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Expressions are given for the maximum and minimum values of Poisson’s ratio n for
materials with cubic symmetry. Values less than K1 occur if and only if the maximum
shear modulus is associated with the cube axis and is at least 25 times the value of the
minimum shear modulus. Large values of jnj occur in directions at which the Young
modulus is approximately equal to one half of its 111 value. Such directions, by their
nature, are very close to 111. Application to data for cubic crystals indicates that certain
Indium Thallium alloys simultaneously exhibit Poisson’s ratio less than K1 and greater
than C2.
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1. Introduction

The Poisson’s ratio n is an important physical quantity in the mechanics of
solids, arguably second only in significance to the Young modulus. It is strictly
bounded between K1 and 1/2 in isotropic solids, but no such simple bounds exist
for anisotropic solids, even for those closest to isotropy in material symmetry:
cubic materials. In fact, Ting & Chen (2005) demonstrated that arbitrarily large
positive and negative values of Poisson’s ratio could occur in solids with cubic
material symmetry. The key requirement is that the Young modulus in the 111-
direction is very large (relative to other directions), and as a consequence the
Poisson’s ratio for stretch close to but not coincident with the 111-direction can
be large, positive or negative. Ting & Chen’s result replaces conventional wisdom
(e.g. Baughman et al. 1998) that the extreme values of n are associated with
stretch along the face diagonal (110-direction). Boulanger & Hayes (1998)
showed that arbitrarily large values of jnj are possible in materials of
orthorhombic symmetry. Both pairs of authors analytically constructed sets of
elastic moduli, which show the unusual properties while still physically
admissible. The dependence of the large values of Poisson’s ratio on elastic
moduli and the related scalings of strain are discussed by Ting (2004) for cubic
and more anisotropic materials.

To date there is no anisotropic elastic symmetry for which there are analytic
expressions of the extreme values of Poisson’s ratio for all materials in the
symmetry class, although bounds may be obtained for some specific pairs of
directions for certain material symmetries. For instance, Lempriere (1968)
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A. N. Norris3386
considered Poisson’s ratios for stretch and transverse strain along the principal
directions, and showed that it is bounded by the square root of the ratio of

principal Young’s moduli, jnðn;mÞj!ðEðnÞ=EðmÞÞ1=2 (in the notation defined
below). Gunton & Saunders (1975) performed some numerical searches for the
extreme values of n in materials of cubic symmetry. However, the larger question
of what limits on n exist for all possible pairs of directions remains open, in
general. This paper provides an answer for materials of cubic symmetry. Explicit
formulae are obtained for the minimum and maximum values of n which allow us
to examine the occurrence of the unusually large values of Poisson’s ratio and the
conditions under which they appear. Conversely, we can also define the range of
material parameters for which the extreme values are of ‘standard’ form, i.e.
associated with principal pairs of directions such as nð110; 1�10Þ for stretch and
measurement along the two face diagonals. For instance, we will see that a
necessary condition that one or more of the extreme values of Poisson’s ratio is
not associated with a principal direction is that nð110; 1�10Þ must be less than
K1/2. The general results are also illustrated by application to a wide variety of
cubic materials, and it will be shown that values of n!K1 and nO2 are possible
for certain stretch directions in existing solids.

We begin in §2 with definitions of moduli and some preliminary results.
An important identity is presentedwhich enables us to obtain the extreme values of
both the shear modulus and Poisson’s ratio for a given choice of the extensional
direction. Section 3 considers the central problem of obtaining extreme values of n
for all possible pairs of orthogonal directions. The solution requires several new
quantities, such as the values of n associatedwith principal direction pairs. Section 4
describes the range of possible elastic parameters consistent with positive definite
strain energy. The explicit formulae, the global extrema, are presented and their
overall properties are discussed in §5. It is shown that certain Indium Thallium
alloys simultaneously display values of n belowK1 and aboveC2.
2. Definitions and preliminary results

The fourth order tensors of compliance and stiffness for a cubic material, S and
CZSK1, may be written (Walpole 1984) in terms of three moduli k, m1 and m2,

SG1 Z ð3kÞH1JCð2m1ÞH1ðIKDÞCð2m2ÞH1ðDKJÞ: ð2:1Þ
Here, IijklZð1=2ÞðdikdjlCdildjkÞ is the fourth order identity, JijklZð1=3Þdijdkl , and

Dijkl Z di1dj1dk1dl1 Cdi2dj2dk2dl2Cdi3dj3dk3dl3: ð2:2Þ

The isotropic tensor J and the tensors of cubic symmetry ðIKDÞ and ðDKJÞ are
positive definite (Walpole 1984), so the requirement of positive strain energy is
that k, m1 and m2 are positive. These three parameters, called the ‘principal
elasticities’ by Kelvin (Thomson 1856), can be related to the standard Voigt
stiffness notation: kZðc11C2c12Þ=3, m1Zc44 and m2Zðc11Kc12Þ=2. Alterna-

tively, kZðs11C2s12ÞK1=3, m1ZsK1
44 and m2Zðs11Ks12ÞK1=2 in terms of the

compliance.
Vectors, which are usually unit vectors, are denoted by lowercase boldface,

e.g. n. The triad fn;m; tg represents an arbitrary orthonormal set of vectors.
Proc. R. Soc. A (2006)
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Directions are also described using crystallographic notation, e.g. nZ1�10 is the
unit vector ð1=

ffiffiffi
2

p
;K1=

ffiffiffi
2

p
; 0Þ. The summation convention on repeated indices is

assumed.
(a ) Engineering moduli

The Young modulus EðnÞ sometimes written En, shear modulus Gðn;mÞ and
Poisson’s ratio nðn;mÞ are (Hayes 1972)

EðnÞZ 1=s 011; Gðn;mÞZ 1=s 044; nðn;mÞZKs 012=s
0
11; ð2:3Þ

where s 011Zsijklninjnknl , s
0
12Zsijklninjmkml and s 044Z4sijklnimjnkml . Thus, EðnÞ

and nðn;mÞ are defined by the axial and orthogonal strains in the n- and
m-directions, respectively, for a uniaxial stress in the n-direction. E and G are
positive, while n can be of either sign or zero. A material for which n!0 is called
auxetic, a term apparently introduced by K. Evans in 1991. Gunton & Saunders
(1975) provide an earlier informative historical perspective on Poisson’s ratio.
Love (1944) reported a Poisson’s ratio of ‘nearly K1/7’ in Pyrite, a cubic
crystalline material.

