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An acoustic cloak is a compact region enclosing an object, such that sound incident from all
directions passes through and around the cloak as though the object was not present.
A theory of acoustic cloaking is developed using the transformation or change-of-variables
method for mapping the cloaked region to a point with vanishing scattering strength. We
show that the acoustical parameters in the cloak must be anisotropic: either the mass
density or the mechanical stiffness or both. If the stiffness is isotropic, corresponding to a
fluid with a single bulk modulus, then the inertial density must be infinite at the inner
surface of the cloak. This requires an infinitely massive cloak. We show that perfect
cloaking can be achieved with finite mass through the use of anisotropic stiffness. The
generic class of anisotropic material required is known as a pentamode material (PM). If the
transformation deformation gradient is symmetric then the PM parameters are explicit,
otherwise its properties depend on a stress-like tensor that satisfies a static equilibrium
equation. For a given transformation mapping, the material composition of the cloak is not
uniquely defined, but the phase speed and wave velocity of the pseudo-acoustic waves in the
cloak are unique. Examples are given from two and three dimensions.
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1. Introduction

The observation that the electromagnetic equations remain invariant under
spatial transformations is not new. Ward & Pendry (1996) used it for numerical
purposes, but the result was known to Post (1962) who discussed it in his book,
and it was probably known far earlier. The recent interest in passive cloaking and
invisibility is due to the fundamental result of Greenleaf et al. (2003a,b) that
singular transformations could lead to cloaking for conductivity. Not long after
this important discovery Leonhardt (2006) and Pendry et al. (2006) made the
key observation that singular transformations could be used to achieve cloaking
of electromagnetic waves. These results and others have generated significant
interest in the possibility of passive acoustic cloaking.

Acoustic cloaking is considered here in the context of the so-called transforma-
tion or change-of-variables method. The transformation deforms a region in such
a way that the mapping is one-to-one everywhere except at a single point, which
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Figure 1. The undeformed simply connected region U is transformed by the mapping c into the
multiply connected cloak u. Essentially, a single point O is transformed into a hole (the invisible
region) surrounded by the cloak u. The outer boundary vuC is coincident with vUC(ZvU) and the
inner boundary vuK is the image of the point O. Apart from O and vuK the mapping is
everywhere one-to-one and differentiable.

A. N. Norris2412
is mapped into the cloak inner boundary (figure 1). The acoustic problem is for
the infinitesimal pressure p(x, t) that satisfies the scalar wave equation in the
surrounding fluid,

V2pK€p Z 0: ð1:1Þ

The basic idea is to alter the cloak’s acoustic properties (density and modulus) so
that themodified wave equation inumimics the exterior equation (1.1) in the entire
regionU. This is achieved if the spatial mapping of the simply connected regionU to
the multiply connected cloak u has the property that the modified equation in u
when expressed in U coordinates has exactly the form of (1.1) at every point in U.

The objective here is to answer the question: what type of material is required to
realize these unusual properties that make an acoustic cloak? While cloaking
cannot occur if the bulk modulus and density are simultaneously scalar quantities
(see below), it is possible to obtain acoustical cloaks by assuming that the mass
density is anisotropic (Chen & Chan 2007; Cummer & Schurig 2007; Cummer et al.
2008). A tensorial density is not ruled out on fundamental grounds (Milton
et al. 2006) and in fact there is a strong physical basis for anisotropic inertia. For
instance, Schoenberg & Sen (1983) showed that the inertia tensor in a medium
comprising alternating fluid constituents is transversely isotropic (TI) with
elements hri in the direction normal to the layering, and hrK1iK1 in the transverse
direction, where h$i is the spatial average. Anisotropic effective density can arise
from other microstructures, as discussed by Mei et al. (2007) and Torrent &
Sánchez-Dehesa (2008). The general context for anisotropic inertia is the Willis
equations of elastodynamics (Milton & Willis 2007), which Milton et al. (2006)
showed are the natural counterparts of the electromagnetic (EM) equations that
remain invariant under spatial transformation. The acoustic cloaking has been
demonstrated, theoretically at least, in both two and three dimensions: a
spherically symmetric cloak was discussed by Chen & Chan (2007) and Cummer
et al. (2008), while Cummer & Schurig (2007) described a two-dimensional
cylindrically symmetric acoustic cloak. These papers use a linear transformation
based on prior EM results in two dimensions (Schurig et al. 2006).

The cloaks based on anisotropic density in combination with the inviscid
acoustic pressure constitutive relation (bulk modulus) will be called inertial
cloaks (ICs). The fundamental mathematical identity behind the ICs is the
Proc. R. Soc. A (2008)



2413Acoustic cloaking theory
observation of Greenleaf et al. (2007) that the scalar wave equation is mapped
into the following form in the deformed cloak region:

1ffiffiffiffiffi
jgj

p v

vxi

ffiffiffiffiffi
jgj

p
gij

vp

vxj

� �
K€p Z 0; x2u: ð1:2Þ

Here gZ(gij) is the Riemannian metric with jgjZdetðgijÞ and ðgijÞZðgijÞK1. The
reader familiar with differential geometry will recognize the first term in equation
(1.2) as the Laplacian in curvilinear coordinates. Comparison of the transformed
wave equation (1.2) with the IC wave equation provides explicit expressions for
the IC density tensor and the bulk modulus (Greenleaf et al. 2008).

We will derive an identity equivalent to (1.2) in §2 using an alternative
formulation adapted from the theory of finite elasticity. A close examination of
the anisotropic density of the ICs shows that its volumetric integral, the total
mass, must be infinite for perfect cloaking. This raises grave questions about the
usefulness of the ICs. The rest of this paper provides a solution to this quandary.
The main result is that the IC is a special case of a more general class of the
acoustic cloaks, defined by anisotropic inertia combined with anisotropic
stiffness. The latter is obtained through the use of the pentamode materials
(PMs; Milton & Cherkaev 1995). In the same way that an ideal acoustic fluid can
be defined as the limit of an isotropic elastic solid as the shear modulus tends to
zero, there is a class of limiting anisotropic solids with five (hence penta) easy
modes of deformation analogous to shear, and one non-trivial mode of stress and
strain. The general cloak comprising PM and IC is called the PM-IC model. The
additional degrees of freedom provided by the PM-IC allow us to avoid the
infinite mass dilemma of the IC.

