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Abstract. Some mechanics involved in calculating wave speeds in pre-stressed
materials of geophysical interest are discussed. Two topics are explored: granular
materials, and fluid-solid composite systems. Elasticity in the granular material is
dominated by intergranular contact which produces strong nonlinearity. The con-
tact also introduce possible hysteresis and loss of strict macroscopic hyperelasticity.
Starting with the Hertz solution for two spheres, these notes develop the theory
to the stage where macroscopic elastic properties can be estimated, and the stress
dependence of bulk waves calculated. Fluid-solid composite systems, such as a fluid-
filled borehole in an elastic solid, are complicated by the ability of the fluid to slip
under pre-stress. The interface conditions in the different material descriptions are
examined and a procedure is described to determine the modified wave speed using
a perturbation integral approach. The example of the fundamental guided mode of
the borehole, the tube wave, is described in detail.

1 Introduction

The theory of acoustoelasticity, also known as “small on large”, is well developed for
hyperelastic materials. The theoretical underpinning began with Toupin and Bernstein
(1961), and a good overview can be found in (Thurston, 1984). The focus in these notes
is on two classes of problems that do not fit into the standard theory, for differing reasons:
either the nature of the internal mechanics (grain to grain contact) or inhomogeneity,
in particular the combination of a solid and an inviscid fluid. These problems are of
practical interest in understanding the dynamics of materials such as sandstone, and in
situations where nonlinear wave behaviour is useful to estimate geophysical properties.

We first look at the mechanics of materials made from granular aggregates, using
fundamental mechanics of contact forces (Hertz etc.) to derive a macroscopic elastic
model which is not necessarily hyperelastic. We will see how small-on-large theory may
still be developed, and the stress dependence of small amplitude waves calculated.

The second class of problems concerns waves in fluid/solid composite materials. The
primary issue of concern is how to deal with the slip of the inviscid fluid at the interface
with the solid material. Slip presents considerable conceptual difficulty for the small-
on-large formulation, but by careful analysis, we will recast the problem into standard
format, allowing application to problems of practical interest.
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The sequence of topics reflects the above descriptions, although we begin with a quick
introduction to acoustoelasticity theory in Section 2. The following four Sections deal
exclusively with granular materials. Section 3 considers preliminary concepts for granular
media - the fundamental idea used throughout is the response at a contact zone for two
spheres pressed together. The mechanics of Hertz contact theory are developed in Section
3, where a simple 1D acoustic model is also described. Generalizations of the Hertz model
to tangential forces and other contact models are considered in Section 4. Sections 5 and
6 are devoted to 3D effects in grain packings under confining stress. In Section 5 the
finite and incremental elasticity of a random packing of spheres is derived using energy
methods. We will see that the existence of a strain energy function depends upon the
type of contact. If the tangential contact stiffness is independent of the normal force,
then the energy is well defined for all values of the macroscopic strain. Otherwise, the
strain energy of the system is load-path dependent. Section 6 discusses acoustoelasticity
of granular media in light of the prior finding. The final two Sections are devoted to the
more difficult problem of how to formulate a small-on-large theory of fluid/solid systems.
The analysis is delicate and focused on the interfacial traction continuity conditions. We
show in Section 7 that these are best formulated in the intermediate description. Section
8 applies the theory of Section 7 to calculate the change in wave speed of a mode in a
fluid-solid system. The nature of the wave motion in the composite system makes explicit
solutions of the small on large equations intractable, but a more general perturbation
integral method is described. The method is illustrated for the sample problem of the
tube wave in a pressurized borehole.

The presentation is for the most part self contained, with reference to related literature
when needed. Section 2 is introductory and recommended reading. After that the reader
can continue on with Sections 3 through 6 for granular materials, or may jump directly
to the fluid-solid problem in Sections 7 and 8 with no loss in continuity.

2 Acoustoelasticity, or Small-on-Large

2.1 Linearised equations of motion

The acoustoelastic effect is the change in the speed of small amplitude waves in an
elastic body caused by a pre-imposed static stress. The effect is relatively small in metals,
e.g., ∼ 10−5/MPa for aluminum, but it is still practical for measuring existing states of
stress, such as residual stress. The situation is quite different in geophysical materials,
especially those in regions of the earth containing fluid and gaseous pockets. Permeable
rocks such as sandstone are characterised by granularity, interstitial contact and force
concentration, which leads to strong stress dependence.

Three states and their coordinates need to be distinguished: the natural, X; the
initial, x; and the current, x′. For simplicity, suppose that the initial stress and strain are
uniform and defined by the static displacements u(0): x = X + u(0). The acoustoelastic
response is measured by the further small on large dynamic displacement u(1): x′ =
x + u(1) = X + u where u is the total displacement. Thus,

u(0) = x − X, u(1) = x′ − x, u = u(0) + u(1). (2.1)
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The objective is to derive the equation of motion for u(1) in terms of the intermediate
description x.

The small-on-large theory is based on the assumptions that

|u(1)| ≪ |u(0)|, (2.2)

and that the associated deformation gradients are similarly related. The standard pro-
cedure in small-on-large theory is essentially to perform a doubly asymptotic expansion
where we are interested in effects O(u(0)) and O(u(1)), but most importantly, O(u(0) u(1)).
It is the latter which enables us to determine the first derivative of physical parameters,
such as wave speeds, as a function of the prestrain.

We start with

ρ0
∂2u

∂t2
= divX P , (2.3)

where the non-symmetric tensor P = (ρ0/ρ)σ(F−1)T is the first Piola-Kirchhoff stress
tensor or sometimes known as the Lagrangian stress tensor. ρ0 and ρ are the undeformed
(Lagrangian) and current (Eulerian) mass densities, and F = ∇Xx′ is of course the finite
deformation gradient. Assuming a strain energy (hyperelasticity) U per unit mass, we
have P = ρ0 ∂U/∂F, and since U = U(E) where E = 1

2 (FT F− I) is the symmetric finite
strain, we have

P = ρ0 F
∂U

∂E
. (2.4)

In the applications of interest here the strain energy is usually given as a power series
in the strain:

ρ0U =
1

2!
Cijkl Eij Ekl +

1

3!
Cijklmn Eij Ekl Emn + · · · . (2.5)

We will restrict the analysis to this general form of the energy, although other functional
forms could be considered. Note that the symmetry of E implies that the second and third
order moduli can be expressed using Voigt’s notation: Cijkl = cIJ , Cijklmn = cIJK , where
I, J,K ∈ {1, 2, 3, 4, 5, 6} with the relationships ij = 11, 22, 33, 23, 31, 12 ↔ I = 1, 2,
3, 4, 5, 6. Equations (2.4) and (2.5) together imply1 that

Pij = Cijkl
∂uk

∂Xl
+

1

2
Mijklmn

∂uk

∂Xl

∂um

∂Xn
+

1

3
Mijklmnpq

∂uk

∂Xl

∂um

∂Xn

∂up

∂Xq
+ · · · , (2.6)

where
Mijklmn = Cijklmn + Cijln δkm + Cjnkl δim + Cjlmn δik . (2.7)

Note that Mijklmn 6= Mjiklmn, which means that the non-symmetry of P is a second-
order effect.

The initial deformation is in equilibrium, σ
(0)
ij,j = 0, where

σ
(0)
ij = Cijkle

(0)
kl , e

(0)
ij =

1

2

(∂u
(0)
i

∂xj
+

∂u
(0)
j

∂xi

)
, (2.8)

1Put F = I + H and expand in H.
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i.e., σ(0) and e(0) are the static pre-stress and pre-strain. A linear equation for the
additional dynamic disturbance u(1)(x, t) follows from eq. (2.3) after the change of
variable X → x and the use of the chain rule2,

ρ0
∂2u

(1)
i

∂t2
= Bijkl

∂2u
(1)
k

∂xj∂xl
, (2.9)

where the effective elastic stiffnesses comprise terms of order zero and one in the applied

deformation u
(0)
m,n ≡ ∂u

(0)
m /∂xn,

Bijkl = Cijkl + δikCjlqru
(0)
q,r +Crjklu

(0)
i,r +Cirklu

(0)
j,r +Cijrlu

(0)
k,r +Cijkru

(0)
l,r +Cijklmnu(0)

m,n .
(2.10)

The assumption of uniform initial stress and strain implies that the coefficients Bijkl are
constants.

Table 1. Stress derivatives of longitudinal and transverse wave speeds in an isotropic
solid. n is the direction of propagation and m is the polarization [K = λ + 2

3µ, E =
2µ(1 + ν), ν = λ/2(λ + µ)]. From Norris (1998).

Stress Mode n m ρ0(dv2/dp)0

Hydrostatic longitudinal arbitrary ‖ n − (5−3ν)
1+ν

− 1
3K

(c111 + 2c112)

Hydrostatic transverse arbitrary ⊥ n − 3(1−ν)
1+ν

− 1
3K

(c144 + 2c166)

Uniaxial longitudinal ‖ stress ‖ n −1 − 4(1−ν)
(1+ν)(1−2ν)

− 1
E

(c111 − 2νc112)

Uniaxial transverse ‖ stress ⊥ n − 2
1+ν

+ 1
E

[νc144 − (1 − ν)c166]

2.2 Applications: Plane waves in an infinite body

Plane waves Assume a plane wave propagating in the direction of the unit vector n,
u(1) = m sin ω(t−n ·x/v), where the polarization m (constant) satisfies, from Eq. (2.10),

ρ0v
2m = Λm, Λik ≡ Bijklnjnl. (2.11)

ρ0v
2 is the eigenvalue of Λ for the eigenvector m.

Isotropy We consider materials that are isotropic in the undeformed state, although
the preferred axes of the pre-stress can introduce apparent anisotropy in the plane waves.
In general, the eigenvalue equation (2.11) predicts one quasi-longitudinal wave in the
direction of n, and two quasi-transverse waves. We now summarise some of these effects.

