind the requirement seen above that Q;=0, we
consider as a second example of Eq. (25) the case Q
=A~'V. The mirage can then be achieved with material prop-
erties

1
Q=1,

b a

pP="pPo, K=TKop,
a

Y (29)

QIS O

This again corresponds to a pentamode material with isotro-
pic inertia, equal to that of Eq. (18). These two examples
illustrate the power associated with the arbitrary nature of the
divergence-free tensor Q. There appears to be a multiplica-
tive degree of freedom associated with Q that is absent using
anisotropic inertia. As will be evident later, this degree of
freedom is related to a gauge transformation.

IV. THE MOST GENERAL TYPE OF ACOUSTIC
METAFLUID

A. Summary of main result

In order to make it easier for the reader to assimilate, the
paper’s main result is first presented in the form of a theo-
rem. In the following, Q, and Q are arbitrary symmetric,
invertible, and divergence-free second order tensors.

Theorem 1. The kinetic and strain energy densities in ()
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of the form

TO = Utp()U, WO = Ko(QoﬁvU)z, (30)

respectively, are equivalent to the current energy densities in
w:

T=w'pu, W=«k(Q:Vu)?, (31)
where
k= Ak, (32a)

p=AQFQ;'pQ;'F'Q. (32b)

Discussion of the implications are given following the proof.

B. Gauge transformation

The energy functions per unit volume in the undeformed
configuration, 7, and W, depend on the infinitesimal dis-
placement U in that configuration. The kinetic energy is de-
fined by the density p,, while the strain energy is W,
=CoukrUj UL g, where Cyjj, are elements of the stiffness.
The density and stiffness possess the symmetries pg;;=po;s
Couxr=Cokwis» Coukr=Cosxr- The total energy is Ey=To
+ W, and the total energy E=T+ W per unit deformed volume
is, using E,dV=Edv, simply E=A"'E,,.

Our objective is to find a general class of material pa-
rameters {p,,Co} that maintain the structure of the energy
under a general transformation y. Structure here means that
the energy remains quadratic in velocity and strain. In order
to achieve the most general form for the transformed energy,
introduce a gauge transformation for the displacement. Let

U=Gu, (33)

or U;=u,;G;; in components, where G is independent of time
but can be spatially varying. Thus, using the chain rule U,
=U, ;F; yields E=T+W, where the kinetic and strain energy
densities are

T=u'pu, (34a)

W= A" CyxrFiF i Gigu) ((Gipuy) g (34b)
and the transformed inertia is

p=A"Gp,G". (35)

The kinetic energy has the required structure, quadratic in the
velocity; the strain energy, however, is not in the desired
form. The objective is to obtain a strain energy of standard
form

W= C,»jkluj’iul,k, (36)

where C has the usual symmetries: C;jy;=Cyyijs Cijtg=Cjigy-

The question of how to convert W of Eq. (34b) into the
form of Eq. (36) for generally anisotropic elasticity stiffness
C, will be discussed in a separate paper. The objective here
is to find the largest class of metafluids that includes all those
previously found.
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C. Pentamode to pentamode

In order to proceed assume that the initial stiffness ten-
sor is of pentamode form"?

Co=r0Qo ® Qo (37a)

Div Q, =0, (37b)

that is, Coyxr=koQoyQokz» Where Qu=Qy is a positive defi-
nite symmetric second order tensor. The tensor Q, is neces-
sarily divergence-free.12

The strain energy density in the physical space after the
general deformation and gauge transformation is now

W= oA [QOIJ(M_jGjJ),I]2~ (38)
Consider
Qo1/(;Gj)) 1= Qo/Gigu; 1+ QosGy ;. (39)

In order to achieve the quadratic structure of Eq. (36) the
final term in Eq. (39) must vanish. Since u is considered
arbitrary this in turn implies that Q,;,G;, ; must vanish for all
Jj- With no loss in generality let

G'=Q,'P, (40)

or G; J=Q5}MPMJ- in components. Then using the identity for
the derivative of a second order tensor, (A"),a:
-A"'A LA™, where @ can be any parameter, gives

0=00,Gjjr=- Q017Q01xQok1.1Qot s Pys + P I
-1
== Qoi.1QormPuj+ Prjs=Prjs (41)

where the important property (37b) has been used. Hence,
Div P=0. Then using Eq. (39) yields

