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Summary

Results are presented for finding the optimal orientation of an anisotropic elastic material. The
problem is formulated as minimizing the strain energy subject to rotation of the material axes,
under a state of uniform stress. It is shown that a stationary value of the strain energy requires
the stress and strain tensors to have a common set of principal axes. The new derivation of
this well-known coaxiality condition uses the six-dimensional expression of the rotation tensor
for the elastic moduli. Using this representation it is shown that the stationary condition is a
minimum or a maximum if an explicit set of conditions is satisfied. Specific results are given
for materials of cubic, transversely isotropic (T1) and tetragonal symmetries. In each case the
existence of a minimum or maximum depends on the sign of a single elastic constant. The
stationary (minimum or maximum) value of energy can always be achieved for cubic materials.
Typically, the optimal orientation of a solid with cubic material symmetry is not aligned with
the symmetry directions. Expressions are given for the optimal orientation of Tl and tetragonal
materials, and are in agreement with results of Rovati and Taliercio obtained by a different
procedure. A new concept is introduced: the strain deviation angle, which defines the degree
to which a state of stress or strain is not optimal. The strain deviation angle is zero for coaxial
stress and strain. An approximate formula is given for the strain deviation angle which is valid
for materials that are weakly anisotropic.

1. Introduction

The strain energy of a piece of homogeneous anisotropic elastic material depends on the orientation
of the material relative to the directions of principal stress, although the orientation dependence
vanishes trivially for isotropic solids. This property is therefore an inherently anisotropic feature of
elasticity, and it raises the question of how to find the material orientation (if any) which minimizes
the strain energy for a given state of stress or strain. New results are presented in this paper on the
determination of optimal orientations for both general and specific types of anisotropy.

The general problem of determining optimal orientations in anisotropic elasticity has been the
subject of several studies in the last two decades, beginning with the work of Seregin and
Troitskii (1) in the context of orthotropic solids. They determined the important coaxiality condition:
a minimum or maximum of strain energy requires that the stress and strain share common princi-
pal axes. The coaxiality condition was subsequently and independently obtained by others: first, by
Rovati and Taliercio (2) who considered three-dimensional elastic materials with orthotropic and
cubic symmetries (although their derivation is not restricted to these symmetries but is applicable
to general anisotropy), and later by Cowin (3). Cowin derived the coaxiality condition independent
of material symmetry considerations. He showed that the commutativity of the stress and strain
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30 A. N. NORRIS

is a consequence of the stationarity condition of the strain energy with respect to rotations of the
moduli. Vianello (4) provided a more formal derivation of coaxiality in linear elasticity. He used the
tangent space of the rotation group to show that there are at least two orientations of the moduli that
simultaneously make the energy stationary and stress and strain coaxial, a result later generalized
to hyperelasticity (5) (it was subsequently shown that at least three such orientations exist for both
linear elasticity (6) and for hyperelasticity (7)). There is a slight distinction between the problems
considered by Cowin and by Vianello that is important to note for our purposes (8). Thus, Cowin (3)
considered stress states with fixed principal directions but arbitrary amplitudes, whereas Vianello
(4) assumed a specific state of stress. The former constraint defines a smaller set of possible elastic
moduli for which coaxiality can be attained, because it requires that optimal condition be simulta-
neously satisfied by a family of coaxial stresses. Not surprisingly, Cowin found that only materials
with orthotropic symmetry meet these conditions. In this paper the stress state is taken as given, in
the same spirit as (4, 9). While the emphasis here is on three-dimensional elasticity, the optimality
problem has also been addressed within the context of two-dimensional elasticity (10 to 12). Cowin
and Yang (13) considered a related but more general question of optimality with respect to Kelvin
modes, rather than simply the freedom to orient a given material. For a more extensive review of
the literature, see (9).

It is interesting to note that the coaxiality condition has been derived in a variety of different
ways: for particular symmetries (for example, orthotropic) (1), using Lagrange multipliers (3), from
general analytic considerations (4), and even using the six-dimensional eigenvector properties of the
elasticity tensor (14). The derivation of the coaxiality condition presented here differs from all these
previous methods. Our starting point is a representation of the rotation matrix due to Mehrabadi
et al. (15). This formulation also enables derivation of conditions for minima or maxima, in a sim-
pler and more general form than that obtained by Cowin (3). Section 2 begins with the problem
definition and notation. The stationarity and min/max conditions are discussed in section 3. Specific
conditions for particular material symmetries are derived in section 4, and we conclude in section 5
by defining the strain deviation angle, a concept which could have application in practical circum-
stances in anisotropic elasticity.

2. Problem definition and notation
2.1 Optimal orientation of anisotropic solids

Consider a fixed coordinate system {e;, e, €3} coincident with the principal axes of stress. The
stress tensor is therefore ¢ = o1€1 ® €1 + o1 €2 ® € + oy €3 ® €3, Where gy, o and oy are
the principal stresses, in no particular order. Alternative expressions for the stress include the 3 x 3
matrix representation,

o O 0
c6=|0 oy 0], (2.2)
and indicial" notation,
oij = 010i10j1 + 011 6i20j2 + o1 di3dj3. (2.2)

T Lower case Latin suffices take on the values 1, 2 and 3, and the summation convention on repeated indices is assumed
unless noted otherwise.
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OPTIMAL ORIENTATION 31

Our goal is to find the orientation or orientations which minimize the energy function for fixed stress
£ = Oijokl Sjkl- (2.3)

Here, sjw are the components of the fourth-order compliance tensor relative to {e;, e, e3}. Think
of the material as being free to be oriented in such a way that £ depends upon the orientation of the
material with respect to the fixed principal axes of the stress. The material moduli for stiffness and
compliance are C© and S© when aligned with the fixed axes. It is not necessary to specify at this
stage whether or not the moduli possess any symmetry with respect to these axes. The main point
is that the material is free to orient in arbitrary directions with oriented moduli C and S while the
stress orientation remains fixed.