We begin in §2 with a new derivation of the IC model, and a discussion of the
infinite mass dilemma. The PMs are introduced in §3 where it is shown that they
display simple wave properties, such as an ellipsoidal slowness surface. The
intimate connection between the PM and the acoustic cloaking follows from
theorem 4.2 in §4. The properties of the generalized PM-IC model for cloaking
are developed in §4 through the use of an example cloak that can be either pure
IC or pure PM as a parameter is varied. Further examples are given in §5, with a
concluding summary of the generalized acoustic cloaking theory in §6.
2. The IC

The transformation from U to u is described by the point-wise deformation from
X2U to xZcðXÞ2u. In the language of finite elasticity, X describes a particle
position in the Lagrangian or undeformed configuration and x is particle location
in the Eulerian or deformed physical state. The transformation or mapping
defined by c is one-to-one and invertible except at the single point XZO
(figure 1). We use V, VX and div, Div to indicate the gradient and divergence
operators in x and X, respectively. The component form of divA is vAi/vxi or
vAij/vxi when A is a vector or a second-order tensor-like quantity, respectively.
The deformation gradient is defined as FZVXx with inverse FK1ZVX, or in
component form FiIZvxi/vXI and FK1

Ii ZvXI=vxi. The Jacobian of the
deformation is JZdet FZ jFj or, in terms of volume elements in the two
Proc. R. Soc. A (2008)
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configurations, JZdv/dV. The polar decomposition implies FZVR, where R is
proper orthogonal (RRtZRtRZI, det RZ1) and the left-stretch tensor
V2SymC is the positive definite solution of V 2ZFF t. The analysis is as far
as possible independent of the spatial dimension d, although applications are
restricted to dZ2 or 3.

The principal result for the IC is given in lemma 2.1.

Lemma 2.1.

V2
XpZ J divðJK1V 2VpÞ: ð2:1Þ

Proof. The r.h.s. can be expressed as

J divðJK1FFtVpÞZ JJK1ðFtVÞ$ðFtVpÞCJðFtVpÞ$divðJK1FÞ: ð2:2Þ
Using the chain rule in the form FtVZVX or VZFKtVX implies that Ft div
ðFtVpÞZDiv VXp, which isV

2
Xp. The proof follows from the identity (see problems

2.2.1 and 2.2.3 in Ogden 1997):

divðJK1FÞZ 0: ð2:3Þ

(a ) Cloak acoustic parameters

The connection with acoustics is made by identifying the field variable p in
lemma 2.1 as the acoustic pressure. The cloak comprises an inviscid fluid with
bulk modulus K(x), such that the pressure satisfies the standard relation

_pZKK div v; ð2:4Þ

where v(x, t) is the particle velocity. The IC is defined by the assumption that
the momentum balance involves a symmetric second-order inertia tensor r
according to

r _v ZKVp: ð2:5Þ
Although this is a significant departure from classical acoustical theory in
assuming an anisotropic mass density, it is by no means unprecedented. Based on
the analysis of Schoenberg & Sen (1983), a spatially varying tensor r could
possibly be achieved by small pockets of layered fluid separated by massless
impermeable membranes.

Eliminating the velocity between equations (2.4) and (2.5) gives a single
equation for the pressure,

K divðrK1VpÞK€p Z 0; x2u: ð2:6Þ

Consider the uniform wave equation in U,

V2
XpK€p Z 0; X2U: ð2:7Þ

Using lemma 2.1, we can express this in the deformed physical description as
equation (2.6), where the bulk modulus and inertia tensor are

K Z J and rZ JVK2: ð2:8Þ
For a given deformation F, the identities (2.8) define the unique cloak with
spatially varying material parameters K and r each defined by the deformation
Proc. R. Soc. A (2008)



2415Acoustic cloaking theory
gradient. We note the following identity that is independent of F:

det rZKdK2: ð2:9Þ
Could the cloak possibly have isotropic density? That is, could the cloak be

described by a standard acoustic fluid with two scalar parameters, density and
bulk moduli? The identity rZJVK2 means that rZrI can occur only if V is a
multiple of the identity, VZwI for some scalar wZw(x). The deformation of U
into the smaller region u could certainly be accomplished at some but not all
points by this deformation, which corresponds to a uniform contraction or
expansion, with rotation. However, the deformation near the inner surface of the
cloak cannot be of this form. In fact, the deformation in the neighbourhood of
XZO must be extremely non-uniform and anisotropic. We will discuss this
below when we examine a fundamental and severe deficiency of the IC model.
(b ) Continuity between the cloak and the acoustic fluid

Let ds, n and dS, N denote the area element and unit normal to the outer
boundary vuC and vUC(ZvuC), respectively. These are related by the
deformation through Nanson’s formula (Ogden 1997), N dSZJK1Ftn ds. The
nature of the cloak requires that the outer surface is identical in either
description, since both must match with the exterior fluid. We, therefore, require
that dsZdS at every point on the outer surface, or

N Z JK1Ftn on vuCZ vUC; ð2:10Þ
and equation (2.8) then implies that

rK1n ZFN on vuCZ vUC: ð2:11Þ

Equation (2.11) is a purely kinematic condition.
The interior of the cloak mimics the wave equation in the exterior fluid. The

final requirement that the cloak will be acoustically ‘invisible’ is that the pressure
and normal velocity match across the outer surface separating the fluid and
cloak. These two continuity conditions arise from the balance of force (normal
traction) per unit area and the constraint of particle continuity. The condition
for pressure is simply that p is continuous across the outer surface, whether one
uses the wave equation in physical space, (2.6), or its counterpart in the
undeformed simply connect region (2.7). As for the kinematic condition consider
its equivalent, the continuity of normal acceleration. This is _vnZn$ _v in physical
space, and using equation (2.5) it becomes _vnZKn$rK1Vp, which must match
withKn$Vp in the fluid. Alternatively, equation (2.11) and the relation F tVZVX

imply, as expected, that

_vn ZKn$rK1VpZKNFt$VpZKN$VXp: ð2:12Þ

The final term is simply the normal acceleration in the undeformed description.
In summary, the continuity conditions at the outer surface in the physical

description are

½p�Z 0 and ½n$rK1Vp�Z 0 on vuC: ð2:13Þ
Proc. R. Soc. A (2008)
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(c ) Example: a rotationally symmetric IC

Consider the inverse deformation

X Z f ðrÞx̂; ð2:14Þ

where x̂Zx=r and rZjxj. Using FK1ZVX implies that

F Z ð1=f 0ÞI rCðr=f ÞIt; ð2:15Þ
where f 0Zdf =dr and the second-order tensors are I rZ x̂5x̂ and ItZIKx̂5x̂.
The bulk modulus and mass density in the cloak follow from equation (2.8) as:

K Z
1

f 0
r

f

� �dK1

; rZ
r

f

� �dK1

f 0I r C
f 2

r2f 0
It

� �
: ð2:16Þ

The anisotropic inertia has the form

rZ rrI r CrtIt; ð2:17Þ
where the radial and azimuthal principal values rr and rt can be read off from
equation (2.16) as functions of f.

Introducing the radial and azimuthal phase speeds, crZ
ffiffiffiffiffiffiffiffiffiffiffi
K=rr

p
and ctZffiffiffiffiffiffiffiffiffiffiffiffiffi

K=rt
p

, the mass density tensor can then be expressed as rZKðcK2
r I rCcK2

t ItÞ.
The quantity Krr is the square of the radial acoustic impedance, z r h

ffiffiffiffiffiffiffiffiffi
Krr

p
.

