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Acoustic cloaking theory

By ANDREW N. NORRis*

Mechanical and Aerospace Engineering, Rutgers University,
Piscataway, NJ 08854-8058, USA

An acoustic cloak is a compact region enclosing an object, such that sound incident from all
directions passes through and around the cloak as though the object was not present.
A theory of acoustic cloaking is developed using the transformation or change-of-variables
method for mapping the cloaked region to a point with vanishing scattering strength. We
show that the acoustical parameters in the cloak must be anisotropic: either the mass
density or the mechanical stiffness or both. If the stiffness is isotropic, corresponding to a
fluid with a single bulk modulus, then the inertial density must be infinite at the inner
surface of the cloak. This requires an infinitely massive cloak. We show that perfect
cloaking can be achieved with finite mass through the use of anisotropic stiffness. The
generic class of anisotropic material required is known as a pentamode material (PM). If the
transformation deformation gradient is symmetric then the PM parameters are explicit,
otherwise its properties depend on a stress-like tensor that satisfies a static equilibrium
equation. For a given transformation mapping, the material composition of the cloak is not
uniquely defined, but the phase speed and wave velocity of the pseudo-acoustic waves in the
cloak are unique. Examples are given from two and three dimensions.
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1. Introduction

The observation that the electromagnetic equations remain invariant under
spatial transformations is not new. Ward & Pendry (1996) used it for numerical
purposes, but the result was known to Post (1962) who discussed it in his book,
and it was probably known far earlier. The recent interest in passive cloaking and
invisibility is due to the fundamental result of Greenleaf et al. (2003a,b) that
singular transformations could lead to cloaking for conductivity. Not long after
this important discovery Leonhardt (2006) and Pendry et al. (2006) made the
key observation that singular transformations could be used to achieve cloaking
of electromagnetic waves. These results and others have generated significant
interest in the possibility of passive acoustic cloaking.

Acoustic cloaking is considered here in the context of the so-called transforma-
tion or change-of-variables method. The transformation deforms a region in such
a way that the mapping is one-to-one everywhere except at a single point, which
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Figure 1. The undeformed simply connected region Q is transformed by the mapping x into the
multiply connected cloak w. Essentially, a single point O is transformed into a hole (the invisible
region) surrounded by the cloak w. The outer boundary 0w is coincident with Q4 (=0Q) and the
inner boundary O0w_ is the image of the point O. Apart from O and O0w_ the mapping is
everywhere one-to-one and differentiable.

is mapped into the cloak inner boundary (figure 1). The acoustic problem is for
the infinitesimal pressure p(x, t) that satisfies the scalar wave equation in the
surrounding fluid,

Vip—p = 0. (1.1)

The basic idea is to alter the cloak’s acoustic properties (density and modulus) so
that the modified wave equation in w mimics the exterior equation (1.1) in the entire
region Q. This is achieved if the spatial mapping of the simply connected region Q to
the multiply connected cloak w has the property that the modified equation in w
when expressed in Q coordinates has exactly the form of (1.1) at every point in Q.

The objective here is to answer the question: what type of material is required to
realize these unusual properties that make an acoustic cloak? While cloaking
cannot occur if the bulk modulus and density are simultaneously scalar quantities
(see below), it is possible to obtain acoustical cloaks by assuming that the mass
density is anisotropic (Chen & Chan 2007; Cummer & Schurig 2007; Cummer et al.
2008). A tensorial density is not ruled out on fundamental grounds (Milton
et al. 2006) and in fact there is a strong physical basis for anisotropic inertia. For
instance, Schoenberg & Sen (1983) showed that the inertia tensor in a medium
comprising alternating fluid constituents is transversely isotropic (TI) with
elements (p) in the direction normal to the layering, and (p~ ') ~' in the transverse
direction, where () is the spatial average. Anisotropic effective density can arise
from other microstructures, as discussed by Mei et al. (2007) and Torrent &
Sanchez-Dehesa (2008). The general context for anisotropic inertia is the Willis
equations of elastodynamics (Milton & Willis 2007), which Milton et al. (2006)
showed are the natural counterparts of the electromagnetic (EM) equations that
remain invariant under spatial transformation. The acoustic cloaking has been
demonstrated, theoretically at least, in both two and three dimensions: a
spherically symmetric cloak was discussed by Chen & Chan (2007) and Cummer
et al. (2008), while Cummer & Schurig (2007) described a two-dimensional
cylindrically symmetric acoustic cloak. These papers use a linear transformation
based on prior EM results in two dimensions (Schurig et al. 2006).

The cloaks based on anisotropic density in combination with the inviscid
acoustic pressure constitutive relation (bulk modulus) will be called inertial
cloaks (ICs). The fundamental mathematical identity behind the ICs is the
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observation of Greenleaf et al. (2007) that the scalar wave equation is mapped
into the following form in the deformed cloak region:

L0 ijap)—"—o =T 1.2
T (Vi ) =0 (12)
Here g=(g;;) is the Riemannian metric with |g| = det(g;) and (¢") = (gﬁ)fl. The
reader familiar with differential geometry will recognize the first term in equation
(1.2) as the Laplacian in curvilinear coordinates. Comparison of the transformed
wave equation (1.2) with the IC wave equation provides explicit expressions for
the IC density tensor and the bulk modulus (Greenleaf et al. 2008).

We will derive an identity equivalent to (1.2) in §2 using an alternative
formulation adapted from the theory of finite elasticity. A close examination of
the anisotropic density of the ICs shows that its volumetric integral, the total
mass, must be infinite for perfect cloaking. This raises grave questions about the
usefulness of the ICs. The rest of this paper provides a solution to this quandary.
The main result is that the IC is a special case of a more general class of the
acoustic cloaks, defined by anisotropic inertia combined with anisotropic
stiffness. The latter is obtained through the use of the pentamode materials
(PMs; Milton & Cherkaev 1995). In the same way that an ideal acoustic fluid can
be defined as the limit of an isotropic elastic solid as the shear modulus tends to
zero, there is a class of limiting anisotropic solids with five (hence penta) easy
modes of deformation analogous to shear, and one non-trivial mode of stress and
strain. The general cloak comprising PM and IC is called the PM-IC model. The
additional degrees of freedom provided by the PM-IC allow us to avoid the
infinite mass dilemma of the IC.

We begin in §2 with a new derivation of the IC model, and a discussion of the
infinite mass dilemma. The PMs are introduced in §3 where it is shown that they
display simple wave properties, such as an ellipsoidal slowness surface. The
intimate connection between the PM and the acoustic cloaking follows from
theorem 4.2 in §4. The properties of the generalized PM-IC model for cloaking
are developed in §4 through the use of an example cloak that can be either pure
IC or pure PM as a parameter is varied. Further examples are given in §5, with a
concluding summary of the generalized acoustic cloaking theory in §6.