2.2 Notation and tensor rotation
Hooke’s law relating stress gjj and strain «jj is
oij = Cijki €K » &ij = SjKkioK.- (2.4)

Here cij denote the components of the stiffness tensor, inverse to the compliance: CijkSipq =
lijpg, where lijpg = (6ipdjq + digdjp)/2 is the fourth-order identity tensor. The rotated elasticity
components could be expressed in terms of the unrotated components ci(ﬁl' and q(jolz', using Euler
angles, for instance. The concise Voigt notation is used to represent the elements of the elasticity
tensor in the fixed basis. Thus, the compliance is S =[S 3], 1,J = 1,2,...,6, with S = S1122,

Si6 = S1112, Si4 = 323, €iC.,

Si1 S S3 S S5 S
S 93 Su S5 S

_ S3 S S5 S
o= Su S5 S 29

symmetric S5 S

S6

__Analternative representation for the elasticity tensor, closely related to (2.5), is the 6 x 6 matrix
Swith elements [S ;] defined as

~ I 0
S=TST, whereT = [0 ﬁl] . (2.6)
Explicitly,

ST Si2 Sz V2Su V2S5 V2Si6]
Si2 ) S V2Su V2S5 V256
Si3 S3 S3 V2S V2S5 V2Sss
V2Su V2S4 V2S4 25 2Sis 2Swe
V2Sis V2S5 V2S5 2S5 2S5 2S5k
(V2S5 V2S5 V2S5 2S5 2S6 2Ses

()
I

, (2.7

This representation is useful in taking advantage of the fact that fourth-order elasticity tensors in
three-dimensions are equivalent to a second-order symmetric tensor of six dimensions (16). Similar
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32 A.N. NORRIS

equations follow for C and C = TCT. Define
G = (011, 022, 033, V2023, V2031, V2015)", & = (11, €22, €33, V223, V2631, V2e12)";
then the stress—strain relations (2.4) become

6=C¢ =5. (2.8)

Note that S and C are the matrix inverse of each other; SC =CS= 1, where T = diag (1,1,1,
1,1,1).

The rotation about n, [n| = 1 by an angle ¢ is defined as Q(n, ¢) € O(3), such that vectors
(including the basis vectors) transform as v — v/ = Qv. By considering small rotations, it may be
readily seen that Q(n, ¢) can be expressed in terms of a skew symmetric tensor P that is linear in n.
Thus,

((ﬁ(n, $) =PQ(,¢), where R;j(n) = ejknk, (2.9)
and hence
Q=¢". (2.10)
Note that Q possesses alternative well-known expressions:
Q(n, ¢) =1 +sing P+ (1 — cos ¢)P?
=n®n+cos¢ (I —n®n)+singP. (2.11)
In particular for our needs here, the small angle expansion is

Q(n, ¢) =1 + gP + O(¢?) . (2.12)

Under the change of basis associated with Q(n, ¢), second-order tensors (including stress and
strain) transform as ¢ — &', where

oij = Qir Qjsors & i} = Qijrsors. (2.13)

The fourth-order ‘rotation’ tensor follows from (2.13) as

Qijrs=%(Qiers+Qistr), (2.14)
and (2.9) and (2.14) imply
dﬁ;“m, $) =PijpaQpars.  With  Qijrs(n. 0) = lijpg. (215)
where
7Jiipq=%(5ip|:’iq +diqPjp +djpPq + djgPp).- (2.16)
The formal solution of (2.15), with meaning that should be clear, is
Q0 =¢eP, (2.17)

and the small angle approximation is

Qijpg = lijpg + $Pijpq + O(d). (2.18)
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OPTIMAL ORIENTATION 33

Mehrabadi et al. (15) derived an elegant expression for @ analogous to the representation
for Q(n, ¢). The key is the characteristic equation of P (P®> + 5P3 + 4P = 0, where
Pizj W = PijpqPpaki, etc.) which permits the exponential expression (3.17) to be simplified. The
result is most simply presented in terms of the 6 x 6 rotation matrix Q introduced by Mehrabadi
et al. (15), and defined in the same manner as before. Thus, Q = TQOT and P = TPT, where T
is defined in (2.6) and Q and P are the 6 x 6 Voigt matrices. Explicitly, P is a skew symmetric
six-dimensional tensor linear in n:

[0 0 0 0 V2n,  —v/2n3]
0 0 0 —/2m 0 V2n3
0 0 0 V2ng  —v/2n 0

P(n) = ; 2.19
™ 0 V2m —v2np 0 N3 —n; 219
—V2n, 0 V2n; —n3 0 N1
[ V2n3  —+/2n3 0 N2 —ny 0

Q(n, ¢) is an orthogonal second-order tensor of six dimensions, satisfying QQT = QTQ = 1.
Equation (2.17) becomes

Qn, ¢) = &P, (2.20)

and has the explicit expansion (15)

Q(n, ¢) =1+sing P+ (1 —cos ) I32+%sin¢(l—cos¢) (f’+|33)+%(1—cos¢)2 (P2 +P%.

Finally, we note that fourth-order tensors C transform as Co>C= QGQT @20
2.3 Orientation function revisited
Denote the matrix of rotation from the fixed to the ‘current’ axes as Q Thus,
C=QC®QT, s=Qs°q". (2.22)
Hence the objective function of (2.3) for the stress-based energy minimization becomes
£=06'Sa. (2.23)

This is the starting point in the next section to derive conditions necessary for a minimum. It is
important to emphasize the initial assumption that the stress is aligned with the fixed axes, (2.1), or
in terms of &,

6 = (o1, on, o1, 0, 0, 0)T. (2.24)

This ensures that the energy varies as the material axes are rotated (if the stress were also rotated
then the energy would be, trivially, unchanged).

3. Stationarity and min/max conditions
3.1 Angular derivatives of the strain energy

Consider the energy £ of (2.23) as a function of the rotation § A stationary value is obtained if
£ is unchanged with respect to additional small rotations of S. This requires calculating the first
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34 A.N. NORRIS

derivative with respect to rotation angle for arbitrary rotation. The second derivative is needed to
distinguish the stationary point as a minimum or maximum, or otherwise.
The strain energy obtained by arbitrary rotation of the material about the axis n is

E(n,$)=6" Qn,»)SQ"(n,¢) 5. (3.1)

The first derivative can be expressed as
d T e A PN ~ “TA = ~
—&(n,¢)=36" [PMQ(n,»HSAT(n,$) +Q(n, $)STQT (n, $)P" ()] &

o¢
=25 P(N)Q(n, $)SQT(n, ¢) 5 . (3.2)

This follows from (2.9), (2.20) and (3.1), using the fact that Pand 6 commute. Similarly, the second
derivative follows as
2

