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A movable inclusion in an elastic material oscillates as a rigid body with six degrees of freedom.
Displacement/rotation and force/moment tensors which express the motion of the inclusion in terms
of the displacement and force at arbitrary exterior points are introduced. Using reciprocity
arguments two general identities are derived relating these tensors. Applications of the identities to
spherical particles provide several new results, including simple expressions for the force and
moment on the particle due to plane wave excitation. © 2008 Acoustical Society of America.
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I. INTRODUCTION

Faxén relations are named after Hilding Faxén who de-
rived several identities for calculating hydrodynamic forces
and torques on particles in low Reynolds number flows, e.g.,
Ref. 1. As an example of a Faxén relation, or law, the force
and torque on a rigid sphere of radius @ moving with velocity
vy and spinning with angular velocity @ in an unbounded
fluid of viscosity u and velocity field v(r) in the absence of
the sphere are [Egs. (3-2.46) and (3-2.47) of Ref. 2]

F = 6mualv(0) — vo] + mua’V>v(0), (1a)

T = 4mrpa’[curlv(0) - 2w]. (1b)

The reader will note that the identities have as a special case
the classical Stokes drag law, but they include additional
effects caused by spatially variable flow fields. These and
other Faxén relations for nonspherical particles are based
upon general integral identities relating the force and torque
on the particle to the external flow field.”™ Although Faxén
relations are commonly used in hydrodynamics and microf-
luidics, they seem to be essentially unknown outside that
subject area. For instance, I am aware of only one mention’
of a Faxén-type relation in elasticity and that one was is in
regards to elastostatics.

The objective of this paper is to develop similar ideas in
the context of elastodynamics and in the process demonstrate
their utility and wide application. Using dynamic reciprocity,
a set of relations is first derived between the velocity or force
of a particle in a solid matrix and the displacement or force at
a distant point in the solid. These equations include but go
far beyond the notion of particle impedance, which relates
the force on a particle to its velocity. Numerous applications
of the general relations are obtained by considering spherical
particles. Faxén-like relations are derived for the force and
moment on a spherical particle caused by plane wave inci-
dence. Like their hydrodynamic counterparts, the elastody-
namic Faxén relations are simple in form.
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The analysis here is the second in a series of papers
developing a simplified algebra for calculating the radiation
and scattering from inclusions in elastic and viscoelastic ma-
terials. In the previous paper6 the forced motion of a spheri-
cal particle in an elastic matrix was considered. Although
this is a classical problem, originally solved by Oestreicher,’
it turns out that the dynamic impedance of the inclusion can
be represented in a simplified manner. This was achieved®
through several lumped mass impedances for a spherical in-
clusion, in terms of which impedance or its inverse, admit-
tance, has a simple form. The purpose of the present paper is
to develop these ideas further, focusing on the interaction
between the inclusion and remote points in the matrix.

The plan of the paper is as follows. The dynamic prop-
erties of an inclusion are defined in Sec. II, as well as some
important quantities that are used throughout the paper: the
displacement/rotation tensors U and W, the force/moment

tensors ® and W, and the impedances Z and Z. In Sec. 111
we prove the symmetry of these impedances, and derive two
fundamental relations between the displacement/rotation and
force/moment tensors. The remainder of the paper focuses on
the special case of spherical inclusions. The fundamental
quantities for the spherical particle are presented in Sec. IV
in a concise format using lumped mass impedances. Section
V is the longest in the paper, as it contains numerous appli-
cations, discussion of limiting cases, and the new elastody-
namic Faxén relations that are analogous to the classic hy-
drodynamic identities. The many results and their import are
summarized in Sec. VL.

Regarding notation, the time harmonic factor e~ is
omitted but understood. Boldface quantities are either vec-
tors or second order tensors. Vectors are usually denoted by
lower case, and tensors are capitalized, with the exceptions F
and M which indicate force and moment vectors, respec-
tively. The axial tensor axt(a) of the vector a is a skew sym-
metric tensor defined by axt(a)b=aAb.

Il. INCLUSIONS AND RIGID BODY MOTION

An inclusion in a solid matrix is defined to be the sur-
face v, of a finite volume v, within which there could be a
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U(r) u,

FIG. 1. The inclusion undergoes time harmonic linear displacement u,,
resulting in displacement u=U(r)u,, at position r.

particle, or there could be some complicated “black box”
with its own internal dynamics. The key feature of the inclu-
sion is that its boundary dV,, undergoes rigid body motion. In
this sense the boundary is a rigid interface between the par-
ticle, whatever that may be, and the solid matrix. The term
inclusion rather than particle is used throughout in order to
remind us of this distinction.