2. The IC

The transformation from Q to w is described by the point-wise deformation from
XeQ to x=x(X) €w. In the language of finite elasticity, X describes a particle
position in the Lagrangian or undeformed configuration and « is particle location
in the Eulerian or deformed physical state. The transformation or mapping
defined by x is one-to-one and invertible except at the single point X= O
(figure 1). We use V, Vx and div, Div to indicate the gradient and divergence
operators in & and X, respectively. The component form of div A is 9A4;/0x; or
0A,;/0z; when A is a vector or a second-order tensor-like quantity, respectively.
The deformation gradient is defined as F=V yx with inverse F '=VX, or in
component form F;;=0z;/0X; and Fj'=0X;/dz;. The Jacobian of the
deformation is J=det F=|F| or, in terms of volume elements in the two
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configurations, J=dwv/d V. The polar decomposition implies F= VR, where R is
proper orthogonal (RR'=R'R=1, det R=1) and the left-stretch tensor
VeSym™ is the positive definite solution of V?=FF". The analysis is as far
as possible independent of the spatial dimension d, although applications are
restricted to d=2 or 3.

The principal result for the IC is given in lemma 2.1.

Lemma 2.1.
Vip = J div(J " V2Vp). (2.1)
Proof. The r.h.s. can be expressed as
J div(J ' FF'Vp) = JJ Y (F'N)-(F'Vp) + J(F'Vp)-div(J ' F). (2.2)

Using the chain rule in the form F'V=Vy or V= F 'V implies that F'div
(F'Vp) = Div Vyp, which is V4 p. The proof follows from the identity (see problems
2.2.1 and 2.2.3 in Ogden 1997):

div(J'F) =0. (2.3)

(a) Cloak acoustic parameters

The connection with acoustics is made by identifying the field variable p in
lemma 2.1 as the acoustic pressure. The cloak comprises an inviscid fluid with
bulk modulus K(z), such that the pressure satisfies the standard relation

p=—K div v, (2.4)

where v(x, t) is the particle velocity. The IC is defined by the assumption that
the momentum balance involves a symmetric second-order inertia tensor p

according to
pv =—Vp. (2.5)

Although this is a significant departure from classical acoustical theory in
assuming an anisotropic mass density, it is by no means unprecedented. Based on
the analysis of Schoenberg & Sen (1983), a spatially varying tensor p could
possibly be achieved by small pockets of layered fluid separated by massless
impermeable membranes.

Eliminating the velocity between equations (2.4) and (2.5) gives a single
equation for the pressure,

Kdiv(p'Vp)—p =0, zE€w. (2.6)
Consider the uniform wave equation in Q,
Vip—p =0 XeQ. (2.7)

Using lemma 2.1, we can express this in the deformed physical description as
equation (2.6), where the bulk modulus and inertia tensor are

K=J and p=JV 2 (2.8)

For a given deformation F, the identities (2.8) define the unique cloak with
spatially varying material parameters K and p each defined by the deformation

Proc. R. Soc. A (2008)



Acoustic cloaking theory 2415

gradient. We note the following identity that is independent of F:
det p = K2 (2.9)

Could the cloak possibly have isotropic density? That is, could the cloak be
described by a standard acoustic fluid with two scalar parameters, density and
bulk moduli? The identity p=JV ~2 means that p=pI can occur only if Vis a
multiple of the identity, V=wl for some scalar w=w(x). The deformation of Q
into the smaller region w could certainly be accomplished at some but not all
points by this deformation, which corresponds to a uniform contraction or
expansion, with rotation. However, the deformation near the inner surface of the
cloak cannot be of this form. In fact, the deformation in the neighbourhood of
X=0 must be extremely non-uniform and anisotropic. We will discuss this
below when we examine a fundamental and severe deficiency of the IC model.

(b) Continuity between the cloak and the acoustic fluid

Let ds, n and dS, N denote the area element and unit normal to the outer
boundary 0w, and 0Q,(=0w.), respectively. These are related by the
deformation through Nanson’s formula (Ogden 1997), N dS=J 'F'nds. The
nature of the cloak requires that the outer surface is identical in either
description, since both must match with the exterior fluid. We, therefore, require
that ds=d.S at every point on the outer surface, or

N=J"'"F'n on dw, =00, (2.10)
and equation (2.8) then implies that
p'n=FN on dw, =0Q,. (2.11)

Equation (2.11) is a purely kinematic condition.

The interior of the cloak mimics the wave equation in the exterior fluid. The
final requirement that the cloak will be acoustically ‘invisible’ is that the pressure
and normal velocity match across the outer surface separating the fluid and
cloak. These two continuity conditions arise from the balance of force (normal
traction) per unit area and the constraint of particle continuity. The condition
for pressure is simply that p is continuous across the outer surface, whether one
uses the wave equation in physical space, (2.6), or its counterpart in the
undeformed simply connect region (2.7). As for the kinematic condition consider
its equivalent, the continuity of normal acceleration. This is ©,, = n- ¥ in physical
space, and using equation (2.5) it becomes 9, =—n- p 'Vp, which must match
with —n- Vp in the fluid. Alternatively, equation (2.11) and the relation F'V=V y
imply, as expected, that

The final term is simply the normal acceleration in the undeformed description.
In summary, the continuity conditions at the outer surface in the physical
description are

[p) =0 and [n-p 'Vp]=0 on dw,. (2.13)
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(¢) Ezample: a rotationally symmetric IC

Consider the inverse deformation
X = f(r)z, (2.14)
where &= x/r and r=|z|. Using F~'=VX implies that
F=Q/f) I+ (r/HI L, (2.15)

where f'=df/dr and the second-order tensors are I, = 2QZ and I | = [ —Z®Z.
The bulk modulus and mass density in the cloak follow from equation (2.8) as:

1 r d—1 r d—1 f2
“7(?)’ ”=<?) <f'“r2—ff“>' (2.16)

The anisotropic inertia has the form
p=pl. +p, 1, (2.17)

where the radial and azimuthal principal values p, and p | can be read off from
equation (2.16) as functions of f.

Introducing the radial and azimuthal phase speeds, ¢, = +/K/p, and ¢, =
VK /p |, the mass density tensor can then be expressed as p= K(¢;2I, + ¢ °T | ).
The quantity Kp, is the square of the radial acoustic impedance, z, =, /Kp,-
Equation (2.9) implies that the identity z,= ¢4 is required for cloaking. The
three equations (2.16) for K, p, and p | in terms of fcan be replaced by the universal
relation (2.9), i.e.

pop = K, (2.18)
along with simple expressions for the wave speeds in terms of f,
1 r
c = 7 and ¢, = I (2.19)

We will see later that the phase and the wave (group velocity) speeds in the
principal directions are identical. Note that f isrequired to be positive. The original
quantities can be expressed in terms of the phase speeds as

p, = ¢! c(i_l, P, = crc(i_3 and K = crc’fl. (2.20)

One could, for instance, eliminate fas the fundamental variable defining the cloak in
favour of ¢, (r), from which all other quantities can be determined from the
differential equation relating the speeds, (r/c,) =1/c,.