6 - D A A B ~ P~ = ~
pralUoh 26" [PP(MQ(M, )SQT (1, ¢) + PMQM, HSQA" (0, )PT (] 5. (33)
3.2 Condition for stationary strain energy
Assume, with no loss in generality, that the stationary orientation is at ¢ = 0. If Sisata stationary
point, then the energy should be unchanged regardless of the axis n, or

£ stationary < iS(n, ¢)‘ =0, Vn=1. (3.4)
o¢ $=0

This becomes, using (3.2) evaluated at ¢ = 0,
0 T
—E&n, @) =20 P(n)Seo. (3.5)
a¢ ¢=0
We now take advantage of the fact that the stress is aligned with the fixed axes. Thus, (2.19) and
(2.24) give
' P(n) = (0, 0, 0, v2(ou — o1)n1, ¥2(o1 — ounnz, ¥2(on — o1)n3). (3.6)

Hence,

m =o' [Su S S4] [o
6" P(N)SG =2 | (o1 — ounz Ss S5 S| |on |- (3.7)
(on — o1)ng S S S6) Lo

This must vanish for arbitrary direction n, hence the energy £ is stationary if

on—on 0 0 Su 4 Sl [or] [0
0 o1 — o 0 S5 S5 S| |on| = |0]. (3.8)
0 0 on—o] |[S6 S S| [0 0

Let us assume for simplicity that the state of stress is triaxial, so that oy, oy, oy are distinct. The
left matrix in (3.8) can be removed, implying a linear condition in the stress:

E (o1, o, om)' = (0,0,0)7, (3.9)
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OPTIMAL ORIENTATION 35

where E involves moduli (compliances) only

Sy S4 S
E=|S5 S5 S5 (3.10)
Se S 6

Thus, the energy function £ is stationary if (o1, ou, o) is a right null vector of the 3 x 3 matrix E.
Based on (2.8) and (2.1), the condition (3.9) is equivalent to the requirement that the off-diagonal
elements of the strain vanish:

e3=¢31=¢12=0 (3.11)
or
&1 &l
€2 e
& stationary < & = 803 = g(')” . (3.12)
0 0
0 0

where ¢, ¢, €11 are the principal strains. We have therefore derived the following simple but im-
portant general result.

RESULT 1 The energy & is stationary if and only if the stress and strain are coaxial.
Equation (3.11) states that the 3-vector (o, o)1, o) is a right null vector of E. This requires as
a necessary but not sufficient condition that
detE = 0. (3.13)

Consequences of this condition were explored in detail by Rovati and Taliercio (9) for particular
material symmetries: cubic, transversely isotropic and tetragonal. A different approach is taken in
section 4 below, where the strain energy will be minimized directly.

While Result 1 is not new but has been derived by several authors (1 to 4, 14, 9), the present
derivation is novel and explicit. In particular, it allows us to go further and obtain the condition
necessary for a minimum or maximum. This is explored next.

3.3 Condition for an energy minimum

The second derivative of £ at the stationary point follows from (3.3) evaluated at ¢ = 0,
a—zze(n, ¢)| =26" [P’S+PSPT]q. (3.14)
o¢p =0
Each term on the right-hand side will be examined in turn. Using (3.6), it follows that the term
&' P?Sg is equal to
[ (o — o1)n3 + (on — a1)n3 ]
(o1 — N3 + (o — on)n2
(o1 — ou)nZ + (o1 — o)n3
(on + o — 201)n2n3
(om + a1 — 2011)N3Ny
(o1 4+ on — 2on1)N1n2

T

ol S1 S22 S3 Su S5 S
2| o S S S3 S S5 5S¢
ani S3 S3 S3 S S5 S
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36 A. N. NORRIS

and
L (o — on)ny T Su S5 S| | (o —on)nt
6" PSPT G =4 (o1 — oy S5 S5 S| | (er—on)nz | . (3.15)
(on —o1)n3 S S6 S6 (on — o1)n3
Thus,
i5(n =4n"Fn (3.16)
a¢2 5 ¢) - 5 .

$=0
where the symmetric 3 x 3 matrix F has elements

Fi1 = (o — on) [2Sua(om — on) + (Si2 — Si3)o1 + (S2 — S3)on + (2 — S3)o].
Fo2 = (01 — omr) [2Ss5(01 — o) + (S13 — Si)ar + (S3 — S)on + (Se3 — Sr)on],
Fsz = (o1 — o1) [2Ss6 (o1 — 01) + (Si1 — Si2)o1 + (D1 — S2)on + (Se1 — S2)own],

1
Fa3 = 2S6(01 — o) (on — a1) + 2 (o + o — 201) (Swor + Saon + Saon),

1
Fa1 = 2S6(on — o)) (om — on) + 2 (om + a1 — 20u1) (Sis01 + Ss01 + Ses0m1),

1
Fi2 = 2S5(o11 — on) (o — o) + 3 (o1 4+ o — 20m) (Ste01 + Se01 + Seeo1nt).

The second derivative (3.16) must be positive for all directions n at an orientation where £ is a
local minimum. Noting that

1
Fo3 = 2&6(01 — om)(on —o1) + 2 (on + om — 201) 23,

1
Fa1 = 2Si6(o11 — 1) (o — on) + 3 (o1 + o1 — 201) €31, (3.17)

Fi2 = 2S5 (o — o) (o1 — om) + % (o1 + on — 20m1) €12,
it follows that at a stationary point the off-diagonal elements of F become
Fo3 = 2S6(01 — o) (on — a1),
Fa1 = 2S6(on — o1) (o — on), (3.18)
F12 = 2S5(o — on) (a1 — o).

Equivalently, by pre- and post-multiplication of %F by the diagonal matrix diag[(c11 — o)7L,
(o1 —on) L, (o1 — o1)~1], it follows that G must be positive definite, where

1
Gu=Su+ E(O'III — o) [(Si2 — Si3)o1 + (S2 — 3o + (S;2 — Ssz)om]s

1
G =S5+ E(Ul =)™ [(Si3 = S + (S = Su)on + (S = Sw)ou] (3.19)

1
Gaz = S6 + §(U|| — o) [(Su = S)a + (1 — S2)on + (S — S2)an]s
G =S6 Ga1=S6 GCn2=Ss.
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Note that G141 = Siu — %(0'||| — (J'||)_1 (e3 — &2), etc. or, using (3.12),

Sy — % <8”|_8”> Sis Si6
ol — ol .
G= S5 S5 — > (Sl_gm> S . (3.20)
o1 — o L
Si6 S6 S6 — 3 ( ! I)
ol — ol
In summary,
o2 (om — on)ny T (o — on)ny
67525(71,@ =8| (o —om)n2 | G| (o1 —onnz | . (3.21)
¢=0 (on — o1)nz (on — o1)nz

This must hold for arbitrary n, |n| = 1, and again assuming that the principal stresses are distinct,
it follows that G must be positive definite. Combined with Result 1 for the existence of a stationary
point, this gives the next result.