A. Tensor functions U, W, ®, and &

Rigid body motion has six degrees of freedom, which
we characterize by two vector quantities: u, and 6,. The
term u,, is the rigid body displacement of the inclusion center
of mass. @, describes the rotation of the inclusion about the
center of mass. The most general displacement possible for

the inclusion is

up=u,+0,Ar, Vredv, (2)

where r is the position relative to the center of mass. We will
use the vector up to denote the total rigid body displacement,
with u, reserved for the linear part (the entire development
in this paper applies only to linear as distinct from nonlinear
motion, so that the term linear is synonymous with rectilin-
ear). Note that u, has dimensions of length while @, is di-
mensionless. For the sake of simplicity it is useful to con-
sider the linear and rotational motions separately. Figure 1
shows the inclusion oscillating back and forth with linear
displacement u,. In the absence of other sources of vibra-
tional energy, the inclusion motion induces motion at every
point r in the exterior region V=R3/Vp according to u
=U(r)u,, as depicted in Fig. 1. Here U is a second order
tensor defined everywhere in the matrix. In the same way the
particle displacement at r € V caused by a pure rotation of
the inclusion may be defined by a second order tensor W. In
short, the tensors U and W relate the rigid body displace-
ment of the inclusion to the displacement u(r) in the exterior
solid medium V according to

u(r)=U(r)u, + W(r)6,. (3)
We next define two dual tensor functions associated with
force and moment, respectively.

Consider the situation in which a point force of magni-
tude times direction equal to F acts at s € V, inducing motion
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FIG. 2. The time harmonic point force F is applied at s, resulting in the
force F,=®(s)F on the inclusion.

of the inclusion, Fig. 2. The tensors ® and W define the net
force F, and couple M,, on the inclusion caused by the point
force according to

F,=®(s)F, M,=W¥(s)F. 4)

1. External impedances

We introduce two impedance tensors: Z and Z, called
external impedances because they depend upon the exterior
properties of the solid matrix.

The impedance Z relates the force acting on the inclu-
sion to the inclusion linear velocity, see Fig. 3, which is
similar to the situation in Fig. 4. It is assumed that either
force or velocity is controlled and the other is the dependent
variable, and that there is no other excitation from sources in
V. Thus, let u, be the prescribed inclusion linear displace-
ment, then the force F, acting on the inclusion is

F,=-iwZu,. (5)
F, can be thought of as the resultant of the reactive forces
from the solid matrix acting on the inclusion, with zero net

moment. The inverse Z~! exists since we may consider the
impedance as defined by an imposed force, resulting in the

F,=-iwZu,

FIG. 3. The inclusion undergoes time harmonic linear displacement u,,
resulting in the net force F, acting on the inclusion. Conversely, if the force
F, is applied then the displacement is u,,.
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FIG. 4. (Color online) The virtual mass coefficient C, of the spherical in-
clusion plotted as a function of the Poisson’s ratio. The no-slip and slip
curves correspond to y=0 and y=1 in Eq. (53), respectively.

inclusion displacement u,=(-iwZ)™'F,. We will prove that
Z is symmetric (Lemma 1).

The moment tensor Z relates the moment of the force on
the inclusion with the inclusion angular velocity, —iwZ6),,

M, =-iwZ8,. (6)

Z is also assumed to be invertible, and will be shown to be
symmetric (Lemma 1).

2. Internal impedances

The inertial properties of the inclusion are defined by

two impedance matrices Zp and 2,, associated with linear
and rotational motion, respectively. We call these internal
impedances since they depend entirely on the inclusion and
are independent of the exterior region.

7, is a mass-like impedance. For a normal solid particle
it is defined by the mass m as Zp=iwml. We will generally
denote Zp as a tensor to include the possibility of internal
structure, although it may be assumed on general principles
that the impedance is symmetric, Zp="Z).

Z p 1s the moment of inertia tensor, and is also symmetric
ZP=Z’P. It has dimensions of a moment of inertia, i.e.,
mass X (length)?, multiplied by frequency.

3. Summary of main results

The first principal result is a pair of relations (i) between
the displacement and force tensors and (ii) between the rota-
tion and moment tensors

Z,'®(r) = (Z+Zp)'U(r), (7a)

Z.'W(s) = (Z+Zp)'W(s). (7b)

Thus, ®=U’ and ¥=W" if the inclusion is immovable (in-
finite impedance), however, the relations (7a) and (7b) are
obviously far more general. An immediate corollary is that
the motion of the inclusion caused by the remote force at s is

u,=(iw) (Z+Z,)"'U(S)F, (8a)
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0,=(iw) (Z+Zy) 'W(s)F. (8b)

Equations (7a) and (7b) are proved in the next section
(Lemma 2).