We assume that the cloak occupies w={z:0<a<|z|< b} with uniform
acoustical properties K=1 and p=1I in the exterior. The areal matching
condition (2.11) with n= N = & is satisfied by F and p of equations (2.15) and
(2.16) if fis continuous across the boundary, which is accomplished by requiring
f(b)="5. The pressure and velocity continuity conditions (2.13) become

[p] =0 and [— a_ﬂ =0 on r=b (2.21)
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Table 1. Behaviour of quantities near the inner surface r=a for the scaling foc&* as Eé=r—al0.
(The total radial mass m, is defined in equation (2.22).)

dim Pr P Cr C1 K My
2 g—l 5 El—a g—a 51—201 lIIE
3 gflfoz Elfoz Elfa g*(x 517304 gf(x

Note that the cloak density is isotropic if ¢,=c, which requires that f'=f/r.
Thus f= yr with vy constant, but the outer boundary condition f(b)=b implies
that y=1, which is the trivial undeformed configuration.

Perfect cloaking requires that fvanish at r=a. It is clear that ¢, blows up as
r| a, as does the product Kp,. In order to examine the individual behaviour of K
and p,, consider fo(r—a)® near a for a constant and non-negative. No value of
a>0 will keep the radial density p, bounded, although the unique choice a=1/d
ensures that the bulk modulus K(a) remains finite and non-zero. Note that the
azimuthal density p, has a finite limit in two dimensions for power law decay
foc(r—a)®, while p, remains finite in three dimensions if « <1, otherwise it blows
up. Similarly, the radial phase speed scales as c, « (r—a)'~%, which remains
finite for a« <1, blowing up otherwise. These results are summarized in table 1.

We use a non-dimensional measure of the total mass in the cloak,
m = (vol(w))™" [,,dv p. The total mass is isotropic for the symmetric deformation
and configuration considered here, m=(1/d)(m,+ (d—1)m )I, where
(my, m, )= (vol(w))™ [,,dv(p, p, ). Assuming for the moment that f(a) is non-
zero, i.e. a near-cloak (Kohn et al. 2008), then

2 b
R [52 In f(b) — a’ In fla)—2 L dr rln f(r)] , two dimensions,
m =
' 3 at vt b3
- + 4J dr——|, three dimensions.
b — a3 [f(a) f(b) a f(r)]

(2.22)

These forms indicate not only that m,— o as f(a)—0 but also the form of the
blow-up. To leading order, m,= (2a*/(b*—a*))In(1/f(a))+ -+ and m, = (3a®/
(b —a*))(a/f(a)) ++-in two and three dimensions, respectively. The blow-up of

m,. occurs no matter how f tends to zero. The infinite mass is an unavoidable
singularity.

(d) A massive problem with inertial cloaking

Table 1 and the example above illustrate a potentially grievous issue: infinite
mass is required for perfect cloaking in the IC model. We now show that the
problem is not specific to the rotationally symmetric cloak but is common to all ICs.
Consider a ball of radius € around X= 0. Its volume d V= 0(e%) is mapped to a
volume with inner surface defined by the finite cloak inner boundary 0w_ and outer
surface by a distance O(eﬁ ) further out, where >0 is a local scaling parameter,
assumed constant (in terms of the example above and table 1, f=1/a).
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The mapped current volume is then dv= O(é’) so that J=dv/dV=0(¢’""). The
eigenvalues of V are A= O(eﬁ_l), Ao, . a= O(e™"). The bulk modulus and the
principal values of the density matrix are therefore

K=0("", p =0 and p, .= 0@, (2.23)

goeey

The principal value p; blows up whether d=2 or d=3. Furthermore, the total mass
associated with p; in the mapped volume is m; = O(¢*~%). This blows up in three
dimensions, and a more careful analysis for two dimensions similar to that for the
rotationally symmetric case shows m; = O(|In €|).

In summary, the IC theory, while consistent and formally sound, reveals an
underlying and ‘massive’ problem. We will show how this can be circumvented
by using a more general cloaking theory that allows for anisotropic stiffness
(elasticity) in addition to, or instead of, the anisotropic inertia. The anisotropic
elastic material required is of a special type, called a PM (Milton & Cherkaev
1995), which is introduced next.

3. Pentamode materials

We consider Hooke’s law in three dimensions in the form & = C’é, where the six-
vectors of stress and strain, and the associated 6 X6 matrix of moduli are

011 €11
022 €22
033 €33

Q
Il
o>
Il

V2053 | or
V203 \/_2_331
V201, V2e1

and
Ci G G 2'2¢y, 21/2015 21/2016
Coy  Chz 22C,, 220y 220y
Oy 2Y205, 2Y205 2Y204

C =
20y 205 205

The /2 terms ensure that products and norms are preserved, e.g. Ciin Cyjr =
trC ' C.

The PM is rank one, or in other words, five of the six eigenvalues of C vanish
(Milton & Cherkaev 1995). The one remaining positive eigenvalue is therefore

SK = tré - CZ]Z] - Cll + CQQ + 033 + 2(044 + C55 + CGG)‘ (31)
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Accordingly, the moduli can be defined by the stiffness K and a normalized six-
vector 8,

>

C=Kss, 3=34s (3.2)
The stress is described by a single scalar, ¢ = 68 with o= K e, and e = §'¢. Thus,

~

51 §6 —— §5

>
9}

54

(Vo33
ot

[V %
(=)
- g‘ -
S TS
w>
iy

Sl Sl

The PM (Milton et al. 2006) is so named because there are five easy ways to
deform it, associated with the eigenvectors of the five zero eigenvalues of the
elasticity stiffness. Pentamodes obviously include isotropic acoustic fluids, for
which the only stress—strain eigenmode is a hydrostatic stress, or pure pressure,
and the five easy modes are all pure shear. Milton & Cherkaev (1995) describe
how PMs can be realized from specific microstructures.

(a) Exzample: an orthotropic PM

An elastic material with orthotropic symmetry has nine non-zero elements in
general: the six C;=Cj;, i, =1, 2, 3, plus Cyy, Cs5 and Cgs. We set these last
three (shear) moduli to zero. The stress ¢ must then be diagonal in the Cartesian
coordinate system, implying that 5, = 85 = 5, =0, and therefore,

-1 .
K = 5(011 + Cy+ Cs3), S=K 1/2(0111/2‘31‘3’61 + 0212/262‘3’62 + 0313{263@’63)7

with the following relations holding: Cjs= 0111/ 2 0212/ 2, Cy3= 0212/ 2 C';?{ 2, Cis=

1/2 ~1/2
Cif* Gy

(b) Compatibility condition for PMs

The notation K and S is used to signify the fact that the S tensors are

normalized by tr Sy = 3 and therefore K is given by equation (3.1). We will not
follow this normalization in general, but write:

In other words, the products in (3.4) are the important physical quantities, not K
and S individually. The stress in the PM is always proportional to the tensor S
and only one strain element is significant, S:e. The rank deficiency of the
moduli, which is apparent from (3.2) or (3.4), means that there is no inverse
strain—stress relation for the elements of € in terms of the elements of .

Static equilibrium of a PM under an applied load leads to a constraint on the
spatial variability of the PM stiffness. Consider an inhomogeneous PM with
smoothly varying C(x)= Ky(x)S(x)® So(x). Under an applied static load the
strain will also be spatially inhomogeneous, but the only part of the strain that is
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important is the component along the PM eigenvector. With no loss in
generality, we may put &(x)= w(x)S, for some scalar function w. The stress
is then o=¢S,, where ¢(x)= wK, tr(S3)=3Kw. Let §=¢S,, then the static
equilibrium condition dive =0 becomes div §= 0. Finally, the PM stiffness is
C=KS® S where K(z)= K,/(3Kw)*.