The tensors I and J are isotropic, and consequently the directional dependence
of the engineering quantities is through D. Thus,
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2
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2
1 Cn2

2m
2
2 Cn2

3m
2
3: ð2:7Þ

We note for future reference the relations

Dðn;mÞCDðn; tÞZ 2FðnÞ: ð2:8Þ

(b ) General properties of E, G and related moduli

Although interested primarily in the Poisson’s ratio, we first discuss some
general results for E, G and related quantities in cubic materials: the area
modulus A, and the traction-associated bulk modulus K, defined below. The
extreme values of E and G follow from the fact that 0%F%1=3 and 0%D%1=2
(Walpole 1986; Hayes & Shuvalov 1998). Thus, Gmin; maxZmin; maxðm1;m2Þ,
Emin; maxZ3½ð3kÞK1CGK1

min; max�K1 and Emin;EmaxZE001;E111 for m1Om2, with the
values reversed for m1!m2 (Hayes & Shuvalov 1998). As noted by Hayes &
Shuvalov (1998), the difference in extreme values of E and G are related by

3=EminK3=Emax Z 1=GminK1=Gmax: ð2:9Þ
Proc. R. Soc. A (2006)
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The extreme values also satisfy

3=Emin; maxK1=Gmin; max Z 1=ð3kÞ: ð2:10Þ

The shear modulus G achieves both minimum and maximum values if n is
directed along face diagonals, that is, Gmin%G%Gmax for nZ110.

The area modulus of elasticity AðnÞ for the plane orthogonal to n is the ratio of
an equibiaxial stress to the relative area change in the plane in which the stress
acts (Scott 2000). Thus, 1=AðnÞZsijklðdijKninjÞðdklKnknlÞ. Using the equations
above it may be shown that, for a cubic material,

1=AðnÞK1=EðnÞZ 1=ð3kÞ: ð2:11Þ

The averaged Poisson’s ratio �nðnÞ is defined as the average over m in the
orthogonal plane, or �nðnÞZ ½nðn;mÞCnðn; tÞ�=2. The following result, appar-
ently first obtained by Sirotin & Shaskol’skaya (1982), follows from the relations
(2.8),

½1K2�nðnÞ�=EðnÞZ 1=ð3kÞ: ð2:12Þ

Equation (2.12) indicates that the extrema of �nðnÞ and EðnÞ coincide. The
traction-associated bulk modulus KðnÞ, introduced by He (2004), relates the
uniaxial stress in the n-direction to the relative change in volume in anisotropic
materials. It is defined by 3KðnÞZ1=siiklnknl , and for cubic materials is simply
KðnÞZk. It is interesting to note that the relations (2.10)–(2.12) have the same
form as for isotropic materials, for whichE,G, n,A andK are constants. Equations
(2.4)–(2.6) imply other identities, e.g. that the combination 1=GC4n=E is
constant.

Further discussion of the extremal properties of G and n requires knowledge of
how they vary with m for given n, and in particular, the extreme values as a
function of m for arbitrary n, considered in §2c. Note that, nZ111 and nZ001
are the only directions for which nðn;mÞ and Gðn;mÞ are independent of m. It
will become evident that nZ111 is a critical direction, and we therefore rewrite
E and n in forms emphasizing this direction:
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; ð2:13Þ

where E111ZEð111Þ, n111Znð111; $Þ and c (Hayes & Shuvalov 1998) are

E111 Z
1

9k
C

1

3m1

� �K1

; n111 Z
3kK2m1

6kC2m1

; cZ
1

m2

K
1
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: ð2:14Þ

Both E111 and n111 are independent of m2. The fact that F%1=3 with equality for
nZ111 implies that this is the only stretch direction for which E, and hence n,
are independent of m2. Equations (2.13) indicate that EðnÞ and nðn;mÞ depend
on m2 at any point in the neighbourhood of 111, with particularly strong
dependence if m2 is small. This singular behaviour is the reason for the
extraordinary values of n discovered by Ting & Chen (2005) and will be discussed
at further length below after we have determined the global extrema for n.
Proc. R. Soc. A (2006)
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(c ) Extreme values of G and n for fixed n

For a given n, consider the defined vector

mðlÞhr
n1

n2
1Kl

;
n2

n2
2Kl

;
n3

n2
3Kl

� �
; ð2:15Þ

with r chosen to make m a unit vector. Requiring n$mZ0 implies that mðlÞ is
orthogonal to n if
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Z 0; ð2:16Þ

i.e. if l is a root of the quadratic
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It is shown in appendix A that the extreme values of Dðn;mÞ for fixed n coincide
with these roots, which are non-negative, and that the corresponding unit m
vectors provide the extremal lateral directions. The basic result is described next.
(i) A fundamental result

Let 0%lK%lC%1=2 be the roots of (2.17) and mK;mC the associated vectors
from (2.15), i.e.
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mGZ rG
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1KlG
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2KlG
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n3
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3KlG

� �
; ð2:18bÞ
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C
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3KlGÞ2

" #K1=2

: ð2:18cÞ

The extreme values of D for a given n are lG associated with the orthonormal
triad fn;mK;mCg, i.e.