RESULT 2 The energy £ is a local minimum if the stress and strain are coaxial and the symmetric
matrix G of (3.20) is positive definite.

This can be rewritten (with obvious notation)

1 (8||| — el > 0 0
Su S5 S 2 \om —oan 1
S5 S5 S| > 0 3 (j_' :z“'> 0 ) (3.22)
S S6 So . IO I 1 (8” _8|)
2 \ oy — o

The left matrix is positive definite because of the positive definite properties of the moduli. The
minimum condition therefore requires that this latter matrix be greater than the right-hand diagonal
matrix defined by the principal stresses and strains.* The requirement that the full matrix is positive
definite can be relaxed if the stationarity is restricted in orientation axis n. Thus, only the single
scalar quantity n” Gn needs to be considered in the important special case of rotation about a single
axis. This situation is examined in detail in the Appendix.

4. Optimal orientation of particular material symmetries
4.1 Partition of the energy

Before considering specific material symmetries, several general results are presented which help
focus attention on the anisotropic part of the strain energy. Separate contributions to the energy
function & of (2.3) from isotropic and anisotropic parts of the elastic moduli may be distinguished
as follows:

E=EW 1 £@ = gijay S(j'fj + gijou %(fﬂf : (4.1)

*The matrix U is greater than the matrix V if rTUr > rTVr for all non-zero r e R3.
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38 A. N. NORRIS

The moduli are partitioned into isotropic and anisotropic parts

(is) (an) (is) (an)

Sik = Sjk T Sju>  CGijk = Gjk + Gjki» (4.2)
with the isotropic moduli defined by
(Jli)l :3753”“ +ﬂKiikl’ Ci(;sk)l = 3ic Jiju + 2uc Kij.- 4.3)
Here,
1
Jijki =§5ij5kh Kijk = lijk — Jiju (4.4)

and ljjk are the elements of the fourth-order identity. The effective ‘bulk’ and “shear” moduli xs, us
and x¢, uc are obtained as

1
;=3$jkl~]ijkl =S+ S92+ S3+2S12 + 2513 + 293, (4.5)
S
15 3
7 5SiK Kijk =Si1+S2+S3—S12— 3 — 1+ 3Su +3S5 +356,  (4.6)
S
9%c = 3Cijk Jijk = C11 + C22 4 Ca3 + 2C12 + 2Cy3 + 2Co3, (4.7)

3
15uc = SCiiK Kijki = C11 + C22 + C33 — C12 — Cp3 — C31 + 3Ca4 + 3Cs5 + 3Ce6.  (4.8)

Note that in general x¢ # xs and uc # us. The anisotropic parts of the moduli in (4.2) are defined
as the remainder after subtracting the isotropic parts, 5 = Sijk — 5[, €tc.
The energy associated with the isotropic part of the moduli becomes

; 1 1
g(ls) — 752 + 70_i/j O-i/j , (49)
Ks 2us
where & and ¢ are the hydrostatic and deviatoric stress, respectively,
1
o= Eakk’ Ui/j =0jj —00ij. (4.10)

These may be written explicitly in terms of the principal stresses, from (2.1), as

1
o= *(0| +on+ Uln),

3
, (4.11)
1[201 —on—om 0 0 of 0
o == 0 2011 — o — o) 0 =0 g, O
0 0 20m — o1 — oy 0 0 O-I/II
The energy associated with the anisotropic part of the moduli is
£6V = 52580 + 250, sk + ol ol SR - (4.12)

By definition, the scalar quantity sﬁ?& is zero and, accordingly, the anisotropic energy simplifies to

£@ =254/, S(flrgll + a{jog Sl(jalzl)' (4.13)

It may be shown that the 3 x 3 matrices E and G of (3.10) and (3.20) vanish for isotropic materials.
In general, they depend upon the anisotropic part of the material moduli.
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4.2 Materials with cubic symmetry

In the fixed coordinate system of the principal stress axes, the elastic compliance for a material with
cubic symmetry is

(0 0 0
2 s s 0 o o
0 0
sy s 0 0 o0
@ 0 0o o
SO = xt ; (4.14)
S 0 o
i (0)
symmetric Sa O
i S0
There are three independent moduli, x, x«1 and w2, where
1 1
(0) (0) (0) (0) (0)
— +2 =2S —= -S,. 4.15
3K 2#1 44 > 2#2 1 S.I.Z ( )

The associated fourth-order tensors can be expressed succinctly using the irreducible tensor notation
of Walpole (17), as

0 0 1 1 o 1 0
|(Jk|—3KJ|1kI+2#1L.Jk|+2#2 Mu(ngw Si(j|2|_ Jllk|+2 LI(J|)(|+2 MI(JIZI (4.16)

Here L{3) = liju — Dfiy, Mijy = Dijj — Jjui, and
Di(?|Z| = 0i16}16k1011 + i20j20k2012 + i30j30k33. (4.17)

This format makes it relatively straightforward to determine the effective isotropic moduli,

5 3 2
ke =ks =k, 5Suc=3u1+2u2, —=—+—. (4.18)
Hs — H1 M2

Thus,

1 1 1
Sk = 15 (—) (53j1a + 2Kijia — 5D (4.19)

The anisotropic part of the energy, (4.13), depends only upon the deviatoric part of the stress,
g(an) = O'I O'kl %ﬁi? (420)
(an,0)

The reason is that the second-order tensor s~ is identically zero for cubic symmetry, and hence

remains zero in the rotated material axes: g(a{(?( = 0. The first term in (4.13) therefore vanishes,

leaving the simpler expression (4.20). The |sotrop|c tensors Jij and Kijjk are unchanged under
rotation and, consequently, from (4.9), (4.19) and (4.20),

