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Poisson’s ratio in cubic materials

By ANDREW N. NORRis*

Mechanical and Aerospace Engineering, Rutgers University, Piscataway,
NJ 08854-8058, USA

Expressions are given for the maximum and minimum values of Poisson’s ratio » for
materials with cubic symmetry. Values less than —1 occur if and only if the maximum
shear modulus is associated with the cube axis and is at least 25 times the value of the
minimum shear modulus. Large values of |v| occur in directions at which the Young
modulus is approximately equal to one half of its 111 value. Such directions, by their
nature, are very close to 111. Application to data for cubic crystals indicates that certain
Indium Thallium alloys simultaneously exhibit Poisson’s ratio less than —1 and greater
than +2.
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1. Introduction

The Poisson’s ratio v is an important physical quantity in the mechanics of
solids, arguably second only in significance to the Young modulus. It is strictly
bounded between —1 and 1/2 in isotropic solids, but no such simple bounds exist
for anisotropic solids, even for those closest to isotropy in material symmetry:
cubic materials. In fact, Ting & Chen (2005) demonstrated that arbitrarily large
positive and negative values of Poisson’s ratio could occur in solids with cubic
material symmetry. The key requirement is that the Young modulus in the 111-
direction is very large (relative to other directions), and as a consequence the
Poisson’s ratio for stretch close to but not coincident with the 111-direction can
be large, positive or negative. Ting & Chen’s result replaces conventional wisdom
(e.g. Baughman et al. 1998) that the extreme values of v are associated with
stretch along the face diagonal (110-direction). Boulanger & Hayes (1998)
showed that arbitrarily large values of |v| are possible in materials of
orthorhombic symmetry. Both pairs of authors analytically constructed sets of
elastic moduli, which show the unusual properties while still physically
admissible. The dependence of the large values of Poisson’s ratio on elastic
moduli and the related scalings of strain are discussed by Ting (2004) for cubic
and more anisotropic materials.

To date there is no anisotropic elastic symmetry for which there are analytic
expressions of the extreme values of Poisson’s ratio for all materials in the
symmetry class, although bounds may be obtained for some specific pairs of
directions for certain material symmetries. For instance, Lempriere (1968)
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considered Poisson’s ratios for stretch and transverse strain along the principal
directions, and showed that it is bounded by the square root of the ratio of
principal Young’s moduli, |¢(n, m)| < (E(n)/E(m))"? (in the notation defined
below). Gunton & Saunders (1975) performed some numerical searches for the
extreme values of v in materials of cubic symmetry. However, the larger question
of what limits on » exist for all possible pairs of directions remains open, in
general. This paper provides an answer for materials of cubic symmetry. Explicit
formulae are obtained for the minimum and maximum values of » which allow us
to examine the occurrence of the unusually large values of Poisson’s ratio and the
conditions under which they appear. Conversely, we can also define the range of
material parameters for which the extreme values are of ‘standard’ form, i.e.
associated with principal pairs of directions such as »(110,110) for stretch and
measurement along the two face diagonals. For instance, we will see that a
necessary condition that one or more of the extreme values of Poisson’s ratio is
not associated with a principal direction is that »(110,110) must be less than
—1/2. The general results are also illustrated by application to a wide variety of
cubic materials, and it will be shown that values of ¥ <—1 and v>2 are possible
for certain stretch directions in existing solids.

We begin in §2 with definitions of moduli and some preliminary results.
Animportant identity is presented which enables us to obtain the extreme values of
both the shear modulus and Poisson’s ratio for a given choice of the extensional
direction. Section 3 considers the central problem of obtaining extreme values of v
for all possible pairs of orthogonal directions. The solution requires several new
quantities, such as the values of v associated with principal direction pairs. Section 4
describes the range of possible elastic parameters consistent with positive definite
strain energy. The explicit formulae, the global extrema, are presented and their
overall properties are discussed in §5. It is shown that certain Indium Thallium
alloys simultaneously display values of v below —1 and above +2.

2. Definitions and preliminary results

The fourth order tensors of compliance and stiffness for a cubic material, S and
C=S"!, may be written (Walpole 1984) in terms of three moduli «, u; and uo,

S* = (3)™J + (2p) ™ (1-D) + (2u2)™ (D). (2.1)
Here, Iy = (1/2)(040; + 040;) is the fourth order identity, Ji;; = (1/3)0;;0, and
Djjig = 04101031011 + 012079012012 + 0i30j30303- (2.2)

The isotropic tensor J and the tensors of cubic symmetry (I —D) and (D —J) are
positive definite (Walpole 1984), so the requirement of positive strain energy is
that k, u; and u, are positive. These three parameters, called the ‘principal
elasticities’ by Kelvin (Thomson 1856), can be related to the standard Voigt
stiffness notation: k= (¢y1 + 2¢12)/3, w1 =cyy and po = (¢11 —¢12)/2. Alterna-
tively, k= (51 +2515) /3, =553 and wy= (557 —512) /2 in terms of the
compliance.

Vectors, which are usually unit vectors, are denoted by lowercase boldface,
e.g. n. The triad {n, m,t} represents an arbitrary orthonormal set of vectors.
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Directions are also described using crystallographic notation, e.g. =110 is the
unit vector (1/v/2,—1/+v/2,0). The summation convention on repeated indices is
assumed.