DminðnÞZDðn;mKÞZ lK; DmaxðnÞZDðn;mCÞZ lC: ð2:19Þ

The extreme values of G and n for fixed n follow from equations (2.5) and (2.6).
The above result also implies that the extent of the variation of the shear

modulus and the Poisson’s ratio for a given stretch direction n are

1=GminðnÞK1=GmaxðnÞZ jcj4HðnÞ; ð2:20aÞ

nmaxðnÞKnminðnÞZ jcjEðnÞHðnÞ; ð2:20bÞ
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Figure 2. The irreducible 1/48th of the cube surface is defined by the isosceles triangle with edges 1,
2 and 3. The vertices opposite these edges correspond to, nZ111, 110 and 001, respectively. Note
that the edge 30 is equivalent to 3 (which is used in appendix B).
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Figure 1. The function H of equation (2.21) plotted versus n1 and n2 for the region of solid angle
depicted in figure 2. Vertices nZ111, 110 and 001 are indicated. H vanishes at 111 and 001 and is
positive elsewhere, with maximum of 1/4 along nZ110 (face diagonals).
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where HðnÞ is, see figure 1,

HðnÞZ ½ðn2
1n

2
2 Cn2

2n
2
3 Cn2

3n
2
1Þ2K3n2

1n
2
2n

2
3�1=2: ð2:21Þ

3. Poisson’s ratio

We now consider the global extrema of nðn;mÞ over all directions n and m. Two
methods are used to derive the main results. The first uses general equations for a
stationary value of n in anisotropic media to obtain a single equation which must
be satisfied if the stationary value lies in the interior of the triangle in figure 2. It
is shown that this condition, which is independent of material parameters, is not
satisfied, and hence all stationary values of n in cubic materials lie on the edges of
the triangle. This simplifies the problem considerably, and permits us to deduce
Proc. R. Soc. A (2006)
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explicit relations for the stationary values. The second method, described in
appendix B, confirms the first approach by a comprehensive numerical test of all
possible material parameters.
(a ) General conditions for stationary Poisson’s ratio

General conditions can be derived which must be satisfied in order that
Poisson’s ratio is stationary in anisotropic elastic materials (Norris submitted).
These are

s 014 Z 0; 2ns 015Cs 025 Z 0; ð2nK1Þs 016Cs 026 Z 0; ð3:1Þ

where the stretch is in the 10 direction ðnÞ and 20 is in the lateral direction ðmÞ.
The conditions may be obtained by considering the derivative of n with respect to
rotation of the pair ðn;mÞ about an arbitrary axis. Setting the derivatives to zero
yields the stationary conditions (3.1).

The only non-zero contributions to s 014, s
0
15, s

0
25, s

0
16 and s 026 in a material of

cubic symmetry come from D. Thus, we may rewrite the conditions for
stationary values of n in terms of D 0

14ZD 0
1123, etc. as

D 0
14 Z 0; 2nD 0

15CD 0
25 Z 0; ð2nK1ÞD 0

16CD 0
26 Z 0: ð3:2Þ

The first is automatically satisfied by virtue of the choice of the direction-m as
either of mG. Regardless of which is chosen,
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ð3:3Þ

The final identity may be derived by first splitting each term into partial
fractions and using the following (cf. appendix A):
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n2
1KlG

C
n4
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n2
2KlG

C
n4
3

n2
3KlG

Z 1: ð3:4Þ

With no loss in generality, consider the specific case of mZma, lZla, where
aZG, and in either case, bZKa. It may be shown without much difficulty
(appendix B) that rGO0 for n in the interior of the triangle of figure 2. It then
follows that inside the triangle,

D 0
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D 0
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ra
Z 1;

D 0
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Z
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laKlb
;

D 0
26

ra
Z
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laKlb
K2: ð3:5Þ

These identities may be obtained using partial fraction identities similar to those
in equations (3.3) and (3.4). Equations (3.2)2 and (3.2)3 can be rewritten

D 0
15 D 0

25

D 0
16 D 0

26KD 0
16

" #
2n

1

 !
Z

0

0

 !
: ð3:6Þ
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However, using (3.5), the determinant of the matrix is

D 0
15D

0
26KðD 0

15CD 0
25ÞD 0

16 ZK3rCrK; ð3:7Þ
which is non-zero inside the triangle of figure 2. This gives us the important
result: there are no stationary values of n inside the triangle of figure 2. Hence,
the only possible stationary values are on the edges.
(b ) Stationary conditions on the triangle edges

The analysis above for the three conditions (3.2) is not valid on the triangle
edges in figure 2, because the quantities rG become zero and careful limits must
be taken. We avoid this route by considering the conditions (3.2) afresh for n
directed along the three edges. We find, as before, that D 0

14Z0 on the three
edges, so that (3.2)1 always holds. Of the remaining two conditions, one is always
satisfied, and imposing the other condition gives the answer sought.

The direction-n can be parametrized along each edge with a single variable.
Thus, nZ1p0, 0%p%1, on edge 1. Similarly, edges 2 and 3 are together covered
by nZ11p, with 0%p!N. In each case, we also need to consider the two
possible values of m, which we proceed to do, focusing on the conditions (3.2)2
and (3.2)3.
(i) Edge 1: nZ1p0, 0%p%1 and mZp�10 or 001

For mZp�10, we find that D 0
15ZD 0

25Z0 and D 0
16ZKD 0

26ZpKp3. Hence,
equation (3.2)2 is automatically satisfied, while equation (3.2)3 becomes

ðnK1ÞðpKp3ÞZ 0: ð3:8Þ

Conversely, for mZ001 it turns out that D 0
16ZD 0

26Z0 and D 0
15ZKD 0

25ZpKp3.
In this case, the only non-trivial equation from equations (3.2) is the second one,

nðpKp3ÞZ 0: ð3:9Þ
Apart from the specific cases nZ0 or 1, equations (3.8) and (3.9) imply that
stationary values of n occur only at the end points pZ0 and 1. Thus, nð001Þ,
nð110; 1�10Þ and nð110; 001Þ are potential candidates for global extrema of n.
(ii) Edges 2 and 3: nZ11p, 0%p!N and mZ1�10

Proceeding as before, we find that D 0
16ZD 0

26Z0, D 0
15Z

ffiffiffi
2

p
pð1Kp2Þ=ð2Cp2Þ2

and D 0
25Zp=½

ffiffiffi
2

p
ð2Cp2Þ�. Hence, equation (3.2)3 is automatically satisfied, while

equation (3.2)2 becomes

p½ð1K4nÞp2C2C4n�Z 0: ð3:10Þ

The zero pZ0 corresponds to nZ110 which was considered above. Thus, all
three conditions (3.2) are met if p is such that

p2 Z ðnC1=2Þ=ðnK1=4Þ: ð3:11Þ
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Further progress is made using the representation of equation (2.13) combined
with the limiting values of D which can be easily evaluated. We find