2Thus, ∂
∂Xj

= ∂
∂xj

+ u
(0)
k,j

∂
∂xk

+ . . . where the remaining terms are of lower order in u
(0)
m,n.
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The number of second and third order moduli, at most 21 and 56, respectively, reduces
in the presence of material symmetry. For isotropic solids we may use trEk, k = 1, 2, 3
as the three invariants, so that the expansion of the strain energy to third order is

ρ0U =
λ

2
(tr E)2 + µ tr E2 +

C

3
(tr E)3 + B(tr E) tr E2 +

A

3
tr E3 + · · · . (2.12)

Here λ and µ are the Lamé moduli and A, B, C are the third order moduli, in the
notation of Landau and Lifshitz (1970). The isotropic moduli have the form

Cijkl = λδijδkl + 2µIijkl , (2.13a)

Cijklmn = 2Cδijδklδmn + 2B(δijIklmn + δklImnij + δmnIijkl)

+
1

2
A(δikIjlmn + δilIjkmn + δjkIilmn + δjlIikmn) . (2.13b)

where Iijkl = 1
2 (δikδjl + δilδjk).

With no loss in generality let the coordinate axes coincide with the principal axes of

static stress σ
(0)
ij = Cijkle

(0)
kl and the principal axes of static strain3 e

(0)
ij .

For propagation direction n = e1 it follows from (2.11) that the eigenvectors (polar-
izations) are in the coordinate directions and the corresponding propagation speeds are

ρ0v
2
l = ρ0c

2
l + σ

(0)
11 + (4ρ0c

2
l + c111)e

(0)
11 + c112(e

(0)
22 + e

(0)
33 ) , (2.14a)

ρ0v
2
t2 = ρ0c

2
t + σ

(0)
11 + (2ρ0c

2
t + c166)(e

(0)
11 + e

(0)
22 ) + c144e

(0)
33 , (2.14b)

ρ0v
2
t3 = ρ0c

2
t + σ

(0)
11 + (2ρ0c

2
t + c166)(e

(0)
11 + e

(0)
33 ) + c144e

(0)
22 . (2.14c)

Here, cl and ct are the unperturbed longitudinal and transverse wave speeds: ρ0c
2
t = µ,

ρ0c
2
l = λ + 2µ.

Pressure derivatives Acoustoelastic measurements are normally performed by vary-
ing the applied static stress according to a single parameter p, such as a hydrostatic
pressurization, σ

(0) = −pI, or a uniaxial compression in the direction t, σ
(0) = −p t⊗ t.

Some specific applications of the above formulae are listed in Table 1, which gives the
dimensionless derivative ρ0(dv2/dp)0 for states of hydrostatic pressurization and uniaxial
compression (the subscript 0 on the derivative indicates evaluation at p = 0).

Values of the pressure derivatives of velocity are listed in Table 2. The values for
rock (Berea sandstone) are noticeably larger than the others, indicating a high degree of
nonlinearity. We will see this is a natural consequence once we understand the nonlinear
elasticity of granular materials.

3Stress and strain are coaxial for isotropy but not in general.
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Table 2. Dimensionless dependence of sound speed on pressure for some common ma-
terials. Data compiled from the literature, see Norris (1998).

Material ρ0(dv2
l /dp)0 ρ0(dv2

t /dp)0

Pyrex −8.6 −2.84
Fused Silica −4.32 −1.42
Water 5.0 0
Steel 7.45 1.46
Polystyrene 11.6 1.57
Aluminum 12.4 2.92
PMMA 15.0 3.0
Cemented glass beads 288 84
Berea sandstone 1628 956

3 Granular materials - preliminaries

3.1 Two spheres in contact

We need two basic results: The normal displacement on the surface of a half-space
from a unit point force directed into the solid (the z-direction) is (Timoshenko, 1970)

u(x, y, 0) =
1 − ν

2πµ
√

x2 + y2
, (3.1)

where µ is the shear modulus and ν Poisson’s ratio. The second basic identity is

2π∫

0

d θ

a∫

0

r′ d r′
√

a2 − r′2√
r2 + r′2 − 2rr′ cos θ

=
π2

2

(
a2 − r2

2

)
, r ≤ a. (3.2)

This is a consequence of a result in potential theory for the interior of an ellipsoid of
uniform charge density.

The fundamental solution for the normal force on a traction free half-space is employed
to analyze the fundamental problem in the mechanics of granular media. Two spherical
particles of radii R1 and R2 are pressed together under equal and opposite forces of
magnitude N . The spheres just touch at a single point under zero applied load. The
problem is to find (i) how far the spheres approach one another, (ii) the size of the contact
zone, and (iii) the stress distribution across the region of contact. Each of these will be
functions of N , R1, R2 and the elastic constants of the spheres.

We first examine the kinematics of the contact zone. Let z = 0 be the tangent
plane of the unloaded spheres. Radial symmetry about the z−axis is assumed, so that
all quantities will depend upon x and y through r =

√
x2 + y2. Several simplifying

approximations are necessary. First, the contact region is small in size, with radius a
much less that either of the sphere radii: a ≪min(R1, R2). Accordingly, the surfaces of
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the two spheres are approximated by parabolas in and near the contact region. Introduce
coordinates z1 and z2 directed into the respective spheres, Figure 1. The free surfaces of
the unloaded spheres are therefore described by4 zI = r2/(2RI), I = 1, 2.

u

2
u

1

z

z 1

2

w

w

1

2

Figure 1. The two spheres under a confining normal force N .

Under the applied load the elastic material deforms and the surfaces in and near the
contact region are distorted, becoming flat inside the contact region 0 ≤ r ≤ a. At the
same time, the spheres approach one another by w1 and w2, defined as the distances that
the centers of the spheres move. Since these are far from the contact region, it is clear
that the motion of most of each sphere is as a rigid body, with the elastic deformation
confined to the contact region and its neighborhood.

Let u1(r) and u2(r) denote the distance that the surface of each sphere in the contact
zone is moved towards the center of that sphere in the flattening process. Let q(r) ≥ 0 be
the load acting on the contact zone. Since a is much less than either R1 or R2, the normal
displacements u1 and u2 can be approximated by the equivalent surface displacements
of the flat surface of a semi-infinite elastic material, subject to a prescribed loading
over the circular region 0 ≤ r ≤ a, although at this stage both the loading and the
extent of the contact region are unknowns. Thus, according to this local approximation,
the fundamental solution (3.1) may be used to represent u1 and u2 as integrals of the
unknown load distribution over the unknown contact area,

uI(r) =
(1 − νI)

2πµI

2π∫

0

d θ

a∫

0

r′ d r′ q(r′)√
r2 + r′2 − 2rr′ cos θ

, I = 1, 2. (3.3)

Hence u1(r) and u2(r) are proportional.
Consider two points on either side of the contact zone at r ≤ a. Before the compression

they were a distance [z1(r) + z2(r)] apart. But the pressing causes them to move a total
distance towards each other of (w1 +w2) for the rigid body motion, minus [u1(r)+u2(r)]
due to the elastic deformation. Thus,

u1(r) + u2(r) = w1 + w2 − z1(r) − z2(r), 0 ≤ r ≤ a. (3.4)

4These can be derived as follows: The surface of sphere 1 is spherical with equation r2 + (z1 −

R1)
2 = R2

1, equivalently z1 = r2

2R1
+

z2

1

2R1
. This can be solved by iteration, z1 = r2

2R1
+ r4

8R3

1

+ . . .

for r ≪ R1.
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Let 2w ≡ w1 + w2 represent the total approach of the two spheres, then

4

πCn

2π∫

0

d θ

a∫

0

r′ d r′ q(r′)√
r2 + r′2 − 2rr′ cos θ

= 2w − r2

R
, (3.5)

where Cn (n for normal force) is the elastic modulus that governs the interaction and R
is the harmonic average of the sphere radii,

Cn =

(
1 − ν1

8µ1
+

1 − ν2

8µ2

)−1

, R =

(
1

2R1
+

1

2R2

)−1

. (3.6)

The unknowns here are the contact radius a, the half-distance of approach w, and
most importantly the distribution of load q(r). Equation (3.5) looks like a formidable
integral equation with several unknowns. However, the solution can be found using the
identity (3.2), which suggests that we take q(r) proportional to

√
a2 − r2:

q(r) =
q0

a

√
a2 − r2 . (3.7)

Then equation (3.2) implies

2πq0

aCn

(
a2 − r2

2

)
= 2w − r2

R
. (3.8)

At the same time, the load should have resultant N , i.e.,

2π

a∫

0

r d r q(r) = N ⇒ 2

3
πa2q0 = N. (3.9)

Equation (3.8) provides two further relations, which follow by equating the coefficients
of r2 and of r0. Together with (3.9) these are sufficient to find the three unknowns a, w
and q0:

a =

(
3NR

2Cn

)1/3

, w =

(
9N2

4RC2
n

)1/3

, q0 =
1

π

(
3NC2

n

2R2

)1/3

. (3.10)

Thus, w may be expressed in a form independent of the elastic properties.

w =
a2

R
. (3.11)

That is, the spheres approach twice the distance achieved by slicing off caps of radius a
on each.

Note the dependence on the load N ,

a ∼ N1/3, w ∼ N2/3, q0 ∼ N1/3. (3.12)
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In particular, w is a nonlinear function of N , which has important implications for the
elastic behavior of materials made of contacting grains. The starting point for later
analysis is the nonlinear relation relating the normal force to the approach distance w,

N =
2

3
Cn R1/2w3/2. (3.13)

Small additional changes are related by

∆N = Cna∆w. (3.14)

This linear relation and others like it will be used in Section 5 when we consider packings
of spheres. Landau and Lifshitz (1970) consider non-spherical contact for which the
bodies are smooth and locally ellipsoidal but do not necessarily have coincident principal
axes. They show that the contact zone is elliptical.