1., 1 1/1 1
&= ;O‘ + m()’i/j O-i/j + S(ex), g(ex) = 5 (qu - ﬂl) 0'|10'k| Dl]kla (421)
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where Dijk is the rotated version of Di(-oll,. In order to avoid ambiguity, let o(ror denote the stress
in the rotated coordinate system, then it follows that

2 2 2
(;94 Dijki = (o011 + T(rot22 + (ron)as- (4.22)
The scalar second invariant of the deviatoric stress is
2 2 2
aljaf; =of +oy +oy
/2 /2 /2 /2 /2 /2
= Oron11 T T(ron22 + T(ron33 + 20(rony23 + 20 (roty31 + 20 (ro)12- (4.23)

Therefore, the function £ of (4.21) is stationary when either the right member of (4.22) or

2 2 2
T = 0123 T T (roty31 + (ron)12 (4.24)
is stationary. Furthermore,
1 1 2 2 2
0
S(EX) = g(eX ) + ( - ) [0(/r0t)23 + 0(/rot)31 + J(/YOt)].Z] 5 (425)
H1 o p2
where £%0) is the unrotated or fixed value, which follows from (4.11) as
1/1 1 2 2 2
69 = 2 (/12 - ,lll> (o +afy +ay). (4.26)
Hence,
1> 2 = E® L g®0) (4.27)

with equality when the material and stress axes are aligned. Thus, a local minimum that is not
aligned with the stress axes occurs if and only if 41 > w2 and occurs when I' of (4.24) achieves
a local maximum. It will be shown below that the maximum value is %ai’j a{j or, equivalently, that
E£®) js zero at the stationary point.

As the material axes are rotated to transform s i® — s, the only part that contributes to the
anisotropic strain energy is Di(joﬁ, — Dijju. Conditions for obtaining the stationary value of strain
energy are next derived by focusing on the dependence upon Djjk . The 6 x 6 matrix associated

with the unrotated tensor Di(joﬁl is

50) _ |13x3  O3x3
b _[03x3 03><3] (4.28)

It is convenient to split (5 as follows into 3 x 3 matrices:
6= | % (4.29)
Qs Qa4
so that the rotated tensor D = QD©@QT follows from (4.28) and (4.29) as
Q:Q] @1@]

D= |t <=
Q3Q] QsQf

(4.30)
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The term associated with the rotated energy follows from (2.24) and (4.30) as
O'i/j Ty Dijk = (o], aiys 0|/||)616} (o1, o}y 0'|/||)T- (4.31)

Thus, any stress that is a null vector of QI also yields the minimum or maximum value for £ of
(4.21), that is, zero. This suggests (51 as the focus of attention, and implies the following important
result. Every stress state which is a null vector of QI corresponds to a global minimum (maximum)
of £if w1 > o (u2 > w1). We therefore search for null vectors of @I

Before deriving two alternative methods to find null vectors of (A)I in the next two subsections,
note that the quantity (4.22) vanishes at a stationary orientation, and hence ooy11 = o (ro22 =
o(rot)22. Thus, the stresses in each of the three rotated axial directions are equal, a result previously
obtained by Rovati and Taliercio (2, 9). Furthermore, at the stationary point it may be easily shown
that the following identities hold:

Do =51, Lo=06, Mo=0, (4.32)

where D, L, M are the (rotated) tensors with components Dijki, Liju, Miju, respectively. Hence,
the strain at optimal orientation is simply
1 1 . . .
e=—0cl+-—0¢" (optimal orientation only). (4.33)
3 2u1
This is clearly coaxial with the stress, which follows from the commutation property of coaxial
second-order tensors (6 & — e = 0 in this case).
Itis also worth remarking that we do not seek null vectors of the matrix E, although this approach
is feasible and has been used to advantage by Rovati and Taliercio (9). Some comments on E are in
order though. The 3 x 3 matrix follows from (4.28) to (4.30) as

E=Q3Q], (4.34)

and the condition (3.13) is satisfied if either det@l or det (53 vanishes. These can be made more
explicit in terms of the elements of the rotation matrix. Let

Oz 12 013
Q= |Ca C22 Oz, (4.35)
031 032 Q33

then using the the explicit representation of the 6 x 6 rotation matrix from Auld (18) or otherwise,
the condition (3.13) implies

R 9% 97 o R , 02101 G22032  G23lizs
detQi =02, q% 02 |=0 or detQs3 =27 |g30u1 O32012 CGss3daz | =0.  (4.36)
q§1 q§2 q§3 011021 Q12022 13023

Using the fact that the column vectors of a transformation matrix form an orthonormal triad, it
follows that

Ol (L, 1, HT=11,1", Q11 1)"=(0,00". (4.37)

That is, (o1, o1, o) = A (1, 1, 1) is a null vector of E for any 1. Hence, E is not of full rank,
implying that det E is always zero. However, this is not of interest as the null space corresponds
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to hydrostatic stress, for which the energy function is independent of material orientation. The
implications of (4.36) are not considered further, and we return to the simpler task of finding null
vectors of Q/ alone.

Two methods for achieving the minimum energy £®) = 0 are described, both using explicit
forms of the rotation. The first involves a single rotation about an arbitrary axis, and the second is
in terms of standard Euler angles.

4.2.1 Minimum energy state with a single rotation. The range of transformations which corre-
spond to energy minima can be obtained using Euler’s theorem (20) which states that any trans-
formation matrix Q can be represented in the form (2.10) for some axis n, |n| = 1, and angle ¢.
Thus
1-2s?(n3 +n3) 2s(sninz —cng)  2s(Sninz + cny)
Q(n, ¢) = | 2s(smny +cng) 1 —2s?(n3+n2)  2s(snanz —cny) |, (4.38)
2s(sning —cnp)  2s(smang 4cnp) 1 — 2s%(n? 4 n)

where ¢ = cos (¢/2), s = sin(¢/2) and the elements of the associated 61 are determined by
squaring each element in (4.38). It may be shown that

det Q1 (n, ¢) = €05 2¢ + 2(2 + 3¢0s $) (1 — cos )?(N3N3 + N3n3 + n3n?)
+6(1 — cos ¢)3n2n3nd.