The second set of principal results concern applications
to a spherical inclusion in an isotropic matrix. The displace-
ment and rotations tensors U and W have particularly simple
forms when expressed in terms of some lumped parameter
impedances introduced in Ref. 6. Combined with Egs. (7a)
and (7b) these lead to a series of useful identities for the
force, moment, displacement and rotation of the sphere un-
der different excitation. For instance, the total force and mo-
ment on the sphere caused by a time harmonic longitudinal
or transverse plane wave is

F,=Au,, M,=TujAn, 9)

where u, is the wave displacement at the center when the
sphere is not present, n is the propagation direction, and the
scalars A, T', depend upon the wave frequency, particle ra-
dius, and other material parameters according to Egs. (44),
(46), and (48). Equations (9) could be called Faxén relations
for solids, by analogy with the use of the term in viscous
fluid dynamics.

lll. RECIPROCITY BASED IDENTITIES

Several identities are derived in this section: (i) the sym-
metry of the external impedance matrices Z and Z, (ii) the
relation (7a) between the force and displacement tensors, ®
and U, and (iii) Eq. (7b) relating the moment and rotation
tensors W and W. The common theme is the use of the
dynamic reciprocity relation.

Consider two distinct fields in V, labeled j=1,2, each
with displacement u), stress o) and applied body force
density per unit volume ) all in dynamic equilibrium

div oV + pwzu(j) +f9=0, inV. (10)

The reciprocity identity (Betti’s theorem) follows from stan-
dard arguments’,

[ [
av, 14

P
=f dsu(z)-f(l)—J dou@ . £V, (11)
av,

» 1%

where 7 is the traction vector. The surface integrals in Eq.
(11) involve only quantities in the matrix. We assume that
the following conditions hold at the interface 9V, (i) conti-
nuity of traction, and (ii) the exterior displacement u is re-
lated to the inclusion displacement up by

u-up=A7, redv, (12)

where A=A’ is a material parameter. This spring-like inter-
face condition allows for the possibility of, for instance, tan-
gential slip, which we will include in the example of the
spherical inclusion later. For the moment we leave A as ar-
bitrary.

The rigid body motion of the inclusion for each of the
two distinct solutions in Eq. (11) is assumed to be a linear
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displacement u" and a twist 6, such the total displacement
is ug)zu(’)+0p Ar, see Eq. (2). Substituting for u) in the

surface integrals then gives

N Y R P
ﬁVp av,

» \4

- [ a0 u s
v g v,

P

+¢p2>-f dsr A 7Y, (13)
v,
Note that the interfacial tensor A does not appear in this

identity. We are now ready to derive the fundamental rela-
tions, first considering the impedances.

A. Symmetry of the external impedances Z and z

Assume that no force acts in the solid for both solutions,
so that f)=f?=0. Then Eq. (13) reduces to

ug).f ds1'(2)+0§)1)~f dsr/\r(z)zu;z)-f ds7V
v, v, W,

P

+¢,,2>-f dsr A7V, (14)
v,
The integrals produce the resultant force and moment on the
inclusion, which follows from the definition of the imped-
ances Z and Z as

f ds7) = - iwZu?, (15a)
%

J dSI‘ATU)Z—inOg), (15b)
v

P

for j=1,2. The reciprocity relation becomes
ul) . Zu® 4 60 Z0% =u® Zu + 02700, (16)

Since u(l), 0;1), u(z) and 0(2) are arbitrary, we deduce
Lemma 1 The linear and rotational external imped-
ances are symmetric,

72=7', 7=7' (17)

B. Relation between the force and displacement
tensors

We again take field 1 as the solution for the inclusion
undergoing arbitrary rigid body displacement uﬁ,”:uz()l)
+01()1)/\r with f1)=0. Let field 2 be the solution for a point

force F at s:
fO(x)=Fs(x-s), seV. (18)

The solution to this, u(z), is in fact the Green’s function in the
presence of the movable inclusion. Our objective is to avoid
explicit calculation of the Green’s function.
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The displacement on the inclusion surface is again a
rigid body displacement, uf,,z)zu(2)+ 6'” Ar, and therefore the
reciprocity identity (13) becomes

uQ).J ds7® + dp”f dst A 72— F -us)
av, z?Vp

P
=ul?. f ds7V+ 67 - J dsr A 7D, (19)
v, Wy

The integrals involving 7" again give resultant force and
moment according to Eqs. (15) with j=1. For field 2, let F,,
and M,, denote the resultants caused by the point force at s,

f ds7? =F,,
A

f dsr A 72 = Mp.
av

(20a)

(20b)

The displacement at s for field 1 follows from the definition
of the tensors U and W as u“)(s)=U(s)u(pl)+W(s)0(pl), see
Eq. (3).
Elimination of these quantities from Eq. (19) implies
(1 1) (1) 1)
F, ul)+M,- 6 -F - U(s)u)’ - F - W(s) 6}