3.2 Waves in a 1D chain of spheres in compression

Consider a linear chain of identical spheres or beads of radius R, under a compressive
force N . This results in each adjacent pair of beads approaching by total distance 2w
defined by (3.10)2 where Cn = 4µ/(1 − ν). The elastic deformation occurs in the region
of contact, with most of the bead undeformed but undergoing rigid body motion. We
can therefore think of the system as a chain of point masses each of mass m = 4

3πR2ρ.
Let un(t) be the displacement of the n-th sphere from its equilibrium position, then the
motion of that bead follows from (3.13) as

ün = A

(
[2w − (un − un−1)]

3/2 − [2w − (un+1 − un)]3/2

)
, A =

2
√

2Cn

πR5/2ρ
. (3.15)

The linear case is defined by |un+1 − un| ≪ w, for which (3.15) reduces to the
dynamic equilibrium equation for a 1D system of nearest neighbour masses coupled by
linear springs,

ün = 3A

√
w

2

(
un+1 − 2un + un−1

)
. (3.16)

We consider the continuum limit of lengths (such as wavelengths) much larger than the
bead size. Let un(t) → u(2nR, t), then the right member in (3.16) is clearly related to
∂2u/∂x2, i.e.,

∂2u

∂t2
= c2 ∂2u

∂x2
, (3.17)

where c2 = A6
√

2wR2. Thus, the speed of linear disturbances is

c =
3√
πρ

(
4Cn

3R

)1/3

N1/6. (3.18)

Coste and Gilles (1999) also consider waves that propagate due to an applied force
(impact) in the absence of pre-compression. They show that a solitary-like wave is caused
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by an impact, and the wave travels with speed ∝ N
1/6
m where Nm is the maximum force

of the solitary wave. The speed is given by (3.18) with N = 0.303Nm. Experimental
data agreed with these predications.

4 Generalizations: tangential force and other contact models

We are interested in the finite and infinitesimal elasticity of an ensemble of spheres,
for which the single pair in contact under normal and tangential loads describes the
fundamental mechanics. In this section we consider more realistic force contact models,
including the crucial role of tangential (shear) forces.

4.1 Overview of theories for intergranular forces

Several contact models can be considered in the same framework. For simplicity,
the spheres have the same radius R, and 2w(≥ 0) is the mutual approach along the
line joining their centers. The vector 2s describes the relative tangential displacement
between the two spheres. Figure 4.1 shows the setup. The force may be decomposed into
a normal force N and tangential force T.

R

b

w

u
s

Figure 2. Two spheres in contact. The radius of the initial unstressed circle of contact,
b may or may not be zero, depending on the model considered. The center of one sphere
is displaced relative to the other by a vector u which is resolved into component 2w along
the line of centers, and 2s perpendicular to it.

Our starting point is the incremental relations between the forces and the displace-
ments,

∆N = Dn(w)∆w, ∆T = Dt(w)∆s, (4.1)

where Dn and Dt are contact stiffnesses. These are of the form

Dn = Cn an(w), Dt = Ct at(w), (4.2)

where Cn and Ct are actual stiffnesses (i.e. with units of pressure)

Cn =
4µ

1 − ν
, Ct =

8µ

2 − ν
. (4.3)
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The lengths an and at depend upon the specific type of contact but do not depend
upon the material properties of the spheres. Several models are discussed next, and
the functional forms for an and at are summarized in Table 3. All models considered
have smooth contacts with reversible slip or rough contacts with no relative slip. Both
lengths are defined by the current value of w, but are independent of s. Note also that
the properties of each contact, though calculated within the approximations of ordinary
linear elasticity theory, lead to nonlinear restoring forces. As we shall see, these nonlinear
forces can, in turn, lead to extremely large nonlinear elastic constants for the aggregate
media.

Table 3. The lengths an and at for different contact conditions. Models I, II, and III
have two sub-cases, corresponding to: (a) smooth contact with reversible slip; and (b)
rough contact with no subsequent slip.

Contact model an(w) at(w)
(a) (b)

I Hertzian contact (Rw)
1

2 0 an

II Initial contact radius b [R2w2 + b4

4 )
1

2 + b2

2 ]
1

2 b an

(Digby)

III Ogival contact l = Rαπ
2 (Rw + l2)

1

2 − l 0 an

(Spence/Goddard)

IV Frictional sliding (Rw)
1

2 ( θ
an

+ 1−θ
c )−1

(Mindlin and Deresiewicz)

All the models in Table 3 have at ≤ an, with equality for the infinitely rough contacts.
When at = an the ratio Dn/Dt reduces to Cn/Ct = 1+ν/(2−2ν), which is approximately
1.17 for rocks (ν = 1/4). This value is not consistent with velocity data5.

We now discuss the results summarized in Table 3, dealing first with the oblique force
constants.

4.2 Oblique loading on a pair of spheres

Consider two spheres forced together under a load N0, resulting in a circular contact
zone of radius a and a normal displacement w as discussed in section 3.1. Let a0 be the
initial contact radius for applied force N0. An oblique compressive force is now applied,

5Domenico (1977) reports velocity data for unconsolidated glass beads under pressure. Winkler
(1983) demonstrated that Domenico’s data yields a value for the ratio Dn/Dt ranging from
1.79 to 3.36, which is consistent with a contact model with at < an. This is one possible
justification for a contact model that allows for frictionless sliding in tangential deformation,
as in the Digby model IIa for which at = 0.
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resulting in a tangential force T and total normal force N . The additional force is applied
incrementally in such a manner that its line of action is constant, and it lies outside the
friction cone, that is

d T

dN
= β ≥ f, (4.4)

where β is constant and f is the coefficient of friction between the surfaces. This type of
loading explicitly leads to slip, as we will see, but it also includes the case of zero slippage
in the limit as β → f . The pertinent parameter is

θ = f/β, 0 ≤ θ ≤ 1, (4.5)

where the limit θ = 1 corresponds to no slip anywhere within the contact zone. This will
also be described as infinite roughness.

As the load changes according to (4.4), the contact zone grows,

a = (N/N0)
1/3 a0 = (1 + θL)1/3 a0, (4.6)

where L = T/(fN0). At the same time a slip zone in the shape of a circular annulus
grows inward6, so that the adhered region is of radius c where

c =
(
1 − T/(fN)

)1/3
a = [1 − (1 − θ)L]1/3 a0. (4.7)

Thus, c ≤ a0, as expected, with equality only for infinitely rough surfaces.
The change in relative tangential displacement, 2s, is related to the applied load by

the differential relation7 (Mindlin and Deresiewicz, 1953, eq. (82))

d T

d s
= Ct

(
θ

a
+

1 − θ

c

)−1

. (4.8)

There are three limits of this general relation that are of interest.
(i) If the surfaces are frictionless, then c ≡ 0 identically (there is no adhered region)

and case Ia of Table 3 is obtained.
(ii) If the friction is infinite, or θ = 1, then T satisfies (4.1)2 with an = a0. If we

integrate this relation with the initial condition that N0 = 0 (which only makes sense for
infinite roughness), we recover (Walton, 1987, eq. (2.5)1)

T =
2

3
Ct a s. (4.9)

Thus, Walton’s model corresponds to homothetic loading from zero confining stress. This
is model Ib in Table 3. The more general relation in equation (4.8) allows us to consider
different load paths and finite friction. However, we will use (4.9) in practice.

6The largest shear stresses occur at the boundary - they are in fact singular (Mindlin, 1949)
7Mindlin and Deresiewicz provided an exhaustive analysis of the mechanics near the con-
tact region of two elastic spheres. This work (Mindlin, 1949; Mindlin and Deresiewicz, 1953;
Deresiewicz, 1958) extended the classical Hertz analysis to account for tangential forces and
oblique loading.
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(iii) Alternatively, if the normal load is kept fixed as the tangential force is applied,
then θ = 0, and we have instead

dT = Ct cd s. (4.10)

This is the case considered by Mindlin in equation (103) of (Mindlin, 1949), and is model
IV in Table 3.

4.3 Other models for normal loading of a pair of spheres in contact

The models of the previous subsection can be generalized to account for initial contact.
Digby (1981) considered the case of a circular zone of radius b of initial contact between
the spheres at zero confining force. He showed that the contact zone for a compressive
normal force N is a circular region of radius a given by the formula

a (a2 − b2)1/2 = Rw. (4.11)

This gives the formula for an = a in Table 3, for model II.

Another solvable model is that of the ogival indenter, composed of a sphere with a
conical tip of interior angle π−2α, 0 ≤ α ≪ 1, pressed into a sphere of the same radius8.
The contact zone radius is given by (Spence, 1968, Appendix D)

a2 + 2al = Rw, (4.12)

where l = Rαπ
2 . This follows by solving for the normal force required to press the ogival

body a distance w against a planar surface of the same material.

4.4 Path dependence

The incremental rule for ∆T in (4.1) does not hold for all deformation paths in the
w − s space. Generally, the increment in ∆T depends upon whether w is increasing or
decreasing, with different rules applicable in each case. However, it can be demonstrated
(Johnson and Norris, 1997) that the distinction disappears for the models of Table 3 if
the trajectory is self repeating - that is, it retraces itself whenever w is decreasing. We
will only consider paths which are self repeating in this sense.

Thus, T does not possess a unique functional form for models Ib, IIb, IIIb, and
IV. Rather, it depends upon the path history of the loading, and is only defined along a
given path in the w−s space. The path dependence vanishes only for constant tangential
stiffness. In order to integrate the force-displacement equations for a single contact with
path dependence it is necessary to assume some relationship between w and s = s(w).
We can then rewrite the incremental force relations (4.1) as

dN = Cn an(w) dw, dT = Ct at(w) ds. (4.13)

8The ogival/spherical contact geometry was discussed by Goddard (1990), and is based on a
class of solutions generated by Spence (1968) for frictionless indentation of self-similar shapes
on planar surfaces.
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The contact forces can be determined by integrating these three equations subject to the
initial conditions N = T = 0 at w = 0, yielding

N = Cn An(w), T = Ct

∫

path

at(w) ds (4.14)

where An is a path independent quantity having the dimension of area:

An(w) =

∫ w

0

an(ξ) d ξ . (4.15)

The precise form of T therefore depends upon the path s(w). For example, consider
a linear relationship,

d s

dw
= constant. (4.16)

Equations (4.14) become

N = Cn An(w), T = Ct a
(1)
t (w) s, (4.17)

where a
(1)
t also has the dimension of a length

a
(1)
t (w) =

1

w

∫ w

0

at(ξ) d ξ. (4.18)

it should be emphasized that w and s are not independent variables in Eq. (4.17).
The constraint (4.16) implies that the spheres approach one another along a constantly
directed line. Alternatively, one could assume that the line of action of the force at each
contact remains constant. That is,

dT

dN
= constant, (4.19)

and the constant can differ from contact to contact. The two constraints (4.16) and
(4.19) are equivalent only if the ratio Dt/Dn is constant along the loading path. This
is the case for the path dependent models Ib, IIb, and IIIb, but not for IV. We will use
(4.16) later for specific examples, but emphasize that the subsequent analysis applies to
arbitrary self repeating paths s = s(w).