(a) Engineering moduli

The Young modulus E(n) sometimes written E,, shear modulus G(m, m) and
Poisson’s ratio v(n, m) are (Hayes 1972)

E(”’) = 1/311’ G(n7 m) = 1/5447 V(n’ m) = _312/‘9{17 (23)

where s1, = syunnnny, sjo= syunn;mmy and sy = 4s;nmnmy. Thus, E(n)
and v(m,m) are defined by the axial and orthogonal strains in the m- and
m-directions, respectively, for a uniaxial stress in the n-direction. F and G are
positive, while v can be of either sign or zero. A material for which » <0 is called
auxetic, a term apparently introduced by K. Evans in 1991. Gunton & Saunders
(1975) provide an earlier informative historical perspective on Poisson’s ratio.
Love (1944) reported a Poisson’s ratio of ‘nearly —1/7’ in Pyrite, a cubic
crystalline material.

The tensors | and J are isotropic, and consequently the directional dependence
of the engineering quantities is through D. Thus,

L —<1 —i>F(n), (2.4)

E 9 3uy \ko M
1 1 1 1
—=—+|———|2D(n,m), 2.5
G M1 (#2 H1> ( ) ( )
1 1 1 1\1
l=——+——<———>—D(n, m), (2.6)
E 9% Ouy  \mM2 1/ 2
where
F(n) = n%n% + ngng + n%n%, D(n,m) = nfm% + ngmg + n§m§ (2.7)
We note for future reference the relations
D(n,m) + D(n,t) = 2F(n). (2.8)

(b) General properties of E, G and related moduli

Although interested primarily in the Poisson’s ratio, we first discuss some
general results for F, G and related quantities in cubic materials: the area
modulus A, and the traction-associated bulk modulus K, defined below. The
extreme values of £ and G follow from the fact that 0< F<1/3and 0<D<1/2
(Walpole 1986; Hayes & Shuvalov 1998). Thus, Gy max = min, max(u, io),
Emin, max — 3[(3K)_1 + GI:&D., max]_1 and Eminv Emax = EOOl) Elll for My > Mo, with the

values reversed for u; <pu, (Hayes & Shuvalov 1998). As noted by Hayes &
Shuvalov (1998), the difference in extreme values of E and G are related by

3/Emin _3/Em¢x = 1/Gmin - ]‘/GII]ELX' (29)
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The extreme values also satisfy
?’/-Emin7 max 1/Gmin, max 1/(3K) (210)

The shear modulus G achieves both minimum and maximum values if n is
directed along face diagonals, that is, Gy, < G < Gy for n=110.

The area modulus of elasticity A(n) for the plane orthogonal to n is the ratio of
an equibiaxial stress to the relative area change in the plane in which the stress
acts (Scott 2000). Thus, 1/A(n) = s;3,(6;; — n;n;)(0;; — nyny). Using the equations
above it may be shown that, for a cubic material,

1/A(n)—1/E(n) = 1/(3x). (2.11)

The averaged Poisson’s ratio v(m) is defined as the average over m in the
orthogonal plane, or #(n)= [v(n, m)+ v(n,t)]/2. The following result, appar-
ently first obtained by Sirotin & Shaskol’skaya (1982), follows from the relations
(2.8),

[1—25(n)]/E(n) = 1/(3k). (2.12)

Equation (2.12) indicates that the extrema of ¥(n) and E(m) coincide. The
traction-associated bulk modulus K(m), introduced by He (2004), relates the
uniaxial stress in the n-direction to the relative change in volume in anisotropic
materials. It is defined by 3K(n)=1/s;,m:n;, and for cubic materials is simply
K(n)=«k. It is interesting to note that the relations (2.10)—(2.12) have the same
form as for isotropic materials, for which F, G, v, A and K are constants. Equations
(2.4)—(2.6) imply other identities, e.g. that the combination 1/G+4v/E is
constant.

Further discussion of the extremal properties of G’ and » requires knowledge of
how they vary with m for given n, and in particular, the extreme values as a
function of m for arbitrary n, considered in §2c¢. Note that, n=111 and n= 001
are the only directions for which »(n, m) and G(n, m) are independent of m. It
will become evident that n= 111 is a critical direction, and we therefore rewrite
E and v in forms emphasizing this direction:

coie U T

where E;; = F(111), vi1; =v(111, ) and x (Hayes & Shuvalov 1998) are

1 1\ 3k—2u 1 1
E111 = <— + —> y V11 — 71 s X=—". (214)
9 3wy 6K + 21y Mo My

Both Fy;; and vy, are independent of uy. The fact that F' <1/3 with equality for
n =111 implies that this is the only stretch direction for which F, and hence v,
are independent of u,. Equations (2.13) indicate that E(n) and »(n, m) depend
on W, at any point in the neighbourhood of 111, with particularly strong
dependence if u, is small. This singular behaviour is the reason for the
extraordinary values of v discovered by Ting & Chen (2005) and will be discussed
at further length below after we have determined the global extrema for v.
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(¢) Eztreme values of G and v for fized n
For a given m, consider the defined vector

m(x)zp( o T ) (2.15)

2_ 30 0502
ny—A ny—A n3—A

with p chosen to make m a unit vector. Requiring n-m = 0 implies that m(2) is
orthogonal to n if

2 2 2
n n2 n3
+ + =0, 2.16
nf—A ni—1 ni—2 (2.16)
i.e. if A is a root of the quadratic
2 —2X(nin3 + nin3 + nind) + 3ninini = 0. (2.17)

It is shown in appendix A that the extreme values of D(n, m) for fixed n coincide
with these roots, which are non-negative, and that the corresponding unit m
vectors provide the extremal lateral directions. The basic result is described next.

(i) A fundamental result

Let 0<A-< A, <1/2 be the roots of (2.17) and m_, m, the associated vectors
from (2.15), i.e.

Ae = (nin3 + n3ni + nini)+ \/(n%ng + n2nd + n3n?)® —3nindng, (2.18a)

n Ny N3
p , , , 2.180
+<%—@ Z - @—@) (2.185)

T ) (A

The extreme values of D for a given m are A, associated with the orthonormal
triad {n, m_, m, }, i.e.