Equation (2.9) implies that the identity z rZcdK1
t is required for cloaking. The

three equations (2.16) forK, rr and rt in terms of f can be replaced by the universal
relation (2.9), i.e.

rrr
dK1
t ZKdK2; ð2:18Þ

along with simple expressions for the wave speeds in terms of f,

cr Z
1

f 0
and ct Z

r

f
: ð2:19Þ

We will see later that the phase and the wave (group velocity) speeds in the
principal directions are identical.Note that f 0 is required to be positive.The original
quantities can be expressed in terms of the phase speeds as

rr Z cK1
r cdK1

t ; rt Z crc
dK3
t and K Z crc

dK1
t : ð2:20Þ

One could, for instance, eliminate f as the fundamental variable defining the cloak in
favour of ct(r), from which all other quantities can be determined from the
differential equation relating the speeds, ðr=ctÞ0Z1=cr.

We assume that the cloak occupies uZfx : 0!a% jxj%bg with uniform
acoustical properties KZ1 and rZI in the exterior. The areal matching
condition (2.11) with nZNZ x̂ is satisfied by F and r of equations (2.15) and
(2.16) if f is continuous across the boundary, which is accomplished by requiring
f(b)Zb. The pressure and velocity continuity conditions (2.13) become

½p�Z 0 and
1

f 0
vp

vr

� �
Z 0 on r Z b: ð2:21Þ
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Table 1. Behaviour of quantities near the inner surface rZa for the scaling ffxa as xZrKaY0.
(The total radial mass mr is defined in equation (2.22).)

dim rr rt cr ct K mr

2 xK1 x x1Ka xKa x1K2a ln x

3 xK1Ka x1Ka x1Ka xKa x1K3a xKa

2417Acoustic cloaking theory
Note that the cloak density is isotropic if crZct, which requires that f 0Zf/r.
Thus fZgr with g constant, but the outer boundary condition f (b)Zb implies
that gZ1, which is the trivial undeformed configuration.

Perfect cloaking requires that f vanish at rZa. It is clear that ct blows up as
rYa, as does the product Krr. In order to examine the individual behaviour of K
and rr, consider ff(rKa)a near a for a constant and non-negative. No value of
aO0 will keep the radial density rr bounded, although the unique choice aZ1/d
ensures that the bulk modulus K(a) remains finite and non-zero. Note that the
azimuthal density rt has a finite limit in two dimensions for power law decay
ff(rKa)a, while rt remains finite in three dimensions if a%1, otherwise it blows
up. Similarly, the radial phase speed scales as crf(rKa)1Ka, which remains
finite for a%1, blowing up otherwise. These results are summarized in table 1.

We use a non-dimensional measure of the total mass in the cloak,
mhðvolðuÞÞK1

Ð
udv r. The total mass is isotropic for the symmetric deformation

and configuration considered here, mZð1=dÞðm rCðdK1ÞmtÞI , where
ðmr;mtÞZðvolðuÞÞK1

Ð
udvðrr; rtÞ. Assuming for the moment that f(a) is non-

zero, i.e. a near-cloak (Kohn et al. 2008), then

mr Z

2

b2Ka2
b2 ln f ðbÞKa2 ln f ðaÞK2

ðb
a
dr r ln f ðrÞ

� �
; two dimensions;

3

b3Ka3
a4

f ðaÞK
b4

f ðbÞC4

ðb
a
dr

r3

f ðrÞ

" #
; three dimensions:

8>>>><
>>>>:

ð2:22Þ
These forms indicate not only that mr/N as f (a)/0 but also the form of the

blow-up. To leading order, m rZð2a2=ðb2Ka2ÞÞlnð1=f ðaÞÞC/ and m rZð3a3=
ðb3Ka3ÞÞða=f ðaÞÞC/ in two and three dimensions, respectively. The blow-up of
mr occurs no matter how f tends to zero. The infinite mass is an unavoidable
singularity.

(d ) A massive problem with inertial cloaking

Table 1 and the example above illustrate a potentially grievous issue: infinite
mass is required for perfect cloaking in the IC model. We now show that the
problem is not specific to the rotationally symmetric cloak but is common to all ICs.
Consider a ball of radius e around XZO. Its volume dVZO(ed) is mapped to a
volume with inner surface defined by the finite cloak inner boundary vuK and outer
surface by a distance O(eb) further out, where bO0 is a local scaling parameter,
assumed constant (in terms of the example above and table 1, bZ1/a).
Proc. R. Soc. A (2008)



A. N. Norris2418
The mapped current volume is then dvZO(eb) so that JZdv/dVZO(ebKd). The
eigenvalues of V are l1ZO(ebK1), l2, ., dZO(eK1). The bulk modulus and the
principal values of the density matrix are therefore

K ZOðebKdÞ; r1 ZOðe2KdKbÞ and r2;.;d ZOðebKdC2Þ: ð2:23Þ

The principal value r1 blows up whether dZ2 or dZ3. Furthermore, the total mass
associated with r1 in the mapped volume is m1ZO(e2Kd). This blows up in three
dimensions, and a more careful analysis for two dimensions similar to that for the
rotationally symmetric case shows m1ZOðjln ejÞ.

In summary, the IC theory, while consistent and formally sound, reveals an
underlying and ‘massive’ problem. We will show how this can be circumvented
by using a more general cloaking theory that allows for anisotropic stiffness
(elasticity) in addition to, or instead of, the anisotropic inertia. The anisotropic
elastic material required is of a special type, called a PM (Milton & Cherkaev
1995), which is introduced next.
3. Pentamode materials

We consider Hooke’s law in three dimensions in the form ŝZĈ 3̂, where the six-
vectors of stress and strain, and the associated 6!6 matrix of moduli are

ŝZ

s11

s22

s33ffiffiffi
2

p
s23ffiffiffi
2

p
s31ffiffiffi
2

p
s12

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; 3̂Z

311

322

333ffiffiffi
2

p
323ffiffiffi
2

p
331ffiffiffi
2

p
312

0
BBBBBBBBBB@

1
CCCCCCCCCCA

and

Ĉ Z

C11 C12 C13 21=2C14 21=2C15 21=2C16

C22 C23 21=2C24 21=2C25 21=2C26

C33 21=2C34 21=2C35 21=2C36

2C44 2C45 2C46

S Y M 2C55 2C56

2C66

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

The
ffiffiffi
2

p
terms ensure that products and norms are preserved, e.g. CijklCijklZ

trĈ
t
Ĉ .

