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Abstract.
The nt" derivative of a tensor valued function of a tensor is defined by a finite number
of coefficients each with closed form expression.

1. Introduction. We consider tensor functions on symmetric second order tensors,
Sym— Sym, defined by a scalar function f(z) of a single variable according to

d
f(A) = Z flai) Ay, (1.1)

where d is the eigen-index of A. The tensor A € Sym is arbitrary with spectral decom-
position
d A = d
A=) miAi,  AA;= { T Y A=L (1.2)
i—1 0, i#J i=1
The specific case of tensors acting on 3-dimensional vectors, d < 3, is discussed in this

paper, although the results can be readily generalized.
Derivatives of f(A) are defined by the expansion

FA+X)=f(A) + Vf(A)X + %V(z)f(A) c XX 4 %V“)f(A) : XXX

1
il () .
+...—|—n!V fA) : XX...X+... (1.3)
n terms
The n*" derivative V(") f(A) is a tensor of order 2(n + 1) which contracts n-times with
the second order tensor X to produce a second order tensor. The first derivative, or
gradient, is

d f'(ai), i=j,
viAa) =Y fPAarA;, = (1.4)
i,j=1 f(ai)—f(aj)’ i 7,
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where X denotes the outer tensor product, defined in Section 2l The identity (L.4]) is well
known and has appeared in various formats. The first explicit presentation I am aware
of is due to Ogden [I0] who defines a fourth order tensor £' = df(A)/0A (with slight
change in notation). Ogden gives the components L}jkl in terms of the eigenvectors a;

of A, ie L' = Liai ®a; @ a, © a;. These coefficients are related to those of (L)
by the fact that A; = a; ® a; (no sum) when d = 3 and hence L}, = Z-(il), Ll = Z-(jl).
The fundamental result (I4]) was also derived by Carlson and Hoger [1], although the
present notation is based on [14].

Ogden [10] (Section 3.4) also presented the second derivative. In the present notation

it is
d
%V@)f(A) = Y fPARARA, (1.5)
i,7,k=1
fi(;) = %f”(ai),
@  flag) = flag) = (o — i) f'(cu)

fu_] - (a] _ ai)? ’
7@ = [f(ay) = flad)l(ai + a; — 2ai) — [f(ai) + f(ay) = 2f(aw)l(e; — i)

2(a; — o) (a; — ax)(ar — i)
Ogden’s expressions ([4)) and (LH) are special cases of the more general formulae for
derivatives of isotropic tensor functions derived by Chadwick and Ogden [2].

It is interesting to note that the tensor gradient function (first derivative) involves
finite differences of the function f as well as its derivative evaluated at the eigenvalues of
A. Similarly, the second derivative contains second order finite differences. The general
result derived here shows that the coefficients for the n'" derivative are related to an
interpolating polynomial.

Our main result is the following:

THEOREM 1.1. The n'” derivative of the tensor function f(A) is given by
d
1. n
EV( VF(A) = Z f<>+ A, KA, R...KA; . (1.6)

11,025 y0n41=1

The coefficients fi(f,Zz,...,inH are unaltered under all permutations of the n+1 indices. The

2 . .
(n+2)(n+3)/2 distinct coefficients can be classified intd] LWJ expressions fi’;’k"/] E
where v;, v;, 14, are the number of occurrences of distinct indices i, j, k respectively, with

1#j#k#1iand v; +v; + v, =n+ 1. The coeflicient is

14!
I = 3 e ae o - (1.7)

Alternatively, the coefficient can be found from the unique interpolating polynomial P(x)
of degree n that fits the data at the three points x = {ay, a;, ay} defined by the n + 1