—1/2
n? n3 g 1
- - 7l (2.18¢)

Dyin(n) =D(n,m_) =1, D, (n)=Dnm,)=21,. (2.19)

The extreme values of G and v for fixed n follow from equations (2.5) and (2.6).
The above result also implies that the extent of the variation of the shear
modulus and the Poisson’s ratio for a given stretch direction n are

1/G1nin(n) _1/Gmax(n) = |X|4H(n)’ (2200’)

Vinax (1) = Vimin(0) = [X|E(n)H(n), (2.200)
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Figure 1. The function H of equation (2.21) plotted versus n; and n, for the region of solid angle
depicted in figure 2. Vertices n= 111, 110 and 001 are indicated. H vanishes at 111 and 001 and is
positive elsewhere, with maximum of 1/4 along n= 110 (face diagonals).

(1]~

[100] 1 (110]

Figure 2. The irreducible 1/48th of the cube surface is defined by the isosceles triangle with edges 1,
2 and 3. The vertices opposite these edges correspond to, n =111, 110 and 001, respectively. Note
that the edge 3’ is equivalent to 3 (which is used in appendix B).

where H(n) is, see figure 1,

H(n) = [(n%n% + ngng + n%n%)2—3nfn§n§]1/2. (2.21)

3. Poisson’s ratio

We now consider the global extrema of v(n, m) over all directions n and m. Two
methods are used to derive the main results. The first uses general equations for a
stationary value of v in anisotropic media to obtain a single equation which must
be satisfied if the stationary value lies in the interior of the triangle in figure 2. It
is shown that this condition, which is independent of material parameters, is not
satisfied, and hence all stationary values of » in cubic materials lie on the edges of
the triangle. This simplifies the problem considerably, and permits us to deduce
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explicit relations for the stationary values. The second method, described in
appendix B, confirms the first approach by a comprehensive numerical test of all
possible material parameters.

(a) General conditions for stationary Poisson’s ratio

General conditions can be derived which must be satisfied in order that
Poisson’s ratio is stationary in anisotropic elastic materials (Norris submitted).
These are

sl =0, 2vsi; +s5, =0, (2v—1)s14 + 855 = 0, (3.1)

where the stretch is in the 1’ direction (n) and 2’ is in the lateral direction (m).
The conditions may be obtained by considering the derivative of ¥ with respect to
rotation of the pair (n, m) about an arbitrary axis. Setting the derivatives to zero
yields the stationary conditions (3.1).

The only non-zero contributions to sj,, si5, S, 16 and s in a material of
cubic symmetry come from D. Thus, we may rewrite the conditions for
stationary values of » in terms of D}, = Dj,3, etc. as

Dy =0, 2vDij5+ Dy =0, (2v—1)Dig+ Djys = 0. (3.2)

The first is automatically satisfied by virtue of the choice of the direction-m as
either of my. Regardless of which is chosen,

Dy = Dijaninymym_
ni N nj N n3
m—A)(n—A) (=) (nE—A)  (n3—2Ay)(nf—A)

= P+P- ( (3.3)

=0.

The final identity may be derived by first splitting each term into partial
fractions and using the following (cf. appendix A):

néll 4 4

ni—=Ae o mi—A o mp—A

With no loss in generality, consider the specific case of m= m,, A= 2,, where
a==, and in either case, b=—a. It may be shown without much difficulty
(appendix B) that py > 0 for n in the interior of the triangle of figure 2. It then
follows that inside the triangle,

D15 Dig

o

=1 (3.4)

=1 Déf) _ Aa Dé(i _ Acz _
Pb Pa ’ Pp Aa,_xbj Pa Aa,_Ab

These identities may be obtained using partial fraction identities similar to those
in equations (3.3) and (3.4). Equations (3.2), and (3.2)3 can be rewritten

Dj- D 2\ (0
LRGN

’ / /
D16 DQG_D16

2. (3.5)
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However, using (3.5), the determinant of the matrix is
Di5Dys — (Dis + Dis) Dig = —3pp, (3.7)

which is non-zero inside the triangle of figure 2. This gives us the important
result: there are no stationary values of v inside the triangle of figure 2. Hence,
the only possible stationary values are on the edges.

(b) Stationary conditions on the triangle edges

The analysis above for the three conditions (3.2) is not valid on the triangle
edges in figure 2, because the quantities py become zero and careful limits must
be taken. We avoid this route by considering the conditions (3.2) afresh for n
directed along the three edges. We find, as before, that D, =0 on the three
edges, so that (3.2); always holds. Of the remaining two conditions, one is always
satisfied, and imposing the other condition gives the answer sought.

The direction-n can be parametrized along each edge with a single variable.
Thus, n=1p0, 0 < p<1, on edge 1. Similarly, edges 2 and 3 are together covered
by n=11p, with 0<p< . In each case, we also need to consider the two
possible values of m, which we proceed to do, focusing on the conditions (3.2),
and (3.2)s.

(i) Edge 1: n=1p0, 0< p<1 and m= pl0 or 001
For m=pl0, we find that Dj;= Dj;=0 and D|;=—Dj;= p—p>. Hence,
equation (3.2), is automatically satisfied, while equation (3.2)3 becomes
(v=1)(p—p’) =0. (3.8)

Conversely, for m= 001 it turns out that Djs= Dj;=0 and Dj5=—Dj; = p—p’.
In this case, the only non-trivial equation from equations (3.2) is the second one,

V(p—p?’) =0. (3.9)

Apart from the specific cases v=0 or 1, equations (3.8) and (3.9) imply that
stationary values of » occur only at the end points p=0 and 1. Thus, »(001),
v(110,110) and »(110,001) are potential candidates for global extrema of ».