Note that n£n3 +n3n3 +nin < 1/3 and ninjn < 1,27 with equality when nf = nj = nj = 1/3.
For a given n3 and angle ¢,

1/2
nd,n = 31 —nd) £ [Ja-nd?—g]"", (4.39)
where
—€052¢ — 2(2 4+ 3¢0s¢)(1 — cos )2 né(1 — nd)
9(n3. ¢) = . > 3 (4.40)
2(1 —cos¢)?[(2 4 3n5 4 3cos (1 — n3)]
The null vector of 61 is such that
0| Q1 +0(1Q; + o1y Q% = 0,
0 Q41 +0(1Q%; + 011 Q35 = 0,
0 Q31 + 011 Q% + o Q% = 0. (4.41)
Using the fact that this is a deviatoric stress, we replace o{;, = —o| — o, in the final equation of
(4.41), to get
af (le - Qgs) + oy (Q:ZSZ - Qgs) =0. (4.42)
Hence,
o] = a (ng - Q%s) . o =a (Qés - le) (4.43)
for arbitrary ag # 0. Once again using the fact that o{;, = —o{ — g/, gives

ol = a (le - Q%z) . (4.44)
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In the same way, using the other equations in (4.41), three alternative expressions for the null vector
are found:

(0’(» il O'I/II) =a (ng - Q%z, Qés - QZ2%17 le - Q:Zaz)
=2 (Q% - Q% Q% - Q4. 4 - Q%)
= a5 (Q% — Q% Q% — Q. QB - Q%)
for some constants az, ap, az. Thus, from the first expression, with a; = 1,
o = [(1+n?)(n — nd)(L — cos$) + N3 — N3 — 4ninzngsin @] (1 — cos @), (4.45)
oy = {[Q - nH(n? —nd) — 2n3](1 — cos¢) + 3 —n? +1
+ 2ninznzsing } (1 — cos ) — 1, (4.46)
oy = {[L — )5 —nd) +2n5](L — cos¢) + nf —nf — 1
+ 2n1nzn3sing } (1 — cos¢) + 1. (4.47)

These equations provide a two-parameter set of stress states, described by 0 < n§ < land ¢. The
two are independent insofar as n? and n3 of (4.39) lie in (0, 1). This in turn requires that g of (4.40)
satisfies

1
0< g(n.¢) < (1 —nd)%, (4.48)

which defines the range of 0 < n3 < 1 and ¢.

4.2.2 Minimumenergy using Euler angles. The standard three Euler angles (61, 62, 63) are used
to transform from {e1, &, €3} — {€],€,. 6, =e3} = (€] =€, €}, &} - (€], &', & = €}. That
is, first rotate about the e3 axis by 61, then about the €, axis by #,, and finally about the €; axis by
63. The transformation matrix, Q(61, 62, 63), is equal to
€0s 61 cos B3 — sin 1 cos By sin O3 sinf1 cosB3 + cosOy cosBosinfs  sinBp sin 3
—€0s 01 5in03 —sinf1 cosP cosPz  —sinbysinész + cosby cosdr coss  sinbp cosOs |
sin @y sin 6, —€0s 6y 5in6, c0s 6

and it follows from this and (4.36)1 that
~ 1 . .
det Q1 (61, 02, 63) = cos 201 cos 20, cos 203 — 7 sin 26y sin 203 cos#y, (3cos26> + 1).  (4.49)

The condition that this vanish is equivalent to Rovati and Taliercio (9, equation (90)), although their
result is obtained in a different manner.
Consider, for instance, 3 = 0, for which

det@l(é)l, 62, 0) = cos 26, cos 26>, (4.50)

and hence there are null spaces associated with (51(91, 7 /4,0) and (31(A7r/4, 62, 0). The null spaces
are lines in the stress space, which follow from the simplified form of Q[

R cos?0;  sin?0,cos?@,  sin?6ysin?6,
Q] (61,62,0) = | sin?0;  cos?6cos?l,  cos?Oysin?by | . (4.51)
0 sin 6, cos? 0,
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The possible states of deviatoric stress are: (|, oy}, o) = A (0, =1, 1) if 6 = = /4, 63 = 0, and
(o, oy}, o1,) = 4 (cos 26, —cos2 6, sin? 6) if 1 = w /4, 63 = 0. The first family of stresses
correspond to a two- dlmensmnal elasticity problem (see the Appendix): o{ =0, ¢, + ¢, =0, and
it is also a null vector of Ql(O 7 /4, 63). The second is also a null vector of 61(0 6>, /4). Simi-
larly, 4 (1, —1, 0) is a null vector of Q1(7r/4 7/2,03) and A (— cos? by, sin2 0y, cos 261) is a null
vector of Ql(el, /2, w/4).

Conversely, an orientation which provides a minimum in energy can be found for a given state of
stress. Assume with no loss in generality that ¢, < 0 < g),. Define the angle 6, by

tan2 62 = —0'|/||/O'|/|, (452)
then the deviatoric stress may be expressed as
(o1, oi1» aly) = (o) — o)) (C0s 202, — cos® B2, Sin® 6). (4.53)

It follows from the above example that this deviatoric stress is a null vector of Ql(n/4, 62, 0).
It is instructive to examine further the example (4.53). The rotated material axes, denoted by
{€], €, €}, are given by the columns of Q(z /4, 6>, 0):

1 1 1 1 0
= |—¢c|, &=— , &= |s|, 4.54

where s = sinfy, ¢ = cos s, or from (4.52),

Jft —aj)
s=1/70, — c=1/70/ s (4.55)
1 I m I

The rotated tensor Dijy is

D=¢ 060606 +6060606+&0ERE®E, (4.56)
and hence
3
Do’ =Y & ®¢ (6 o'd). (4.57)
k=1

It may be seen by direct calculation that the three scalars € - a’e, (no sum) are identically zero by
virtue of (4.54) and (4.55). This demonstrates explicitly that

Do’ =0 (4.58)

at the optimal orientation. The identities (4.32) follow accordingly.

4.2.3 Summary for cubic symmetry. The extreme values of the energy for cubic materials are &;
and &, where

1 1 2 2 2 .
g] = *EZ + 7(0‘( + 0'|/| + O'|/||), J = 1, 2 (459)
K 2
The fixed axes are always one of the stationary orientations, since E of (3.10) vanishes. The sta-
tionary value for the unrotated axes is &, which is the global minimum (maximum) if o > w1
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(u2 < w1). The stationary value £ occurs at some rotated axes, the existence of which is not in
doubt for a material of cubic symmetry (or any material symmetry for that matter). The important
point to note is that it is possible to explicitly determine such orientations. Thus, we have shown by
direct construction the material orientation that achieves the stationary energy value &; for any state
of stress. This is a global minimum (maximum) if uo < w1 (2 > w1).