QOIJ(ujGjJ),I =P =PpFiu;; = AQijuj,i’ (42)
where the tensor Q is defined by

P=AF'Q& Q=A"'FP. (43)
The condition Div P=0 becomes, using Eq. (19b),

P = (AFZIQU),I = AF;IQU,, =AQjj: (44)
implying

divQ=0. (45)

It has therefore been demonstrated that if the gauge
transformation is defined by

G'=AQ;'F'Q, (46)

where Q is divergence free in physical coordinates, then the
strain energy (38) is W=xoA(Q;u; ;). This is of the desired
form, Eq. (36), with C;;;=«Q;;Qy. hence completing the
proof of Theorem 1.

D. Discussion
1. Equivalence of physical quantities

Theorem 1 states that the pentamode material defined by
stiffness «, with stresslike tensor Q, and anisotropic inertia

Py 1is converted into another pentamode material with aniso-
tropic inertia. The properties of the new metafluid are defined
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by the original metafluid and the deformation-gauge pair
{F,G}, where F is arbitrary and possibly inhomogeneous,
and G is given by Eq. (46) with Q symmetric, positive defi-
nite, and divergence-free but otherwise completely arbitrary.
The special case of a fluid with isotropic stiffness but aniso-
tropic inertia, Eq. (23), is recovered from Theorem 1 when
the starting medium is a standard acoustic fluid and Q is
taken to be I.

It is instructive to examine how physical quantities
transform: we consider displacement, momentum, and
pseudopressure. Eliminating G, it is possible to express the
new displacement vector in terms of the original,

u=A"'Q'FQ,U. (47)

Physically, this means that as the metafluid in w acoustically
replicates that in (), particle motion in the latter is converted
into the mimicked motion defined by Eq. (47).

Define the momentum vectors in the two configurations,

m,=p,U, m=pu. (48)
Equations (35) and (46) imply that they are related by
m = QF Q' m,. (49)

The transformation of momentum is similar to that for dis-
placement, Eq. (47), but with the inverse tensor, i.e., u
=G™'U while m=A"'Gm,,

Stress in the two configurations is defined by Hooke’s
law in each:

0,=Cy:VU, o=C:Vu, (50)
where C, and C are the fourth order elasticity tensors,
Co=1Qy® Q) C=xkQ®Q, (51)

that is, C;;=xQ;;Qy, etc. Using Eqs. (37), (42), and (51)
yields

o,=-pQ, (52a)

a=-pQ. (52b)
where p is the same in each configuration,

p=—kQ:Vu=-k,Q,:VU. (53)

The quantity p is similar to pressure, and can be exactly
identified as such when Q is diagonal, but it is not pressure
in the usual meaning. For this reason it is called the
pseudopressure. It is interesting to compare the equal values
of p in ) and w with the more complicated relations (47) and
(49) for the displacement and momentum.

2. Equations of motion

The equations of motion can be derived as the Euler—
Lagrange equation for the Lagrangian 7—W. A succinct form
is as follows, in terms of the the momentum density m and
the stress tensor o

m=Vo. (54)

The constitutive relation may be expressed as an equation for
the pseudopressure p,]2
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i =— kQ:Vi, (55)
while Egs. (53), (48), and (54) imply that the acceleration is
ii=—p'QVp. (56)

Eliminating p between the last two equations implies that the
displacement satisfies

kQQ:Vii — pii =0. (57)

This is, as expected, the elastodynamic equation for a penta-
mode material with anisotropic inertia. Alternatively, elimi-
nating i between Egs. (55) and (56) yields a scalar wave
equation for the pseudopressure,

p-kQ:V(p™'QV p)=0. (58)

This clearly reduces to the standard acoustic wave equation
when Q=I and p is isotropic.

3. Relation to the findings of Milton et al.

The present findings appear to contradict those of Milton
et al."”® who found the negative result that it is not in general
possible to find a metafluid that replicates a standard acoustic
medium after arbitrary finite deformation. However, their re-
sult is based on the assumption that G=F [their Eq. (2.2)].
Equation (46) implies that Q must then be

Q=A""FQ,F'". (59)

Using Egs. (19a) and (37b) yields Q;;;=A~'Qq;,F ;. Hence,
this particular Q can only satisfy the requirement (45) that
div Q=0 if

672 X; _
X,0X;

Qo (60)
Milton et al."* considered Q, isotropic (diagonal), in which
case Eq. (60) means that the only permissible finite deforma-

tions are harmonic, i.e., those for which V2x=0. In short, the
negative findings of Milton et al.” are a consequence of
constraining the gauge to G=F, which in turn severely re-
stricts the realizability of metafluids except under very lim-
ited types of transformation deformation. The main differ-
ence in the present analysis is the inclusion of the general
gauge transformation which enables us to find metafluids
under arbitrary deformation.