1| z| is the floor function.
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values f(I)(ai), f(‘])(oaj), and f(K)(ak) for0<I<1;—-1,0<J<y;—1,0< K <y —1
where f()(z) is the I*" derivative. Let P(x) = ppa™ + pn_12"~* + ... + po, then

fii 7" = pn. (1.8)
The first few expressions for the coefficients are
£ = =50 ), (1.92)
n—1
o™ = W [f(aj) - ; %(Oéj — ) fO(ay)|, (1.9b)
foen Tt = ! i (o — o) f D) + (o5 — ) f'(eg) — nf ()
ijk - (a] —ak)"_l s [ J k k J k J AR
(1.9¢)
f1,1,n71 _ 1 { flew) . floy)
E T (o= ay) s —a)m (g —ag)n !
n—2
N Loy, 1 1
> "o | oo~ e
(1.94)
12n-2 _ 1 fled) — fley) oy (o — o)
T = (i —aj;)? { (i — o)™ (0 — o)™ ? 1+ G ak)]
oy —a) 0 RR L [ 1
+ (o - ozk)"*Qf () ; o/ (cw) (o — ap)
1 - a
N [1+ (n—l—2)%}]}. (1.9¢)

These are sufficient to determine all derivatives up to and including the fourth. Thus,
the gradient tensor (n = 1) requires the two expressions f?j’,g’2 and f?j’,i’l evident from
(T4); the second derivative (n = 2) requires f?j’g’3, 0.12 and filj’,i’l, which may be read

ijk
off from (IA)); the third derivative (n = 3) involves four distinct formulas for f?j’g 4 3’;’3,

0,2,2 1,1,2, s _ . . 0,0,5
fijk and fijk ; and the fourth derivative (n = 4) requires the five expressions fijk ,

ffj’,iA, 3’5’3, 1223 and leﬂfz Note that (L9D) and (L9d) reduce to (I9a) in the limit
as a; — ag. Similarly, (I.9d)) and (9¢) reduce to (I.9d) in the limit.

The main objective of this paper is to prove Theorem[I.I} Some new results concerning
the properties of the fourth order gradient tensor V f are also presented and the inverse
fourth order tensor V1 f is introduced. Both the gradient and its inverse are discussed
with application to strain measure functions [6, 12]. The proof of Theorem [[T] begins
with a new derivation of the well known expression for the gradient V f. The essential
structure of the second and higher order derivatives is shown to depend on a general
algebraic identity. This identity also reveals the appearance of the characteristic finite
difference terms. The proof is completed by making connections with contour integrals
and with interpolation polynomials. The results are presented in terms of Kronecker
products of tensors which makes the expressions more transparent.
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The paper is laid out as follows. Notation is introduced in Section 2] followed by the
derivation of Theorem [[I]in Section[8l The inverse gradient tensor is introduced and its
properties discussed in Section [l

2. Notation and preliminaries. We consider second order tensors acting on vectors
in a three dimensional inner product space, x — Ax with transpose A’ such that y-Ax =
x - Aly. Spaces of symmetric and skew-symmetric tensors are distinguished, Lin = Sym
@® Skw where A € Sym (Skw) iff A’ = A (A’ = —A). Products AB €Lin are defined
by y - ABx = (A'y) - Bx.

Psym is the space of positive definite second order tensors. Functions of a symmetric
tensor can be phrased in terms of its spectral decomposition (LI]) where A; €Psym and
the distinct eigenvalues o, i = 1...,d < 3 are real numbers. The single function f(A)

is a special case of isotropic tensor functions of the form T(A) = Z filaq, ag, as)Ay,

involving three functions of three variables. Chadwick and Ogden [ ] derived first and
second derivatives for more general situation (see [3] for a recent overview). Our interest
here is strictly limited to one function f as in (II).

Lin is the space of fourth order tensors acting on Lin. The square tensor product or
Kronecker product AXB, LinxLin— Lin, is defined in the usual manner as [11]

(AXB)X = AXB', VX € Lin. (2.1)
The following property of X will be used extensively,
(AKB)(XKY) = (AX)X(BY). (2.2)
The generalization of 21)) is
(ARKB...X...C):XY...Z=AXB'Y...ZC". (2.3)
n+1 n

Basic properties of the Kronecker product can be found in e.g. [9].
The gradient of a tensor function f(A) is a fourth order tensor Vf € Lin defined by

VF(A)X = lim ~ [f(A +X) — f(A)]. (2.4)

e—0 €

Higher order derivatives are defined recursively in accordance with (T3],
1
VW FA)X = limn ~ (VDA +eX) - VODFA)], n>2 (2.5)
e—0 €

We note some properties of the tensor gradient. First, the tensor gradient of the
product of two functions is

V[f(A)g(A)] = (IRg(A))Vf(A) + (f(A)RI)Vg(A). (2.6)
For example, let g = 1/f = f~!, then using V[ (A)g(A)] =0 y1elds
VI A) = -[fTHA)RFTHA)]VS (2.7)
The composition of two functions is f o g(A) = f(g(A)) has gradlent
Vfog(A)=Vf(g(A)) Vg(A). (2.8)
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Only symmetric tensor arguments are considered in this paper. The extension of the
gradient tensor to non-symmetric tensor arguments is discussed by Itskov [7].