Lemma 3.1. The fourth-order stiffness of a smoothly varying PM can always be
expressed as C=KS®S, where K(x)>0 and S(x)ESym satisfies the static
equilibrium condition,

div § = 0. (3.5)

This identity also arises in a completely different manner later when we
consider transformed wave equations. We say that the PM is of canonical form
when equation (3.5) applies. The decomposition of lemma 3.1 is unique up to a
multiplicative constant. Thus, if a static load is applied to a PM expressed in
canonical form, then the stress and strain are o(z)=c,S and (z) = (c(3K)"'S,
respectively, for constant cg.

In summary, stability under static loading places a constraint on the PM moduli,
which will turn out to be useful when we return to the cloaking problem. The
constraint means that the moduli can in general be expressed in canonical form.

(¢) Dynamic equations of motion in a PM

The equations for small amplitude disturbances in a PM with anisotropic mass

density are
o = K tr(S¢)S (3.6)

and

pv =dive. (3.7)

These are, respectively, the specific form of Hooke’s law for a PM and the
momentum balance incorporating the inertia tensor. In order to make the
equations look similar to those for an acoustic fluid, we identify the ‘pseudo-
pressure’ p with the negative single stress, p=—K tr(Se). The stress tensor then
becomes

o =—pS, (3.8)
and the linear constitutive relation can be written as
p=—KS:Vo. (3.9)

Equations (3.7) and (3.9) imply that the pseudo-pressure satisfies the generalized
acoustic wave equation,

KS:V(p ' div(Sp))—p = 0. (3.10)

This reduces to the acoustic equation (2.6) with anisotropic inertia and isotropic
stiffness when S=I. Finally, assuming that the PM is in canonical form, so that
S satisfies the equilibrium condition (3.5), we have

KS:V(p'SVp)—p = 0. (3.11)
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(d) Wave motion in a PM

The wave properties of PMs are of interest since we will show that they can be
used to make the acoustic cloak. Consider plane wave solutions for displacement
of the form wu(z, t) = q exp(ik(n-x—wvt)), for |n|=1 and constant g, k and v, and
uniform PM properties. Non-trivial solutions of the equations of motion (3.6)
and (3.7) must satisfy

(K (Sn)®(Sn) —pv*)q = 0. (3.12)

The acoustical or Christoffel (Musgrave 2003) tensor K(Sn)® (Sn) is rank one
and it follows that of the three possible solutions for v, only one is not zero, the
quasi-longitudinal solution,

v =Kn-Sp'Sn and q=p'Sn. (3.13)

The slowness surface is therefore an ellipsoid. Standard arguments for waves in
anisotropic solids (Musgrave 2003) show that the energy flux velocity (or wave
velocity or ray direction) is

c=v"'KSp'Sn. (3.14)

Note that this is in the direction Sq, and satisfies ¢-n = v, a well-known relation
for generally anisotropic solids with isotropic density.

As an example, consider the orthotropic PM with a density tensor of the same
symmetry and coincident principal axes. Then

v = End 4+ dnd + dnd, (3.15a)
_ 2 2 2
C =" (clnlel + CoNo €y + C3n363), (315b)
—1/2 —1/2 —1/2
q=p Peme + Py P eynye, +p3 P esnges, (3.15¢)

where C%Z Ci1/p1, c§= Ca/py and 032,2 Cs3/ps, and p1, py and ps are the
principal inertias.

4. The general acoustic cloaking theory

We now show that the IC is but a special case of a much more general type of
acoustic cloak. While the IC depends upon the anisotropic inertia, the general
cloaking model can have both anisotropic inertia and stiffness. The additional
degree of freedom is obtained by replacing the pressure field with the scalar stress
of a PM. The general cloaking model is called PM-IC.

(a) The fundamental identity

Lemma 4.1. Let PESym be non-singular and F is the deformation gradient for
the mapping X — x with J=det F and V*=FF". Then

Vip=JP:V(J'PV?Vp), (4.1)
if P satisfies
div P = 0. (4.2)
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The proof is given in appendix A. This clearly generalizes lemma 2.1, and in
the context of PMs it implies theorem 4.2.

Theorem 4.2. The pressure p satisfies a uniform wave equation in Q. Under the

transformation Q —w with J=det F and V>=FF", p satisfies the equation for
the pseudo-pressure of a PM with stiffness C and anisotropic inertia p,

Vip—p=0 in Qe KS:V(p'SVp)—p=0 in o, (4.30)

where
K=, C=KS®S, p=JSV?S, (4.3b)

and S satisfies
div S =0. (4.3¢)
Note that the stress tensor S is not uniquely defined, although it must satisfy
the equilibrium condition (4.3¢). The associated density depends only on the left
stretch tensor of F, viz. V. The IC corresponds to the special case of =1, which
is a trivial solution of equation (4.3¢). The importance of theorem 4.2 is that the
cloaks may simultaneously comprise PM stiffness and anisotropic inertia, which
provides a vastly richer potential set of material parameters, not limited to the
model of equation (2.6).

Theorem 4.2 implies that the phase speed, wave velocity vector and
polarization (not normalized) for plane waves with phase direction n are, from
equations (3.13) and (3.14),

v =n-Vin, c=v"'Vn and ¢=8"¢ (4.4)

The phase speed and wave velocity are independent of whether the cloak is an IC
or the generalized PM-IC. These important wave properties are functions of the
deformation only. They can be expressed in revealing forms using the
deformation gradient as v=|F'n| and ¢=FN, where N=F'n/|F'n|. Note that
the polarization g does in general depend upon the PM properties through the
stress S.

(i) Continuity between the cloak and the acoustic fluid

Continuity conditions at the cloak outer surface in the physical description
follow in the same manner as (2.13). The main difference is that the stress in the
cloak is not isotropic, and therefore the condition that the shear tractions on
the boundary vanish must be explicitly stated. The conditions for the pseudo-
pressure which satisfies equation (3.11) are

[nSp] =0 and [n-p 'SVpP =0 on dw,. (4.5)
These follow from equations (3.8) and (3.7).

(ii) Rays in the cloak are straight lines in the undeformed space

Although theorem 4.2 implies that the simple wave equation (2.7) in Q is
exactly mapped to equation (3.11) in w and hence all wave motion properties
transform accordingly, including rays, it is instructive to deduce the ray
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transformation separately. We now demonstrate explicitly that rays in the cloak
w, which are curves that minimize travel time, are just straight lines in Q.
Consider the straight line X(t)=Xo+ 7N, where N is a unit vector in Q. The
associated curve in w is :B(T) x(Xo+7N). Differentiation yields da/dr= FN,
which is the same as V2s, where the vector s=F 'N. Differentiating s(7),
keeping in mind that N is ﬁxed gives

ds dF™" _, 2 p dx _ 9 o dx
o ar F's=sV°F <d7’ V)F V(VV )dT (4.6)

where the compatibility identity 0F Ijl/ dz, = 0Fy'/dz; has been used. We
therefore deduce that straight lines in £ are mapped to solutlons of the coupled
ordinary differential equations,

ds

dz 9 1 9
o Vs and o 58 (VV9)s. (4.7)
But these are identically the ray equations in the cloak (see appendix B). They are
also the geodesm equations for the metric V' ~2. The ray equations conserve the
quantity s- V2s that is equal to unity, reﬂectmg the fact that s is the slowness
vector, s=n/v (see equations (4.4) and (B 4)). An illustration of rays inside the
physical cloak is presented in §5.