E111

E11p

Z 1C
1

3

1Kp2

2Cp2

� �2
E111c; ð3:12aÞ

nð11p; 1�10Þ E111
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Z n111K
1

6

1Kp2

2Cp2

� �
E111c: ð3:12bÞ

Substituting for p2 from equation (3.11) into (3.12) gives two coupled equations
for E11p and nð11p; 1�10Þ:

1

E11p

Z
1

E111

C
c

48n2
;

n

E11p

Z
n111

E111

C
c

24n
: ð3:13Þ

Eliminating E11p yields a single equation for possible stationary values of
nð11p; 1�10Þ,

n2Knn111K
1

48
E111cZ 0: ð3:14Þ

We will return to this after considering the other possible m vector.
(iii) Edges 2 and 3: mZpp�2

In this case D 0
15ZD 0

25Z0, D 0
16Z

ffiffiffi
2

p
pð1Kp2Þ=ð2Cp2Þ2 and D 0

26Zpðp2K4Þ=
½
ffiffiffi
2

p
ð2Cp2Þ2�. Equation (3.2)2 holds, while equation (3.2)3 is zero if pZ0, which is

disregarded, or if p is such that

p2 Z ðnK3=2Þ=ðnK3=4Þ: ð3:15Þ
The Young modulus is independent of m and given by (3.12a), while n satisfies

nð11p; pp�2Þ E111

E11p

Z n111C
ð1Kp2Þð4Kp2Þ

6ð2Cp2Þ2
E111c: ð3:16Þ

Using the value of p2 from (3.15) in equations (3.12a) and (3.16) yields another
pair of coupled equations, for E11p and nð11p; 001Þ,

1

E11p

Z
1

E111

C
c

48ðnK1Þ2
;

n

E11p

Z
n111

E111

C
c nK1

2

� �
24ðnK1Þ2

: ð3:17Þ

These imply a single equation for possible stationary values of nð11p; 001Þ,

ðnK1Þ2KðnK1Þðn111K1ÞK 1

48
E111cZ 0: ð3:18Þ

(c ) Definition of n1 and n2

The analysis for the three edges gives a total of seven candidates for global
extrema: nð001Þ, nð110; 1�10Þ and nð110; 001Þ from the endpoints of edge 1, and the
four roots of equations (3.14) and (3.18) along edges 2 and 3. The latter are very
interesting because they are the only instances of possible extreme values
Proc. R. Soc. A (2006)



A. N. Norris3394
associated with directions other than the principal directions of the cube (axes,
face diagonals). Results below will show that five of the seven candidates are
global extrema, depending on the material properties. These are nð001Þ,
nð110; 1�10Þ, nð110; 001Þ and the following two distinct roots of equations (3.14)
and (3.18), respectively,

n1 h
1

2
n111K

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2111C

1

6
ðn111C1Þ m1

m2

K1

� �s
; ð3:19aÞ

n2 h
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2
ðn111C1ÞC 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn111K1Þ2 C 1

6
ðn111C1Þ m1

m2

K1

� �s
: ð3:19bÞ

The quantity E111c has been replaced to emphasize the dependence upon the two
parameters n111 and the anisotropy ratio m1=m2. The associated directions follow
from equations (3.11) and (3.15),

n1 Z nð11p1; 1�10Þ; p1 Z
n1 C1=2

n1K1=4

� �1=2

; ð3:20aÞ

n2 Z nð11p2; p2p2�2Þ; p2 Z
n2K3=2

n2K3=4

� �1=2

: ð3:20bÞ

A complete analysis is provided in appendix B. At this stage, we note that n1 is
identical to the minimum value of n deduced by Ting & Chen (2005), i.e. eqns
(4.13) and (4.15) of their paper, with the minus sign taken in eqn (4.13).
4. Material properties in terms of Poisson’s ratios

Results for the global extrema are presented after we introduce several quantities.
(a ) Non-dimensional parameters

It helps to characterize the Poisson’s ratio in terms of two non-dimensional
material parameters which we select as n0 and c0, where

n0 Z
3kK2m2

6kC2m2

; c0 Z
mK1
2 KmK1

1

ð9kÞK1 Cð3m2ÞK1
: ð4:1Þ

That is, n0ZKs12=s11 is the axial Poisson’s ratio nð001; $Þ, independent of the
orthogonal direction, and c0Zc=s11 is the non-dimensional analogue of c. Thus,

nðn;mÞZ
n0K

1
2 c0Dðn;mÞ

1Kc0FðnÞ
; ð4:2Þ

a form which shows clearly that n is negative (positive) for all directions if n0!0
and c0O0 (n0O0 and c0!0). These conditions for cubic materials to be
completely auxetic (non-auxetic) were previously derived byTing&Barnett (2005).
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The extreme values of the Poisson’s ratio for a given n are

nGðnÞZ
n0K

1
2 c0ðFGHÞ
1Kc0F

; ð4:3Þ

where F is defined in (2.7) and H in (2.21). Thus, nC is the minimum (maximum)
and nK the maximum (minimum) if c0O0 ðc0!0Þ, respectively.

The Poisson’s ratio is a function of the direction pair ðn;mÞ and the material
parameter pair ðn0;c0Þ, i.e. nZnðn;m; n0;c0Þ. The dependence upon n0 has an
interesting property: for any orthonormal triad,

nðn;m; n0;c0ÞCnðn; t; 1Kn0;c0ÞZ 1: ð4:4Þ
This follows from (4.2) and the identities (2.8). Result (4.4) will prove useful
later.