3. Proof of Theorem [I.3l The proof has several stages, starting with consideration
of f in the form of a power series. This allows us to identify certain properties of the
derivatives that are subsequently generalized to arbitrary f. Implicit in this approach is
the idea that a function of a single variable can be approximated to any desired level of
precision by a polynomial. The use of polynomials allows us to see the structure of the
higher order derivatives, not only the first or second.

3.1. A power series. For the moment assume

flz) =™, (3.1)
then f(A +X) is

A+X)"=(A+X)(A+X)(... )(A+X)
=A" 4+ (A"TIX + AMTEXA 4L A XA
+(AMT2X2 4L AMTIXAX 4+ XEATTR) (3.2)

The O(X) and O(X?) contributions contain m and m(m — 1)/2 separate terms, respec-
tively. The term of O(X") has (%) elements. A more suggestive and useful form of (B.2)
is apparent by rewriting it as

m m—1 k
(A+X)"— A" =Y A" XA+ Y AN CATIXAR T 4
k=1 k=1 =1
m m—1 k
=> (A"RAFHX 4+ Yy ATTTRATTRAM XX
=1 k=1 1=1
+ > e o Ll 2t ATRARR. . KA KA

Q5y09 s in41=0
tit...Fint1=m—n

XX X+ (3.3)

n

This permits us to consider the derivatives in sequence. Our objective is to understand
the term of O(X"™), but it is easier and more instructive to begin with the lowest, n = 1.
3.2. The first derivative. Let us first focus on the O(X) term. Consider the identity

(ARI-IRA) Y A" *RAM ! =D (A" FRAMT - AP RAY)
k=1 k=1
= A"RI - IKA™. (3.4)

Then
(ARI - IKA) [(A +X)™ — A™] = (A"RI - IKA™) X + O(X?), (3.5)
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which may be generalized to power series functions

M
x) = Z emax™, (3.6)
m=0

as
(AXI — IKA) [f(A +X) - f(A)] = [f(A)&I — I&f(A)]X + O(X?). (3.7)
Equation () implies
LEMMA 3.1. The tensor gradient of any differentiable function satisfies
(ARI - IKA)Vf(A) = f(A)RI - IXK f(A). (3.8)

We will return to the form of this equation later when the inverse gradient tensor is
discussed. At this stage we note an isomorphism between the tensorial identity (3.4
and an algebraic equation in two variables. Let x and y represent the first and second
occurrence of A in A FRAFT — gm—kyk—1 Then eq. B4 is equivalent to

me k, k—1 (x_y)(xmfl+$m72y+xm73y2+'”+ymfl)
k=1
=a™ —y™. (3.9)

This is the well known factorization of 2™ — y™. The analogous relation for the second
derivative of f is derived next.

3.3. The second derivative. The algebraic equality analogous to ([B.9) for the O(X?)
terms involves three variables, say z, y and z, and is

m—1

k
(z—y)( Do TR TE  Gmy)a ™ (r—2)y ™+ (y )2 ™ (3.10)
k:l =1

As proof of this statement note that the tensorial equivalent of [B.I0) is

(ARIKI - INARI)(INARI — IRINA)(IRIKA — A&I&I)%V@)f(A)
— f(A)R(IRA — ARI) + (AR f(A)RI - IKf(A)RKA) + (IXA — ART)Kf(A).