The PM is rank one, or in other words, five of the six eigenvalues ofĈ vanish
(Milton & Cherkaev 1995). The one remaining positive eigenvalue is therefore

3 ~K htrĈ ZCijij ZC11CC22CC33 C2ðC44CC55CC66Þ: ð3:1Þ
Proc. R. Soc. A (2008)



2419Acoustic cloaking theory
Accordingly, the moduli can be defined by the stiffness ~K and a normalized six-
vector ŝ,

Ĉ Z ~K ŝŝt; 3Z ŝtŝ: ð3:2Þ
The stress is described by a single scalar, ŝZsŝ with sZK̂3, and 3Z ŝt 3̂. Thus,

C Z ~K ~S5 ~S5Cijkl Z ~K ~Sij ~Skl ; ~S Z

ŝ1
1ffiffiffi
2

p ŝ6
1ffiffiffi
2

p ŝ5

1ffiffiffi
2

p ŝ6 ŝ2
1ffiffiffi
2

p ŝ4

1ffiffiffi
2

p ŝ5
1ffiffiffi
2

p ŝ4 ŝ3

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð3:3Þ

The PM (Milton et al. 2006) is so named because there are five easy ways to
deform it, associated with the eigenvectors of the five zero eigenvalues of the
elasticity stiffness. Pentamodes obviously include isotropic acoustic fluids, for
which the only stress–strain eigenmode is a hydrostatic stress, or pure pressure,
and the five easy modes are all pure shear. Milton & Cherkaev (1995) describe
how PMs can be realized from specific microstructures.

(a ) Example: an orthotropic PM

An elastic material with orthotropic symmetry has nine non-zero elements in
general: the six CijZCji, i, jZ1, 2, 3, plus C44, C55 and C66. We set these last
three (shear) moduli to zero. The stress s must then be diagonal in the Cartesian
coordinate system, implying that ŝ4Z ŝ5Z ŝ6Z0, and therefore,

~K Z
1

3
ðC11CC22CC33Þ; ~S Z ~K

K1=2ðC1=2
11 e15e1CC

1=2
22 e25e2CC

1=2
33 e35e3Þ;

with the following relations holding: C12ZC
1=2
11 C

1=2
22 , C23ZC

1=2
22 C

1=2
33 , C13Z

C
1=2
11 C

1=2
33 .

(b ) Compatibility condition for PMs

The notation ~K and ~S is used to signify the fact that the ~S tensors are

normalized by tr ~S 2Z 3 and therefore ~K is given by equation (3.1). We will not
follow this normalization in general, but write:

C ZKS5S 5 Cijkl ZKSijSkl : ð3:4Þ

In other words, the products in (3.4) are the important physical quantities, not K
and S individually. The stress in the PM is always proportional to the tensor S
and only one strain element is significant, S : e. The rank deficiency of the
moduli, which is apparent from (3.2) or (3.4), means that there is no inverse
strain–stress relation for the elements of e in terms of the elements of s.

Static equilibrium of a PM under an applied load leads to a constraint on the
spatial variability of the PM stiffness. Consider an inhomogeneous PM with
smoothly varying C(x)ZK0(x)S0(x)5S0(x). Under an applied static load the
strain will also be spatially inhomogeneous, but the only part of the strain that is
Proc. R. Soc. A (2008)
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important is the component along the PM eigenvector. With no loss in
generality, we may put 3ðxÞZwðxÞS0 for some scalar function w. The stress
is then sZqS0, where qðxÞZwK0 trðS2

0ÞZ3 ~Kw. Let SZqS0, then the static
equilibrium condition div sZ0 becomes div SZ0. Finally, the PM stiffness is
CZKS5S where KðxÞZK0=ð3 ~KwÞ2.

Lemma 3.1. The fourth-order stiffness of a smoothly varying PM can always be
expressed as CZKS5S, where K(x)O0 and S(x)2Sym satisfies the static
equilibrium condition,

div S Z 0: ð3:5Þ

This identity also arises in a completely different manner later when we
consider transformed wave equations. We say that the PM is of canonical form
when equation (3.5) applies. The decomposition of lemma 3.1 is unique up to a
multiplicative constant. Thus, if a static load is applied to a PM expressed in
canonical form, then the stress and strain are s(x)Zc0S and 3ðxÞZðc03 ~KÞK1S,
respectively, for constant c0.

In summary, stability under static loading places a constraint on the PMmoduli,
which will turn out to be useful when we return to the cloaking problem. The
constraint means that the moduli can in general be expressed in canonical form.
(c ) Dynamic equations of motion in a PM

The equations for small amplitude disturbances in a PM with anisotropic mass
density are

sZK trðS3ÞS ð3:6Þ

and
r _v Z div s: ð3:7Þ

These are, respectively, the specific form of Hooke’s law for a PM and the
momentum balance incorporating the inertia tensor. In order to make the
equations look similar to those for an acoustic fluid, we identify the ‘pseudo-
pressure’ p with the negative single stress, pZKK trðS3Þ. The stress tensor then
becomes

sZKpS; ð3:8Þ

and the linear constitutive relation can be written as

_pZKKS : Vv: ð3:9Þ

Equations (3.7) and (3.9) imply that the pseudo-pressure satisfies the generalized
acoustic wave equation,

KS : VðrK1 divðSpÞÞK€p Z 0: ð3:10Þ

This reduces to the acoustic equation (2.6) with anisotropic inertia and isotropic
stiffness when SZI. Finally, assuming that the PM is in canonical form, so that
S satisfies the equilibrium condition (3.5), we have

KS : VðrK1SVpÞK€p Z 0: ð3:11Þ
Proc. R. Soc. A (2008)



2421Acoustic cloaking theory
(d ) Wave motion in a PM

The wave properties of PMs are of interest since we will show that they can be
used to make the acoustic cloak. Consider plane wave solutions for displacement
of the form uðx; tÞZq expðikðn$xKvtÞÞ, for jnjZ1 and constant q, k and v, and
uniform PM properties. Non-trivial solutions of the equations of motion (3.6)
and (3.7) must satisfy

ðKðSnÞ5ðSnÞKrv2Þq Z 0: ð3:12Þ
The acoustical or Christoffel (Musgrave 2003) tensor K(Sn)5(Sn) is rank one
and it follows that of the three possible solutions for v2, only one is not zero, the
quasi-longitudinal solution,

v2 ZKn$SrK1Sn and q ZrK1Sn: ð3:13Þ
The slowness surface is therefore an ellipsoid. Standard arguments for waves in
anisotropic solids (Musgrave 2003) show that the energy flux velocity (or wave
velocity or ray direction) is

cZ vK1KSrK1Sn: ð3:14Þ
Note that this is in the direction Sq, and satisfies c$nZv, a well-known relation
for generally anisotropic solids with isotropic density.

As an example, consider the orthotropic PM with a density tensor of the same
symmetry and coincident principal axes. Then

v2 Z c21n
2
1 Cc22n

2
2 Cc23n

2
3; ð3:15aÞ

cZ vK1ðc21n1e1 Cc22n2e2 Cc23n3e3Þ; ð3:15bÞ

q Z r
K1=2
1 c1n1e1Cr

K1=2
2 c2n2e2 Cr

K1=2
3 c3n3e3; ð3:15cÞ

where c21ZC11=r1, c22ZC22=r2 and c23ZC33=r3, and r1, r2 and r3 are the
principal inertias.
4. The general acoustic cloaking theory

We now show that the IC is but a special case of a much more general type of
acoustic cloak. While the IC depends upon the anisotropic inertia, the general
cloaking model can have both anisotropic inertia and stiffness. The additional
degree of freedom is obtained by replacing the pressure field with the scalar stress
of a PM. The general cloaking model is called PM-IC.