(iii) Relation to the Milton, Briane and Willis transformations

Milton et al. (2006) examined how the elastodynamic equations transform
under general curvilinear transformations. They showed, in particular, that if the
deformation is harmonic then the constitutive relation (2.4) and momentum
balance (2.5) for a compressible inviscid fluid with isotropic density transform
into the equations for a PM with anisotropic inertia, equations (3.6) and (3.7),
respectively. The deformation is harmonic if V4= 0, which realistically limits
the transformation to the identity (Milton et al. 2006). This would appear to
indicate that acoustic cloaking using the transformation method is impossible, in
contradiction to the present result. In fact, as we show next, the Milton, Briane
and Willis (MBW) result is a special case of the more general theory embodied in
theorem 4.2, one that corresponds to the choice §=J ' VZ

The PM stiffness and inertia tensor found by Milton et al. (2006) are
C=J'V?’® V? and p=J 'V? (their eqns (2.12) and (2.13)). These are of the
general form required by equation (4.3b) if we identify S as §=.J ' VZ. Does this
satisfy the equilibrium condition (4.3¢)? Using equation (2.3) div §=div J !
FF'= J'Div F! and this vanishes if the deformation is harmonic. The MBW
transformation therefore falls under the requirements of theorem 4.2 for the
specific choice of §=.J~'V? that satisfies the equilibrium equation (4.3¢) only if
the deformation is harmonic.

Having shown that the MBW transformation result is a special case of the
present theory, it is clear that the transformation as considered here is different
from theirs. Milton et al. (2006) demand that all of the equations transform
isomorphically, whereas the present theory requires only that the scalar acoustic
wave equation is mapped to the scalar wave equation for the PM (see equations
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(4.3a)). The mapping contains an arbitrary but divergence-free tensor S that
defines the particular but non-unique constitutive relation (2.4) and momentum
balance (2.5). Consider, for instance the displacement fields u(x) and u in Q and
w, respectively. Under the transformation of (Milton et al. 2006) ux) — u(x)=
F~'ux)(X) (eqn (2.2) of Milton et al. 2006). There is no analogous constraint
in the present theory. In other words, we do not require an isomorphism between
the equations for all of the field variables. Instead, the scalar wave equation
for the acoustic pressure is isomorphic to the scalar equation for the pseudo-
pressure of the PM.

(b) Cloaks with isotropic inertia

Theorem 4.2 opens up a vast range of potential material properties. It means
that there is no unique cloak associated with a given transformation Q —w and
its deformation gradient F. We now take advantage of this non-uniqueness to
consider the possibility of isotropic inertia. Equation (4.3b) indicates that the
density is isotropic if S is proportional to V. Hence, we deduce lemma 4.3.

Lemma 4.3. A necessary and sufficient condition that the density is isotropic,
p=pl, is that there is a scalar function h(x), such that
div (hV) =0, (4.8)
in which case,

p = hJ, K=J and S=hV, (4.9)

and the Laplacian is Vip=hJV : V(L1 VVp).

There is a general circumstance for which a solution can be found for h. It
takes advantage of the second-order differential equality,

Vip = (F'V)-F'Vp. (4.10)

Although F is generally unsymmetric, F=F" in the special case that the
deformation gradient is a pure stretch with no rotation (R=1I). We therefore
surmise lemma 4.4.

Lemma 4.4. If the deformation gradient is a pure stretch (R=1I and hence F
coincides with V) then the density is isotropic,

p=J7, K=J and S=J"V, (4.11)

and the Laplacian becomes Vip= V : V(VVp).

The infinite mass problem of the IC can be avoided if the material near the
inner boundary 0w _ has integrable mass. This could be achieved, for instance, by
requiring that the deformation near dw _ is symmetric (pure stretch). Lemma 4.4
and the scaling arguments of §2d imply that the isotropic density scales as
p=0(¢""F), which is integrable as long as 8<d+1 (a>1/(d+1)).
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(¢) Ezample: the rotationally symmetric cloak

We again consider the deformation of equation (2.14) for the cloak w = {x : 0<
a<|z|<b} and assume that the symmetric tensor S has the form
S=w(r)(I,+ y(r)I ). Differentiation yields div S = [w' —(d—1)(y —1)]&, and
the ‘equilibrium’ condition (4.3¢) is satisfied if w(r) and y(r) are related by
w'=(d—1)(y—1), It is convenient to introduce a new function ¢(r), such that
y=rg'/g and w=(g/r)?"', which automatically makes div §=0. The cloak
parameters, therefore, have general rotationally symmetric forms

_ L\ gy rg _ (A
k=7 (5) o s= O ] e=r ()
(4.12)

The functions fand g are independent of one another, and together define a two-
degree of freedom class of PM-IC model. The general solution has both anisotropic
stiffness and anisotropic inertia. The previous example of the pure IC corresponds
to the special case of g=r, for which equation (4.12) gives S=TI and K, and p agree
with equation (2.16).

The form of the stress S indicates the PM-IC has TI symmetry. This is a
special case of the orthotropic PM considered earlier. A normal T1 solid with axis
of symmetry in the as-direction has five independent elastic moduli: Cj;, Css,
Cis, Ci3 and Cy. The last is a shear modulus, the other shear modulus is
Co6=(C11— C12)/2. We set all shear moduli to zero, implying Cy;=0 and
Ci2=C11, and the remaining independent moduli Cj;, C33 and Ci3 satisfy
Cy, Cy3 — C% =0. The PM, therefore, has two independent elastic moduli. Let
C33— K.(r), C;1— K, (r) and Cj3— /K., K, then the fourth-order elasticity
tensor defined by (4.12) is

C=KS®S = <\/KII+\/f£Il)®(\/EIr+\/_I?IIl), (4.13)

where the stiffnesses K, and K, and the principal values of the inertia tensor
given by equation (2.17), are

1 92 d—1 B Tg/? 92 d—2 . 92 d—1 B fgl2 92 d—2
Kr7<?f> ’Kf7<7f> ’”f‘f<7f> and ”l‘ﬂ?f) |
(4.14)

The phase speeds ¢, and ¢ in the principal directions are again given by equation
(2.19). This might seem amazing at first sight, but recall that it is predicted from the
general theory. That is, the phase speed and wave velocity are independent of how
we interpret the cloak material, as an IC or the more general PM-IC. In this
example, it means that the phase speed and wave velocity are independent of g.