= iou? W _ o2 7 o1

=—iou} Zu)) - iwd) - Z6). (21)
But the rigid body displacement u;” and twist 6" are arbi-
trary, and using the symmetry of the impedances, we deduce

F,=U'(s)F - iwZu, (22a)
M, = W'(s)F - iwZ 6. (22b)

A second set of independent relations follows from the
equilibrium of the inclusion, or Newton’s second law applied
to a rigid body,

F,=ioZm}, (23a)
M, =iwZy6) . (23b)

Eliminating the linear displacement uf) and twist 01(72 ) be-
tween Egs. (22) and (23) gives

F,=Zp(Z+Zp)'U'(s)F, (24a)

M, =Zp(Z+Zp) 'W'(s)F. (24b)

Finally, referring back to the definition of ® and W in Eq.
(4) implies the desired relations.

Lemma 2 The displacement and force tensors are re-
lated by

D(s)=Zp(Z +Zp)'U'(s). (25)
The rotation and moment tensors are related by
W(s)=Zp(Z + Zp)"'Wi(s). (26)

We are now ready to examine these quantities for a par-
ticular case, the spherical inclusion.
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IV. SPHERICAL INCLUSION, ISOTROPIC MATRIX
A. Definition of the problem

The inclusion has radius a and is embedded in a uniform
isotropic elastic medium of infinite extent with mass density
p and Lamé moduli N and w. The interface conditions at r
=a are: (i) continuity of normal displacement, (ii) satisfac-
tion of a slip condition. The latter allows for relative tangen-
tial slip between the inclusion and matrix, and is defined by
the tangential component of the traction 7=oT where o is
the stress tensor and £=r"'r denotes the unit radial vector.
The tangential component satisfies

T t=z(vp-v)-t, r=a, (27)

where { is a unit tangent vector, v the velocity of the elastic
medium adjacent to the sphere, vp=—iwup is the total veloc-
ity of the inclusion at the interface r=a, and z; is an interfa-
cial impedance, introduced in Ref. 6. This corresponds to
A=(iwz)'(I-n®n) in Eq. (12), where n is the interface
normal. The results of Sec III therefore apply for this slip
condition.

In summary, the conditions at the surface of the sphere
are

-

u-r=up-t
R R r=a. (28)
Tt=iwz(u-up) -t

B. External impedances

Symmetry arguments imply that the net force (moment)
exerted on the sphere by the surrounding medium and the
resulting linear displacement (axis of rotation) are parallel.
Hence, the external impedances are isotropic,

72=71, Z=71. (29)

The linear impedance Z has been considered previously6

while the rotational impedance Z is new. Expressions for
both are given next.

1. Linear impedance

The scalar Z can be expressed in a form reminiscent of
6
lumped mass systems

3 1 2

= + , (30)

Z+Zy Zi+Zy Zs+Zy
where the additional impedances are

Zy= iwgﬂ'a3p, (31a)
Z; = (iw) "4ma(\ + 2p)(1 — ika), (31b)
Zr=(iw)"4map(l - iha), (31c¢)
1 1 1
—=— (31d)

=—+ .
Zs Zp Amd’z+ (io) 'Smau

Here k and h are, respectively, the longitudinal and trans-
verse wave numbers, k=w/c;, h=w/c; with ¢
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=y(\+2u)/p and c;= \r’m. The impedances in Egs. (31)
depend upon and are defined by the matrix properties, except
for Zg, which involves the interface viscosity term z;. Thus,
Zy 1s the mass-like impedance of a sphere of the matrix
material of the same size as the inclusion. Note that Zg=Z; if
the inclusion is perfectly bonded to the matrix (z;— ). See
Ref. 6 for further discussion of this and other limits.

2. Rotational impedance

The rotational impedance of a spherical inclusion has
not, to our knowledge, been presented in the literature. A
derivation is given in Appendix A, with the result that

1 .
2 3 5(1 —iha)
—= + . (32)

Z 8 77(12Z[ ZM + ZT

The parameters in this identity were defined previously.

C. Displacement, rotation, force, and moment
tensors

1. Internal impedance

The internal impedances Zp and ZP are necessary in
order to relate the displacement/rotation tensors with the
force/moment tensors via Lemma 2. For the sake of simplic-
ity we restrict consideration in this paper to internal imped-
ances that are isotropic:

Zp=27pl, Zp=Z,l. (33)
For instance, a uniformly solid sphere of mass m has

~ 2
Zp=iom, Zp=iw§a2m. (34)

2. Linear motion

The displacement tensor U of Eq. (3) is derived in Ap-
pendix B as

1 eik(r—a)

Ur)=a(Z+7Z —— VvV
M=z +20)| Vo

ih(r-a)

W |

1 Z
Z5(VV + 1)

b r=a. (35)
Zs+ZyZr

The force tensor ® of Eq. (4) follows from Lemma 2 and the
fact that the impedances satisfy Eqs. (29) and (33). Thus,

d(r) =

Zp
Z_'_ZPU(r). (36)

The displacement and force tensors satisfy U(-r)
=U(r), ®(-r)=P(r) and are symmetric, U=U’, ®=P’. We
focus on the properties of U since those of ® are easily
obtained through Eq. (36).