It is interesting that the expressions for the extreme values in (4.59) have the form of the energy
for an isotropic solid, but with different shear moduli. This is evident by writing £1 and &> in terms
of the invariants of the stress tensor:

1 1 1 .
5] = g(tl’a)z + m |:tr0'2 — 3(tr0')2:| s ] = 1, 2. (460)

4.2.4 Example materials. Noting that 1 = C44 and up = (€11 — €12)/2 allows us to determine
the sign of (u2 — u1). Musgrave’s (19, Table A.1) provides data for ¢* = 2(u2 — u1) for a multi-
tude of materials. These show c* to be negative for most elemental and engineering materials with
cubic symmetry and different lattice structures: aluminum, nickel, copper, silver, gold (all f.c.c.
structure), iron (b.c.c.), brass (f.c.c. and b.c.c.), diamond, silicon, germanium (all diamond struc-
ture), and GaSh, InSb (both zinc-blende). Hence, for all of these cubic materials there exist optimal
orientations of the axes that achieve the lowest energy state possible. Materials with positive c*
include crystalline compounds of potassium, sodium and silver with rock-salt structure: KF, KCL,
KBr, Kl, NaF, NaCl, NaBr, Nal, AgCI, AgBr; plus caesium compounds with structure related to
b.c.c. For these, the orientation associated with (4.53), for instance, gives maximum strain energy.
The minimum energy is achieved by no rotation.

4.3 Transverseisotropy

Materials with hexagonal symmetry, or equivalently, transverse isotropy (TI), are characterized by
five moduli. In the coordinate system of the principal axes, the elements of the compliance are

YS9 S? 0 0 o
st sy 0 0 o0

SO _ S 0 0 0 (4.61)
s? 0 o
symmetric 3593 0
: S

with (g) = %(Sﬁ) — ng)). The TI material is characterized by an axis of symmetry, defined by the
unit vector n, which is here chosen as the e; axis. In general, the strain energy depends only upon
the orientation of n with respect to the stress axes, and the problem is formulated as one of selecting
n to minimize £.

First note that two of the five moduli can be ascribed to the isotropic part of the elasticity; or
conversely, an isotropic part may be subtracted from the compliance tensor sji according to (4.2),
(4.3) and (4.5), where

1 0 0 0 o 15 0 0 0 0 0 0
K::zsfl)+8§3>+2 O +459, T =289 + 59 -89 -259 + 652 +352, (4.62)
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leaving a tensor g(fl'(? with three constants. The anisotropic compliance depends upon the orientation

of the axis of symmetry as follows:
C
sTi = aninny + b @ + daning) + 5 (G N+ G N+ Gjiiny + 611Nk
1 2
—g(a—l—6b—|—20)Jijk| —E(a+5C)Kijk|. (4.63)

The tensors Jijk and Kijji are defined in (4.4), and the elastic constants a, b and c follow from
(4.61) to (4.63) as
0 0 0 0 0 0 0 0
a=Sy +S5 —257 —457, b= -7, c=257 -2 (4.64)

The stress is, as usual, aligned with the fixed axes, so that the total strain energy follows from (4.1),
(4.63) and (2.2), as

1 1 1 2

E=|——-Z@+4b+20) |52+ |=— — —(a+b+50)|dfiaf; + £, (4.65)
Ks 3 2#5 15 1

where 7 is defined in (4.10) and the extra energy term is

£E) — a(am% + o‘uﬂ% + 0’|||I’1§)2 + (3be + Co‘|)20‘|n% + (Bbo + Co’||)20‘||n§
+ (Bbs + CO'|||)20'|||n§. (4.66)

The latter shows that the anisotropic part of the energy £©) depends upon the TI axis orientation
through the three parameters n2, nZ and n, which satisfy n? + n3 + n = 1. Since each of n?,
né and n% must be non-negative, the permissible set is the equilateral triangular area A of the plane
nf+n3+n3—1 = 0bounded by thelinesLy : n3+nf=1,L: nf+n?=1andLs: nf+nf=1.

Consider first the possibility that the optimal orientation lies on one of the lines Lj, i =1, 2, 3.
Thus, along L3, a simple calculation using nZ = 0 shows that

5(ex) =a(o) — 0'|)2 (nf — N1)2 + 207 (3bﬁ+ CO'||) —a(o) — 0'|)2 Nf on Lz, (4.67)

where

Ny = aoy + c(o +0||)+3b5. (4.68)
a(oy — o)
Thus, n% = Ny, is a possible optimal orientation. It must first be checked whether or not Nj lies in
(0, 1). If thisis so, and if a > 0, then an energy minimum occurs at the point n% = Ny, n% =1-N;
on Lz. Similarly, a minimum occurs on L at n% = Ny, n% =1—-Nyif N2 € (0,1)and a > 0, and
onLzatn3 = N3, n? =1— N3 if Ng € (0,1) and a > 0, where

_aom+Clon+om+3b7 a0+ c(om + o) +3b7

N
? a(om — on) ' a(o) — o)

(4.69)

Now consider the possibility of the minimum occurring in the interior of A. Substituting n% =

1 —n2 — n2 into (4.66) and setting the partial derivatives with respect to n? and n3 to zero, yields a
pair of simultaneous conditions:

(0| - a|||) [a (0|n% + 0||n§ + 0|||n§) + 3bg + c(o] + 0|||)} =0, (4.70)

(on —om) [@(ain? + oun3 + o1in3) + 3ba + c(on + om)] = 0. (4.71)
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These cannot be satisfied in general if the three principal stresses are distinct. We therefore conclude
that the optimal n will lieinside A if and only if the strees is biaxial. For instance, if oy and oy
are equal, then (4. 70) combined with n3 =1- n2 - n2 imply that £© of (4.66) can be expressed
as a function of nZ alone, and the expression is identical in form to that given in (4.67). Thus,
the existence of a minimum inside A requires biaxiality (o) = o) and that 0 < N; < 1. The
associated optimal direction is not unique, but is defined by the cone n? = Ny, n3 +n3 =1 — N;
(note that N3 = 1 — Ni when g = oy1). Again, (4.67) indicates that the optimal orientation
corresponds to a minimum (maximum) in energy if a > 0 (a < 0). Thus, the sign of the elastic
compliance a is crucial in determining whether the stationary point is a minimum or a maximum.