4.5 Elastic energy of a pair of spheres

Before considering the ensemble of grains, we need one last quantity - the stored
energy of the pair of compressed spheres. Let f be the total force exerted by a sphere at
a single contact, and let u be the total displacement of the center of the sphere from its
original position. The sphere then moves a further distance du. The work done by the
sphere associated with that contact, assuming it does not rotate, is

dW = f · du = Ndw + T · ds. (4.20)
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Alternatively, the potential energy for a single contact is 2dW , when viewed in terms of
the two spheres each contributing dW . We speak of a potential energy function for the
path dependent models with the understanding that we are restricting our discussion to
motion on one specific path. The work done along that path is a conserved quantity;
going down the path is the reverse of going up.

For either the path independent models, or assuming (4.16) for the path dependent
ones, the explicit nature of N and T in (4.17) and (4.20) implies that

W = Cn Vn(w) +
1

2
Ct a

(2)
t (w) s2, (4.21)

where Vn is a volume and a
(2)
t a length,

Vn(w) =

∫ w

0

d ζ

∫ ζ

0

an(ξ) d ξ, a
(2)
t (w) =

2

w2

∫ w

0

d ζ

∫ ζ

0

at(ξ) d ξ. (4.22)

We have set W = 0 at the initial point, with no loss in generality. Thus, W is one half
of the energy stored in a single contact. The result (4.21) is valid for all contact models,
with the understanding that w and s = |s| are related for the path dependent models.

The length an, area An, and volume Vn are fundamental quantities, as is the dimen-
sionless quantity a′

n(w) which occurs later. Explicit formulae for a′
n(w), An, and Vn are

given in Table 4.

Table 4. The quantities a′
n, An, and Vn for the contact models of Table 3.

Model a′
n(w) An(w) Vn(w)

I R
2an

= 1
2R1/2w−1/2 2

3 wan = 2
3R1/2w3/2 4

15 w2an = 4
15R1/2w5/2

II
R(a2

n−b2)1/2

2a2
n−b2

2
3 w

(
an + b2

2an

)
4
15 w2

(
an + b2

an

)
− (an−b)b4

15R2

III R
2(an+d)

2
3 anw − a2

nd
3R

2
5

An

R (an + d)2 − w2d
10

5 Stress-strain relations for a granular medium

5.1 Kinematic assumption for an ensemble of spheres

In order to connect the 2-sphere models to the elastic response of a random packing
of spheres, we make a kinematic assumption relating the displacement of a single sphere
to the macroscopic deformation gradient F. The displacement of the center of a given
sphere is

ui = HijXj , or u = H · X, (5.1)

where F = I + H and X is the position of the center of the sphere. Let n be the unit
vector joining the centers of two contacting spheres, at X and X + 2Rn. The associated
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displacements are H · X and H · X + 2Rf · n, and so the components of the relative
displacement are

w = −n · H · nR, s = Q · H · nR, (5.2)

where Q = I − n ⊗ n projects onto the tangent plane.
The total strain energy density per unit volume is

U =
1

V

∑

contacts

W =
1

V

∑

contacts

∫
f · du, (5.3)

where the sum is over all contacts on each sphere (each contact is counted twice since W
is only half the contact energy), and V is the total volume of the sample. The effective
medium approximation assumes that all grains are statistically the same and each may
be replaced by its ensemble average. Let Ng be the number of grains in the volume V ,
and define 〈· · · 〉 as the average over the distribution of directions n. Therefore,

U =
n(1 − φ)

V0

〈
W [w(n), s(n)]〉 =

n(1 − φ)

V0

〈 ∫
f · du

〉
, (5.4)

where n is the number of contacts per grain, V0 is the volume of a single sphere, and φ
is the porosity of the sample9,

V0 =
4

3
πR3, 1 − φ =

NgV0

V
. (5.5)

We furthermore assume an isotropic distribution: Q(n) = 1/4π.

A note on rotation The skew symmetric part of the deformation gradient is associated
with rigid body rotation, which does not influence the energy on the microscale. In order
to make explicit this assumption we rewrite (5.2) as

w = −n · e · nR, s = QenR, (5.6)

where e is the symmetric part of the macroscopic linear strain,

e ≡ 1

2

(
H + HT

)
, (5.7)

and we shall write Qen as a shorthand for the vector Q · e · n (w is unaffected). In
summary, within the mean field approximation adopted here only the symmetric part
of the macroscopic deformation gradient influences the internal strain energy and so we
need consider only symmetric deformations.

We first examine the simpler case where the contacts are not path dependent, and then
consider the path dependent models. We will see there is not much formal difference in
some of the results, but it is worth doing them separately as the distinction is important.
The first is hyperelastic, and therefore we can immediately derive second and third order
elastic constants - the ingredients of acoustoelasticty. This is not the case for the path
dependent models, which we will see leads to a different formulation for acoustoelastic
effects.
9Strictly speaking, Eqs. (5.5) do not apply to the Digby model II because of the missing
spherical caps, nor to the Spence/Goddard model III because the ogive volume is not the
same as the sphere’s.
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5.2 Elastic moduli at finite strain

In the following we consider e as the finite strain. The deviation from the true finite
strain E is of second order in e (or H). But, as we will argue shortly when we examine the
relative magnitudes of the second and third order moduli, the difference may be safely
ignored for our purposes. The deformation energy for the path independent contact
models follows directly from Eq. (5.4), using Eqs. (4.21) and (5.6):

U = (1 − φ)
n

V0

[
Cn

〈
Vn(−n · e · nR)

〉
+

1

2
Ct R2

〈
a
(2)
t (−n · e · nR) |Qen|2

〉]
. (5.8)

The stress follows immediately from

σ =
∂U

∂e
, (5.9)

as

σij = (1 − φ)
nR

V0

[
Ctat R

〈1
2
(niQjk + njQik)eklnl

〉
− Cn

〈
An(−n · e · nR)ninj

〉]
. (5.10)

This gives the stress at finite strain e for models Ia, IIa, and IIIa.
If a further small strain, ǫ, is superimposed upon e then the resulting stress can be

found by simply substituting e + ǫ for e in (5.10). Let the total stress be σ + τ , then τ
is a nonlinear function of ǫ, which can be expanded in a Taylor series about ǫ = 0. The
linear coefficients are, by definition, the coefficients of linear elasticity at the finite strain
e and can be obtained directly by inspection from the strain energy expansion. Thus,

U(e + ǫ) = U(e) + σijǫij +
1

2
C∗

ijklǫijǫkl +
1

6
C∗

ijklmnǫijǫklǫmn + . . . , (5.11)

where C∗
ijkl and C∗

ijklmn are the second and third order elastic moduli, respectively. The
∗ is used to distinguish them from the unstressed moduli of (2.5). They satisfy the usual
symmetries associated with a material possessing a strain energy:

C∗
ijkl = C∗

jikl, C∗
ijkl = C∗

klij , (5.12a)

C∗
ijklmn = C∗

jiklmn, C∗
ijklmn = C∗

klijmn = C∗
mnklij . (5.12b)

The first identity is a statement of the symmetry of the stress.
Explicit expansion of the strain energy, using eqs. (5.8), (5.9), and (5.11), yields

C∗
ijkl = (1 − φ)

nR2

V0

[〈
[Cnan(−n · e · nR) − Ctat] ninjnknl

〉
+ Ctat

〈
Qijkl(n)

〉]
, (5.13)

where

Qijkl(n) ≡ 1

4
(δiknjnl + δilnjnk + δjlnink + δjkninl) . (5.14)

Similarly, the third order constants are given by

C∗
ijklmn = −(1 − φ)

3n

4π
Cn

〈
a′

n(−n · e · nR)ninjnknlnmnn

〉
. (5.15)

The tangential stiffness does not contribute to the third order moduli because it has been
assumed to be a Hookean spring.
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Scaling and finite strain: Granular media have large TOE Consider the sample
subject to a strain of order ǫ ≪ 1. The change in the sample dimension is ∆V/V = O(ǫ),
whereas the relative change in the stiffness of the system is of order ǫC∗

ijklmn/C∗
pqrs. The

relative magnitude of the second and third order moduli follows from equations (5.13)
and (5.15) and Tables 3 and 4:

Second order moduli

Third order moduli
= O

(
an(w)

Ra′
n(w)

)
= O

(
a2

n

R2

)
≪ 1 . (5.16)

The relative stiffness change far exceeds the relative volume change, which is a funda-
mental characteristic of granular media with Hertzian contact forces. It is manifested in
the relatively large change of elastic wave speeds as a function of confining stress, which
we saw in the data of Table 2 for Berea sandstone, and will discuss below using the
contact model.

We have so far omitted any mention of the finite strain tensor, defined as E = e +
1
2H

T H. This is normally the fundamental quantity of finite elasticity, in particular, a
hyperelastic material is a function of E. The strain energy is assumed to have a power
series expansion of symbolic form U = U0+C2EE+C3EEE+. . ., where C2, C3 represent
second and third order moduli. Alternatively, expanding in terms of H, we have

U = U0 + C2ee + C3eee + O(C2eHH, C3eeHH) . (5.17)

The scaling of the moduli in (5.16) indicates that the correction term, C2eHH, is negli-
gible in comparison with C3eee, and hence it is entirely consistent to take the energy as
U = U0 + C2ee + C3eee, correct to third order in the finite strain. Consequently, there
is no necessity to distinguish the finite strain E from the linear strain e, even for the
purpose of discussing nonlinear elastic effects (up to the order considered here).

5.3 Elasticity for path dependent models

A general result for stress There is a simple method for determining the stress
which is worth mention. Consider the surface integral of traction×displacement over the
exterior surface of the granular medium

∫

∂V

t · ud S =

∫

∂V

n · σ · ud S, (5.18)

This can recast as a volume integral over the total volume of grains, V , which in turn can
be converted again into the sum of surface integrals of traction×displacement for each
grain/sphere. Take u = e · X, for constant strain e (see (5.1)), then we have

V σ : e =
∑

grains

∫

∂Vi

t · ud S. (5.19)

The surface integral of traction on each grain reduces to the contact zones, which can
be replaced by the resultant forces. At the same time, the displacement at the contact
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satisfies the mean field assumption. As a result, using the arbitrary form of e, a symmetric
tensor, we obtain

σ =
R

2V

∑

contacts

(f ⊗ n + n ⊗ f). (5.20)

This is an exact relation for point contacts, commonly used to derive stress (Digby, 1981;
Walton, 1987).