(3.11)
It may be checked, using ([B3.3)), that this indeed holds.
The algebraic identities for the n = 1 and n = 2 derivatives are, respectively,
Soamhypt T Y (3.12a)
1 r—y Y-
m—1 k M ym m
T + + . (3.12b
22 Ry s I s g B ey M e

This form of the identity will prove more useful in the general case of the n'* derivative,
considered next.
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3.4. Higher derivatives. Referring to eq. (B3] it is clear that the term of O(X")
involves (’g) products of the form

APXA2X .. XA XA+ with i; + s + ...+ iny1 = m —n. (3.13)

The analogous algebraic quantity has a closed form expression similar to that found for
the first and second derivatives in [BI2). It is given by the following general identity
among n + 1 independent variables:

LEMMA 3.2.
m—n . . ) ) n+1 m
Z xR oa x;"jll = Z _— U ) (3.14)
Qg0 ip41=0 i=1 s
ii+i2+?~~+inj11:m_n ]1;[1 (Il :EJ)
JF#i
As prooﬂ, consider the identity
n+1
1 1 1 1
= — . 3.15
(1 — .Ilt)(l — .Igt)( . )(1 — $n+1t> tn Zl (1 — .Izt) ntl ( )
= I (i — ;)
j=1
JF#i

The right hand side is simply the expansion of the left in partial fractions. Equation
BI4) follows by comparing the coefficients of t™*~™ on either side of (B.15).
Motivated by the expansion ([B3]), consider the following ansatz for the derivatives,

d
VIA) =Y Y ARA;, (3.162)

i,j=1

1 d

sV r(A) = S8 ARARA,, (3.16b)
i,7,k=1

1 d

HV(")]‘(A): S AN ALRALR. KA. (3.16¢)
$1,02 e,
---;i713i71+1:1

The key feature is the use of the spectral basis of A.
The tensorial equations (B8] and (BIT]), or their algebraic versions B3) and BI0),
imply

(i — ay)f) = flea) — flay), (3.17a)
(i — o) — o) (e — i) ) = (e — ) f (i) + (@i — an) flag) + (o — i) faw),
(3.17b)

2Thanks to Doron Zeilberger for the proof.
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These may be expressed in the obvious alternate form,

5o = f(a;}:i(aj), it (3.18a)

P T (O B () flew)

(i —ag)(ai —og) (g —ar)(og — i) (o — ) (o — )’

it Ak A
(3.18b)

These relations do not, however, provide all the coefficients required to define the deriva-
tives according to ([B.16al) and (3.16Db). Specifically, the coefficients fl-(l) 1(1311 and f,gi;c

7

are not defined, but may be obtained from (B.IT) by taking the limits a; — o, etc. and

using 'Hopital’s rule. The result is fi(il) = f'(ay) in agreement with (I4]), and
flag)  flow)=flaw)
f(Q) _ ) ai—ar (arak)zk , 1Fk,
Wik %f”(ai)u i = k,
in agreement with Theorem [T and with (LH) from [10].
How does this generalize to the n'" derivative, and is it correct to take the limits as
described to find the “missing” coefficients? In partial answer to the first question, note

that Lemma applied to the function f represented as a power series, (B.0]), suggests
the equivalence

(3.19)

n+1
f (@) (n)
_Z 77,-‘1-17 - 11,82,.. -5 p41” n Z 37 (320)
i=1 H (:Ez _ Ij)
j=1
J#i

where the 2; and z; are replaced by o; and ;. However, no matter what combination of
indices are taken for the coefficients on the right hand side, there will be pairs of indices
with the same values, e.g. fi(fk)k. In this sense the cases n = 1 and n = 2 are special
because it is possible to have indices that are distinct, which enables us to write the
identities ([B.I8]). This does not apply for n > 3. The indicial overlap must be taken into
account in order to arrive at the correct form of (B20). Not surprisingly, the correct
result is equivalent to taking the appropriate limit of the left member of [3:20). Consider
the third order derivative, for instance. The coefficient fi(ﬁzk corresponds to x1 = «;,

Ty = 0y, T3 = oy, in the limit as x4 — ay. That is,

G _ lim flag) f(aj)
Figin _IL% [(ai —aj)(o; — o)y — x) * (o — ag) (o — ) (e — )
flow) f(z)
T ook —ay)(an—2) | G —a)@—ag)@ —ar)
1 [fle) = flaw)  flay) — flow) £(ox)
‘%m—a»[<m—aw2 @ —on? | (o —an)oy —ap) O

in agreement with (L9d)) for n = 3. The remaining coefficients fi(sllk, l-(i)k and f,gizck can

be obtained by taking further limits. This method of evaluating the coefficients, while
correct, is particularly tedious as n becomes larger and more limits must be taken.
(n) First, it is clear that the coefficient