(i) Pure PM cloak with isotropic density

The inertia is isotropic when p,=p  , which occurs if g(r)=f(r). In that case
p=plI, and equation (4.14) reduces to

i1 - .
p =f/<i> ; K, =i, (i>d 1 and K, =f’<i>d 3. (4.15)
r f r

r
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We observe that the parameters of equation (4.15) are obtained from the
IC parameters in equations (2.16) and (2.17) under the substitutions
{K,p,p,}—{1/p,1/K,,1/K | }. Thus, the universal relation analogous to
equation (2.18) is now

KK =p"2, (4.16)

and by analogy with equation (2.20) the three original material parameters can
be expressed using the phases speeds only, as

p=c'c, K=V, K=t (4.17)
In summary, there is a one-to-one correspondence between the two sets of three
material parameters for the limiting cases of the pure IC on the one hand, and
the pure PM cloak on the other. Of course, as discussed before, the density and
stiffness cannot be simultaneously isotropic. The PM-IC model with material
properties (4.12) includes both limiting cases when g=r and f, respectively.
Table 2 summarizes the scaling of the physical quantities for isotropic inertia,
similar to the scalings in table 1 for the pure IC. Note that the wave speeds ¢, ¢
and the intermediate (Cj3) modulus /K, K, have limiting behaviour that is
independent of the dimensionality, while the density p and the moduli K, and K |
depend upon whether the cloak is in two or three dimensions.

5. Further examples

(a) A non-radially symmetric cloak with finite mass

The examples considered above are rotationally symmetric and rather special in
that they can be made using uniformly pure IC, or pure PM, or hybrid PM-IC.
The pure IC model is always achievable as lemma 2.1 showed, but it suffers from
the infinite mass catastrophe. The pure PM model requires that lemma 4.3 hold
at all points, which is not realistic. However, we can always obtain a cloak
comprising partly pure PM by requiring the deformation to be locally a pure
stretch (lemma 4.4). In particular, by constraining the deformation near the
inner surface dw_ in this manner, the density can be made both isotropic and
integrable. We now demonstrate this for a non-rotationally symmetric cloak.
For A€Sym™, h(¢), ' ({)>0 for {€(0,1], consider the deformation,

r=C"h({)AX and {= (X -AX)/2 (5.1)

This generalizes the deformation of equation (2.14) (A=1I) and has the
important property that the deformation gradient is symmetric,

h 1(h\
F=EA+E 7 (AX)®(AX). (5.2)
The inner surface is an ellipse (two-dimensional) or ellipsoid (three-dimensional),
do_={x: =z Az ="r*0)}. (5.3)

The mapping X < & must be the identity on the outer surface of the cloak
0w =0Q. This eliminates the transformation (5.1) as a possible deformation in
the vicinity of 0w but it does not rule it out elsewhere. In particular, it can be
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Table 2. Behaviour of quantities near the vanishing point r=a for the scaling foc&* as E=r—al0
with isotropic inertia.

dim I cy K, K, P
) 51—01 g—a g E_] 5201—1
3 glfa 570( 51+a 50471 530471

used on the inner surface 0w _ and for a finite surrounding volume. Then it could
be patched to a different mapping closer to the outer boundary of the cloak, one
which reduces to the identity on dw_,. For instance,

x={"h{A"X, (5.4)

where v(z)=1 for all  between dw_ and some surface C, beyond which »
decreases smoothly to zero as « approaches 0w, which is assumed to be a level
surface of , i.e. an ellipsoid or an ellipse. We assume that {=1 on the outer

surface, so that
dw, = {x:x Az = h*(1)}. (5.5)

Let C be the level surface {={¢, for constant {,& (0,1). The surface separating the
pure PM inner region from the PM-IC outer part of the cloak is therefore

C={x:z Az =h ()} (5.6)

Based on lemma 4.4, the inner part of the cloak between 0w_ and C can be
constructed from pure PM with isotropic density p=J ' = (|A|n/) " (¢/h)*". The
remaining part of the cloak is PM-IC and the mass of the entire cloak will be finite.

For instance, in figure 2, h({)=(1/2)(1+¢) for {€[0,1], v=1 for { €]0,3/4)
and v=4(1-7) for { €[3/4,1], and the principal values of A are 0.6 and 1.0. It
also shows each ray following a continuous path through the cloak with collinear
incident and emergent ray paths. There is a unique ray separating the rays
traversing the cloak in opposite senses, and which defines a ‘stagnation point’ at
the cloak inner surface. The separation ray is the one that would intersect the
singular point in the undeformed space, O in figure 1. This is the origin in figure 2
and since the rays are incident horizontally, the separation ray is defined by
2, =0 outside the cloak, and it intersects dw_ at x==4(1/2)Ae;/\/e;- Ae;. The
wavefront in effect splits or tears apart at the incident intersect and it reforms at
the emergent intersect. The time delay between these two events is infinitesimal
since the tearing/rejoining is associated with the instant at which the wavefront
would traverse O in the undeformed space. A time-lapse movie illustrating this
more vividly may be seen in the electronic supplementary material (20 s long).
Another movie showing the ray paths for different directions of incidence can be
found in the electronic supplementary material.

(b) Scattering from near-cloaks

A near-cloak or almost perfect cloak is defined here as one with inner surface
O0w_ that does not correspond to the single point X= 0. We illustrate the issue
using the radially symmetric deformation (2.14) with f(a) small but non-zero,
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Figure 2. Ray paths through a non-radially symmetric cloak. The solid curves are the inner and outer
surfaces of the cloak. The dashed curve delineates the inner region in which the deformation gradient
is symmetric everywhere and the cloak is pure PM with finite isotropic mass. Two movies of the rays
and the wavefronts in this cloak may be viewed in the electronic supplementary material.
and assuming time harmonic motion, with the factor e *" understood but
omitted. Since the inner surface is not the image of a point, it is necessary to
prescribe a boundary condition on the interior surface, which we take as zero
pressure on r=a. The specific nature of the boundary condition should be
irrelevant as f(a) shrinks to zero.

As before, the cloak occupies w={x: a < r < b}, but now f(a)>0. The total
response for plane wave incidence is p(z) = py exp(ikR(r)cos 0) + p.(x),

Hy (kR(r))
iy (kR(a))
h (kR(r))

ht (kR(a))

Zn(2 _57L0)Jn(kR(a))

cos nd,

Pse = —Po Z

=0 | (2 + 1)j,(kR(a)) P, (cos ),

f(r), a<r<hb,

R(r) =
(r) T, b<r<o,

in two and three dimensions, respectively, and pg is a constant. A near-cloak can
be defined in many ways: for instance, a power law f(r)=b((r—24)/(b—0)) with
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0<é6<a is considered in Norris (2008). Here we assume a linear near-cloak
mapping similar to the one examined by Kohn et al. (2008),

FO>r) = b(Z:Z) +a<;’:2>, (5.7)

where 0 <6< a. Hence, f (5)((1) =¢ and the radius at which the mapping is zero,
r=a—06(b—a)/(b—0), defines the size of a smaller but perfect cloak.

Some representative results are shown in figure 3, which illustrates clearly a
disparity between the cylindrical and spherical cloakings, even when the physical
optics cross-sections are identical. Thus, for f(a)=0.01a, the three-dimensional
cross-section is negligible (figure 3d) but the two-dimensional cross-section is
two orders of magnitude larger (figure 3c). Ruan et al. (2007) found that the
perfect cylindrical EM cloak is sensitive to perturbation. This sensitivity is
evident from the present analysis through the dependence on the length 6 that
measures the departure from perfect cloaking 6=0.