In order to apply (5.20) to the granular pack, we assume the contact path history
is parameterized according to w = ξ, s = s(ξ). The path may differ from contact to
contact and is subject only to the constraints that it is self repeating and the end points
are given by Eq. (5.6). Then, using equation (4.14),

f = −Cn An(−n · e · nR)n + Ct

∫

path

at(ξ) ds(ξ) , (5.21)

and the stress follows accordingly as

σ = (1−φ)
nR

V0

[
Ct

2

〈 ∫

path

at(ξ) (n⊗d s+d s⊗n)
〉
−Cn

〈
An(−n ·e ·nR)n⊗n

〉]
, (5.22)

This is valid for arbitrary deformation paths, subject to the end condition (5.6)2 for s.

As an example, consider the linear s trajectory of Eq. (4.16), for which (5.22) reduces
to

σij = (1−φ)
nR

V0

[
Ct R

〈
a
(1)
t (−n·e·nR)

1

2
(niQjk+njQik)eklnl

〉
−Cn

〈
An(−n·e·nR)ninj

〉]
.

(5.23)
Note that the stress for the energy models, Eq. (5.10), is a special case of (5.23), and

follows from the latter by replacing the variable length a
(1)
t with its constant value ap-

propriate to the energy model.

Small on large The path dependent strain energy for a single contact, W of (4.21), is
not a function of w and s, and hence cannot be differentiated arbitrarily. It is, however,
possible to consider variations in W for arbitrary unconstrained changes in w and s

about their equilibrium values, w0 and s0. Let w = w0 + w1 and s = s0 + s1, where
|w1| ≪ |w0| and |s1| ≪ |s0|, and the extra displacements w1 and s1 are unrelated. Using
dW = N(w, s) d w + T(w, s) · d s, implies

W = W0(w0, s0)+N0(w0, s0)w1 +T0(w0, s0) · s1 +

∫ w1

0

N1 dw1 +

∫
s1

0

T1 ·d s1, (5.24)

where N = N0 + N1 and T = T0 + T1. The values of W0,T0, N0 may depend on the
loading history s(w) to that point. The incremental force equations are, from (4.13),

d N1 = Cn an(w0 + w1) dw1, , dT1 = Ct at(w0 + w1) d s1 . (5.25)
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Expanding and integrating gives

N1(w0, s0;w1, s1) = Cn

(
an(w0)w1 +

1

2
a′

n(w0)w2
1 + . . .

)
, (5.26a)

T1(w0, s0;w1, s1) = Ct

(
at(w0) s1 + a′

t(w0)

∫
s1

0

w1d s + . . .

)
. (5.26b)

The form of N1 is unambiguous because of the fact that N is always a function of w.
On the contrary, the integral in T1 depends upon the loading path, or equivalently, upon
the functional relationship between w1 and s1, if any. This integral is second order in the
additional displacements; the first order term Ctat(w0) s1 does not depend on the loading
history of (w1, s1). Substituting for N1 and T1 into (5.24) we see that the incremental
strain energy is defined only up to second order in the incremental displacements, but
not to third or higher order, i.e.,

W (w0 + w1, s0 + s1) = W0(w0, s0) + Cn An(w0)w1 + Ct a
(1)
t (w0) s0 · s1

+
1

2
Cnan(w0)w2

1 +
1

2
Ctat(w0) s2

1

+ path dependent third order terms in (w1, s1) . (5.27)

This distinguishes the path dependent models from those with strain energy functions.
The concept of second order elasticity is valid for path dependent models but we cannot
use or define third order elasticity.

Elastic moduli Consider a departure from the stress/strain state (σ, e), such that the
total strain and stress are e + ǫ and σ + τ , respectively, where |ǫ| ≪ |e| and |τ | ≪ |σ|.
The force at a contact becomes f + g, where |g| ≪ |f |, and the associated incremental
displacement 2v of the pair of spheres relative to one another is given by

v = R ǫ · n. (5.28)

The increment in energy for a single contact is therefore dW = (f + g) · dv, implying

W = W0 + f · v +

∫
g · dv, (5.29)

where W0 is the (path dependent) energy for ǫ = 0, as given by equations (4.21) and
(5.2), for example. The total energy density of the aggregate is

U = U0 +
R

V

∑

contacts

f · ǫ · n +
R

V

∑

contacts

∫
g · d ǫ · n , (5.30)

where U0 is the strain energy at ǫ = 0, given by (5.8).
The arbitrary nature of in ǫ allows us to express the total stress as

σ + τ =
∂U

∂ǫ

. (5.31)
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The effective stress at strain e is therefore

σ =
∂U

∂ǫ

∣∣∣∣
ǫ=0

, (5.32)

in agreement with (5.20). The total energy density may be rewritten, from equations
(5.30) and (5.32),

U = U0 + σ : ǫ + U1, (5.33)

where U1 is defined as the ultimate term in (5.30). Finally, the incremental stress is

τ =
∂U1

∂ǫ

. (5.34)

The incremental behavior depends upon the additional strain and stress in excess
of e and σ, the crucial quantity being the extra contact force g. It follows from the
preceding analysis for the single contact that g is only path independent to first order in
the incremental strain. The associated linear form is

g = −RCnan(−n · e · nR) (−n · ǫ · n)n + RCtat(−n · e · nR)Qǫn. (5.35)

The integral in (5.30) can now be evaluated, yielding

U1 =
1

2
C∗

ijklǫijǫkl, (5.36)

where the stiffness is

C∗
ijkl(e) = (1 − φ)

nR2

V0

[〈
[Cnan(−n · e · nR) − Ctat(−n · e · nR)] ninjnknl

〉

+
〈
Ctat(−n · e · nR)Qijkl(n)

〉]
. (5.37)

We emphasize that equation (5.37) is always a well-defined, path independent function
of the macroscopic strain, e, even for the path dependent models. Of course, the stress σ

corresponding to that strain e may well be path dependent. Note that the moduli C∗
ijkl

possess the usual symmetries associated with an elastic material, (5.12a).

6 Acoustoelasticity of granular media

The wave speeds for small motion superimposed upon the large strain e are defined by
the effective moduli C∗

ijkl and the effective density

ρ∗ = (1 − φ)ρ, (6.1)

where ρ is the granular density. We are interested in the incremental change in speed,
∆v, when the strain is changed to e + ∆e. The additional strain arises from a static
deformation, and need not be proportional to the original, finite strain e.
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For the models with energy potentials we can use the standard theory of acoustoelas-
ticity as developed in Section 2. Thus, eqs. (2.9) and (2.10) imply

ρ∗ ∆v2 = C∗
ijklmn njnlmimk ∆Fmn +

(
C∗

ikqr∆Fqrδjl + C∗
qjkl∆Fiq

+ C∗
iqkl∆Fjq + C∗

ijkl∆Fkq + C∗
ijkq∆Flq

)
mimlnjnk , (6.2)

where ∆F (= ∆H) is the incremental deformation gradient and C∗
ijklmn(e) are the third

order moduli. As in Section 2, the wave or phase normal is n, and the polarization
direction is m. Based on Eq. (5.16) we can safely and consistently ignore the terms in
(6.2) involving the second order moduli as being of a smaller order than the third order
moduli terms for the granular medium. Furthermore, using the symmetries of C∗

ijklmn

in (5.15) implies,
ρ∗ ∆v2 = C∗

ijklmn(e)njnlmimk ∆emn, (6.3)

that is, the change in speed depends only upon the symmetric strain increment defined
in accordance with equation (5.7).

The analogous result for the path dependent models can be obtained by returning to
the fundamental relation for the incremental strain energy of a single contact, (5.27). At
issue is how the coefficients of w2

1 and s2
1 are altered as we change w0 to w0 +∆w0, and s0

to s0 +∆s0. The change in the terms W0 and a(1)(w0) in (5.27) are path dependent, and
require that the increment in s0 be related to that for w0. However, this path dependence
does not effect the terms of interest, i.e., we simply replace the arguments of an and at

with w0 + ∆w0 in the quadratic terms. The increment in W involving the quadratic
small strain is therefore

∆W = . . . +
1

2

(
Cna′

n(w0)w2
1 + Cta

′
t(w0) s2

1

)
∆w0. (6.4)

When we translate this result to the aggregate, it is clear that the change in the wave
speed is of the form

ρ∗ ∆v2 = B∗
ijklmn (e)mjmlpipk ∆emn, (6.5)

where B∗
ijklmn are simply the derivatives of C∗

ijkl(e), given by eq. (5.37),

B∗
ijklmn(e) =

∂C∗
ijkl(e)

∂emn
. (6.6)

The explicit form follows from equations (5.37) and (6.6),

B∗
ijklmn = −(1 − φ)

3n

4π

[〈
[Cna′

n(−n · e · nR) − Cta
′
t(−n · e · nR)] ninjnknlnmnn

〉

+ Ct

〈
a′

t(−n · e · nR)Qijklnmnn

〉]
. (6.7)

Comparing equations (5.15) and (6.7) we see that

B∗
ijklmn = C∗

ijklmn if and only if at is constant. (6.8)

In general, the third order tensor B∗
ijklmn does not have all the symmetries of the third

order elastic moduli C∗
ijklmn in (5.12a). Thus,

B∗
jiklmn = B∗

ijklmn, B∗
klijmn = B∗

ijklmn, B∗
ijklnm = B∗

ijklmn. (6.9)
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6.1 Examples: Application of the granular medium theory

Hydrostatic confining pressure Consider a hydrostatic strain, e = e I, e < 0. The
macroscopic stress σ of (5.23) is hydrostatic, σ = −p I, and the confining pressure is

p = (1 − φ)
nR

3V0
CnAn(−eR). (6.10)

This holds for both the energy models and the path dependent models, because it is
independent of the tangential stiffness. The effective moduli are isotropic with two second
order and (when applicable) three third order moduli. The Lamé moduli are

λ∗

µ∗



 = (1 − φ)

n

20πR
×





Cnan(−eR) − Ctat(−eR),

Cnan(−eR) + 3
2Ctat(−eR).