V. PROPERTIES OF ACOUSTIC METAFLUIDS

The primary result of the paper, summarized in Theorem
1, states that the class of acoustic metafluids is defined by the
most general type of pentamode material with elastic stiff-
ness kKQ® Q where div Q=0, and anisotropic inertia p. We
now examine some of the unusual physical properties, dy-
namic and static, to be expected in acoustic metafluids. Some
of the dynamic properties have been discussed by Norris, "
but apart from Milton and Cherkaev'® no discussion of static
effects has been given.
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A. Dynamic properties: plane waves

Consider plane wave solutions for displacement of the
form u(x,7)=qe* ™) for [n|=1 and constants q, k, and v,
and uniform metafluid properties. Nontrivial solutions satis-
fying the equations of motion (57) require

(x(Qn) ® (Qn) - pv*)q =0. (61)

The acoustical or Christoffel” tensor x(Qn)® (Qn) is rank
one and it follows that of the three possible solutions for v?,
only one is not zero, the quasilongitudinal solution

v’=kn-Qp~'Qn, q=p7'Qn. (62)

The slowness surface is an ellipsoid. The energy flux
Velocity20 (or wave velocity or group velocity) is

w=0v"kQp 'Qn. (63)

w is in the direction Qq, and satisfies w-n=wv, a well known
relation for generally anisotropic solids with isotropic den-
sity.

B. Static properties
1. Five easy modes

The static properties of acoustic metafluids are just as
interesting, if not more so. Hooke’s law (52b) is

o=Ce, (64)

where £=¢' is strain and the stiffness C is defined by Eq.
(50b). The strain energy is W=«(Q: &)>. Note that C is not
invertible in the usual sense of fourth order elasticity tensors.
If considered as a 6 X 6 matrix mapping strain to stress then
the stiffness is rank one: it has only one nonzero eigenvalue.
This means that there are five independent strains, each of
which will produce zero stress and zero strain energy, hence
the name pentamoale.15 The five “easy” strains are easily
identified in terms of the principal directions and eigenvalues
of Q. Let

Q=N qq; + \2q2q; + \3q343, (65)

where {q;,q,,qs} is an orthonormal triad. Three of the easy
strains are pure shear: q,q;+q;q;, { # j and the other two are
N30292— 293493 and N\ 1qpq;—Aoqq;. Any other zero-energy
strain is a linear combination of these. Note that there is no
relation analogous to Eq. (64) for strain in terms of stress
because only the single “component” Q: ¢ is relevant, i.e.,
energetic.

It is possible to write o in the form (52) where p=
—kQ:&. Under static load in the absence of body force
choose « such that p=const, or equivalently, Eq. (37b). The
relevant strain component is then Q:£=-«"'p and the sur-
face tractions supporting the body in equilibrium are t
=0-n=-pQ-n. Figure 4 illustrates the tractions required to
maintain a block of metafluid in static equilibrium. Note that
the traction vectors act obliquely to the surface, implying
that shear forces are necessary. Furthermore, the tractions are
not of uniform magnitude. These properties are to be com-
pared with a normal acoustic fluid which can be maintained
in static equilibrium by constant hydrostatic pressure.
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FIG. 4. (Color online) A rectangular block of metafluid is in static equilib-
rium under the action of surface tractions as shown. The two orthogonal
arrows inside the rectangle indicate the principal directions of Q (30° from
horizontal and vertical) and the relative magnitude of its eigenvalues (2:1).
The equispaced arrows faithfully represent the surface loads.