Equation (35) implies
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 Z+2Zy [ mkr) | holkn) f]
C Zy+Zy | krho(ka)”  ho(ka)
Z+Zy é({ ho(hr) Iy (hr) }
Zs+Zy Zo\| ho(ha)  hrhy(ha)
XTI + Z;EZ;;r ® f), (37)

where £, are spherical Hankel functions of the first kind’ and
f=r""r denotes the unit radial vector. In particular h(z)
=(iz)"'e. In expanded form,

U(r)=(z z)f{—1 [( 1 i)l (1 X
o= +Mr Zi+Zyl \ (k)2 kr " +kr

1 )1 <1+3i 3 >A®A} ih(r_a)]
- - —— r Ir|e .
(hr)? hr  (hr)?

3. Rotational motion

The skew tensor W relating the rotation to the displace-
ment at a distance follows from Appendix A as

hl(hr) 3Z
t(r), Q=1- . 39
hy(ha) axt(f) 8ma'z; (39)

Wi(r) =-al)

Then W, which relates the moment on the inclusion to an
applied force at a distance, is

-7
W(r)= ——
Z+7Zp

Wi(r). (40)

The rotational tensors are odd functions of their arguments,
W(-r)=—W(r), W(-r)=—W(r), and are skew symmetric,
W=-W/ ¥=-"1'

V. APPLICATIONS

This section explores implications of the general theory
to the particular case of the spherical inclusion.

A. Force on a particle from plane wave incidence

The force on a particle due to a remote point load is
given directly by the tensor ®(r). Taking the source point to
infinity the effect of the excitation on the particle is equiva-
lent to an incident plane wave, or a combination of two in-
cident plane waves. The far-field form of ®(r) follows from
Egs. (36) and (38) as

Z+Zy ) a ekr-a)
Z+7Zp Zi+7Zy
ih(r—a)

®(r) = zp< ; tor

e

Z
+ —S(I—f-®f)]+0(r‘2). (41)

At the same time, the far-field free space Green’s function is
(see Eq. (61)),
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G(O)(r) —

2 [k @ F+e™I-F®1)]+0(2).
T

(42)

Consider, for instance, a unit point force in the far field
at r in the direction n=-f. This produces a longitudinal
plane wave at the origin of the form u=uyne*™* where u,,
=e*" /(4 ur’r). The force on the spherical particle due to an
incident longitudinal plane wave

ikn-x.

u(x) =e"*u;, ugAn=0 (43)

is therefore

(44)

In the same manner, the force on the spherical particle
due to an incident transverse plane wave

u(x) =e¢™*u,, uw,-n=0 (45)

is

dmaZp Zo| Z+Z .
L P—S< M)e"h“uo. (46)

77,2\ 7+ 2,

The values of the plane wave induced forces for the rigid
immovable particle follow from Egs. (44) and (46) in the
limit as Zp—cc. These values actually coincide in the static
limit, as discussed below after we consider the quasistatic
limit of Z.

Davis and Nagem10 considered plane wave incidence on
an elastic sphere in a compressible viscous fluid, with spe-
cific results focused on the rigid immovable limit. This is
equivalent to an isotropic elastic medium with shear modulus
Mm=—iwpvy, where v, is the kinematic viscosity, and with a
viscously damped longitudinal wave. Their expression for
the force on the rigid sphere under acoustic plane wave in-
cidence (Egs. (30) and (31) of Ref. 10) should agree with Eq.
(44) in the rigid limit.

B. Moment on a particle from a plane wave

The far-field form of the moment tensor is, from Egs.
(39) and (40),

ZQ ih(r-a) Z
T ) (47)
1= (iha) rZ+Zp

W(r) =

Based on the discussion for the forcing from plane wave
incidence, it is evident that a longitudinal wave produces
zero net moment on the spherical particle. A transverse plane
wave, does however, exert a moment. It may be shown that
the plane wave (45) produces

dmd’u QOZp

M, =
"1-Gha) 7, 7,

e~y Am. (48)

The rigid and quasistatic limits are discussed below.
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C. Rigid body displacement due to a plane wave

The particle displacement under plane wave incidence is
a combination of a linear displacement and a rigid body ro-
tation. These follow, respectively, from the forcing F, of
Egs. (44) or (46) and the moment M, of Eq. (48) as

uP=(inp)_le+(inP)_1Mp/\r, r<a. (49)

Symmetry dictates that the moment tensor M, is zero for
longitudinal incidence.