(ii) Edges 2 and 3: n=11p, 0< p< o and m=110

Proceeding as before, we find that Djg= Dy =0, Dj5=+2p(1—p?)/(2+ p*)*
and Dbs = p/[V/2(2+ p*)]. Hence, equation (3.2)3 is automatically satisfied, while
equation (3.2)y becomes

p[(1—4v)p* +2 + 4] = 0. (3.10)

The zero p=0 corresponds to m =110 which was considered above. Thus, all
three conditions (3.2) are met if p is such that

pP=w+1/2)/(v—1/4). (3.11)
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Further progress is made using the representation of equation (2.13) combined
with the limiting values of D which can be easily evaluated. We find

By 1/1 —p2 ’
Wy (P ) By 3.12
By, 3 <2 T 111X ( a)
= Ein 1/1 —p2
V(llp, 110) Ellp =V —g <m ElllX‘ (312b)

Substituting for p* from equation (3.11) into (3.12) gives two coupled equations
for Ey;, and v(11p, 110):

1 1 X v Y11 X
= + , = +—. 3.13
Ellp By 4807 Ellp By 24v ( )

Eliminating Ey;, yields a single equation for possible stationary values of
v(11p,110),

1
V2 — VUV _4_8 E111X =0. (314)

We will return to this after considering the other possible m vector.

(iii) Edges 2 and 3: m= pp2

In this_case Dis= Dy;=0, Dig=+2p(1—p")/(2+ p*)* and Dy;= p(p’—4)/

[v2(2+ p?)?]. Equation (3.2), holds, while equation (3.2)s is zero if p=0, which is
disregarded, or if p is such that

pP=w—3/2)/(v—3/4). (3.15)

The Young modulus is independent of m and given by (3.12a), while » satisfies

5\ B (1_]92)(4_]72)

v(11p, pp2 =v —_—

(11p, pp )Ellp 111 6(2 +p2)2

Using the value of p* from (3.15) in equations (3.12a) and (3.16) yields another
pair of coupled equations, for £y, and »(11p,001),

Eyx. (3.16)

1 1 X v V111 x(v—%)
= + : = gy _ 3.17
By, By 48(v—1)* Eu, B 24(v—1)° (3.17)

These imply a single equation for possible stationary values of »(11p,001),

(=1 = (=)o = 1) = g5 Brx = 0. (3.18)

(¢) Definition of v, and v,

The analysis for the three edges gives a total of seven candidates for global
extrema: »(001), »(110,110) and »(110,001) from the endpoints of edge 1, and the
four roots of equations (3.14) and (3.18) along edges 2 and 3. The latter are very
interesting because they are the only instances of possible extreme values
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associated with directions other than the principal directions of the cube (axes,
face diagonals). Results below will show that five of the seven candidates are
global extrema, depending on the material properties. These are »(001),
v(110,110), »(110,001) and the following two distinct roots of equations (3.14)
and (3.18), respectively,

1 1 1 m
V=g —5\/”%11 + E(Vlll +1) (M—2_1>7 (3.19a)
1 1 1 n
vy =5 (v +1) oy [ (=17 + = (g + 1) (= —1). (3.19b)
2 2 6 Mo

The quantity F;;;x has been replaced to emphasize the dependence upon the two
parameters v;;; and the anisotropy ratio u;/u,. The associated directions follow
from equations (3.11) and (3.15),

- v +1/2\ Y2
= »(11p;, 1T = (T2 2
v =v(11p;, 110), py <V1_1/4 ; (3.20a)
. vy —3/2\ "/
vy = v(11py, papo2), P2 = (ﬁ) : (3.200)

A complete analysis is provided in appendix B. At this stage, we note that »; is
identical to the minimum value of v deduced by Ting & Chen (2005), i.e. eqns
(4.13) and (4.15) of their paper, with the minus sign taken in eqn (4.13).

4. Material properties in terms of Poisson’s ratios

Results for the global extrema are presented after we introduce several quantities.

(a) Non-dimensional parameters
It helps to characterize the Poisson’s ratio in terms of two non-dimensional
material parameters which we select as v, and y,, where
B2 py' =
6k + 215" 70 (9k) T+ (3uy) !

Vo (4.1)

That is, vy=—s15/$1; is the axial Poisson’s ratio »(001, -), independent of the
orthogonal direction, and x, = x/s;; is the non-dimensional analogue of x. Thus,

Vo—%XoD(", m)
1—=xoF(n)

v(n,m) = (4.2)

a form which shows clearly that » is negative (positive) for all directions if v, <0
and xo>0 (vy>0 and x;<0). These conditions for cubic materials to be

completely auxetic (non-auxetic) were previously derived by Ting & Barnett (2005).
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The extreme values of the Poisson’s ratio for a given n are

_ V()_%Xo(Fi H)
vi(n) = 1= F

where F'is defined in (2.7) and Hin (2.21). Thus, v4 is the minimum (maximum)
and v_ the maximum (minimum) if x4 >0 (x, <0), respectively.

The Poisson’s ratio is a function of the direction pair (n, m) and the material
parameter pair (v, Xo), i-e. v=wv(n, m,vy,x). The dependence upon »; has an
interesting property: for any orthonormal triad,

(4.3)

V(na m, VOaXO) +V(’I’L, t71_VO7XO) =L (44)

This follows from (4.2) and the identities (2.8). Result (4.4) will prove useful
later.