2. divQ=0

The gedanken experiment of Fig. 4 also implies that Q
has to be divergence-free. Thus, imagine a smoothly varying
but inhomogeneous metafluid C=xQ ® Q in static equilib-
rium under the traction t=—pQ-n for constant p. The diver-
gence theorem then implies div Q=0 everywhere in the in-
terior. This argument is a bit simplistic, but it provides the
basis for a more rigorous proof.l_2 Thus, stress in the
metafluid must be of the form —fQ where Q is a scalar
multiple of Q. Local equilibrium requires div fQ 0, or
Vinf= —Q‘1 div Q This can be integrated to find f to within
a constant. Now define Q= fQ, and note that the tractions
must be of the form t=—pQ-n for constant p. The normal-
ized Q is divergence-free.

3. Nonhorizontal free surface

Consider the same metafluid in equilibrium under a
body force, e.g., gravity. Assuming the inertia is isotropic
(see the comments about inertia at zero frequency in Sec.
Vi),

divo+pg=0. (66)
Use Eq. (52b) with div Q=0 and the invertibility of Q im-
plies

Vp=pQ'g. (67)

For constant Q™! pg this can be integrated to give an explicit
form for the pseudopressure,

p=(x-xp)-Q'pg, (68)

where X, is any point lying on the surface of zero pressure.
Unlike normal fluids, the surface where p=0 does not have
to be horizontal, see Fig. 5. The pseudopressure increases in
the direction of g, as in normal fluids. However, it is possible
that p varies in the plane x-g=0. For instance, the traction
along the lower surface in Fig. 5 decreases in magnitude
from left to right.

VI. METAFLUIDS WITH ISOTROPIC DENSITY
A. Necessary constraints on the finite deformation

The most practical case of interest is of course where the
initial properties are those of a standard acoustic fluid with
isotropic density and isotropic stress. The circumstances un-
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Q
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FIG. 5. (Color online) The same metafluid of Fig. 4 with isotropic density is
in equilibrium under gravity. The upper surface is traction-free but nonho-
rizontal, an essential feature of metafluids. For this particular metafluid the
top surface makes an angle of 19.11° with the horizontal. Also, the tractions
on the horizontal lower boundary are inhomogeneous although parallel. The
small rectangle is discussed in Fig. 6.

T

der which the mapped inertia p is also isotropic are now
investigated. Acoustic metafluids with isotropic inertia are an
important subset since it can be argued that achieving aniso-
tropic inertia could be more difficult than the anisotropic
elasticity. Indeed, the very concept of anisotropic inertia is
meaningless at zero frequency, unlike anisotropic stiffness.
Assuming py=pol and Q(y=I then the current density
becomes, using Eq. (32b) and the fact that Q is symmetric,

p=pAQVQ. (69)
If p=plI then Eq. (69) implies Q must be of the form
Q=p"(pA)"V. (70)

Thus, Q is proportional to the stretch tensor V and the coef-
ficient of proportionality defines the current density.
It is not in general possible to choose Q in the form

Q=aV, (71)

where a# 0. Certainly, Q of Eq. (71) is symmetric and in-
vertible but not necessarily divergence-free. The latter con-
dition requires div(aV)=0 which in turn may be expressed
V1n a=-V~'div V. The necessary and sufficient condition
that V=! div V is the gradient of a scalar function, and hence
a can be found which makes Q of Eq. (71) possible, is that
V satisfy

curl V-1 div vV =0. (72)

This condition is not very useful. It does, however, indicate
that the possibility of achieving isotropic p depends on the
underlying finite deformation; there is a subset of general
deformations that can yield isotropic inertia. The deforma-
tion gradient F has nine independent elements, V has six,
and R has three. The condition (72) is therefore a differential
constraint on six parameters. We now demonstrate an alter-
native statement of the condition div(a'V)=0 in terms of the
rotation R. This will turn out to be more useful, leading to
general forms of potential deformation gradients.

Substituting F=a~'QR into the identity (19a) and using
Eq. (45) imply that
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Qij(A_la_leK),i =0. (73)
Using Q=aFR’ and the identity F'V=V along with a#0
yield

RjM(A_] a_leK),M =0. (74)
Then using the identity (RxR;y) ,=0, Eq. (74) yields

Bx=RixRy— VB=R'DivR’, (75)

where B=-In(Aa).
The necessary and sufficient condition that Eq.(75) can
be integrated to find B is VAVB=0, or using Eq. (75)

Curl R’ Div R’ =0. (76)

The integrability condition (76) is in general not satisfied by
R, except in trivial cases. Norris'? noted that isotropic den-
sity can be obtained if R=I. This corresponds to B=const,
and it can be realized more generally if R is constant. Hence,

Lemma 1. If the rotation R is constant then a normal
acoustic fluid can be mapped to a unique metafluid with
isotropic inertia:

Ey=ko(DivU)2+pU-U inQ, (77)

is equivalent to the current energy density

E=\(V:Vu)’+pa-u in o, (78)
where
A=Ay, p=A'p,. (79)

The total mass of the deformed region w is the same as the
total mass contained in ().