(a ) The fundamental identity

Lemma 4.1. Let P2Sym be non-singular and F is the deformation gradient for
the mapping X/x with JZdet F and V 2ZFF t. Then

V2
XpZ JP : VðJK1PK1V 2VpÞ; ð4:1Þ

if P satisfies
div P Z 0: ð4:2Þ
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The proof is given in appendix A. This clearly generalizes lemma 2.1, and in
the context of PMs it implies theorem 4.2.

Theorem 4.2. The pressure p satisfies a uniform wave equation in U. Under the
transformation U/u with JZdet F and V 2ZFF t, p satisfies the equation for
the pseudo-pressure of a PM with stiffness C and anisotropic inertia r,

V2
XpK€p Z 0 in U5KS : VðrK1SVpÞK€p Z 0 in u; ð4:3aÞ

where
K Z J ; C ZKS5S; rZ JSVK2S; ð4:3bÞ

and S satisfies
div S Z 0: ð4:3cÞ

Note that the stress tensor S is not uniquely defined, although it must satisfy
the equilibrium condition (4.3c). The associated density depends only on the left
stretch tensor of F, viz. V. The IC corresponds to the special case of SZI, which
is a trivial solution of equation (4.3c). The importance of theorem 4.2 is that the
cloaks may simultaneously comprise PM stiffness and anisotropic inertia, which
provides a vastly richer potential set of material parameters, not limited to the
model of equation (2.6).

Theorem 4.2 implies that the phase speed, wave velocity vector and
polarization (not normalized) for plane waves with phase direction n are, from
equations (3.13) and (3.14),

v2 Zn$V 2n; cZ vK1V 2n and q ZSK1c: ð4:4Þ
The phase speed and wave velocity are independent of whether the cloak is an IC
or the generalized PM-IC. These important wave properties are functions of the
deformation only. They can be expressed in revealing forms using the
deformation gradient as vZjF tnj and cZFN, where NZF tn/jF tnj. Note that
the polarization q does in general depend upon the PM properties through the
stress S.
(i) Continuity between the cloak and the acoustic fluid

Continuity conditions at the cloak outer surface in the physical description
follow in the same manner as (2.13). The main difference is that the stress in the
cloak is not isotropic, and therefore the condition that the shear tractions on
the boundary vanish must be explicitly stated. The conditions for the pseudo-
pressure which satisfies equation (3.11) are

½nSp�Z 0 and ½n$rK1SVp�Z 0 on vuC: ð4:5Þ
These follow from equations (3.8) and (3.7).
(ii) Rays in the cloak are straight lines in the undeformed space

Although theorem 4.2 implies that the simple wave equation (2.7) in U is
exactly mapped to equation (3.11) in u and hence all wave motion properties
transform accordingly, including rays, it is instructive to deduce the ray
Proc. R. Soc. A (2008)



2423Acoustic cloaking theory
transformation separately. We now demonstrate explicitly that rays in the cloak
u, which are curves that minimize travel time, are just straight lines in U.
Consider the straight line X(t)ZX0CtN, where N is a unit vector in U. The
associated curve in u is x(t)Zx(X0CtN ). Differentiation yields dx/dtZFN,
which is the same as V 2s, where the vector shFKtN. Differentiating s(t),
keeping in mind that N is fixed, gives

ds

dt
Z

dFKt

dt
FtsZ sV 2FKt dx

dt
$V

� �
FKt Z

1

2
sV 2ðVVK2Þ dx

dt
; ð4:6Þ

where the compatibility identity vFK1
Ij =vxkZvFK1

Ik =vxj has been used. We
therefore deduce that straight lines in U are mapped to solutions of the coupled
ordinary differential equations,

dx

dt
ZV 2s and

ds

dt
ZK

1

2
s$ðVV 2Þs: ð4:7Þ

But these are identically the ray equations in the cloak (see appendix B). They are
also the geodesic equations for the metric VK2. The ray equations conserve the
quantity s$V 2s that is equal to unity, reflecting the fact that s is the slowness
vector, sZn/v (see equations (4.4) and (B 4)). An illustration of rays inside the
physical cloak is presented in §5.
(iii) Relation to the Milton, Briane and Willis transformations

Milton et al. (2006) examined how the elastodynamic equations transform
under general curvilinear transformations. They showed, in particular, that if the
deformation is harmonic then the constitutive relation (2.4) and momentum
balance (2.5) for a compressible inviscid fluid with isotropic density transform
into the equations for a PM with anisotropic inertia, equations (3.6) and (3.7),
respectively. The deformation is harmonic if V2

XxZ0, which realistically limits
the transformation to the identity (Milton et al. 2006). This would appear to
indicate that acoustic cloaking using the transformation method is impossible, in
contradiction to the present result. In fact, as we show next, the Milton, Briane
and Willis (MBW) result is a special case of the more general theory embodied in
theorem 4.2, one that corresponds to the choice SZJK1V2.

The PM stiffness and inertia tensor found by Milton et al. (2006) are
CZJK1V25V2 and rZJK1V2 (their eqns (2.12) and (2.13)). These are of the
general form required by equation (4.3b) if we identify S as SZJK1V2. Does this
satisfy the equilibrium condition (4.3c)? Using equation (2.3) div SZdiv JK1

FFtZJK1Div Ft and this vanishes if the deformation is harmonic. The MBW
transformation therefore falls under the requirements of theorem 4.2 for the
specific choice of SZJK1V 2 that satisfies the equilibrium equation (4.3c) only if
the deformation is harmonic.

Having shown that the MBW transformation result is a special case of the
present theory, it is clear that the transformation as considered here is different
from theirs. Milton et al. (2006) demand that all of the equations transform
isomorphically, whereas the present theory requires only that the scalar acoustic
wave equation is mapped to the scalar wave equation for the PM (see equations
Proc. R. Soc. A (2008)
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(4.3a)). The mapping contains an arbitrary but divergence-free tensor S that
defines the particular but non-unique constitutive relation (2.4) and momentum
balance (2.5). Consider, for instance the displacement fields u(X ) and u in U and
u, respectively. Under the transformation of (Milton et al. 2006) uðXÞ/uðxÞZ
FKtuðXÞðXÞ (eqn (2.2) of Milton et al. 2006). There is no analogous constraint
in the present theory. In other words, we do not require an isomorphism between
the equations for all of the field variables. Instead, the scalar wave equation
for the acoustic pressure is isomorphic to the scalar equation for the pseudo-
pressure of the PM.
(b ) Cloaks with isotropic inertia

Theorem 4.2 opens up a vast range of potential material properties. It means
that there is no unique cloak associated with a given transformation U/u and
its deformation gradient F. We now take advantage of this non-uniqueness to
consider the possibility of isotropic inertia. Equation (4.3b) indicates that the
density is isotropic if S is proportional to V. Hence, we deduce lemma 4.3.

Lemma 4.3. A necessary and sufficient condition that the density is isotropic,
rZrI, is that there is a scalar function h(x), such that

div ðhV ÞZ 0; ð4:8Þ

in which case,

rZ h2J ; K Z J and S Z hV ; ð4:9Þ

and the Laplacian is V2
XpZhJV : VðhK1JK1VVpÞ.