(6.11)

The speeds of propagation of small amplitude compressional and shear waves are

vc =

(
λ∗ + 2µ∗

ρ∗

) 1

2

, vs =

(
µ∗

ρ∗

) 1

2

, (6.12)

respectively. Confining pressure, rather than dilatation, can be used as the load param-
eter, d p/d e = −3K∗, where K∗ ≡ λ∗ + 2µ∗/3 is the effective bulk modulus. Figure 6.1
shows a comparison of pressure dependence with some data.

Departures from linear elasticity for the path dependent models requires the moduli
B∗

ijklmn, which are of the form

B∗
ijklmn = Bijklmn + B̃ Iijkl δmn. (6.13)

Bijklmn satisfy all the symmetries of third order elastic moduli, viz. eq. (5.12a), and

B111

B112

B123

B̃





=
−(1 − φ)n

140π
×





15Cn a′
n(−eR) − Ct a′

t(−eR) ,

3Cn a′
n(−eR) − 3Ct a′

t(−eR) ,

Cn a′
n(−eR) − Ct a′

t(−eR) ,

7Ct a′
t(−eR) .

(6.14)

These contain the limiting form of the TOE for the energy models: set a′
t → 0, then

B∗
ijklmn → C∗

ijklmn.
As an example, the changes in longitudinal and transverse wave speeds follow from

the general expression (6.5),

ρ∗
d v2

c

d p
= − (B∗

111 + 2B∗
112)

3K∗
, ρ∗

d v2
s

d p
= − (B∗

441 + 2B∗
442)

3K∗
, (6.15)

where B∗
441 = (B112 − B123 + B̃)/2, B∗

442 = (B111 − B112 + 2B̃)/4.
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Figure 3. Compressional and shear speeds in unsintered glass beads as a function of
confining pressure. The continuous lines are calculated results based on the Digby model
of grain-grain contacts. The values µ = 24GPa, ν = 0.25, and ρs = 2.42 gm · cm−3

are used, appropriate for silica glass. Also φ = 0.37 (Domenico, 1977) and n = 9
is assumed. The symbols represent the experimental data of Domenico (1977) which
should be compared against the b = 0 curves. Based on Norris and Johnson (1997).

Stress induced anisotropy The directional averages in, e.g., (5.37), are not isotropic
if the applied stress/strain is not hydrostatic. For instance, if

eij = e0δij + e3δi3δj3, (6.16)

then C∗
ijkl have the symmetries of a transversely isotropic material with axes in the

3−direction. A further complication is that the directional averages are no longer as
explicit as before. For instance, C∗

3333 involves

〈
an(−n · e · nR)n4

3

〉
=

1

2

∫ π

0

d θ sin θ an(−e0R − e3R cos2 θ) cos4 θ . (6.17)

This and the other integrals are performed in (Johnson et al., 1998) where comparisons
with experimental data are also presented showing the expected anisotropy.

7 Acoustoelasticity of solid/fluid systems

We consider the effects of initial deformation on waves in a heterogeneous body compris-
ing constituents that are either inviscid fluid or elastic solid. The inviscid nature of the
fluid presents subtle and interesting effects. For instance, an applied static deformation
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causes material particles to slip relative to one another, with the result that material par-
ticles originally side-by-side become distant relatives. The interfaces between the distinct
fluid and solid regions therefore represent possible material slip surfaces, i.e., surfaces
across which the material deformation is not necessarily continuous. In order to fix ideas,
we will consider in detail the small-on-large theory for the speed of a tube wave10 in the
presence of prestress.

Acoustoelasticity of fluid/solid systems is complicated not only by the slip effect
at interfaces, but also the spatially inhomogeneous nature of the solution. The pre-
stress/prestrain is not the same in the fluid and solid regions, and the wave solution is
not a simple plane wave. The tube wave, for instance, decays radially to zero in the
solid surrounding the fluid filled bore. The inhomogeneity introduces difficulties that
are surmountable within the theory of acoustoelasticity by using a regular perturbation
approach. We consider this in Section 8 after we have dealt with the more technical and
physically interesting issues of slip.

7.1 Interface notation

Three configurations are again distinguished: the reference, intermediate and current.
The intermediate configuration is obtained by the static deformation of each point
according to X → x(X). This mapping is not necessarily continuous, and gives rise to
the possibility of interfaces across which material particles slip relative to one another.
A slip interface is defined by a surface in the reference configuration {L0 : f(X) = 0},
such that L0 forms a bounding surface between the disjoint sets of points on either side.
The slip condition means that

lim
ǫ↓0

x(X − ǫN(1)) 6= lim
ǫ↓0

x(X − ǫN(2)), X ∈ L0, (7.1)

where N(1) and N(2) are unit normals to L0. The points on either side of L0 define
material surfaces for the respective regions in the reference configuration. We assume
that the static deformation maintains these material surfaces as bounding surfaces, i.e.,
that the limits on (7.1), though distinct, are both elements of the same deformed interface

L̃. The static deformation then forms two distinct bijective mappings between L0(X)

and L̃(x), defined by the unequal members in (7.1). Our interest here is in systems where
the slip interface separates an inviscid compressible fluid from an elastic solid. Define
L0f and L0s as the fluid and solid surfaces that coincide with L0. We define L̃f and L̃s

by analogy, and note the identities L0 = L0f ∪ L0s and L̃ = L̃f ∪ L̃s. An important

consequence of the slip is that L̃f does not coincide with L̃s.

Consider, for example, a pressurized borehole in which a column of fluid surrounded
by solid is compressed in a piston-like manner in the static deformation. In this case
L0f and L0s are defined by the cylindrical fluid/solid interface. The solid undergoes no

strain in the axial direction under the static deformation, hence the axial extents of L̃s

and L0s are the same. However, the axial length of L̃f is diminished compared with L0f

10A tube wave is simply the lowest order acoustic mode for a wave propagating down an infinitely
long fluid filled circular hole in an isotropic solid.
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because of the smaller fluid surface meeting the solid after compression, so that L̃f ⊂ L̃s

in this particular case. Obviously, L̃s ⊂ L̃f would hold if the fluid were to undergo an
expansion (negative compression).

The basic measure of stress is now taken as the total Piola-Kirchhoff stress tensor
T, sometimes known as the nominal stress and the transpose TT is the Piola-Kirchhoff
stress of the first kind, i.e., the stress P in Section 2. The total stress can be expressed
in the intermediate and current coordinates as T̃ and σ, respectively, with

T̃αj = (ρ̃/ρ0)xα,L TLj , σij = (ρ/ρ0)x′
i,L TLj , (7.2)

where σ = σ
T is the Cauchy stress tensor. By definition ρ0 d V0 = ρ̃ d Ṽ = ρd V , and

hence the densities are related by ρ0 = ρ̃ det(xα,L) = ρdet(x′
i,L). The point form of the

equations of motion in the three descriptions are,

TLj,L(X) = ρ0 uj,tt, X ∈ V0, (7.3a)

T̃αj,α(x) = ρ̃ uj,tt, x ∈ Ṽ , (7.3b)

σij,i(x
′) = ρ uj,tt, x′ ∈ V. (7.3c)

The different notations for the three configurations are summarized in Table 5.

Table 5. Parameters in the three descriptions.

Description Position Volume/Surface Density Disps./Stresses

Reference R0 X V0 , S0, N, L0 ρ0 uj , TMj , T
(0)
Mj , T

(1)
Mj

Intermediate R̃ x Ṽ , S̃, Ñ, L̃ ρ̃ uj , T̃αj , T̃
(0)
αj , T̃

(1)
αj

Current R x
′ V , S, n , L ρ uj , σij , σ

(0)
ij , σ

(1)
ij

The force acting across the material element of area d S0 with unit normal N, is the
same as the force on the current element of area d S with unit normal n, where the
current and reference directions and areas are related by

d S

dS0
= (detF)

∣∣N · F−1
∣∣ , n =

N · F−1

|N · F−1| , (7.4)

where F is the deformation gradient with components FiK = x′
i,K . Similarly,

n · σ dS = Ñ · T̃ d S̃ = N · T d S0 , (7.5)

where S0, S̃, and S refer to the same element of material surface. The traction t = n ·σ
is continuous across any interfaces in the medium, viewed as a function of current coor-
dinates. However, the traction is not necessarily a continuous function of the reference
coordinates.
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7.2 Acoustoelasticity assumptions

The current state of the medium results from additional small acoustic disturbances
in which material particles deform according to the x → x′. We again distinguish the
static and dynamic displacement fields, u(0) and u(1), defined by eq. (2.1) which again
partition the total displacement: u = u(0) + u(1). Small-on-large stresses are defined by

TMj(X) = T
(0)
Mj(X) + T

(1)
Mj(X) + . . . , (7.6a)

T̃αj(x) = T̃
(0)
αj (x) + T̃

(1)
αj (x) + . . . , (7.6b)

σij(x
′) = σ

(0)
ij (x′) + σ

(1)
ij (x′) + . . . . (7.6c)

The extra stresses T
(1)
Mj , T̃

(1)
αj , and σ

(1)
ij are by assumption linear in the small strains. The

prestress is in equilibrium, and therefore satisfies the equilibrium equations in any of the
three coordinate systems,

T
(0)
Mj,M = T̃

(0)
αj,α = σ

(0)
ij,i = 0. (7.7)

7.3 Interface conditions

Consider an element of surface, with area dS0, d S̃, or dS in the configuration R0,
R̃, or R, respectively. The associated outward normals are defined by the unit vectors
in Table 5. The relative surface areas are

d S̃

dS
= 1 − E

(1)
⊥ + . . . ,

d S0

dS
= 1 − E

(0)
⊥ − E

(1)
⊥ + . . . , (7.8)

where
E

(0)
⊥ = u

(0)
L,L − NKNL u

(0)
K,L, E

(1)
⊥ = u(1)

α,α − ÑαÑβ u
(1)
α,β . (7.9)

The total traction per unit current area can now be expressed in the alternative descrip-
tions as

n · (σ(0) + σ
(1)) = (1 − E

(1)
⊥ ) Ñ · (T̃(0) + T̃(1)) . (7.10)

The traction expressions (7.10) are well-known although it is usually assumed that the
surfaces remain bonded, and hence surface elements transform in the same manner on
either side of a material interface. This assumption is not valid here. There is no slippage
in bonded solid materials, and therefore the area changes d S̃/d S and dS0/d S in these
identities are continuous across the interface. However, it is the lack of continuity of
these functions in the presence of slip that is the key to our problem. The possibility
of jumps in these quantities must be taken into account. At the same time, the slip of
particles at the interface makes pointwise conditions difficult to formulate in reference
and intermediate coordinates, because the traction condition must be applied at the same
current point on either side of the interface.