Several particular values of Poisson’s ratio have been introduced:
vo=r(001,m), vy;; =v(111, m) associated with the two directions 001 and
111 for which v is independent of m. These are two vertices of the triangle
in figure 2. At the third vertex (n=110 along the face diagonals), we have
(110, m) = m3vy, + (1 —m3)v,1, where, in the notation of (Milstein & Huang
1979) vy, =»(110,001) and v,y =»(110,110). Three of these four values of
Poisson’s ratio associated with principal directions can be global extrema, and
the fourth, »;; plays a central role in the definition of »; and », of (3.19). We
therefore consider them in terms of the non-dimensional parameters v, and yg,

1 1
Vo —% Xo vy Vo =7 Xo
iin = 71 1 > Yoor = 11 y Vilo = 71 14 . (4-5)
—3Xo0 —1 X0 —3Xo

We return to »; and v, later.

(b) Positive definiteness and Poisson’s ratios

In order to summarize the global extrema of v, we first need to consider the
range of possible material parameters. It may be shown that the requirements for
the strain energy to be positive definite: k>0, us > 0 and u; > 0, can be expressed
in terms of vy and x, as

_1<1/0< 1/2, X0<2(1 +V0) (46)

It will become evident that the global extrema for » depend most simply on the
two values for n along a face diagonal: vy and »75. The constraints (4.6)
become

—1<w1p<1, —5(1—ri) <won <1—wy, (4.7)

which define the interior of a triangle in the gy, 7,7, plane, see figure 3. This
figure also indicates the lines vy = 0 and x, = 0 (isotropy). It may be checked that
the four quantities {wg,v 11, V001, 170} are different as long x,#0, with the
exception of vy, and v, which are distinct if voxy # 0. Consideration of the four
possibilities yields the ordering

o< Y001 < I < 111 < Y110 <1 for Y > O, Xo < O, (48@)

—1< I < VYoo1 < V111 < V110 < O fOI' 140 < O, X0 < 0, (48b)
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1.5¢

1.0}

0.5}

Viio  Of

-0.5¢

-1.0p

“15p

2.0 T :
-1.5 -1.0 -0.5 0 0.5 1.0 1.5 20 25
Vool

Figure 3. The interior of the triangle in the vy, 7,7, plane represents the entirety of possible cubic
materials with positive definite strain energy. The vertices correspond to k=0, u; =0 and uy =0,
as indicated. The edges of the triangle opposite the vertices are the limiting cases in which ™, u;!
and u;' vanish, respectively. The dashed curves correspond to vy=0 (vertical) and x,=0
(diagonal) and the regions a, b, ¢ and d defined by these lines coincide with the four cases in
equation (4.8), respectively.

_1<V110<V111 <V001<V0<0 for V0<0, X0>0, (48C)

0< V110 < V111 < Vo < Voo1 <2 for ) > 07 Xo > 0. (48d)

Note that »;; is never a maximum or minimum. We will see below that (4.8a) is

the only case for which the extreme values coincide with the global extrema for v.

This is one of the reasons the classification of the extrema for v is relatively

complicated, requiring that we identify several distinct values. In particular, the

global extrema depend upon more than sgny, and sgny,, but are best

characterized by the two independent non-dimensional parameters vy, and v;i.
We are now ready to define the global extrema.

5. Minimum and maximum Poisson’s ratio

Tables 1 and 2 list the values of the global minimum v,;, and the global
maximum v,,,,, respectively, for all possible combinations of elastic parameters.
For table 1, »(001), vyy; and v, are defined in (4.5), and v, and p, are defined in
(3.19a) and (3.20a). For table 2, v, and p, are defined in (3.195) and (3.20b). No
second condition is necessary to define the region for case e, which is clear from
figure 5. The data in tables 1 and 2 are illustrated in figures 4 and 5, respectively,
which define the global extrema for every point in the interior of the triangle
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Table 1. The global minimum of Poisson’s ratio for cubic materials.

Vinin n m condition 1 condition 2 figure 4
0< Y001 110 001 Voo1 >0 V110 > Yoo1 a
—1/2 <19 110 110 V70> —1/2 V110 < Yoo1 b
—1 <y, 001 arbitrary voo1 <0 V110 > Yool c
—0 <y 11p 110 Vi <—1/2 1170 < Vo1 d

Table 2. The global maximum of Poisson’s ratio.

Vinax n m condition 1 condition 2 figure 5
v <—1/2 11p, 110 Vi <—1/2 V110 > Yoo1 a
vy <0 001 ar_bitrary voor <0 V110 < Vgo1 b
v <1 110 110 V110> —1/2 V110 > Yoot c
Vo1 < 3/2 110 001 0<wgy <3/2 V170 < Yoo1 d
Vo < o 11p2 p2p22 Vool > 3/2 e
1.0

0.5

Vito 0

-0.5

-1.0

-15 ; ; ; ; ; ; ; ;
-1.5 -1.0 -05 0 05 10 15 20 25
Vool
Figure 4. The global minimum of Poisson’s ratio based on table 1. The value of v,;, depends upon
the location of the cubic material parameters in the four distinct regions a, b, ¢ and d, defined by

the heavy lines inside the triangle of possible materials. The diagonal dashed line delineates the
region in which v, <—1, from equation (5.1).

defined by (4.7). The details of the analysis and related numerical tests leading to
these results are presented in appendix B.

(a) Discussion

Conventional wisdom prior to Ting & Chen (2005) was that the extreme
values were characterized by the face diagonal values vyy; and »7,. But as
equation (4.8) indicates, even these are not always extrema, since vy = »(001, m)
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1.0

0.5

V110 0

-0.5

5 ; ; ; ; ; ; ;
-1.5 -1.0 -0.5 0 0.5 1.0 1.5 20 25
Yool

Figure 5. The global maximum of Poisson’s ratio based on table 2. The value of »,,,, depends upon
the location of (vyy,v79) in five distinct regions defined by the heavy lines. The dashed line
delineates the (small) region in which »,,, > 2, from equation (5.1).

can be maximum or minimum under appropriate circumstances (equations (4.8¢)
and (4.8d), respectively). The extreme values in equation (4.8) are all bounded
by the limits of the triangle in figure 3. Specifically, they limit the Poisson’s ratio
to lie between —1 and 2. Ting & Chen (2005) showed by explicit demonstration
that this is not the case, and that values less than —1 and larger than 2 are
feasible, and remarkably, no lower or upper limits exist for ».