There is a general circumstance for which a solution can be found for h. It
takes advantage of the second-order differential equality,

V2
XpZ ðFtVÞ$FtVp: ð4:10Þ

Although F is generally unsymmetric, FZF t in the special case that the
deformation gradient is a pure stretch with no rotation (RZI). We therefore
surmise lemma 4.4.

Lemma 4.4. If the deformation gradient is a pure stretch (RZI and hence F
coincides with V) then the density is isotropic,

rZ JK1; K Z J and S Z JK1V ; ð4:11Þ

and the Laplacian becomes V2
XpZV : VðVVpÞ.

The infinite mass problem of the IC can be avoided if the material near the
inner boundary vuK has integrable mass. This could be achieved, for instance, by
requiring that the deformation near vuK is symmetric (pure stretch). Lemma 4.4
and the scaling arguments of §2d imply that the isotropic density scales as
rZO(edKb), which is integrable as long as b!dC1 (aO1/(dC1)).
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(c ) Example: the rotationally symmetric cloak

We again consider the deformation of equation (2.14) for the cloak uZfx : 0!
a% jxj%bg and assume that the symmetric tensor S has the form
SZwðrÞðI rCgðrÞItÞ. Differentiation yields div SZ ½w 0KðdK1ÞðgK1Þ�x̂, and
the ‘equilibrium’ condition (4.3c) is satisfied if w(r) and g(r) are related by
w 0ZðdK1ÞðgK1Þ. It is convenient to introduce a new function g(r), such that
gZrg 0/g and wZ(g/r)dK1, which automatically makes div SZ0. The cloak
parameters, therefore, have general rotationally symmetric forms

K Z
1

f 0
r

f

� �dK1

; S Z
g

r

� �dK1
I r C

rg 0

g
It

� �
; rZ f 0

g2

rf

� �dK1

I r C
fg 0

f 0g

� �2

It

" #
:

ð4:12Þ
The functions f and g are independent of one another, and together define a two-

degree of freedom class of PM-IC model. The general solution has both anisotropic
stiffness and anisotropic inertia. The previous example of the pure IC corresponds
to the special case of gZr, for which equation (4.12) gives SZI and K, and r agree
with equation (2.16).

The form of the stress S indicates the PM-IC has TI symmetry. This is a
special case of the orthotropic PM considered earlier. A normal TI solid with axis
of symmetry in the x3-direction has five independent elastic moduli: C11, C33,
C12, C13 and C44. The last is a shear modulus, the other shear modulus is
C66Z(C11KC12)/2. We set all shear moduli to zero, implying C44Z0 and
C12ZC11, and the remaining independent moduli C11, C33 and C13 satisfy
C11C33KC2

13Z0. The PM, therefore, has two independent elastic moduli. Let
C33/Kr(r), C11/Kt(r) and C13/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KrKt

p
, then the fourth-order elasticity

tensor defined by (4.12) is

C ZKS5S Z
ffiffiffiffiffiffi
Kr

p
I rC

ffiffiffiffiffiffiffiffi
Kt

p
It

� �
5

ffiffiffiffiffiffi
Kr

p
I rC

ffiffiffiffiffiffiffiffi
Kt

p
It

� �
; ð4:13Þ

where the stiffnesses Kr and Kt, and the principal values of the inertia tensor
given by equation (2.17), are

KrZ
1

f 0
g2

rf

� �dK1

; KtZ
rg02

ff 0
g2

rf

� �dK2

; rrZ f 0
g2

rf

� �dK1

and rtZ
fg 02

rf 0
g2

rf

� �dK2

:

ð4:14Þ
The phase speeds cr and ct in the principal directions are again given by equation
(2.19). This might seem amazing at first sight, but recall that it is predicted from the
general theory. That is, the phase speed and wave velocity are independent of how
we interpret the cloak material, as an IC or the more general PM-IC. In this
example, it means that the phase speed and wave velocity are independent of g.
(i) Pure PM cloak with isotropic density

The inertia is isotropic when rrZrt, which occurs if g(r)Zf(r). In that case
rZrI, and equation (4.14) reduces to

rZ f 0
f

r

� �dK1

; Kr Z
1

f 0
f

r

� �dK1

and Kt Z f 0
f

r

� �dK3

: ð4:15Þ
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We observe that the parameters of equation (4.15) are obtained from the
IC parameters in equations (2.16) and (2.17) under the substitutions
fK ; rr; rtg/f1=r; 1=Kr; 1=Ktg. Thus, the universal relation analogous to
equation (2.18) is now

KrK
dK1
t Z rdK2; ð4:16Þ

and by analogy with equation (2.20) the three original material parameters can
be expressed using the phases speeds only, as

rZ cK1
r c

KðdK1Þ
t ; Kr Z c rc

KðdK1Þ
t ; Kt Z cK1

r c3Kd
t : ð4:17Þ

In summary, there is a one-to-one correspondence between the two sets of three
material parameters for the limiting cases of the pure IC on the one hand, and
the pure PM cloak on the other. Of course, as discussed before, the density and
stiffness cannot be simultaneously isotropic. The PM-IC model with material
properties (4.12) includes both limiting cases when gZr and f, respectively.

Table 2 summarizes the scaling of the physical quantities for isotropic inertia,
similar to the scalings in table 1 for the pure IC. Note that the wave speeds cr, ct
and the intermediate (C13) modulus

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KrKt

p
have limiting behaviour that is

independent of the dimensionality, while the density r and the moduli Kr and Kt

depend upon whether the cloak is in two or three dimensions.
5. Further examples

(a ) A non-radially symmetric cloak with finite mass

The examples considered above are rotationally symmetric and rather special in
that they can be made using uniformly pure IC, or pure PM, or hybrid PM-IC.
The pure IC model is always achievable as lemma 2.1 showed, but it suffers from
the infinite mass catastrophe. The pure PM model requires that lemma 4.3 hold
at all points, which is not realistic. However, we can always obtain a cloak
comprising partly pure PM by requiring the deformation to be locally a pure
stretch (lemma 4.4). In particular, by constraining the deformation near the
inner surface vuK in this manner, the density can be made both isotropic and
integrable. We now demonstrate this for a non-rotationally symmetric cloak.