Several particular values of Poisson’s ratio have been introduced:
n0Znð001;mÞ, n111Znð111;mÞ associated with the two directions 001 and
111 for which n is independent of m. These are two vertices of the triangle
in figure 2. At the third vertex (nZ110 along the face diagonals), we have
nð110;mÞZm2

3n001Cð1Km2
3Þn1�10 where, in the notation of (Milstein & Huang

1979) n001hnð110; 001Þ and n1�10 hnð110; 1�10Þ. Three of these four values of
Poisson’s ratio associated with principal directions can be global extrema, and
the fourth, n111 plays a central role in the definition of n1 and n2 of (3.19). We
therefore consider them in terms of the non-dimensional parameters n0 and c0,

n111 Z
n0K

1
6 c0

1K1
3 c0

; n001 Z
n0

1K1
4 c0

; n1�10 Z
n0K

1
4 c0

1K1
4 c0

: ð4:5Þ

We return to n1 and n2 later.
(b ) Positive definiteness and Poisson’s ratios

In order to summarize the global extrema of n, we first need to consider the
range of possible material parameters. It may be shown that the requirements for
the strain energy to be positive definite: kO0, m2O0 and m1O0, can be expressed
in terms of n0 and c0 as

K1!n0!1=2; c0!2ð1Cn0Þ: ð4:6Þ
It will become evident that the global extrema for n depend most simply on the
two values for n along a face diagonal: n001 and n1�10. The constraints (4.6)
become

K1!n1�10!1; K1
2 ð1Kn1�10Þ!n001!1Kn1�10; ð4:7Þ

which define the interior of a triangle in the n001; n1�10 plane, see figure 3. This
figure also indicates the lines n0Z0 and c0Z0 (isotropy). It may be checked that
the four quantities fn0; n111; n001; n1�10g are different as long c0s0, with the
exception of n001 and n0 which are distinct if n0c0s0. Consideration of the four
possibilities yields the ordering

0!n001!n0!n111!n1�10!1 for n0O0; c0!0; ð4:8aÞ

K1!n0!n001!n111!n1�10!0 for n0!0; c0!0; ð4:8bÞ
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Figure 3. The interior of the triangle in the n001; n1�10 plane represents the entirety of possible cubic
materials with positive definite strain energy. The vertices correspond to kZ0, m1Z0 and m2Z0,
as indicated. The edges of the triangle opposite the vertices are the limiting cases in which kK1, mK1

1

and mK1
2 vanish, respectively. The dashed curves correspond to n0Z0 (vertical) and c0Z0

(diagonal) and the regions a, b, c and d defined by these lines coincide with the four cases in
equation (4.8), respectively.
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K1!n1�10!n111!n001!n0!0 for n0!0; c0O0; ð4:8cÞ

0!n1�10!n111!n0!n001!2 for n0O0; c0O0: ð4:8dÞ

Note that n111 is never a maximum or minimum. We will see below that (4.8a) is
the only case for which the extreme values coincide with the global extrema for n.
This is one of the reasons the classification of the extrema for n is relatively
complicated, requiring that we identify several distinct values. In particular, the
global extrema depend upon more than sgn n0 and sgn c0, but are best
characterized by the two independent non-dimensional parameters n001 and n1�10.

We are now ready to define the global extrema.
5. Minimum and maximum Poisson’s ratio

Tables 1 and 2 list the values of the global minimum nmin and the global
maximum nmax, respectively, for all possible combinations of elastic parameters.
For table 1, nð001Þ, n001 and n1�10 are defined in (4.5), and n1 and p1 are defined in
(3.19a) and (3.20a). For table 2, n2 and p2 are defined in (3.19b) and (3.20b). No
second condition is necessary to define the region for case e, which is clear from
figure 5. The data in tables 1 and 2 are illustrated in figures 4 and 5, respectively,
which define the global extrema for every point in the interior of the triangle
Proc. R. Soc. A (2006)



Table 1. The global minimum of Poisson’s ratio for cubic materials.

nmin n m condition 1 condition 2 figure 4

0!n001 110 001 n001O0 n1�10On001 a
K1=2!n1�10 110 1�10 n1�10OK1=2 n1�10!n001 b

K1!n0 001 arbitrary n001!0 n1�10On001 c
KN!n1 11p1 1�10 n1�10!K1=2 n1�10!n001 d

Table 2. The global maximum of Poisson’s ratio.

nmax n m condition 1 condition 2 figure 5

n1!K1=2 11p1 1�10 n1�10!K1=2 n1�10On001 a

n0!0 001 arbitrary n001!0 n1�10!n001 b
n1�10!1 110 1�10 n1�10OK1=2 n1�10On001 c

n001!3=2 110 001 0!n001!3=2 n1�10!n001 d
n2!N 11p2 p2p2�2 n001O3=2 e

n1 < –1

a

d

c

b
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Figure 4. The global minimum of Poisson’s ratio based on table 1. The value of nmin depends upon
the location of the cubic material parameters in the four distinct regions a, b, c and d, defined by
the heavy lines inside the triangle of possible materials. The diagonal dashed line delineates the
region in which nmin!K1, from equation (5.1).
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defined by (4.7). The details of the analysis and related numerical tests leading to
these results are presented in appendix B.
(a ) Discussion

Conventional wisdom prior to Ting & Chen (2005) was that the extreme
values were characterized by the face diagonal values n001 and n1�10. But as
equation (4.8) indicates, even these are not always extrema, since n0Znð001;mÞ
Proc. R. Soc. A (2006)
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Figure 5. The global maximum of Poisson’s ratio based on table 2. The value of nmax depends upon
the location of ðn001; n1�10Þ in five distinct regions defined by the heavy lines. The dashed line
delineates the (small) region in which nmaxO2, from equation (5.1).
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can be maximum or minimum under appropriate circumstances (equations (4.8c)
and (4.8d), respectively). The extreme values in equation (4.8) are all bounded
by the limits of the triangle in figure 3. Specifically, they limit the Poisson’s ratio
to lie between K1 and 2. Ting & Chen (2005) showed by explicit demonstration
that this is not the case, and that values less than K1 and larger than 2 are
feasible, and remarkably, no lower or upper limits exist for n.