The ineffectiveness of the same cloak in two dimensions when compared with
three dimensions can be understood in terms of the scattering cross-section. The
leading order far-field is of the form p= pye™ + pog(&)r~ (/2 (12 / k) D/ 2eihr,
The optical theorem implies that the total scattering cross-section, and hence the
total energy scattered, is determined by the forward scattering amplitude,
Y =4nk™ Im g(&,). Thus,

%2(2 0,0)Re J(,;Skf(a) ) , two dimensions,
5= n=0 w (kf(a) (5.8)
= 4 _ :
l Z(2n + 1)Rejn)<L(a)))), three dimensions.

The cross-section is dominated in the small kf(a) limit by the n=0 term, with
leading order approximations,

2
% IIn kf(a)| > +--, two dimensions,

y= (5.9)

4rf?(a) +-++, three dimensions.
This explains the greater efficacy in three dimensions, and suggests that all

things being equal, cylindrical cloaking is more difficult to achieve than its
spherical counterpart.

6. Discussion and conclusion
Starting from the idea of an acoustic cloak defined by a finite deformation, we
have shown that the acoustic wave equation in the undeformed region is mapped

into a variety of possible equations in the physical cloak. Theorem 4.2 implies
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B i

1l

Figure 3. A plane wave is incident from the left with frequency k=10 on the cloak defined by
equation (5.7) with a=1 and b=2"4"1 The outer cloak radius b is chosen so that the geometrical
cross-section of the cloak is twice that of the cloaked region in both two dimensions ((a) 6=0.3,
¥=1.48 and (¢) 6=0.01, ¥=0.12) and three dimensions ((b) 6=0.3, £=0.79 and (d) 6=0.01,
£=1X10"%). The circular core in the plots is the cloaked region of radius a. The virtual inner
radius f(a)=4¢ is 0.3 or 0.01, and X is the total scattering cross-section.

that the general form of the wave equation in the cloak is
KS:V(p'SVp)—p =0, (6.1)

where the stress-like symmetric tensor S is divergence free and the inertia tensor
is p=JSV ~28. The non-unique nature of S for a given fixed deformation opens
many possibilities for interpreting the cloak in terms of material properties.

If S is constant (S=1TI with no loss in generality) then the cloak material
corresponds to an acoustic fluid with pressure p defined by a single bulk modulus
but with a mass density p that is anisotropic, which we call the IC. The IC model
is mathematically consistent but physically impossible because it requires a cloak
of infinite total mass. There appears to be no way to avoid this if one restricts the
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cloak material properties to the IC model. If one is willing to use an imperfect
cloak with finite mass, and is concerned with fixed frequency waves, then the
scattering examples show that significant cloaking can be obtained by shrinking
the effective visible radius to be sub-wavelength. The two- and three-dimensional
responses for imperfect cloaking are quite distinct, with far better results found
in three dimensions.

A cloak of finite mass is achievable by allowing S to be spatially varying and
divergence free. The general material associated with equation (6.1), called
PM-IC, has both anisotropic inertia and anisotropic elastic properties. The
elastic stiffness tensor has the form of a PM characterized by the symmetric
tensor S and a single modulus K. Under certain circumstances, characterized in
lemmas 4.3 and 4.4, the density becomes isotropic and the material is pure
pentamode. More importantly, the total mass can be made finite.

The finite mass problem arises from how we interpret the cloak material in the
neighbourhood of its inner surface. It is therefore not necessary to totally
abandon the pure IC model, but it does mean that the alternative PM-IC is
required at the inner surface. From the examples considered here it appears that
one can always use a pure PM model near the inner cloak surface, and thereby
achieve finite mass. One method is to force the deformation near the inner
surface to be a pure stretch, then lemma 4.4 implies that the density is locally
p=1/det F. The total mass remains finite as long as p is locally integrable, which
is easily achieved.

The theory and simulations of PM-IC and PMs presented here illustrate the
wealth of possible material properties that are opened up through the general
PM-IC model of acoustic cloaking. The physical implementation is in principle
feasible: for instance, anisotropic inertia can be achieved by microlayers of
inviscid acoustic fluid (Schoenberg & Sen 1983), while the microstructure
required for PMs has been described (Milton & Cherkaev 1995). Fabrication of
practical PM-IC materials remains as a challenging but worthwhile goal.

Constructive suggestions from the anonymous reviewers are appreciated.

Appendix A. Proof of theorem 4.2

A weak but instructive form of the identity (4.1) is proved first. Consider the
possible identity

Vip = cA : V(B2 div ¢ ' Ap), (A1)
where A and BESym are non-singular and c is a scalar. Let us examine under

what circumstances this identity holds. Let ¢ be an arbitrary test function and
consider the integral

I= J dV qcA : V(B *div ¢ ' Ap). (A2)
Q

Substituting dV=J 'dv, integrating by parts and ignoring surface contri-
butions, yields

I= —J do(div J 'cAq)- (B2 div ¢ " Ap). (A3)

w
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In order to guarantee that the integral is self-adjoint, i.e. symmetric in both p and
g, we demand c=J (1/2) The self-adjoint property is made evident by writing I as

I= —J dv(B™ divJ V2 Aq)- (B div J V2 Ap). (A 4)
If (A1) is to be valid, then

Q

Comparing these integrals and once again using dv=JdV, implies
(J'2B 1 divJ V2 Aq)-(JVPB T div JTV? Ap) = Vyq-Vyp. (A 6)

The only way that these can agree for arbitrary p and g is if

div J 24 =0, (A7)
in which case (A 6) becomes
(B_lAF_tVXQ) ) (B_lAF_tVXp) = Vxq Vxp. (A 8)
Using V?=FF", it is clear that (A 8) can only be satisfied if
B?=A4"'vA"" (A 9)

A weak form of theorem 4.2 follows by substituting A=J /2P Based upon this, it
is a straightforward exercise to see that the identity (4.1) can be derived directly
by brute force differentiation of the r.h.s., taking into account the constraint (4.2)
and lemma 2.1.

Appendix B. Ray equations in an acoustic cloak

Consider a Wentzel-Kramers—Brillouin (WKB) type of solution for the
displacement, u(x,t)= U(x,t) exp(ikp(x,t)). The leading-order equation for
the phase ¢ and amplitude U is (see equations (3.8)—(3.13))

22
[K(SVe)®(SVe) —d’p| U = 0. (B1)
The inner product of equation (B 1) with U may be written as Hy H_ =0, where
Hy=¢+K'"?qp'? V| (B2)
and g=p"?U/|p"*U|. We focus on the characteristic H, (¢, Ve, x)=0. The
Hamilton—Jacobi equations for this ‘Hamiltonian’ yield the ray equations,
dt _ 9Hy de _ dH, dvg _ dH, and d_qS__GH+
dr  9¢ ' dr Ve’ dr dox dr at ’

(B 3)
where 7 is the time-like ray parameter. Since dH, / dp=1, 7 may_ be replaced
by t as the natural ray parameter, while 6H+/ 0t=0 1mphes that ¢ is constant

along a ray. We choose ¢ =—1 for convenience and define the slowness vector
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s(1) = V¢ along the ray x=x(7). The vector equation (B 1) then implies that
g= K'?p7'/28s, and since ¢ is by definition a unit vector, using equation (4.3b)
we deduce that the slowness satisfies

s Vis=1. (B 4)