The Ting & Chen ‘effect’ occurs in figure 4 in the region, where »,,;, = v, and in
figure 5 in the region v, = vy. Using equation (3.19a), we can determine that
Vin 18 strictly less than —1 if (u;/uy—1)>24. Similarly, equation (3.19b)
implies that v, is strictly greater than 2 if (u;/uy —1)(v117 +1)> 24(2 —vyyy).
By converting these inequalities, we deduce

M1
Vinin <—1 & M2<% < voor — 13v79 > 12, (5.1a)

25 16
b i

-1
) = ].31/001 — V110 >24. (51b)
M1 K

Vmax>2 A ,lL2<<

The two sub-regions defined by the vy, 177 inequalities are depicted in figures 4
and 5. They define neighbourhoods of the u, = 0 vertex, i.e. (vy1,710) = (2,—1),
where the extreme values of » can achieve arbitrarily large positive and negative
values. The condition for v,,;,, <—1 is independent of the bulk modulus x. Thus,
the occurrence of negative values of v less than —1 does not necessarily imply
that relatively large positive values (greater than 2) also occur, but the converse
is true. This is simply a consequence of the fact that the dashed region near the
tip uy = 0 in figure 5 is contained entirely within the dashed region of figure 4.
These results indicate that the necessary and sufficient condition for the
occurrence of large extrema for v is that u, is much less than either u; or x. w, is
either the maximum or minimum of G, and it is associated with directions pairs
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Table 3. Properties of the 11 materials of cubic symmetry in figure 6 with »;7, <—1/2. (The
boldfaced numbers indicate v,,;, and v,,.. Unless otherwise noted the data are from Landolt &
Bornstein (1992). G&S indicates Gunton & Saunders (1975).)

material Y001 V11o 41 D1 vy D2 t/ Ko
B-brass (Musgrave 2003) 1.29 —-0.52 —0.52 0.15 8.5
Li 1.29 —0.53 —0.54 0.21 8.8
AINi (at 63.2% Ni and at 273 K) 1.28 —0.55 —0.55 0.25 9.1
CuAlNi (Culd% Al4.1% Ni) 1.37 —0.58 —0.59 0.32 10.2
CuAlINi (Culd.5% Al3.15% Ni) 1.41 —0.63 —0.66 0.42 12.1
CuAINi 1.47 —0.65 —0.69 045 13.1
AINi (at 60% Ni and at 273 K) 1.53 —0.68 —-0.74 050 1.53 0.18 15.0
InTl (at 27% T1, 200 K) (G&S) 175  —078 —0.98 0.62 189 059 24.0
InTI (at 28.13% T1) 1.78 —0.81 —1.08 0.66 2.00 0.63 28.6
InTI (at 25% T1) 1.82 —0.84 —1.21 070 214 0.68 345
InTl (at 27% T1, 200 K) (G&S) 193 —094 —210 083 3.01 082 90.9

along orthogonal face diagonals, u, = G(110,110). Hence, the Ting & Chen effect
requires that this shear modulus is much less than u; = G(001, m), and much less
than the bulk modulus k. In the limit of very small u,, equations (3.19)

give vy 5 =¥/ (v111 + 1)u1/(24p,). Ting (2004) found that the extreme values are

v =%+,/3/(166) + O(1) for small values of their parameter 6. In current notation,
this is 6=9/[1 + Ej1,x], and replacing F;;;x the two theories are seen to agree.

The implications of small u, for Young’s modulus are apparent. Thus,
Epin/Enax = O(ua/u1), and equation (2.13); indicates that FE(m) is small
everywhere except near the 111-direction, at which it reaches a sharply peaked
maximum. Cazzani & Rovati (2003) provide numerical examples illustrating the
directional variation of E for a range of cubic materials, some of which are
considered below. Their three-dimensional plots of E(n) for materials with very
large values of u,/u, (see table 3 below) look like very sharp starfish. Although,
the directions at which »; and v, are large in magnitude are close to the 111-
direction, the value of F in the stationary directions can be quite different from
FEj1;. The precise values of the Young modulus, F;, and Ej;, at the associated
stretch directions are given by

B 4o By +V111_1 —9 (5.2)
Enp] V1 ' Enp2 vy —1

These identities, which follow from equations (3.13) and (3.17), respectively,
indicate that if v, or vy become large in magnitude then the second term in the
left member is negligible. The associated value of the Young modulus is
approximately one half of the value in the 111-direction and consequently large
values of |v| occur in directions at which E = (1/2)F};;. Such directions, by their
nature, are close to 111.

The appearance of v; in both figures 4 and 5 is not surprising if one
considers that vy, v;7o and y, also occur in both the minimum and maximum.
It can be checked that in the region where »; is the maximum value in
figure 5, it satisfies —1 <»; <—1/2. In fact, it is very close to but not equal to
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Figure 6. The 44 materials considered are indicated by dots on the chart showing the v, regions,
cf. figure 4.

V170 in this region, and numerical results indicate that |v; —» 7| <4 X107 in
this small sector.

What is special about the transition values in figures 4 and 5: vy = 3/2 and
vi70=—1/27 Quite simply, they are the values of »; and v, as the stationary
directions n approach the face diagonal direction-110. Thus, v; and v, are both
the continuation of the face diagonal value v,7,, but on two different branches.
See appendix B for further discussion.