The Ting & Chen ‘effect’ occurs in figure 4 in the region, where nminZn1 and in
figure 5 in the region nmaxZn2. Using equation (3.19a), we can determine that
nmin is strictly less than K1 if ðm1=m2K1ÞO24. Similarly, equation (3.19b)
implies that nmax is strictly greater than 2 if ðm1=m2K1Þðn111C1ÞO24ð2Kn111Þ.
By converting these inequalities, we deduce

nmin!K1 5 m2!
m1

25
5 n001K13n1�10O12; ð5:1aÞ

nmaxO2 5 m2!
25

m1

C
16

k

 !K1

5 13n001Kn1�10O24 : ð5:1bÞ

The two sub-regions defined by the n001, n1�10 inequalities are depicted in figures 4
and 5. They define neighbourhoods of the m2Z0 vertex, i.e. ðn001; n1�10ÞZð2;K1Þ,
where the extreme values of n can achieve arbitrarily large positive and negative
values. The condition for nmin!K1 is independent of the bulk modulus k. Thus,
the occurrence of negative values of n less than K1 does not necessarily imply
that relatively large positive values (greater than 2) also occur, but the converse
is true. This is simply a consequence of the fact that the dashed region near the
tip m2Z0 in figure 5 is contained entirely within the dashed region of figure 4.

These results indicate that the necessary and sufficient condition for the
occurrence of large extrema for n is that m2 is much less than either m1 or k. m2 is
either the maximum or minimum of G, and it is associated with directions pairs
Proc. R. Soc. A (2006)



Table 3. Properties of the 11 materials of cubic symmetry in figure 6 with n1�10!K1=2. (The
boldfaced numbers indicate nmin and nmax. Unless otherwise noted the data are from Landolt &
Bornstein (1992). G&S indicates Gunton & Saunders (1975).)

material n001 n1�10 n1 p1 n2 p2 m1=m2

b-brass (Musgrave 2003) 1.29 K0.52 K0.52 0.15 8.5
Li 1.29 K0.53 K0.54 0.21 8.8
AlNi (at 63.2% Ni and at 273 K) 1.28 K0.55 K0.55 0.25 9.1
CuAlNi (Cu14% Al4.1% Ni) 1.37 K0.58 K0.59 0.32 10.2
CuAlNi (Cu14.5% Al3.15% Ni) 1.41 K0.63 K0.66 0.42 12.1
CuAlNi 1.47 K0.65 K0.69 0.45 13.1
AlNi (at 60% Ni and at 273 K) 1.53 K0.68 K0.74 0.50 1.53 0.18 15.0
InTl (at 27% Tl, 290 K) (G&S) 1.75 K0.78 K0.98 0.62 1.89 0.59 24.0
InTl (at 28.13% Tl) 1.78 K0.81 K1.08 0.66 2.00 0.63 28.6
InTl (at 25% Tl) 1.82 K0.84 K1.21 0.70 2.14 0.68 34.5
InTl (at 27% Tl, 200 K) (G&S) 1.93 K0.94 K2.10 0.83 3.01 0.82 90.9

3399Poisson’s ratio in cubic materials
along orthogonal face diagonals, m2ZGð110; 1�10Þ. Hence, the Ting & Chen effect
requires that this shear modulus is much less than m1ZGð001;mÞ, and much less
than the bulk modulus k. In the limit of very small m2, equations (3.19)

give n1;2zH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn111C1Þm1=ð24m2Þ

p
. Ting (2004) found that the extreme values are

nzG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð16dÞ

p
COð1Þ for small values of their parameter d. In current notation,

this is dZ9=½1CE111c�, and replacing E111c the two theories are seen to agree.
The implications of small m2 for Young’s modulus are apparent. Thus,

Emin=EmaxZOðm2=m1Þ, and equation (2.13)1 indicates that EðnÞ is small
everywhere except near the 111-direction, at which it reaches a sharply peaked
maximum. Cazzani & Rovati (2003) provide numerical examples illustrating the
directional variation of E for a range of cubic materials, some of which are
considered below. Their three-dimensional plots of EðnÞ for materials with very
large values of m1=m2 (see table 3 below) look like very sharp starfish. Although,
the directions at which n1 and n2 are large in magnitude are close to the 111-
direction, the value of E in the stationary directions can be quite different from
E111. The precise values of the Young modulus, E11p1 and E11p at the associated
stretch directions are given by

E111

E11p1

C
n111

n1
Z 2;

E111

E11p2

C
n111K1

n2K1
Z 2: ð5:2Þ

These identities, which follow from equations (3.13) and (3.17), respectively,
indicate that if n1 or n2 become large in magnitude then the second term in the
left member is negligible. The associated value of the Young modulus is
approximately one half of the value in the 111-direction and consequently large
values of jnj occur in directions at which Ezð1=2ÞE111. Such directions, by their
nature, are close to 111.

The appearance of n1 in both figures 4 and 5 is not surprising if one
considers that n001, n1�10 and n0 also occur in both the minimum and maximum.
It can be checked that in the region where n1 is the maximum value in
figure 5, it satisfiesK1!n1!K1=2. In fact, it is very close to but not equal to
Proc. R. Soc. A (2006)
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Figure 6. The 44 materials considered are indicated by dots on the chart showing the nmin regions,
cf. figure 4.
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n1�10 in this region, and numerical results indicate that jn1Kn1�10j!4!10K4 in
this small sector.

What is special about the transition values in figures 4 and 5: n001Z3=2 and
n1�10ZK1=2? Quite simply, they are the values of n1 and n2 as the stationary
directions n approach the face diagonal direction-110. Thus, n1 and n2 are both
the continuation of the face diagonal value n1�10, but on two different branches.
See appendix B for further discussion.
(b ) Application to cubic materials

We conclude by considering elasticity data for 44 materials with cubic
symmetry, figure 6. The data are from Musgrave (2003) unless otherwise
noted. The 17 cubic materials in the region, where nminZn001 are as follows,
with the coordinates ðn001; n1�10Þ for each: GeTeSnTe1 (mol% GeTeZ0)
(0.01, 0.70), RbBr1 (0.06, 0.64), KI (0.06, 0.61), KBr (0.07, 0.59), KCl
(0.07, 0.56), Nb1 (0.21, 0.61), AgCl (0.23, 0.61), KFl (0.12, 0.49), CsCl
(0.14, 0.44), AgBr (0.26, 0.55), CsBr (0.16, 0.40), NaBr (0.15, 0.38), NaI
(0.15, 0.38), NaCl (0.16, 0.37), CrV1 (Cr0.67 at.% V) (0.15, 0.35), CsI
(0.18, 0.38), NaFl (0.17, 0.32). This lists them roughly in the order from top
left to lower right. Note that all the materials considered have positive n001.
The 16 materials with nminZn001 also have nmaxZn1�10, so the coordinates of
the above materials correspond to their extreme values of n. The extreme
values are also given by the coordinates in the region with nminZn1�10,
nmaxZn001. The materials there are: Al (0.41, 0.27), diamond (0.12, 0.01), Si
(0.36, 0.06), Ge (0.37, 0.02), GaSb (0.44, 0.03), InSb (0.53, 0.03), CuAu1

(0.73, 0.09), Fe (0.63, K0.06), Ni (0.64, K0.07), Au (0.88, K0.03), Ag

(0.82,K0.09), Cu (0.82,K0.14), a-brass (0.90,K0.21), Pb1 (1.02,K0.20),

Rb1 (1.15,K0.40), Cs1 (1.22,K0.46).