Let us therefore consider the form of f; 7/ . .
15225 5tn41
is unchanged under any permutation of the indices i1, 42, ...,i,+1. In other words, it is
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totally symmetric in the n + 1 indices. Secondly, the indices assume only three different
values: 1, 2 and 3. Since there are n + 1 indices then apart from the first and second
derivatives f;; ) (n=1) and fmC (n = 2) there will always be coincident indices present

in the coefficient le Geeerimg1” These are indices with the same value whether that value
is 1, 2 or 3. For n > 3 there are at least n — 1 coincident indices. Suppose the index k,
distinct from ¢ and j, occurs v, > 1 times in {i1,49,...,4,+1}. Similarly, the indices i

and j each occur v; > 0 and v; > 0 times. This suggests the change of notation

,

fw% i f.”ji,;”f"”k, with v; +v; + vy =n+ 1. (3.22)

We are now ready to describe two approaches for calculating these coefﬁcients
3.5. A closed form expression. We first note that the coefficient f“ taring Of BI6d)
can be evaluated as a contour integral. This follows from (B:20)) and the integral identity

’il fla) 1 [ _dzf(2) 3.23)
(e nt1 T2 ) ndl ’ (3.
=T (0 — ) ¢ IG—m)

j=1 =1

J#i
where C'is any contour in the complex plane that encloses the set of points {1, 22, ..., Zni1}-
The integrand in ([B:23]) must be modified to account for multiple occurrences of the in-
dices, in the notation of (3:22). We obtain the integral identity

v 1 d
= o IO , (3.24)
K 211 ) (2 —ay)Vi(z — a;)Vi(z — ag)x
c
which can be evaluated by residues, with the final result (I1).
3.6. Interpolation interpretation. The following result is key:

LEMMA 3.3. If {z1,22,...,Zn41} are n + 1 distinct points then
n+1 n
i 1d

S fla) 14,0 (3.25)
£~ n-1 n!dax™
=1 T (@ — )

k=1

ki

where P(z) is the Lagrange interpolating polynomial of the n 4 1 function values f(z;),
i=1,2,... n+1.

The proof follows from the explicit form of the interpolating polynomial of degree n,

n+1

=" flzi)Li(2), (3.26)
i=1
where L;(x), i =1,2,...,n + 1, are the Lagrange polynomials satisfying L;(z;) = d;;,
n+1 n+1
Li(z)= || (z — = / i — Xg) (3.27)

i b
Differentiating P(x) of (3:20) yields the identity (3.23]).
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This connection between the coefficients and polynomial interpolation provides an
alternative means to calculate the coefficient ffjik’uj’uk. The interpolation problem that
must be solved is not the straightforward one of Lemma B3] with a single datum at
each of n 4+ 1 distinct points. Some of the points can have more than one piece of data.
Specifically, associated with x = «a; where [ = ¢, j and k, will be the v; data comprising
fla), f'(ar), ..., f* Y (qy). In this way there is a well defined and unique interpolating

polynomial of degree ™ for each f;lkyj M* with

n
fVi7Vj7Vk _ i d
n!dz”

ijk

= P(x). (3.28)

The interpolation problem that must be solved does not fit into the standard category
of Lagrange interpolating polynomials, since some or many of the points are coincident.
However, the procedure for generating the polynomial is not difficult. Appendix [A] il-
lustrates the method by example, for the case of f known at three points along with all
derivatives at one of these points up to f("=2).

3.7. The number of independent coefficients. The final detail is a count of the number
N(n) of independent expressions of the form f;lkl’] "k required for the nt" derivative.
This is the number of elements in the set of integer triples {I,J, K € Z: 0<I < J <

K, I+J+ K=n+1}. That is,
N(n)=dim{l,J€ Z: 0<I<J<n+1-1-J} (3.29)

This defines a region A(n) on the integer grid of {I, J} bounded by the three straight
lines Ly : I =0,Ly:I—J=0and Ly : I +2J =n+ 1. N(n) is the number of points
in A(n), including on its boundary. Enumeration yields

(n+4)%+4

N(n) = 3.30
(n) = [ (3:30)
where the floor function |z is the integral part of .