For A2SymC, h(z), h0(z)O0 for z2[0,1], consider the deformation,

x Z zK1hðzÞAX and zZ ðX$AXÞ1=2: ð5:1Þ
This generalizes the deformation of equation (2.14) (AZI ) and has the
important property that the deformation gradient is symmetric,

F Z
h

z
AC

1

z

h

z

� �0
ðAX Þ5ðAX Þ: ð5:2Þ

The inner surface is an ellipse (two-dimensional) or ellipsoid (three-dimensional),

vuKZ fx : x$AK1x Z h2ð0Þg: ð5:3Þ
The mapping X4x must be the identity on the outer surface of the cloak

vuCZvU. This eliminates the transformation (5.1) as a possible deformation in
the vicinity of vuC but it does not rule it out elsewhere. In particular, it can be
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Table 2. Behaviour of quantities near the vanishing point rZa for the scaling ffxa as xZrKaY0
with isotropic inertia.

dim cr ct Kr Kt r

2 x1Ka xKa x xK1 x2aK1

3 x1Ka xKa x1Ca xaK1 x3aK1

2427Acoustic cloaking theory
used on the inner surface vuK and for a finite surrounding volume. Then it could
be patched to a different mapping closer to the outer boundary of the cloak, one
which reduces to the identity on vuC. For instance,

x Z zK1hðzÞAnX; ð5:4Þ
where n(x)Z1 for all x between vuK and some surface C, beyond which n
decreases smoothly to zero as x approaches vuC, which is assumed to be a level
surface of z, i.e. an ellipsoid or an ellipse. We assume that zZ1 on the outer
surface, so that

vuCZ fx : x$Ax Z h2ð1Þg: ð5:5Þ
Let C be the level surface zZz0 for constant z02(0,1). The surface separating the
pure PM inner region from the PM-IC outer part of the cloak is therefore

CZ fx : x$AK1x Z h2ðz0Þg: ð5:6Þ
Based on lemma 4.4, the inner part of the cloak between vuK and C can be
constructed from pure PM with isotropic density rZJK1ZðjAjh 0ÞK1ðz=hÞdK1. The
remaining part of the cloak is PM-IC and the mass of the entire cloak will be finite.

For instance, in figure 2, h(z)Z(1/2)(1Cz) for z2[0,1], nZ1 for z2½0; 3=4Þ
and nZ4(1Kz) for z2½3=4; 1�, and the principal values of A are 0.6 and 1.0. It
also shows each ray following a continuous path through the cloak with collinear
incident and emergent ray paths. There is a unique ray separating the rays
traversing the cloak in opposite senses, and which defines a ‘stagnation point’ at
the cloak inner surface. The separation ray is the one that would intersect the
singular point in the undeformed space, O in figure 1. This is the origin in figure 2
and since the rays are incident horizontally, the separation ray is defined by
x2Z0 outside the cloak, and it intersects vuK at xZGð1=2ÞAe1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1$Ae1

p
. The

wavefront in effect splits or tears apart at the incident intersect and it reforms at
the emergent intersect. The time delay between these two events is infinitesimal
since the tearing/rejoining is associated with the instant at which the wavefront
would traverse O in the undeformed space. A time-lapse movie illustrating this
more vividly may be seen in the electronic supplementary material (20 s long).
Another movie showing the ray paths for different directions of incidence can be
found in the electronic supplementary material.
(b ) Scattering from near-cloaks

A near-cloak or almost perfect cloak is defined here as one with inner surface
vuK that does not correspond to the single point XZO. We illustrate the issue
using the radially symmetric deformation (2.14) with f (a) small but non-zero,
Proc. R. Soc. A (2008)
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Figure 2. Ray paths through a non-radially symmetric cloak. The solid curves are the inner and outer
surfaces of the cloak. The dashed curve delineates the inner region in which the deformation gradient
is symmetric everywhere and the cloak is pure PM with finite isotropic mass. Two movies of the rays
and the wavefronts in this cloak may be viewed in the electronic supplementary material.
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and assuming time harmonic motion, with the factor eKikt understood but
omitted. Since the inner surface is not the image of a point, it is necessary to
prescribe a boundary condition on the interior surface, which we take as zero
pressure on rZa. The specific nature of the boundary condition should be
irrelevant as f (a) shrinks to zero.

As before, the cloak occupies uZfx : a%r%bg, but now f (a)O0. The total
response for plane wave incidence is pðxÞZp0 expðikRðrÞcos qÞCpscðxÞ,

psc ZKp0
XN
nZ0

inð2Kdn0ÞJnðkRðaÞÞ
H

ð1Þ
n ðkRðrÞÞ

H
ð1Þ
n ðkRðaÞÞ

cos nq;

inð2nC1ÞjnðkRðaÞÞ
h
ð1Þ
n ðkRðrÞÞ

h
ð1Þ
n ðkRðaÞÞ

Pnðcos qÞ;

8>>>>><
>>>>>:

RðrÞZ
f ðrÞ; a%r!b;

r; b%r!N;

(

in two and three dimensions, respectively, and p0 is a constant. A near-cloak can
be defined in many ways: for instance, a power law f (r)Zb((rKd)/(bKd))a with
Proc. R. Soc. A (2008)



2429Acoustic cloaking theory
0!d!a is considered in Norris (2008). Here we assume a linear near-cloak
mapping similar to the one examined by Kohn et al. (2008),

f ðdÞðrÞZ b
rKa

bKa

� �
Cd

bKr

bKa

� �
; ð5:7Þ

where 0!d!a. Hence, f (d)(a)Zd and the radius at which the mapping is zero,
rZa–d(bKa)/(bKd), defines the size of a smaller but perfect cloak.

Some representative results are shown in figure 3, which illustrates clearly a
disparity between the cylindrical and spherical cloakings, even when the physical
optics cross-sections are identical. Thus, for f (a)Z0.01a, the three-dimensional
cross-section is negligible (figure 3d) but the two-dimensional cross-section is
two orders of magnitude larger (figure 3c). Ruan et al. (2007) found that the
perfect cylindrical EM cloak is sensitive to perturbation. This sensitivity is
evident from the present analysis through the dependence on the length d that
measures the departure from perfect cloaking dZ0.

The ineffectiveness of the same cloak in two dimensions when compared with
three dimensions can be understood in terms of the scattering cross-section. The

leading order far-field is of the form pZp0e
ikzCp0gðx̂ÞrKðdK1Þ=2ði2p=kÞð3KdÞ=2eikr .

The optical theorem implies that the total scattering cross-section, and hence the
total energy scattered, is determined by the forward scattering amplitude,
SZ4pkK1 Im gðêzÞ. Thus,

SZ

4

k

XN
nZ0

ð2Kdn0ÞRe
Jnðkf ðaÞÞ
H

ð1Þ
n ðkf ðaÞÞ

; two dimensions;

4p

k2

XN
nZ0

ð2nC1ÞRe jnðkf ðaÞÞ
h
ð1Þ
n ðkf ðaÞÞ

; three dimensions:

8>>>>><
>>>>>:

ð5:8Þ

The cross-section is dominated in the small kf (a) limit by the nZ0 term, with
leading order approximations,

SZ

p2

k
jln kf ðaÞjK2 C/; two dimensions;

4pf 2ðaÞC/; three dimensions:

8><
>: ð5:9Þ

This explains the greater efficacy in three dimensions, and suggests that all
things being equal, cylindrical cloaking is more difficult to achieve than its
spherical counterpart.
6. Discussion and conclusion

Starting from the idea of an acoustic cloak defined by a finite deformation, we
have shown that the acoustic wave equation in the undeformed region is mapped
into a variety of possible equations in the physical cloak. Theorem 4.2 implies
Proc. R. Soc. A (2008)
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Figure 3. A plane wave is incident from the left with frequency kZ10 on the cloak defined by
equation (5.7) with aZ1 and bZ21/(dK1). The outer cloak radius b is chosen so that the geometrical
cross-section of the cloak is twice that of the cloaked region in both two dimensions ((a) dZ0.3,
SZ1.48 and (c) dZ0.01, SZ0.12) and three dimensions ((b) dZ0.3, SZ0.79 and (d ) dZ0.01,
SZ1!10K3). The circular core in the plots is the cloaked region of radius a. The virtual inner
radius f(a)Zd is 0.3 or 0.01, and S is the total scattering cross-section.
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that the general form of the wave equation in the cloak is

KS : VðrK1SVpÞK€p Z 0; ð6:1Þ
where the stress-like symmetric tensor S is divergence free and the inertia tensor
is rZJSVK2S. The non-unique nature of S for a given fixed deformation opens
many possibilities for interpreting the cloak in terms of material properties.