1Data from Landolt & Bornstein (1992), see also Cazzani & Rovati (2003).
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Materials with n1�10!K1=2 are listed in table 3. These all lie within the region
where the minimum is n1, and of these, five materials are in the sub-region where
the maximum is n2. Three materials are in the sub-regions with n1!K1 and
n2O2. These indium thallium alloys of different composition and at different
temperatures are close to the stability limit where they undergo a martensitic
phase transition from face-centred cubic form to face-centred tetragonal. The
transition is discussed by, for instance, Gunton & Saunders (1975), who also
provide data on another even more auxetic sample: InTl (at 27% Tl, 125 K). This
material is so close to the m2Z0 vertex, with n001Z1:991, n1�10ZK0:997 and
m1=m2Z1905 (!) that we do not include it in the table or the figure for being too
close to the phase transition, or equivalently, too unstable (it has n1ZK7:92 and
n2Z8:21).

We note that the stretch directions for the extremal values of n, defined by
nZ11p1 and 11p2, are distinct. As the materials approach the m2Z0 vertex, the
directions coalesce as they tend towards the cube diagonal 111. The three
materials in table 3 with nmin!K1 and nmaxO2 are close to the incompressibility
limit, the line kZN in figure 3. In this limit, the averaged Poisson’s ratio is
�nðnÞZ1=2, and therefore those Poisson’s ratios which are independent of m tend
to 1=2, i.e. n111Zn0Z1=2. Also, n001Cn1�10Z1 and n1Cn2Z1, with

n1 Z
1

4
K

1

4

ffiffiffiffiffiffi
m1

m2

r
; n2 Z

3

4
C

1

4

ffiffiffiffiffiffi
m1

m2

r
; p1 Z p2 Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K3

ffiffiffiffiffiffi
m2

m1

rs
; k/N: ð5:3Þ

These are reasonable approximations for the last three materials in table 3,
which clearly satisfy n1Cn2z1 and p1zp2.
6. Summary

Figures 4 and 5 along with tables 1 and 2 are the central results which summarize
the extreme values of Poisson’s ratio for all possible values of the elastic
parameters for solids with positive strain energy and cubic material symmetry.
The application of the related formulae to the materials in figure 6 shows that
values less than K1 and greater than C2 are associated with certain stretch
directions in some indium thallium alloys.

Discussions with Prof. T.C.T. Ting are appreciated.
Appendix A. Extreme values of D(n,m) for a given n

The extreme values of Dðn;mÞ as a function of m for a given direction-n can be
determined using Lagrange multipliers l; r, and the generalized function

f ðmÞZDðn;mÞKljmj2K2rn$m: ðA 1Þ

Setting to zero, the partial derivatives of f with respect to m1, m2, m3, implies
three equations, which may be solved to give

mZ
rn1

n2
1Kl

;
rn2

n2
2Kl

;
rn3

n2
3Kl

� �
; ðA 2Þ
Proc. R. Soc. A (2006)



A. N. Norris3402
where l; r follow from the constraints n$mZ0 and jmj2Z1. These are,
respectively, (2.16) and

n2
1

ðn2
1KlÞ2

C
n2
2

ðn2
2KlÞ2

C
n2
3

ðn2
3KlÞ2

" #
r2 Z 1: ðA 3Þ

Equation (2.16) implies that l is a root of the quadratic (2.17) and (A 3) yields
the normalization factor r. These results are summarized in (2.18) and (2.19).

It may be easily checked that the function f is zero at the extremal values of D.
But fZDKl, and hence the extreme values of Dðn;mÞ are simply the two roots
of the quadratic (2.17), 0%lK%lC%1=2. Note that the extreme values depend
only upon the invariants of the tensor M with components MijZDijklnknl .
Although this is a second-order tensor and normally possesses three independent

invariants, one is trivially a constant: trMZ1. The others are, e.g. tr M2Zn4
1C

n4
2Cn4

3Z1K2FðnÞ (see equation (2.8)) and det MZn2
1n

2
2n

2
3.

The above formulation is valid as long as ðn2
1Kn2

2Þðn2
2Kn2

3Þðn2
3Kn2

1Þs0. For

instance, if n2
2Zn2

1, then lK; lCZmin;maxðn2
1; 3n

2
1n

2
3Þ. The m vector associated

with lZn2
1 is undefined, according to (A 2). However, by taking the limit n2

2/n2
1

it can be shown that m/Gð1;K1; 0Þ=
ffiffiffi
2

p
. The other vector corresponding to

lZ3n2
1n

2
3 has no such singularity, and ismZGðn3; n3;K2n1Þ=

ffiffiffi
2

p
.

The identity (3.4) may be obtained by noting that each term can be split, e.g.
n4
1=ðn2

1KlÞZn2
1Cl=ðn2

1KlÞ, then using the fundamental relation (2.16) with

n2
1Cn2

2Cn2
3Z1. Various other identities can be found, e.g.

n6
1

ðn2
1KlCÞðn2

1KlKÞ
C

n6
2

ðn2
2KlCÞðn2

1KlKÞ
C

n6
3

ðn2
3KlCÞðn2

1KlKÞ
Z 1: ðA 4Þ

Appendix B. Analysis

Here, we derive stationary conditions for directions n along the edges of the
triangle in figure 2 by direct analysis. Numerical tests are performed for the
entire range of material parameters. The results are consistent with and reinforce
those of §3.