This completes the proof of Theorem [Tl Note that the two methods discussed for
calculating the coefficients, based on the contour integral and the interpolation problem,

are both related to divided differences [4].

4. The inverse gradient.

4.1. Definition. The inverse tensor function V=1 f(A) € Lin is defined by (Vf)V~!f =
(V71f)Vf = L. As an example application let f" be the inverse of f, such that
fofi™(A)= f™o f(A) = A. It follows from (Z.8) that

V™(A) = VTH(F(A)). (4.1)

It is clear from (4] that the definition of V=1 f(A) is problematic if f’(«;) vanishes.
This possibility is precluded by restricting consideration to strictly monotonic strain
measure functions acting on positive definite tensors.
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4.2. Application to strain measure functions. The function f is a strain measure [0, [12]
if it is a smooth function f: RT — R which satisfies

f(1) =0, 1) =1, f>0. (4.2)

For the remainder of the paper we restrict attention to strain measure functions. Exam-
ples will be presented for the Seth-Hill strain measure functions,

M@y =m= @™ —1). (4.3)

The inverse [ is well defined since strain measure functions are one-to-one. Hence, the
inverse gradient is relevant to calculating the gradient of the inverse function, via the

identity (2.8]).

Strain measure functions act on positive definite strain tensors S € Psym, with
S=>"AS;,  I=>S, A\ >0, S;S; =S;S; = 4;;Si, (4.4)

where d < 3 is now the eigen-index of S.

Accordingly, we extend the concept of positive definiteness to fourth order tensors.
It is necessary to define an inner product on Lin, which is done in the usual manner
as A -B = tr(AB"). Then Lin is the space of fourth order tensors acting on Lin,
X — AX with transpose A’ such that Y- AX = X- A"Y for all X, Y €Lin. The vector
space may be decomposed Lin = Symé Skw where Sym and Skw denote the spaces
of symmetric (A" = A) and skew-symmetric (A’ = — A) tensors, respectively. Any
A € Lin can be uniquely partitioned into symmetric and skew parts: A = A 4 A(_),
where A®) = (A+ A%)/2. The identity I satisfies IX = X for all X € Lin. The product
AB € Lin is defined by Y - ABX = (A"Y)- BX. Psym is the space of positive definite
fourth order tensors: A € Psym iff X - AX > 0, for all nonzero X € Sym.

The spectral form of A € Psym is

D D Ay T=1J
A= arAy, I=) Ay, ArA; = v 4.5
S s S {O oy ws)

where D is the eigen-index, a; > 0 and A; € Psym. Functions of fourth order tensors
can therefore be defined according to

D
F(A) =" flar) Ar. (4.6)

I=1

For any A €Psym and its eigen-tensors A;, i = 1,...,d of (.2)), define the associated
set of D = $d(d + 1) basis tensors for Sym by

AXA I=1,...,d
]:{ I I, ) s Wy (47)

AHEA]‘-FAJ‘&AZ', I:d—f'l,,D:%d(d'i‘l)

Here I = d+1,...,D corresponds to distinct pairs (4,5) with ¢ < j. Thus, D = 6 for
d = 3, while D = 3 for d = 2 and D = 1 in the trivial case of d = 1. It may be readily
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checked that Ay Ay = Ajdr;. The identity T = I X T implies the partition of unity
D

I=> A
=1

In particular,

LEMMA 4.1. The gradient of a strain measure function and its inverse are positive definite
fourth order tensors, i.e. Vf(A), V71f(A) € Psym, and

(VHAV U =(VIHVf=1L (4.8)
The spectral forms are
D D
VIAA) =D AL VUA) =D AL (4.9a)
=1 I=1

with

F(an), I=1,....d,
fla)=fley) 71— g41,.... D.