D. Quasistatic limit
1. Linear motion: Virtual mass

The quasistatic limit of vanishingly small frequency (w
—0) yields

12 1
7= 7m,u[
24+ x+ K

iha(2 + k) G (ha)?

2T 2+ x+c)E 9

iw

+ 0(h3a3)}, |ha|, |ka| <1, (50)

where

_a_ 2o
K_CT_ 1-2v° (51)

and v is the Poisson’s ratio. The nondimensional factor y is
related to the interface impedance z; in this limit, and is
chosen so that it takes on the values zero or unity in the limit
that the sphere is either perfectly bonded or perfectly lubri-
cated

0, no slip, z;— oo,
X:

52
1, slip, 7;=0. (52)
The parameter C, is
5
2-=x+ ‘4>
IR ( e | -
U4 x+ k723 2+ x+k2)? '

The expansion (50) goes further than in Ref. 6 (Eq. (30))
which did not contain the C, term. If the low frequency
expansion is of the form Z=ZC"(iw)'+Z0+ZV(iw)+...
then the coefficient Z(!) determines the extra inertia or added
mass caused by the linear motion of the infinite matrix. The
virtual mass coefficient is defined as Z()/ Zy, and is there-
fore C, of Eq. (53). As shown in Fig. 4, the coefficient is
positive under no slip conditions for all permissible values of
Poisson’s ratio. It approaches the limiting value of C,=1/2
in the limit of incompressibility, v— 1/2, in agreement with
the value for viscous fluids.'" In contrast, the virtual mass
coefficient is always negative when the inclusion is permit-
ted to slip, and is always less than the incompressible limit-
ing value of C,=-1/6.

2. Linear motion: Static displacement

Based on Eq. (50) we have
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3a 1 1 M=)
pE v I R e e
K r h—s r
X h=0 1 —iha - —h*d®
3
eiK_lh(r—a)

1
1-ik"ha- EK_thaz

3 1.1 2
- _2[—1+—(K-2— 1)VV(r+a—>]- (54)
24 x+KkLr 2 3r

Evaluating the gradients and removing « in favor of v gives

U(r) = 3 [(3 4 a—2)1
r T 25-6v+2x(1-v)] - V+3r2

2
a A A . .
+ (1 - —2)r ® r}, static and immovable.
r

(55)
This can be compared with Walpole’s12 result for the
static perfectly bonded immovable spherical inclusion, Eq.
(3.21) of Ref. 12. Walpole considered the force tensor P,
which as we have seen is equal to U’ in the limit of a fixed
and immovable rigid inclusion, i.e., Zp— . But U is sym-
metric for the sphere, and therefore Eq. (55) represents both
U and ®. When x=0 this agrees with Walpole. The static
result for y=1 appears to be new.
A more precise definition of the fixed inclusion limit is
that Zp/Z—o. At the same time we are taking the static
limit, so the simultaneous static and immovable limit is

lim —& _o. (56)

3. Rotational motion: Virtual mass

In the limit of low frequency the rotational impedance Z
of Eq. (32) approximates as

8ma’ 8
~ 77 ~ +iw—ma’p+0(w?), no slip,
Z=) iw 3 (57)

0, slip,

where slip and no slip correspond to the limits z;=0 and z;
— oo, respectively. The term iw(8/3)ma’p=2a%Z,; can be
identified as the virtual mass due to the rotating solid. The
internal rotational impedance of a solid sphere is ZP
=(2/5)a*Zp. Hence the virtual mass in rotation is five times
the mass of solid matrix material in the volume of the sphere,
in agreement with a similar result for Stokes flow."!

4. Quasistatic plane wave force on an immovable
particle

The forcing on the particle from plane wave incidence is
the same, whether longitudinal or transverse waves are inci-
dent, in the quasistatic limit for a rigid immovable sphere. It
may be checked that both Egs. (44) and (46) become
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12ma

= ﬁ_l_i_zuo. (58)
This apparently strange result may be reconciled with the
physical nature of the limit: the matrix moves by the static
displacement u,, while the particle is stationary. It is there-
fore sensible that there is a net force on the particle, and that
it is in the direction of u,. This also explains the identical
form of the limit for both types of wave incidence. The static
limit is one of the unusual features of the immovable sphere.
For further discussion see Pao,"> who quite properly ques-
tions the physical validity of the rigid fixed assumption.
Among its failings, as Pao notes, this configuration does not
display Rayleigh scattering behavior at low frequencies.

5. Quasistatic plane wave moment on a fixed
sphere

The moment on the rigid immovable spherical particle
has a particularly simple form,

—iha

M =

"= iha immovable.  (59)

dra® uQe " ug An,

This is valid at all frequencies, but as w—0 it vanishes,
unlike the force on the particle in the same limit.