(b) Application to cubic materials

We conclude by considering elasticity data for 44 materials with cubic
symmetry, figure 6. The data are from Musgrave (2003) unless otherwise
noted. The 17 cubic materials in the region, where v, =gy are as follows,
with the coordinates (vg,v;70) for each: GeTeSnTe' (mol% GeTe=0)
(0.01,0.70), RbBr' (0.06,0.64), KI (0.06,0.61), KBr (0.07,0.59), KCI
(0.07,0.56), Nb' (0.21,0.61), AgCl (0.23,0.61), KF1 (0.12,0.49), CsCl
(0.14,0.44), AgBr (0.26,0.55), CsBr (0.16,0.40), NaBr (0.15,0.38), Nal
(0.15,0.38), NaCl (0.16,0.37), CrV' (Cr0.67at.% V) (0.15,0.35), CsI
(0.18,0.38), NaFl (0.17,0.32). This lists them roughly in the order from top
left to lower right. Note that all the materials considered have positive vy, .
The 16 materials with v,;, =gy, also have v, =iy, so the coordinates of
the above materials correspond to their extreme values of v. The extreme
values are also given by the coordinates in the region with v;, =1,
Vimax = Voo1- The materials there are: Al (0.41,0.27), diamond (0.12,0.01), Si
(0.36,0.06), Ge (0.37,0.02), GaSb (0.44,0.03), InSb (0.53,0.03), CuAu'
(0.73,0.09), Fe (0.63, —0.06), Ni (0.64, —0.07), Au (0.88, —0.03), Ag
(0.82, —0.09), Cu (0.82, —0.14), a-brass (0.90, —0.21), Pb' (1.02, —0.20),
Rb' (1.15, —0.40), Cs' (1.22, —0.46).

!Data from Landolt & Bornstein (1992), see also Cazzani & Rovati (2003).
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Materials with »,7, <—1/2 are listed in table 3. These all lie within the region
where the minimum is »;, and of these, five materials are in the sub-region where
the maximum is vy. Three materials are in the sub-regions with r; <—1 and
vy > 2. These indium thallium alloys of different composition and at different
temperatures are close to the stability limit where they undergo a martensitic
phase transition from face-centred cubic form to face-centred tetragonal. The
transition is discussed by, for instance, Gunton & Saunders (1975), who also
provide data on another even more auxetic sample: InT1 (at 27% T1, 125 K). This

material is so close to the u, =0 vertex, with vgy; = 1.991, »17=—0.997 and
wi/to = 1905 (!) that we do not include it in the table or the figure for being too
close to the phase transition, or equivalently, too unstable (it has v =—7.92 and
vy =8.21).

We note that the stretch directions for the extremal values of v, defined by
n=11p, and 11p,, are distinct. As the materials approach the us = 0 vertex, the
directions coalesce as they tend towards the cube diagonal 111. The three
materials in table 3 with v;, <—1 and v, > 2 are close to the incompressibility
limit, the line k= o0 in figure 3. In this limit, the averaged Poisson’s ratio is
v(n)=1/2, and therefore those Poisson’s ratios which are independent of m tend
to 1/2, i.e. vy =vy=1/2. Also, vy, + v170=1 and v, + v, =1, with

I 1 3.1 Jm o)
V) =———,]|—, Vy=—+—,/— = =4/1—=3,/—, kKk— . 5.3
1 4 4\ 2 44\ b1 = D2 i ( )

These are reasonable approximations for the last three materials in table 3,
which clearly satisfy v +vy =1 and p; = p,.

6. Summary

Figures 4 and 5 along with tables 1 and 2 are the central results which summarize
the extreme values of Poisson’s ratio for all possible values of the elastic
parameters for solids with positive strain energy and cubic material symmetry.
The application of the related formulae to the materials in figure 6 shows that
values less than —1 and greater than +2 are associated with certain stretch
directions in some indium thallium alloys.

Discussions with Prof. T.C.T. Ting are appreciated.

Appendix A. Extreme values of D(n, m) for a given n

The extreme values of D(n, m) as a function of m for a given direction-n can be
determined using Lagrange multipliers A, p, and the generalized function

f(m) = D(n, m)—2Alm|* —2pn-m. (A1)

Setting to zero, the partial derivatives of f with respect to my, my, ms, implies
three equations, which may be solved to give

Py PNy png
= A2
m <n%—/1’n§—l’n§—l>’ (A2)
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where A, p follow from the constraints n-m=0 and \m\2=1. These are,
respectively, (2.16) and

2 2 2
m U 3 2

e A e ] L .

Equation (2.16) implies that 2 is a root of the quadratic (2.17) and (A 3) yields
the normalization factor p. These results are summarized in (2.18) and (2.19).
It may be easily checked that the function fis zero at the extremal values of D.
But f= D— 4, and hence the extreme values of D(n, m) are simply the two roots
of the quadratic (2.17), 0<A_< A; <1/2. Note that the extreme values depend
only upon the invariants of the tensor M with components M; = Djn;n.
Although this is a second-order tensor and normally possesses three independent

invariants, one is trivially a constant: tr M= 1. The others are, e.g. tr M*> = n{ +

ny+ n3=1—2F(n) (see equation (2.8)) and det M= nfn3n3.
The above formulation is valid as long as (n} —n3)(n3 —n3)(nj —n}) #0. For

instance, if n3 = nf, then A_, A, = min, max(n?, 3nin3). The m vector associated
with A= n} is undefined, according to (A 2). However, by taking the limit n3 — n?
it can be shown that m—=+(1,—1,0)/v/2. The other vector corresponding to
A= 3n?n3 has no such singularity, and is m =+(n3, ng,—2n;)/v/2.

The identity (3.4) may be obtained by noting that each term can be split, e.g.
nt/(n?—X)=n}+ A/(n}—2), then using the fundamental relation (2.16) with

n? + n3 + nj = 1. Various other identities can be found, e.g.