Continuity of the total traction vector implies, using (7.10) and expanding subject to
the asymptotic small-on-large procedure, that the intermediate stress tensor satisfies the
continuity condition

{
Ñ · T̃(0) + Ñ · T̃(1) − E

(1)
⊥ Ñ · T̃(0)

}

L
= 0. (7.11)
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The notation {f}L means the difference in the quantity f evaluated at adjacent points
x′ ± ǫn, ǫ → 0, on either side of the interface L. The jump condition (7.11) involves
quantities at neighbouring current positions, not at neighbouring intermediate positions.
The transformation from one to the other requires evaluating (7.11) at the different points
x = x′−u(1) for the same x′ but different u(1) on either side of L. Split u(1) into normal

and tangential parts according to u(1) = u
(1)
n + u

(1)
⊥ , so that

x = (x′ − u(1)
n ) − u

(1)
⊥ . (7.12)

This permits us to convert the jump condition (7.11) to one defined on L̃. In so doing, the
bracketed term on the right of equation (7.12) is considered constant, and the quantities

in (7.11) have to be evaluated at points in R̃ separated by
{
−u

(1)
⊥

}

L
. This can only

effect the first term in (7.11) because the changes in the other terms are negligible. Thus,

{
Ñ · T̃(0)

}

L
→
{
Ñ · T̃(0) − u

(1)
⊥ · ∇Ñ · T̃(0)

}

L̃
=
{
−u

(1)
⊥ · ∇Ñ · T̃(0)

}

L̃
, (7.13)

where we use the fact that the prestress is in equilibrium,

{
Ñ · T̃(0)

}

L̃
= 0. (7.14)

The desired, converted form of (7.11) is therefore

{
Ñ · T̃(1) − E

(1)
⊥ Ñ · T̃(0) − u

(1)
⊥ · ∇Ñ · T̃(0)

}

L̃
= 0. (7.15)

The general continuity condition (7.15) is our main result; it applies to any interface
conditions, whether bonded or not. The analogous jump condition across L0 is rather
more complicated (Norris et al., 1994)

{
N · T(1) − E

(1)
⊥ N · T(0) − u

(1)
⊥ · ∇N · T(0) − E

(0)
⊥ N · T(1) − u

(0)
⊥ · ∇N · T(1)

}

L0

= 0.

(7.16)
Both (7.15) and (7.16) reduce to the simple, standard forms

{
Ñ · T̃(1)

}

L̃
= 0,

{
N · T(1)

}

L0

= 0, (7.17)

when the interface is bonded.
The same procedure use in deriving (7.15) can be applied immediately to give the

analogous jump condition in the intermediate description for displacement:

{
Ñ · u(1) − E

(1)
⊥ Ñ · u(0) − u

(1)
⊥ · ∇Ñ · u(0)

}

L̃
= 0. (7.18)

The corresponding condition in the original description follows from (7.16).
Next, we will see how the jump conditions can be incorporated into acoustoelasticity

calculations of practical interest.
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7.4 Reformulation of jump conditions in quasi-divergent form

The dynamical equations for the small motion follow from eqs. (7.3) and (7.6),

T
(1)
Lj,L(X) = ρ0 u

(1)
j,tt, X ∈ V0, (7.19a)

T̃
(1)
αj,α(x) = ρ̃ u

(1)
j,tt, x ∈ Ṽ , (7.19b)

σ
(1)
ij,i(x

′) = ρ u
(1)
j,tt, x′ ∈ V. (7.19c)

The equations in current coordinates lead to a natural or divergence formulation, in
the sense that the interface conditions can be found by integrating the “diverged” stress,
giving {n · σ(1)}L = 0. However, the position of the interface L is not known a priori,
which makes this formulation of little use for acoustoelasticity. The other two formula-
tions are not in divergence form, because the interface conditions (7.15) and (7.16) for
stress and the associated displacement conditions are clearly unrelated to the differential
equations of motion.

We now show how the equations (7.4b) in intermediate coordinates can be rewritten
in what we call quasi-divergent form. Our purpose is to use the small-on-large equations
in the same manner as for homogeneous solids, viz. to calculate the change in velocity of
waves. The specific example in the next Section deals with the guided borehole wave, but
other types are possible, e.g. the Scholte wave at a flat fluid-solid interface. The method
employs an energy-type argument for a quadratic form in the unperturbed wave solution.
The reader is advised to skip forward to peruse the integral perturbation approach. The
crucial ingredient in the formulation is the ability to integrate across surfaces, which is
automatic if the bulk equations are in divergent form and, most importantly, if the jump
conditions are in accord with the equations of motion. The latter is not the case for our
formulation, eqs. (7.15) and (7.18).

There is, however, a way to simplify these jump conditions. The integrand (the
quadratic form) comprises solutions that are time harmonic and also sinusoidal in space.
Terms that are “in-phase” therefore contribute, while those that are out of phase produce
no energy when averaged over a cycle. Thus, if can reformulate the jump conditions into
forms that leave only out-of-phase terms on the interface, then these can be ignored.

The objective then is to identify terms in the stress condition eq. (7.15) that are in-

or out-of-phase with the leading term:
{
Ñ · T̃(1)

}

L̃
. The phase is relative to the stress

T̃(1), which comprises first spatial derivatives of displacement. It is therefore in-phase

with E
(1)
⊥ and out of phase with u(1). We therefore concentrate on the middle term in

eq. (7.15). Similarly, the middle term in eq. (7.18) is out of phase with the leading, first
term. Consequently, we only need to pay attention to the third term in eq. (7.15).

We make two assumptions on the prestress/prestrain:
(a) The fluid pressure p(0) is constant.

(b) The normal displacement at the interface Ñ · u(0) is constant.
The first is always true for a fluid/solid composite medium in which the fluid phase is
connected. A fluid saturated porous medium serves as a good example. The second
assumption is a bit more restrictive, as it limits the types of interfaces. However, it
includes the borehole, and the flat interface (Scholte waves) among others, and it could
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probably be relaxed to apply to other configurations. Condition (b) immediately implies
that the out of phase third term in eq. (7.15) vanishes, and hence

{
Ñ · u(1)

}
= out of phase terms. (7.20)

We write this as {
Ñ · u(1)

}
:= 0. (7.21)

We therefore concentrate on the stress jump condition.
The homogeneous prestress in the fluid is

T̃(0) = −p(0) I, in the fluid. (7.22)

The inviscid nature of the fluid means that the initial traction on the interface is every-
where a normal stress of −p(0). Consider the modified stress

T̂(1) = T̃(1) + p(0)
(
Idivu(1) − (∇u(1))T

)
. (7.23)

This addition to T̃(1) is divergence free, and hence the equations of motion in intermediate
coordinates, (7.4b) may be equally well written

T̂
(1)
αj,α(x) = ρ̃ u

(1)
j,tt, x ∈ Ṽ . (7.24)

We will now demonstrate that the interface conditions (7.15) can be expressed as
{
Ñ · T̂(1)

}

L̃
:= 0. (7.25)

The jump condition (7.15) may be rewritten, using (7.22) and (7.23), as
{
Ñ · T̂(1)

}

L̃
+ p(0)

{
(u

(1)
⊥ · ∇)Ñ

}

L̃
+ p(0)

{
E

(1)
⊥ Ñ − Ñ divu(1) + Ñ · (∇u(1))T

}

L̃
= 0.

(7.26)

The differential operator (u
(1)
⊥ ·∇) in the middle term of the right member is the same as

(u(1).∇⊥) where ∇⊥ represents the in-surface derivatives. The final term in (7.26) can
be simplified using this operator, to give

{
Ñ · T̂(1)

}

L̃
+ p(0)

{
(u(1) · ∇⊥)Ñ

}

L̃
+ p(0)

{
Ñ · (∇⊥u(1))T

}

L̃
= 0. (7.27)

The second term is out of phase with the first, and can be ignored. The third term can
be split into a sum of two terms, one in phase and one out of phase. Retaining the former
and ignoring the latter gives

{
Ñ · T̂(1)

}

L̃
+ p(0) ∇⊥

{
Ñ · u(1)

}

L̃
:= 0. (7.28)

The second term of the right member is the surface gradient of the jump (7.21). The
latter identity in and of itself is not sufficient reason to ignore this term, since it is in phase

with the stress jump
{
Ñ · T̂(1)

}

L̃
. However, the original equation for the displacement

jump, (7.18), implies that the second term in (7.28) is of order p(0)2u(1), and ignorable
on that account. Hence, we have proved the equivalence of (7.15) and (7.25).
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Small-on-large constitutive relations The linearized constitutive equations for the
perturbed stresses in the intermediate description are,

T̃
(1)
αj = C̃αjβγ u

(1)
γ,β , (7.29)

where

C̃αjβγ = Cαjβγ + T
(0)
αβ δjγ − Cαjβγ u

(1)
δ,δ + CαjβγPl u

(1)
l,P

+ u
(1)
α,P CPjβγ + u

(1)
j,P CαPβγ + u

(1)
β,P CαjPγ + u

(1)
γ,P CαjβP . (7.30)

These follow from, for instance, eq. (2.9) with the change of density ρ0 → ρ̃. The
modified stress is then

T̂
(1)
αj = (Cαjβγ + ∆Cαjβγ)u

(1)
γ,β , (7.31)

where the change in stiffness follows from equations (7.23), (7.29), and (7.30), as

∆Cijkl = C̃ijkl + p(0) (δijδkl − δilδjk) − Cijkl

= p(0) (δijδkl − δilδjk) − Cijkl u
(0)
m,m + Cikmn u(0)

m,nδjl + Cijklmn u(0)
m,n

+ Cpjkl u
(0)
i,p + Cipkl u

(0)
j,p + Cijpl u

(0)
k,p + Cpjkp u

(0)
l,p . (7.32)

We are now ready to consider acoustoelastic problems in composite fluid/solid systems.