E. Small inclusion limit
1. Linear motion
As a—0 we have Z, Z;, Zs, Z;=0(a), while Zy;, Zp

=o0(a). It may be easily verified that U and @ reduce in this
limit to
U(r) =iwZGOr), &(r)=iwZ,G(r), (60)

where G is the free space Green’s tensor

GOr) = L{ s vv(i(e“"— e""’)>] (61)
4| r h*r ’

In hindsight, the form of @ is obvious based on the dynamic
equilibrium of the inclusion: iwZpu,=F, with u,=GF,
F,=®F, and U then follows from Eq. (36).

2. Rotational motion

The rotational quantities W and W, on the other hand,
become negligible in the small inclusion limit. This follows
from the scaling W=0(a) in Eq. (39).

F. Surface displacement and traction
1. Linear motion

The displacement tensor U, which is defined in the ex-
terior region, reduces to the following on the interface:

ZS—ZT>(Z+ZM
Zr I\Zs+Zy

U(af')=1+( )(I—f@f). (62)

This becomes the identity under no-slip conditions, since
then Z¢—Z;=0. Alternatively, the interface conditions (28)

can be written
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u=u,+(iwz) '@ D7, r=a. (63)

The final term on the right hand side vanishes as z;— o,
which is the no-slip limit.

Substituting u=U(af)u, on r=a, in Eq. (63) provides an
explicit expression for the interfacial shear traction in terms
of the linear displacement u,,

ZS—ZT>(Z+ZM) .
u .
Zr I\Zs+Zy

7i= iwzl( (64)

The shear traction vanishes under pure-slip conditions (z;
=0), and for a bonded interface it becomes

X . L Z+7Z
rt=—iou,-t Tz( M). (65)
47Ta ZT + ZM
2. Rotational motion
The displacement on r=a is
W(ar) = — aQaxt(r), (66)

where (), given in Eq. (39), reduces to unity under no-slip
conditions. Conversely, {1=0 for pure slip, indicating that the
solid does not move even as the inclusion rotates.

In this case the traction is pure shear, and

T=—iw—0 AT, r=a. (67)

This is nonzero except under pure-slip conditions, when Z
— 0, and there is no rotational interaction between the inclu-
sion and the matrix.

G. Acoustic limit
1. General formulation

Finally, we discuss how the general elastodynamic for-
mulation reduces when the matrix is an acoustic fluid. In this
limit shear effects are ignorable and the medium is charac-
terized by density p and bulk modulus K= pc?, where c is the
acoustic wave speed. Taking the displacement u and pressure
p as field variables, the momentum balance and constitutive

law are, respectively,
w*pu=Vp, p=—KV -u. (68)

The acoustic wave number is k=w/c.

We introduce two vector functions q(r) and ¢(s) that
are analogous to the tensors U and ®. If the inclusion is
moved back and forth with the displacement u, then the
condition on the inclusion surface is that the normal velocity
is continuous,

un=u, n ondv, (69)

The pressure at a point r away from inclusion is defined by q
as

p(r)=q(r)-u, rin V. (70)

Conversely, consider a voluminal source at s:
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Vp+kp=fix-s). (71)

The force on the inclusion is

F,=- f dspn = f(s), (72)
av
P
which defines the vector function ¢.
The connection between q and ¢ is given by
Lemma 3. The acoustic displacement and force vectors
are related by

&(s) = (po”)'Zp(Z + Zp)'q(s). (73)

This may be derived by application of reciprocity to the
acoustic (Helmholtz) equation, in a manner similar to how
we derived Lemma 2.

2. Spherical inclusion

Finally, we consider the example of the spherical inclu-
sion. The vector q follows from the acoustic limit of the
elastic result in Eq. (35),

Z+7 ek
u ) v
ZA +ZM r

q(r)= aK( , r=a, (74)
where Z,, analogous to the longitudinal impedance Z; in
elasticity, is

Z4 = (iw) '4maK(1 - ika), (75)

Zy, 1s as before, and the sphere impedance Z is now given by
Eq. (30) with Z¢=0, which implies
1 2 3

= (76)
Z Zy Z,

V1. CONCLUSION

Starting from the notion of an inclusion with the six
degrees of freedom of a rigid body, we introduced
displacement/rotation and force/moment tensors relating the
motion of the inclusion to the displacement and force at ar-
bitrary exterior points. These can be considered as general-
ized Green’s functions appropriate to the constrained nature
of the inclusion. The general relations (7a) and (7b) between
the displacement/rotation and force/moment tensors are one
of the main contributions of the paper. These identities are
extremely useful in providing a means by which one can
consider the dynamic properties of particles embedded in a
solid matrix.