The limiting Poisson’s ratios of (4.3) are expressed nGðnÞhnGða; bÞ in terms of
two numbers, where

n2
1 Z ð1CaÞ 1

3
Kb

� �
; n2

2 Z ð1KaÞ 1

3
Kb

� �
; n2

3 Z
1

3
C2b: ðB 1Þ

The range of ða; bÞ which needs to be considered is 0%a%1, ða=3ð3CaÞÞ%
b%1=3, corresponding to the triangle in figure 2. This parametrization allows
quick numerical searching for global extreme values of n for a given cubic material.

We first consider the three edges as shown in figure 2 in turn. Edge 1 is defined
by aZ1, 1=12%b%1=3. The limiting values are nKð1; bÞZn0=½1Kðð1=3ÞKbÞ!
ðð1=3ÞC2bÞ2c0� and nCð1;bÞZ1KnKð1;bÞð1Kn0Þ=n0. The extreme values
are obtained at the ends: nKð1; 1=12ÞZn001, nCð1; 1=12ÞZn1�10, nKð1; 1=3ÞZ
nCð1; 1=3ÞZn0. These possible global extreme values agree with those of §3.
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Inspection of figure 2 shows that edges 2 and 3 can be considered by looking at
nGð0; bÞ forK1=6%b%1=3. Straightforward calculation gives

nKð0;bÞZ
n0K

1
2

1
3Kb
� �

c0

1K 1
3K3b2
� �

c0

; nCð0; bÞZ
n0K

1
2

1
3Kb
� �

ð1C6bÞc0

1K 1
3K3b2
� �

c0

: ðB 2Þ

A function of the form f =g is stationary at f =gZ f 0=g 0. Applying this to the
expressions in (B 2) implies that the extreme values of nK and nC satisfy,
respectively,

nKð0; bÞZ
1

12b
; nCð0;bÞZ 1K

1

12b
: ðB 3Þ

Combining equations (B 2) and (B 3) gives in each case a quadratic equation in
b. Thus, the extreme values of nK and nC are at bZbKG and bZbCG, the roots of
the quadratic equations. The first identity, (B 3)1 was found by Ting & Chen
(2005), their eqn (4.15).

To summarize the analysis for the three edges: extreme values of Poisson’s
ratio on the three edges are at the ends of edge 1, and on edges 2 and 3 given by
nG of equations (B 2) and (B 3).
(a ) Numerical proof of tables 1 and 2

A numerical test was performed over the range of possible materials. This
required searching the entire two-dimensional range for a; b. Consideration of all
possible materials then follows by allowing the material point to range
throughout the triangle of figure 3. In every case, it is found that the extreme
values of n occur on the edge of the irreducible 1/48th element of the cube
surface. Furthermore, the extreme values are never found to occur along edge 2.
Extreme values on edge 3 in figure 2 can be found by considering edge 30 instead,
i.e. aZ0,K1=6!b!0. This implies as possible extrema one of nKð0; bKGÞ and
one of nCð0;bCGÞ. We define these as n01ZnKð0;bKKÞ and n02ZnCð0; bCKÞ, where
the signs correspond to the sign of the discriminant in the roots, then they are
given explicitly as

n01 Z
K1

2 1Kc0

3

� � c0

6
Kn0

� 	
C

c0

6
Kn0

� 	2
C

c0

12
1K

c0

3

� 	� �1=2( )
; ðB 4Þ

n02 Z
1

2 1Kc0

3

� � 1Cn0K
c0

2

� 	
C 1Kn0K

c0

6

� 	2
C

c0

12
1K

c0

3

� 	� �1=2( )
: ðB 5Þ

It may be checked that n01Zn1 and n02Zn2, in agreement with equation (3.19).
The numerical results indicate the potential extrema come from the five

values: n0, n001, n1�10, n1 and n2. It turns out that each is an extreme for some range
of material properties. Thus, the first four are necessary to define the global
minimum, cf. table 1 and figure 4, while all five occur in the description of the
global maximum, in table 2 and figure 5.

Although a mathematical proof has not been provided for the veracity of
tables 1 and 2, and figures 4 and 5, it is relatively simple to do a numerical test, a
posteriori. By performing the numerical search as described above, and
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subtracting the extreme values of tables 1 and 2, one finds zero, or its numerical
approximant for all points in the interior of the triangle of possible materials,
figure 2.

In order to further justify the results as presented, appendix Bb gives arguments
for the occurrence of the special values K1/2 and 3/2 in figures 4 and 5.
(b ) Significance of K1/2 and 3/2

Suppose Poisson’s ratio is the same for two different pairs of directions:
nðn;mÞZnðn�;m�Þ. The pairs ðn;mÞ and ðn�;m�Þ must satisfy, using (4.2),

Dðn;mÞKDðn�;m�Þ
FðnÞKFðn�Þ Z 2n: ðB 6Þ

For instance, let n�Z110, m�Z001, so that nZn001. Equation (B 6) implies
that the same Poisson’s ratio is achieved for directions ðn;mÞ satisfying

Dðn;mÞ
2FðnÞK1=2

Z n001: ðB 7Þ

Note that this is independent of n0 and c0. We choose n001 specifically because it
has been viewed as the candidate for largest Poisson’s ratio, until Ting &
Chen (2005). If it is not the largest, then there must be pairs ðn;mÞ other than
ð110; 001Þ for which (B 7) holds. However, it may be shown using results from §2
that the minimum of the left member in (B 7) is 3/2, and the minimum occurs at
nZ110, as one might expect. This indicates that n001 must exceed 3/2 in order
for the largest Poisson’s ratio to occur for n other than the face diagonal 110.

Returning to (B 6), let nZn1�10, then nðn;mÞZn1�10 if

1
2KDðn;mÞ
2FðnÞK1

2

ZKn1�10: ðB 8Þ

Using equation (2.8) and the previous result, it can be shown that the minimum
of the left member in (B 8) is 1/2, and the minimum is at nZ110. Hence, n1�10
must be less than K1/2 in order for the smallest Poisson’s ratio to occur for n
other than the face diagonal 110. These two results explain why the particular
values n001Z3=2 and n1�10ZK1=2 appear in tables 1 and 2 and in figures 4 and 5.
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