8 Perturbation theory for small-on-large

The undeformed mode of the solid/fluid system is defined by the time dependent dis-
placement field um and the deformed mode by u. The original mode is time-harmonic
with radial frequency ωm, and the perturbed mode has frequency ω. The equations of
motion for both modes can be formulated in Lagrangian, intermediate, or current coordi-
nates. However, the current coordinates have the unavoidable difficulty that the interface
position depends upon the solution u(1). The Lagrangian coordinates do not have this
problem, but the interface conditions present other serious issues. Furthermore, there
is a conceptual difficulty dealing with Lagrangian coordinates for heterogeneous media:
the “speed” of a small-on-large wave is not a useful concept in Lagrangian coordinates,
as the case of a pressurized borehole demonstrates. In that case the axial deformation of
the solid and inviscid fluid are different, so a wave speed defined relative to the original
length of a fluid column is not the same as a wave speed referred to the solid.

We therefore perform the analysis entirely in intermediate coordinates, using the
quasi-divergent formulation of the previous Section. This permits us to use standard
methods from mode perturbation theory. For simplicity we drop the notation for the
intermediate configuration (ũ → u etc.) and consider it as the current configuration, in
the spirit of perturbation theory.

8.1 The perturbation integral

The idea is to consider the wave solution as a mode of the system. This is unambiguous
in finite systems, and can be extended to infinite systems by considering solutions with
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fixed wave numbers. Our objective is the (modal) frequency, from which changes in wave
speeds can be calculated.

Consider the perturbed and unperturbed equations of motion as, respectively,

σji,j(x) + ρω2 ui(x) = 0, (8.1a)

σm
ji,j(x) + ρ0(ω

m)2 um
i (x) = 0. (8.1b)

Contract the first with um and the second with u, and integrate the difference over an
arbitrary volume V , yielding

∫

V

[ρω2 − ρ0(ω
m)2]uju

m
j d V =

∫

V

(
σm

ji,j ui − σji,j um
i

)
d V. (8.2)

Integrate by parts, using the fact that the equations are in quasi-divergence form which
permits us to integrate “through” interfaces, and ignore remainder terms that are out-
of-phase and have zero average. This gives

∫

V

[ρω2 − ρ0(ω
m)2]uju

m
j d V = −

∫

V

(
σm

ji ui,j − σji um
i,j

)
d V. (8.3)

We can now estimate the shift in modal frequency, using

ρ = ρ0 + ∆ρ, C = C0 + ∆C, ω = ωm + ∆ω, (8.4)

where ∆ρ = −u
(0)
k,k ρ0 is the change in density associated with the prestrain, and ∆C are

the incremental elastic moduli - defined by the prestress. Substituting into (8.3), making
the approximation u ≈ um, and retaining only the terms linear in the deviations, gives

2ωm ∆ω =

∫
V

∆Cijkl u
m
i,ju

m
k,l dV∫

V
ρ0 um

q um
q dV

− (ωm)2
∫

V
∆ρ um

i um
i dV∫

V
ρ0 um

q um
q dV

. (8.5)

Finally, the change in phase speed associated with the material change is

∆v

v
=

∆ω

ωm
. (8.6)

Fluid-solid media The second-and third-order moduli (Kostek et al., 1993) of an in-
viscid fluid are11

Cijkl = Af δij δkl, (8.7a)

Cijklmn = (Af − Bf ) δij δkl δmn − 2Af [δijIklmn + δklIijmn + δmnIijkl] , (8.7b)

where Af and Bf are the usual linear and nonlinear moduli of a fluid with Af = ρfc2

and c the acoustic sound speed. The static prestrain in the fluid must be both uniform
(homogeneous) and symmetric, with the stress hydrostatic of pressure p(0). Thus, we

may take the prestrain as u
(0)
i,j = −p(0)/(3Af )δij . The change in the fluid density is

11With Iijkl = (δikδjl + δilδjk)/2.
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∆ρf = (p(0)/Af ) ρf , and the perturbation in Af follows from equation (7.30) as ∆Af =
(1 + Bf/Af )p(0).

In applying equations (8.5) and (8.6) to fluid-solid media we need only consider the
integrals over the solid portion Vs, because the effects of the fluid perturbations enter
through the dependence of v on ρf and Af . Hence,

∆v

v
=

p(0)

v

[
ρf

Af

∂v

∂ρf
+

(
1 +

Bf

Af

)
∂v

∂Af

]
+

∫
Vs

∆Cijkl u
m
i,ju

m
k,l d V

2(ωm)2
∫

V
ρ0 um

q um
q d V

−
∫

Vs
∆ρ um

i um
i dV

2
∫

V
ρ0 um

q um
q d V

.

(8.8)
The general formula (8.8) can be used to calculate the change in speed of a Scholte wave12

Norris and Sinha (1995). We next illustrate its application to a wave of considerable
utility in the oil exploration and drilling industry, the tube wave.

8.2 Example: The tube wave

Consider a circular fluid-filled borehole of radius a in an isotropic elastic formation.
The initial stress is caused by an applied pressure p(0) in the borehole fluid, which induces
an inhomogeneous deformation in the solid. We will use (8.8) to find the change in the
tube wave speed due to the pressure.

The unperturbed wave is defined by the low frequency behavior of the Stoneley wave
mode (White, 1983). The pressure in the fluid and the strain in the solid are, respectively,

pm = p(1) cos
[
ωm(t − x3

v
)
]
, 0 ≤ r < a, (8.9a)

em = p(1) a2

2µr2
e cos

[
ωm(t − x3

v
)
]
, a < r < ∞, (8.9b)

where x3 direction is the borehole axis, r2 = x2
1 + x2

2 and

eαβ = δαβ − 2 r−2 xαxβ , α, β = 1, 2; e3k = ek3 = 0. (8.10)

p(1) is the tube wave pressure, and µ the shear modulus of the isotropic formation (solid
medium). The unperturbed speed is v,

1

v2
= ρf

( 1

Af
+

1

µ

)
. (8.11)

The frequency is arbitrary, as long as the condition ωa/v ≪ 1 is met (which justifies the
quasistatic approximation).

Terms that are in-phase with the bore pressure have the same cos dependence as
(8.9a), and terms that are out-of-phase have sin instead. The product of in- and out-of-
phase terms has zero average over one wavelength. Also, the problem depends only upon
the modal behavior in the x1 − x2 plane, and we therefore drop the explicit dependence
upon x3 and t.

12A Scholte wave travels along a flat fluid/solid interface, and reduces to the Rayleigh wave in
the absence of fluid.
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The static strain caused by the applied pressure, p(0) has the form

e(0) = p(0) a2

2µr2
e, a < r < ∞. (8.12)

Thus, e
(0)
kk = u

(0)
k,k = 0, implying that the mass density of the formation is unchanged

under the prestress. The dependence of the tube wave speed on the applied pressure
follows from (8.8) and (8.11) as

∆v

v
= − p(0)

2Af
+

p(0)

2Af

(
1 + Bf/Af

1 + Af/µ

)
+

∫
Vs

∆Cijkl u
m
i,ju

m
k,l dV

2(ωm)2
∫

V
ρ0 um

q um
q dV

. (8.13)

The integrand can be simplified, using equation (7.32) and the symmetries of the elastic
moduli, to give

∆Cijkl u
m
i,j um

k,l = p(1)2 a4

4µ2r4

[
5Cααkl ekl + Cijklmn eijeklemn − 2p(0)

]
, in Vs,

(8.14)
where the repeated Greek suffices indicate summation over α = 1 and 2. Substituting
the moduli for isotropic elasticity, which involves two second-order and three third-order
elastic moduli, it turns out that the terms involving Cijkl and Cijklmn are individually
zero independent of the five moduli. The volumetric integrals in (8.13) should be un-
derstood as time averaged over one cycle, or alternatively, as averages over one axial
wavelength, and they can be replaced by integrals in any cross plane. Thus,

∫

Vs

∆Cijkl u
m
i,ju

m
k,l d V → −p(0) p(1)2 a4

µ2
2π

∫ ∞

a

r d r

2r4
= −p(0) p(1)2 πa2

µ2
. (8.15)

The integral in the denominator of (8.13) is dominated, in the quasistatic limit, by the
integral of (um

3 )2 over the fluid volume, because all other displacements are O(ω) in
magnitude relative to the axial displacement in the bore fluid. Furthermore, the axial
velocity is approximated by the relation um

3,t = (ρfv)−1pm, appropriate to a medium
with acoustic impedance ρfv. Hence,

(ωm)2
∫

V

ρ0 um
q um

q dV →
∫

Vf

ρf (um
3,t)

2 d V = p(1)2 πa2

ρfv2
. (8.16)

Combining equations (8.11), (8.13), (8.15), and (8.16), we find

∆v

v
=

p(0)

2Af (1 + Af/µ)

(
Bf

Af
− Af

µ
−

A2
f

2µ2

)
, (8.17)

or,

ρf
d v2

d p

∣∣∣∣
p=0

=

(
Bf

Af
+

1

2

)
v4

c4
− 1

2
. (8.18)

Equation (8.18) agrees with Johnson et al. (1994). They considered the possibility of
variable elastic properties within the formation, but their general formula collapses to
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(8.18) for a uniform formation. When the formation is rigid (µ → ∞), then v = c and
(8.18) reduces to the well known equation for the pressure dependence of an acoustic
wave in an infinite fluid. Equation (8.18) indicates that the fluid nonlinearity parameter
Bf/Af , which is positive for fluids, is diminished by the presence of the formation.
However, the nonlinearity parameter is magnified when the formation properties are not
uniform (Johnson et al., 1994).

It is remarkable that eq. (8.18) is completely independent of the nonlinear parameters
of the solid13. It may be checked that if one uses the “standard” form of the small-on-
large theory that ignores the slip at the fluid solid interface, then the solid TOE appear
in the equation for ∆v. The simple form of eq. (8.18) is a consequence of the more
elaborate, but correct, form of small-on-large theory.
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