Useful results have been obtained for the simplest but
important configuration of a uniform spherical particle. The

linear and rotational impedances, Z and Z, are given in Secs.
IV B 1 and IV B 2, respectively, the latter for the first time.
Explicit expressions are given in Egs. (36)—(40) for the dis-
placement tensors U and W and for the force tensors @ and
W. Perhaps the most practical new results are Eqgs. (44), (46),
and (48) which provide simple formulas for the force and
moment on a particle under plane wave incidence. The asso-
ciated displacement of the particle is given by Eq. (49).
These concise expressions resemble Faxén relations that are
frequently used in microhydrodynamics.
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Equation (50) extends the quasistatic expansion of
Norris® to include the virtual mass coefficient, which can be
negative if slip occurs. The quasistatic form of U, Eq. (55),
which relates the displacement of the inclusion to particle
displacement in the matrix, generalizes a recent formula of
Walpole.12 The quasistatic limit of the plane wave force on a
sphere, Eq. (58), is reminiscent of Stokes drag law, but is
proportional to the displacement vector of the incident plane
wave. It also includes the possibility of slip relative to the
matrix. However, the moment on a rigid sphere from plane
wave incidence is proportional to the incident particle veloc-
ity, Eq. (59), and vanishes in the limit of zero frequency.
Other limiting cases considered include the small inclusion
limit, and the purely acoustic limit.

Taken together the results of this paper offer a consistent
means for analyzing wave-particle interaction in elasticity
and viscoelasticity. Future applications will look at replacing
the solid spherical particle with more complicated, and more
interesting, internal structure. This amounts to considering
more general forms of the internal impedances. The results
developed here can also be used to develop simplified meth-
ods for scattering from particles. These issues will be exam-
ined in separate papers.

APPENDIX A: ROTATION OF A SPHERE

The sphere r=<a undergoes oscillatory rotation up
=0p/\r. Let e be the axis of rotation, so that 0p=0pe, and
consider the possible solution u=V Aef in the matrix r>a.
This satisfies the equations of motion

u+k2VV-u-h?2V AVAu=0, (A1)

provided that f is a solution of the reduced Helmholtz equa-
tion V2f+h?f=0. The function f must depend only on r in

order to match the prescribed rotation on r=a. Hence,
u=ph(hr)e At, r>a, (A2)

~ . . . . .7
where r=r/r. The traction in an isotropic solid is

Ay 1 M Jd 1
s=tNdiva+— gradr-u+u| — - - |u, (A3)
r Jgr r
from which we obtain
3 .
T= ,B,uh{ho(ha) - h—hl(ha)}e AT. (A4)
a

The boundary conditions (28) therefore reduce to a single
equation for the parameter B of Eq. (A2),

3

hl(ha)] =iwz[Bhi(ha) —ab,]. (AS)
ha

Buh [ ho(ha) -
The moment M,,=[dsr A 7 is obtained from the identity

8
f dsrA(eArl) = gmﬁe, (A6)

and the impedance then follows from the definition (6) as
Z=Z7I where Z is given by Eq. (32).
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APPENDIX B: DISPLACEMENT OF A SPHERE

The solution to the radiation boundary value problem of
the spherical inclusion undergoing linear displacement with
boundary conditions defined by Eq. (28) has been solved by
Oestreicher’ for the case of no slip and more recently, by
Norris,® with slip included. We follow the latter with some
slight changes in notation. The solution is based on the fol-
lowing representation for the elastic field outside the sphere,
r=a,

u=-Cu,- VVhy(kr) + Cou, - (VV=IVhy(hr), (B1)

where r=|r| is the spherical radius and A is the spherical
Hankel function of the first kind, /y(z)=(iz)~'e’.

In the notation of Ref. 6, C;=-A,/k* and C,=3B,/h?.
Also, with reference to Norris,6 the inclusion displacement is
of magnitude u,: u,=uX. Equations (15) and (19a) of Ref. 6
combined with Eq. (29), give (noting that Z,, of Ref. 6 is
now Zy)

Z
hz(k(l)Al = (1 + _)uo, (B2a)
Zy
hy(h hy(k Z
gmlha) p _ Il a)A,——uo. (B2b)
ha ka Zy

Using h,(z)=-h((z) and hy=—hy+3z"'h, implies the identi-
ties
hl(ka) _ ZL hz(ka) _ ZL + ZM

kahyka) ~ 3Zy  holka)  Zy

(B3)

Similar identities for arguments ha instead of ka have Z;
instead of Z;. Combining these results implies
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Z+7Zy ) 1
Cl = B B (B4a)
ZL +ZM k l’lo(ka)
Z+Zy \Z 1
) = ( M )—S 5 ) (B4b)
ZS+ZM ZTh I’lo(ha)

The expression (35) for U then follows.
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