The parameter \ is used to distinguish it from x=Ak,
because in this case Q=A"V. Also, the displacement fields
are related simply by u=RU.

As an example of a deformation satisfying Lemma 1:
x=f(X-AX)AX for any constant positive definite symmetric
A. This type of finite deformation includes the important
cases of radially symmetric cloaks. Thus, Norris'? showed
that radially symmetric cloaks can be achieved using penta-
mode materials with isotropic inertia.

B. General condition on the rotation

The results so far indicate that isotropic inertia is achiev-
able for transformation deformations with constant rotation.
We would, however, like to understand the broader implica-
tions of Eq. (76). The rotation can be expressed in Euler
form

R =exp(6 axt a), (80)

where 0 is the angle of rotation, the unit vector a is the
rotation axis, and the axial tensor axt(a) is a skew symmetric
tensor defined by axt(a)b=aAb. The vector fa encapsulates
the three independent parameters in R. The integrability con-
dition (76) is now replaced with a more explicit one in terms
of #(X) and a(X). It is shown in the Appendix that

J. Acoust. Soc. Am., Vol. 125, No. 2, February 2009

R'DivR'=aAVO+Z, (81)

where the vector Z follows from Eq. (A6). In particular, Z
vanishes if the axis of rotation a is constant. In general, for
arbitrary spatial dependence, Eq. (81) implies that the inte-
grability condition (76) is equivalent to the following con-
straint on the rotation parameters:

aV?0—(a-V)Vo+(Vo-V)a—(V-a)VO+Curl Z=0.
(82)

In summary,

Lemma 2. If the rotation R satisfies Eq. (76) or equiva-
lently, if 6 and a satisfy the condition (82), then a normal
acoustic fluid can be mapped to a unique metafluid with
isotropic inertia according to Eqs. (77) and (78) with

N=A"le P, p=AlePp,, (83)
where the function B is defined by Eq. (75).

C. Simplification in 2D
The integrability condition (76) simplifies for the impor-
tant general configuration of 2D spatial dependence. In this

case a is constant, 8=6(X 1) where X | -a=0. Equation (82)
then reduces to

V26=0, (84)

1. Example

Consider finite deformations with inhomogeneous rota-
tion

0=06+ yX;, a=es, (85)

for constants 6, and 7. This satisfies Eq. (84) and therefore
Eq. (75) can be integrated. The metafluid in w has isotropic
density and pentamode stiffness given by Lemma 2, where
B=v(X,—Xy,). The constants 6, and X, may be set to zero,
with no loss in generality.

As an example of a deformation that has rotation of the
form (85), consider deformation of the region
=[-m/2y,w/2y]X[0,L] X R according to

X1 A]] A]2 0 'y_l sin ’yXle_yxz
X [=[An Ay O || y'(1-cos yX;e72) |, (86)
X3 0 0 o X3

where a>0 and the 2 X 2 symmetric matrix A with elements

A;; is positive definite. The deformation gradient is F
=V(X,)R(X,) with V=Ae "2+ ae,e;, and
cos yX; —sinyX; O
R=|sinyX; cosyX; O0]. (87)
0 0 1

The mapped metafluid is defined by the energy density in w
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In particular, it has isotropic inertia.

This example is not directly applicable in modeling a
complete acoustic cloak. However, it opens up the possibility
of patching together metafluids with different local proper-
ties, each with isotropic inertia so that the entire cloak has
isotropic mass density.

VIl. SUMMARY AND CONCLUSION

Whether it is the simple 1D acoustic mirage of Fig. 2 or
a three-dimensional acoustic cloak, we have seen how acous-
tic stealth can be achieved using the concept of domain
transformation. The fluid in the transformed region exactly
replicates the acoustical properties of the original domain.
The most general class of material that describes both the
mimic and the mimicked fluids is defined as an acoustic
metafluid. A general procedure for mapping/transforming
one acoustic metafluid to another has been described in this
paper.