This is simply the ellipsoidal slowness surface mentioned in §4. Finally, the
evolution equations along the ray can be expressed as a closed system for x(t)

and s(t) by using equation (B 3) and noting that H, = (s- V2s)/2—1,

de 5 ds _
T Vs and T (Vs)-(VV)s. (B5)
References

Chen, H. & Chan, C. T. 2007 Acoustic cloaking in three dimensions using acoustic metamaterials.
Appl. Phys. Lett. 91, 183 518. (doi:10.1063/1.2803315)

Cummer, S. A. & Schurig, D. 2007 One path to acoustic cloaking. New J. Phys. 9, 45. (doi:10.1088/
1367-2630/9/3/045)

Cummer, S. A., Popa, B. 1., Schurig, D., Smith, D. R., Pendry, J., Rahm, M. & Starr, A. 2008
Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100, 024 301.
(doi:10.1103/PhysRevLett.100.024301)

Greenleaf, A., Lassas, M. & Uhlmann, G. 2003a On nonuniqueness for Calderén’s inverse problem.
Math. Res. Lett. 10, 685-693.

Greenleaf, A., Lassas, M. & Uhlmann, G. 2003b Anisotropic conductivities that cannot be detected
by EIT. Physiol. Meas. 24, 413-419. (doi:10.1088,/0967-3334,/24/2/353)

Greenleaf, A., Kurylev, Y., Lassas, M. & Uhlmann, G. 2007 Full-wave invisibility of active devices
at all frequencies. Commun. Math. Phys. 275, 749-789. (doi:10.1007/s00220-007-0311-6)

Greenleaf, A., Kurylev, Y., Lassas, M. & Uhlmann, G. 2008 Comment on “Scattering theory
derivation of a 3D acoustic cloaking shell”. (http://arxiv.org/abs/0801.3279v1)

Kohn, R. V., Shen, H., Vogelius, M. S. & Weinstein, M. 1. 2008 Cloaking via change of variables in
electric impedance tomography. Inv. Probl. 24, 015 016. (doi:10.1088/0266-5611/24/1/015016)

Leonhardt, U. 2006 Optical conformal mapping. Science 312, 1777-1780. (doi:10.1126/science.
1126493)

Mei, J., Liu, Z., Wen, W. & Sheng, P. 2007 Effective dynamic mass density of composites. Phys.
Rev. B 76, 134 205. (doi:10.1103 /PhysRevB.76.134205)

Milton, G. W. & Cherkaev, A. V. 1995 Which elasticity tensors are realizable? J. Eng. Mater.
Technol. 117, 483-493. (doi:10.1115/1.2804743)

Milton, G. W. & Willis, J. R. 2007 On modifications of Newton’s second law and linear continuum
elastodynamics. Proc. R. Soc. A 463, 855-880. (doi:10.1098 /rspa.2006.1795)

Milton, G. W., Briane, M. & Willis, J. R. 2006 On cloaking for elasticity and physical equations with a
transformation invariant form. New J. Phys. 8, 248-267. (doi:10.1088/1367-2630/8,/10,/248)

Musgrave, M. J. P. 2003 Crystal acoustics. New York, NY: Acoustical Society of America.

Norris, A. N. 2008 Acoustic cloaking in 2D and 3D using finite mass. (http://arxiv.org/abs/
0802.0701)

Ogden, R. W. 1997 Non-linear elastic deformations. New York, NY: Dover Publications.

Pendry, J. B., Schurig, D. & Smith, D. R. 2006 Controlling electromagnetic fields. Science 312,
1780-1782. (doi:10.1126/science.1125907)

Post, E. J. 1962 Formal structure of electromagnetics: general covariance and electromagnetics.
New York, NY: Interscience.

Proc. R. Soc. A (2008)


http://dx.doi.org/doi:10.1063/1.2803315
http://dx.doi.org/doi:10.1088/1367-2630/9/3/045
http://dx.doi.org/doi:10.1088/1367-2630/9/3/045
http://dx.doi.org/doi:10.1103/PhysRevLett.100.024301
http://dx.doi.org/doi:10.1088/0967-3334/24/2/353
http://dx.doi.org/doi:10.1007/s00220-007-0311-6
http://arxiv.org/abs/0801.3279v1
http://dx.doi.org/doi:10.1088/0266-5611/24/1/015016
http://dx.doi.org/doi:10.1126/science.1126493
http://dx.doi.org/doi:10.1126/science.1126493
http://dx.doi.org/doi:10.1103/PhysRevB.76.134205
http://dx.doi.org/doi:10.1115/1.2804743
http://dx.doi.org/doi:10.1098/rspa.2006.1795
http://dx.doi.org/doi:10.1088/1367-2630/8/10/248
http://arxiv.org/abs/0802.0701
http://arxiv.org/abs/0802.0701
http://dx.doi.org/doi:10.1126/science.1125907

2434 A. N. Norris

Ruan, Z., Yan, M., Neff, C. W. & Qiu, M. 2007 Ideal cylindrical cloak: perfect but sensitive to tiny
perturbations. Phys. Rev. Lett. 99, 113 903. (doi:10.1103/PhysRevLett.99.113903)

Schoenberg, M. & Sen, P. N. 1983 Properties of a periodically stratified acoustic half-space and its
relation to a Biot fluid. J. Acoust. Soc. Am. 73, 61-67. (doi:10.1121/1.388724)

Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F. & Smith, D. R.
2006 Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977-980.
(doi:10.1126/science.1133628)

Torrent, D. & Sanchez-Dehesa, J. 2008 Anisotropic mass density by two-dimensional acoustic
metamaterials. New J. Phys. 10, 023 004. (doi:10.1088/1367-2630,/10/2/023004)

Ward, A. J. & Pendry, J. B. 1996 Refraction and geometry in Maxwell’s equations. J. Mod. Opt.
43, 773-793. (doi:10.1080/09500349608232782)

Proc. R. Soc. A (2008)


http://dx.doi.org/doi:10.1103/PhysRevLett.99.113903
http://dx.doi.org/doi:10.1121/1.388724
http://dx.doi.org/doi:10.1126/science.1133628
http://dx.doi.org/doi:10.1088/1367-2630/10/2/023004
http://dx.doi.org/doi:10.1080/09500349608232782

	Acoustic cloaking theory
	Introduction
	The IC
	Cloak acoustic parameters
	Continuity between the cloak and the acoustic fluid
	Example: a rotationally symmetric IC
	A massive problem with inertial cloaking

	Pentamode materials
	Example: an orthotropic PM
	Compatibility condition for PMs
	Dynamic equations of motion in a PM
	Wave motion in a PM

	The general acoustic cloaking theory
	The fundamental identity
	Cloaks with isotropic inertia
	Example: the rotationally symmetric cloak

	Further examples
	A non-radially symmetric cloak with finite mass
	Scattering from near-cloaks

	Discussion and conclusion
	Constructive suggestions from the anonymous reviewers are appreciated.
	Proof of theorem 4.2
	Ray equations in an acoustic cloak
	References