6 6

ny ny n _
O T 2 R ey v ey Bl 2 gy o R G

Appendix B. Analysis

Here, we derive stationary conditions for directions n along the edges of the
triangle in figure 2 by direct analysis. Numerical tests are performed for the
entire range of material parameters. The results are consistent with and reinforce
those of §3.

The limiting Poisson’s ratios of (4.3) are expressed v (n) = vy (a, ) in terms of
two numbers, where

i=04a)(3-6) s=0-w(3-6). m=g+w  ®Y
3 3 3

The range of (a,8) which needs to be considered is 0<a<1, (a/3(3+ a))<
B8 <1/3, corresponding to the triangle in figure 2. This parametrization allows
quick numerical searching for global extreme values of » for a given cubic material.
We first consider the three edges as shown in figure 2 in turn. Edge 1 is defined
by a=1, 1/12< < 1/3. The limiting values are v_(1,8) =v,/[1 —((1/3) —B) X
((1/3)+26)2x] and »y(1,8)=1—v_(1,8)(1—v»y)/vy. The extreme values
are obtained at the ends: v_(1,1/12)=vyy, vi(1,1/12)=w79, v_(1,1/3)=

v4(1,1/3) = py. These possible global extreme values agree with those of §3.
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Inspection of figure 2 shows that edges 2 and 3 can be considered by looking at
v4(0,B8) for —1/6 < < 1/3. Straightforward calculation gives

=3 (3-0)xo =3 (3-6)(1 +68)x0
V_(O,ﬁ) - 1_(%_352)7(07 V_,_(O,ﬂ) - 1_(%_362))(0 . (B 2)

A function of the form f/g is stationary at f/g=f"/g'. Applying this to the
expressions in (B 2) implies that the extreme values of v_ and v, satisfy,

respectively,
1 1
(0,8) =— 0,8)=1——.
14 ( 76) 1267 1/+( 7‘8) 126
Combining equations (B 2) and (B 3) gives in each case a quadratic equation in
B. Thus, the extreme values of v_ and v, are at 8= 6_; and 8= B4, the roots of
the quadratic equations. The first identity, (B 3); was found by Ting & Chen
(2005), their eqn (4.15).
To summarize the analysis for the three edges: extreme values of Poisson’s
ratio on the three edges are at the ends of edge 1, and on edges 2 and 3 given by
vy of equations (B 2) and (B 3).

(B3)

(a) Numerical proof of tables 1 and 2

A numerical test was performed over the range of possible materials. This
required searching the entire two-dimensional range for «, 8. Consideration of all
possible materials then follows by allowing the material point to range
throughout the triangle of figure 3. In every case, it is found that the extreme
values of v occur on the edge of the irreducible 1/48th element of the cube
surface. Furthermore, the extreme values are never found to occur along edge 2.
Extreme values on edge 3 in figure 2 can be found by considering edge 3 instead,
i.e. «=0, —=1/6 <B<0. This implies as possible extrema one of v_(0,5_4) and
one of v, (0,8, +). We define these as v) =v_(0,6__) and vy =v, (0,8, _), where
the signs correspond to the sign of the discriminant in the roots, then they are
given explicitly as

— 2 0 N
e (R [ 1O ] S Y

- { (e 2) s (om0

It may be checked that v} =»; and v} =v,, in agreement with equation (3.19).

The numerical results indicate the potential extrema come from the five
values: vy, Vo1, V110, ¥1 and vy. It turns out that each is an extreme for some range
of material properties. Thus, the first four are necessary to define the global
minimum, cf. table 1 and figure 4, while all five occur in the description of the
global maximum, in table 2 and figure 5.

Although a mathematical proof has not been provided for the veracity of
tables 1 and 2, and figures 4 and 5, it is relatively simple to do a numerical test, a
posteriori. By performing the numerical search as described above, and
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subtracting the extreme values of tables 1 and 2, one finds zero, or its numerical
approximant for all points in the interior of the triangle of possible materials,
figure 2.

In order to further justify the results as presented, appendix Bb gives arguments
for the occurrence of the special values —1/2 and 3/2 in figures 4 and 5.

(b) Significance of —1/2 and 3/2
Suppose Poisson’s ratio is the same for two different pairs of directions:
v(n,m)=vr(n", m"). The pairs (n, m) and (n*, m") must satisfy, using (4.2),
D(n, m)—D(n*, m")
F(n)—F(n")

= 2. (B6)

For instance, let n* =110, m* = 001, so that »=vyy,. Equation (B 6) implies
that the same Poisson’s ratio is achieved for directions (n, m) satisfying

D(n, m)

2F(n)—1/2 0 B0

Note that this is independent of v, and x,. We choose vqy; specifically because it
has been viewed as the candidate for largest Poisson’s ratio, until Ting &
Chen (2005). If it is not the largest, then there must be pairs (n, m) other than
(110,001) for which (B 7) holds. However, it may be shown using results from §2
that the minimum of the left member in (B 7) is 3/2, and the minimum occurs at
n =110, as one might expect. This indicates that v,y must exceed 3/2 in order
for the largest Poisson’s ratio to occur for n other than the face diagonal 110.
Returning to (B 6), let v=v,j,, then v(n, m)=rj, if

L—D(n,m)
2 ’ — )

2F(n) _% V1io- (B 8)
Using equation (2.8) and the previous result, it can be shown that the minimum
of the left member in (B 8) is 1/2, and the minimum is at n= 110. Hence, v,
must be less than —1/2 in order for the smallest Poisson’s ratio to occur for n
other than the face diagonal 110. These two results explain why the particular
values vy = 3/2 and v,7, = —1/2 appear in tables 1 and 2 and in figures 4 and 5.
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