If S is constant (SZI with no loss in generality) then the cloak material
corresponds to an acoustic fluid with pressure p defined by a single bulk modulus
but with a mass density r that is anisotropic, which we call the IC. The IC model
is mathematically consistent but physically impossible because it requires a cloak
of infinite total mass. There appears to be no way to avoid this if one restricts the
Proc. R. Soc. A (2008)
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cloak material properties to the IC model. If one is willing to use an imperfect
cloak with finite mass, and is concerned with fixed frequency waves, then the
scattering examples show that significant cloaking can be obtained by shrinking
the effective visible radius to be sub-wavelength. The two- and three-dimensional
responses for imperfect cloaking are quite distinct, with far better results found
in three dimensions.

A cloak of finite mass is achievable by allowing S to be spatially varying and
divergence free. The general material associated with equation (6.1), called
PM-IC, has both anisotropic inertia and anisotropic elastic properties. The
elastic stiffness tensor has the form of a PM characterized by the symmetric
tensor S and a single modulus K. Under certain circumstances, characterized in
lemmas 4.3 and 4.4, the density becomes isotropic and the material is pure
pentamode. More importantly, the total mass can be made finite.

The finite mass problem arises from how we interpret the cloak material in the
neighbourhood of its inner surface. It is therefore not necessary to totally
abandon the pure IC model, but it does mean that the alternative PM-IC is
required at the inner surface. From the examples considered here it appears that
one can always use a pure PM model near the inner cloak surface, and thereby
achieve finite mass. One method is to force the deformation near the inner
surface to be a pure stretch, then lemma 4.4 implies that the density is locally
rZ1=det F. The total mass remains finite as long as r is locally integrable, which
is easily achieved.

The theory and simulations of PM-IC and PMs presented here illustrate the
wealth of possible material properties that are opened up through the general
PM-IC model of acoustic cloaking. The physical implementation is in principle
feasible: for instance, anisotropic inertia can be achieved by microlayers of
inviscid acoustic fluid (Schoenberg & Sen 1983), while the microstructure
required for PMs has been described (Milton & Cherkaev 1995). Fabrication of
practical PM-IC materials remains as a challenging but worthwhile goal.

Constructive suggestions from the anonymous reviewers are appreciated.
Appendix A. Proof of theorem 4.2

A weak but instructive form of the identity (4.1) is proved first. Consider the
possible identity

V2
XpZ cA : VðBK2 div cK1ApÞ; ðA 1Þ

where A and B2Sym are non-singular and c is a scalar. Let us examine under
what circumstances this identity holds. Let q be an arbitrary test function and
consider the integral

I Z

ð
U

dV qcA : VðBK2div cK1ApÞ: ðA 2Þ

Substituting dVZJK1dv, integrating by parts and ignoring surface contri-
butions, yields

I ZK

ð
u

dvðdiv JK1cAqÞ$ðBK2 div cK1ApÞ: ðA 3Þ
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In order to guarantee that the integral is self-adjoint, i.e. symmetric in both p and
q, we demand cZJ (1/2). The self-adjoint property is made evident by writing I as

I ZK

ð
u

dvðBK1 div JK1=2AqÞ$ðBK1 div JK1=2ApÞ: ðA 4Þ

If (A 1) is to be valid, then

I ZK

ð
U
dVVXq$VXp: ðA 5Þ

Comparing these integrals and once again using dvZJ dV, implies

ðJ1=2BK1 div JK1=2AqÞ$ðJ1=2BK1 div JK1=2ApÞZVXq$VXp: ðA 6Þ

The only way that these can agree for arbitrary p and q is if

div JK1=2AZ 0; ðA 7Þ
in which case (A 6) becomes

ðBK1AFKtVXqÞ$ðBK1AFKtVXpÞZVXq$VXp: ðA 8Þ
Using V 2ZFFt, it is clear that (A 8) can only be satisfied if

BK2 ZAK1V 2AK1: ðA 9Þ
A weak form of theorem 4.2 follows by substituting AZJ1/2P. Based upon this, it
is a straightforward exercise to see that the identity (4.1) can be derived directly
by brute force differentiation of the r.h.s., taking into account the constraint (4.2)
and lemma 2.1.
Appendix B. Ray equations in an acoustic cloak

Consider a Wentzel–Kramers–Brillouin (WKB) type of solution for the
displacement, uðx; tÞZUðx; tÞ expðikfðx; tÞÞ. The leading-order equation for
the phase f and amplitude U is (see equations (3.8)–(3.13))

½KðSVfÞ5ðSVfÞK _f
2
r�U Z 0: ðB 1Þ

The inner product of equation (B 1) with U may be written as HCHKZ0, where

HGZ _fGK1=2jq̂$rK1=2SVfj ðB 2Þ
and q̂Zr1=2U=jr1=2U j. We focus on the characteristic HCð _f;Vf;xÞZ0. The
Hamilton–Jacobi equations for this ‘Hamiltonian’ yield the ray equations,

dt

dt
Z

vHC

v _f
;

dx

dt
Z

vHC

vVf
;

dVf

dt
ZK

vHC

vx
and

d _f

dt
ZK

vHC

vt
; ðB 3Þ

where t is the time-like ray parameter. Since vHC=v _fZ1, t may be replaced
by t as the natural ray parameter, while vHC/vtZ0 implies that _f is constant
along a ray. We choose _fZK1 for convenience and define the slowness vector
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sðtÞZVf along the ray xZx(t). The vector equation (B 1) then implies that

q̂ZK1=2rK1=2Ss, and since q̂ is by definition a unit vector, using equation (4.3b)
we deduce that the slowness satisfies

s$V 2sZ 1: ðB 4Þ

This is simply the ellipsoidal slowness surface mentioned in §4. Finally, the
evolution equations along the ray can be expressed as a closed system for x(t)

and s(t) by using equation (B 3) and noting that HCZðs$V 2sÞ1=2K1,

dx

dt
ZV 2s and

ds

dt
ZKðVsÞ$ðVV Þs: ðB 5Þ
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