The results, particularly Theorem 1 in Sec. IV, show that
acoustic metailuids are characterized by as few as two pa-
rameters (p,\k) and as many as 12 (p,VxQ). This broad
class of materials can be described as pentamode materials
with anisotropic inertia. It includes the restricted set of fluids
with anisotropic inertia and isotropic stress (Q=I).

The arbitrary nature of the divergence-free tensor Q
adds an enormous amount of latitude to the stealth problem.
It may be selected in some circumstances to guarantee iso-
tropic inertia in cloaking materials, examples of which are
given elsewhere.'” In this paper we have derived and de-
scribed the most general conditions required for p to be iso-
tropic. The conditions have been phrased in terms of the
rotation part of the deformation, R. If this is a constant then
the cloaking metafluid is defined by Lemma 1. Otherwise the
condition is Eq. (76) with the metafluid given by Lemma 2.
The importance of being able to use metafluids with isotropic
inertia should not be underestimated. Apart from the fact that
it resolves questions of infinite total effective mass'? isotro-
pic inertia removes frequency bandwidth issues that would
be an intrinsic drawback in materials based on anisotropic
inertia.

This paper also describes, for the first time, some of the
unusual physical features of acoustic metafluids. Strange ef-
fects are to be expected in static equilibrium, as illustrated in
Figs. 4 and 5. These properties can be best understood
through realization of acoustic metafluids, and a first step in
that direction is provided by the type of microstructure de-
picted in Fig. 6. The macroscopic homogenized equations
governing the microstructure are assumed in this paper to be
those of normal elasticity. It is also possible that the large
contrasts required in acoustic metafluids could be modeled
with more sophisticated constitutive theories, such as nonlo-
cal models or theories involving higher order gradients.
There is considerable progress to be made in the modeling,
design, and ultimate fabrication of acoustic metafluids.

In addition to the degrees of freedom associated with the
tensor Q, the properties of metafluids depend on the finite
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FIG. 6. (Color online) This shows a possible microstructure for a micro-
scopic rectangular region of the metafluid in Figs. 4 and 5, see the latter. The
sides of the rectangle are aligned with the principal axes of Q. The metafluid
is a pentamode material comprising a regular array of small beads such that
each is in lubricated point contact with its three neighbors (2D). The dashed
lines indicate the directions of the forces acting between the small oval-
shaped beads. Although the structure as shown is unstable under shear, a
realistic metafluid might contain some stabilizing mechanisms to enhance its
rigidity. Details will be provided in a forthcoming paper.

deformation through V. Even in the simple example of the
1D mirage, one could arrive at the lower picture in Fig. 2
through different finite deformations. This raises the question
of how to best choose the nonunique deformation gradient F.
The present results indicate some strategies for choosing F to
ensure the cloak inertia has isotropic mass, and the cloaking
properties are in effect determined by the elastic pentamodal
material. Li and Pendry' considered other optimal choices
for the finite deformation. Combined with the enormous free-
dom afforded by the arbitrary nature of Q, there are clearly
many optimization strategies to be considered.
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APPENDIX: DERIVATION OF EQUATION (81)

Equation (80) can be written in Euler—Rodrigues form.?!

R=1+sin 6S + (1 —cos 6)S?, (A1)
where
0 -a3 a
S=axt(a)=| a3z 0 -—aq (A2)
-a, a, 0

Equation (Al) can be used, for instance, to find @
=cos™! [%(l—tr R)] and hence a from S=(R-R/)/(2 sin 6).
For the sake of notational brevity, in the remainder of the
Appendix c=cos 0 and s=sin 6.
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Explicit differentiation of Eq. (A1) yields
Rijy=(cSiyy=sPi)0,+5Sy,—(1=c)Pyy, (A3)

where PZ—SZZI—aa. NOtlng that SU”IZ—(ﬁ/\a)i and Pi.],.]
=—a,V-a—a-Va,, implies

DivR'=caaVO-sVra—s(I-aa)-VO+(1-c)
X[a(V -a)+ (a- V)al. (A4)

Multiplying by R’ using Eq. (A1) gives after some elimina-
tion and simplification,

R'DivR'=anVO+Z, (A3)
where
Z=-s[cI+(1-c)aa]l-Vaa+(1-c)a(V-a)—(1-c¢)[I

—-(1-c)aa]-(a-V)a-s(1-c)an(a-V)a. (A6)
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