Qo — Qg

fi(A) = { (4.9b)

The proof is evident from the spectral decompositions. The positivity of fr, I =
1,...,D is a consequence of a; > 0, ¢ = 1,...,d combined with the monotonicity of f
and the mean value theorem. The positive definite nature of V f(A) implies that it has
a unique positive definite inverse.

The gradient function and its inverse has an interesting alternative representation for
integer and fractional values of m, respectively:

LEMMA 4.2. For integer values of m # 0,

P> ATTRFRARL m >0,
A=) (4.100)
ml S ArrRAR m <o,
k=m-+1
1 ZAl_%&A%_%7 m>0,
|m| 1— k& k1
k=m-+1
The proof uses the expansion of eq. ([L9) with f; — fl[m] where
m—1 I=1 d
[m](A): ar o =1,..., (4'11)
' L) o d4,..,D.
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Consider the case of positive m. Then using the spectral form for A

1 = m—k k—1 __ 1 d G m—k k—
E;A XA LEZAixAjg% ab™!

= i,j=1
d 1 d m ik
- mIARA = Y ARA Q! 4
;al ml]Z:1 1Y% ;(ai)
i#]
) 1 ¢ @
;fl I m; J(al—aj)
i#£]
= vfm(A), (4.12)

where the identity x + 2% + ...+ 2™ = 2(1 — 2™)/(1 — z) has been used. The proof for
negative m is similar. The results for V=1 f(z)(A) are a consequence of the identity

Ay =1/ AR, m#o, (4.13)

Some examples of interest, first for integer values of m:

ViV(A) =IKI =1, (4.14a)
ViEYA) = ATTRATL (4.14b)
ViO(A) = %(mAJrAm), (4.14¢)
ViCD(A) = %(A*@A—l +ATRA ), (4.14d)
The inverse tensors

vV irWA) =1, (4.15a)
VifEU(A) = ARA, (4.15b)

follow by observation, as do the general relations
VIE™(A) = AT"RA ™ VfIM(A), (4.16a)
VfEmA) = AMRAT VLA, (4.16b)

which express tensors in terms of their counterparts of opposite sign.
AX + XA = C is an important and common equation in mechanics [13, [1]. The
solution may be written simply and succinctly as X = (AKI + IKA)~1C where [§] (eq.

(22))

d
(ART+IRA) ™ = > (o + ;) A RA;. (4.17)
ij=1
In the current notation this may be expressed X = 4V~ f(?)(A)C, see eq. (@I4d). In
fact, the identity (£.10a) implies that the solution to

A"TIX 4 ATTXA + ATTXA? 4 XA =, (4.18)



14 ANDREW N. NORRIS
is

1 o —

X =—vIifmA)c= — T )A; XA, C. 4.19

—vlii(a) Z_;(la}n) ; (4.19)
The solution to AX+XA = C can be written in a form that does not require the spectral
split, e.g. X = [2(1 s — I3)]7! [(I} — ,)C + ACA — (A*C + CA?) + [ [;A~'CA™'],
[11] (eq. (27)) where Iy, I, I3 are the invariants of A. Similar expressions, although far
more complicated, can be generated for the solution to (£I8) and related equations, but
we leave such matters aside.

Examples of fractional powers include the well known case of § [I1], for which (ZI0H)
gives

Vlre)(A) = %(x/K&Ier\/K) = VVA=(VARI+IKVA)™'.  (4.20)
Similarly,
vl (A) = %(\/KJEA+AJE\/K) = VA Y2— _(VARA+ARVA)!, (4.21)
and

1

1 I
V 1f(§)(1&) 3(1l2/3&1 + _1&1/3gzkl/3 + &A2/3)5 (4223)
\Y% 1f( %)(A) = —3(A1/3|EA—|—A2/3&A2/3—|—A|EA1/3), ( . )

imply expressions for VA*Y 3 ete.
Note that the case of m = 0, corresponding to

Vi©(A) = Vin(A), (4.23)

is specifically excluded in Lemma B3l Although there is no expression for VIn(A)
analogous to ([{I0al), its inverse can be represented as follows:

LEMMA 4.3. The tensor V~!In(A) = V=1 f(O(A), which is the inverse of VIn(A), is
1
Viin(A) = /dxA””&Al’m, for any A € Psym. (4.24)
0

The proof follows from (£I0D) by taking the limit of m — oo. An alternative and
direct proof can be obtained using the spectral form of A,

1
/dfo KA = ZA&A /dmf -
0

7,j=1

= Z lnozz 1n%A&Aj, (4.25)

1,5=1

where the ratio becomes «; if i = j. The right member of (£23]) is obviously the inverse
of VIn(A) from eq. (4.
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4.3. The tensors J, J*, K, and the solution to AX — XA =Y. Consider the equation
AX -XA =Y, A € Psym, (4.26)

for the unknown X in terms of Y which is either symmetric or skew, and X is of the
opposite parity [5]. The equation can be written

JAX =Y, (4.27)

where
J(A) = AKI — IXA, A € Psym. (4.28)
We will only consider J(A) for symmetric A, implying J € Sym and J maps Sym—Skw
and Skw—Sym. Therefore, J does not possess eigenvalues, eigenvectors or an inverse in

the usual sense. However, it is possible to define the pseudo-inverse, or equivalently the
Moore-Penrose inverse, J*, which satisfies

JI*l =17,
J I =T (4.29)
Further understanding comes from consideration of the spectral form
d
JA) =) (o — 0j)A; KA. (4.30)
i,j=1

This representation implies that A; are null vectors, i.e. J(A)A; = 0,7 = 1,...,d.
Noting that

JA)A;RA; £ A;RA = (o — o) [AKA; F A KA, (4.31)

gives
T(A)ARA; + A;RA] = (o — aj) HARA,; F A;RA;], fori#jonly. (4.32)
The caveat i # j is crucial, and indicates that the non-null parts of J and its pseudo-

inverse define maps between three dimensional subspaces of Sym and Skw. In particular,

d
T(A) = (ARI - IKA)" = > (o — ;) 'A; KA, (4.33)
ij=1
i
This formula for the pseudo-inverse clearly satisfies ({.29). It is interesting to compare

the form of (33) with (@I7).
Note that

d D
FI=1r=1-> A= > A5 (4.34)
I=1 I=d+1
Define K(A), A €Psym, and its pseudoinverse,
d d
K(A) =) o A, K*(A)=> a;'A; = KA, (4.35)
i=1 i=1
then
JA)T*(A) + K(A)K*(A) =1 for any A € Psym. (4.36)
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The tensors J and K allow us to write Vf(A) and its inverse in a succinct manner as,
respectively,

Vf(A)=K(f'(A) + I"(A)I(f(A)), (4.37a)
VH(A) = K*(f'(A)) + J(A)T*(f(A)). (4.37b)

Appendix.

A. Solving the interpolation problems. Consider three points, say x1, x2 and z3.
Given f(x1), f(z2) and fP(x3), 1 =0,1,2,...,n — 2 find the interpolating polynomial
P(z) of degree n. For simplicity, but no lack of generality, take x3 = 0, and consider the
ansatz

- 1
P(x):Zplxl, pl:ﬁf(l)(()), 1=1,2,...,n—2. (A.1)
1=0
This satisfies all n — 1 conditions at x = 0, and the conditions at z; and x, are met if
P(z1) = f(z1) and P(z2) = f(x2). These imply a pair of linear equations in p,_1 and
pn which are easily solved. Only the coefficient p,, is required as this determines the n*”
derivative of P(x),

Pn =

1 [fml) /(@2 "‘2f<l><o>( I )} (A2)

€Tl — T2

This implies eq. (L9d).

Consider the case where the values of the function and its first n — 3 derivatives are
given at one point, say x = 0, along with f(x1), f(x2) and f’(z2). Using the same
ansatz as (AJ]) with the three unknowns p,,_2, p,—1 and p,,, implies three simultaneous
equations. The solution for p,, is

b :(:61 —1:102)2 {iiﬂjlz) B iiﬁi A= (n- 2)(% -]+ J;/f(lg) (2 — 1)
g0 2z 2 o
-3 1 11(0)(35715 - xn22[1—(n—2—l)(x——1)])]' (A.3)
=0 ’ 1 2 2

This yields the expression (L9d).

Acknowledgment. Thanks to Doron Zeilberger for being true to his motto: “Who
you gonna call?”.
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