These conclusions may also be confirmed by the coaxiality condition for the stress and strain.
Thus, for arbitrary orientation,

£23 = Nang[a(o1ng + o1n3 + 1n3) + 3b + c(o1 + om)],
£31 = ngnl[a(amf + 0'||I’l% + 0|||I’l%) + 3bo + C(0'||| + Jl)} R (4.72)

g1 = nlng[a(amf + O'||n% + 0'|||n%) + 3bo + C(0'| + O'||)].

The requirement that these simultaneously vanish is identical to the above conditions for the exist-
ence of the minimum inside A or along its perimeter.

In summary, a > 0 is a necessary condition that an energy minimum occurs at points inside A or
along the lines Lj, j = 1,2, 3. A minimum is achieved if and only if one or more of N1, Nz or N3
liesin (0, 1). The minimum occurs on the associated bounding line L j or on a cone of directions for
biaxial states of stress. Otherwise, the global energy minimum corresponds to one of the vertices of
A thatis, atn? = 1 ornZ = 1 or nd = 1. In this default case the Tl axis of symmetry is aligned
with one of the stress axes. These findings are in agreement with those of Rovati and Taliercio (9),
who stated the condition as follows. At least one of the principal axes of stress must lie in a plane
of transverse isotropy, or alternatively, the TI axis must lie in a plane defined by a pair of principal
axes of stress.

4.4 Tetragonal symmetry

The moduli have the same general form as in (4.61), except that there is no relation between & )
Sfo) and S5 In this sense, tetragonal symmetry is the same as T1 but with one additional elastlc
constant. The isotropic moduli are given by (4.62), and the anisotropic part of the compliance is

C/
gm =a'ninjngn + b'(Gjnkni + duninj) + — (5|knjn| + dinjNk + djkNi Ny + JjiNiNk)

+d(pip; —adig) (PP — A1) — §(a’ + 6b" + 2¢") Jiju — Ts(a/ + 5¢" + 3d)Kijk.

The additional fourth-order tensor as compared to Tl is (pj pj — ;i dj) (P« P —0kai), Where {n, p, q}
form an orthonormal triad. The elastic constants a’, b’, ¢ and d are

1co , 140, @ | <0 ©) _ 45O
—5511+*51)+%3)+566) 251) Sy
b — Si%) S50) ( (0) S}g)) + Ség)’ (4.73)

1
~250 25, 9= (0 -59) -
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Compare with the TI constants a, b, ¢ of (4.64),
a=a—-d, b=b-d, c=c (4.74)

The strain energy of the tetragonal material can be split into a component similar in form to that
for a Tl material, and an additional term proportional to the constant d. The minimization of the Tl
part of the energy is as before (with &', b/, ¢’ instead of a, b, c), and depends upon the orientation
of n but not p and g. The additional energy term depends on the deviatoric part of the stress and on
these directions,

£ =d[(pipj —aia))af;]’ — gdﬂi’jai/j’ (4.75)
or, in terms of the principal stresses,

g =d (o] AL + o)Ay + 03 1“)2 - %doi/j aj , (4.76)
where Al = pi2 — qi2 (no sum). The final term in (4.76) is independent of {n, p, g}, and it is only
necessary to consider the quantity

g =df2  where f =o/A] +a\|Ay+ A, (4.77)

The orientation dependence is captured by the quantity f.

It is now demonstrated that for any given n, there is at least one set of p, q orthogonal to n which
make £ vanish. Let p©@, q© be an arbitrary pair of unit vectors such that {n, p©@, q©} form an
orthonormal triad; then every possible set {n, p, q} is defined by the pair p, q obtained by rotation
about n by angle ¢:

p(¢) =cospp@ —singq®, q(g) =singp© +cosgq®. (4.78)
It may then be readily verified that
Al(¢) = A/(0) cos2¢ — Al (n/4) sin2¢, i =1,2,3. (4.79)
Equation (4.79) implies that
£'(¢) =d [£(0) cos2¢ — f(x/4) sin2¢]?, (4.80)
and hence
E'(¢*) =0, where tan2¢* = f(0)/f (x/4). (4.81)

Thus, if d > 0, the situation for tetragonal symmetry is a simple addition to the TI situation. First
find n which minimizes the TI part of the energy. Then, select the pair p, g such that they satisfy
(4.81). The minimum energy is then exactly that achieved by the TI part of the moduli (although it
depends upon &', b/, ¢’ rather than a, b and c).

If d < 0 then the situation is more complicated, and the sequential minimization of first the Tl
energy and then the additional energy £’ does not work, although these do define stationary points
for the strain energy. The d-term must be taken into account when optimizing with respect to n, and
a more complicated minimization problem is involved.

Tetragonal symmetry represents a demarcation between the simpler higher material symmetries
for which explicit results can be obtained, and the lower material symmetries which require numer-
ical resolution, in general. Exceptions may occur; however, it is useful and instructive to distinguish
the cubic, TI and tetragonal symmetries from those of, for example, monoclinic symmetry with 13
independent moduli to consider.
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5. Strain deviation angle
5.1 Déefinition of the strain deviation angle

A necessary condition for an energy minimum is that the stress and strain are coaxial. This is always
the case in isotropic media, whereas it will be the exception rather than the rule under conditions of
general anisotropy and arbitrary stress. According to Euler’s theorem (20) the transformation from
one set of principal axes to the other can be reduced to an axis of rotation n, |[n| = 1, and an angle
of rotation ¢. The stress axes have been assumed to coincide with the fixed axes ej, j =1, 2, 3. Let
€] be the orthonormal axes of the strain tensor, then it follows that the rotation matrix is simply the
matrix composed of the three unit vectors as columns:

Q= [ &&) (5.1)
Let Q be represented by (2.10); then it follows from the latter that
8jkQjk = 2singn;. (5.2)

This provides a formula to determine both the angle ¢ and the axis of rotation n.

The strain deviation angle ¢ is defined as the angle of rotation between the stress and strain axes.
This angle is identically zero in isotropic materials for all stress states. In anisotropic materials it
depends on both the material constants and the state of stress. However, the above analysis tells
us that ¢ = 0 is a necessary condition for energy minimization. Therefore, the magnitude of ¢
provides, through a single parameter, the degree to which the given state of stress and material
orientation is optimal. It does so without requiring any calculation of the energy locally or globally.
It requires only that the principal strain axes are determined, and from those ¢ can be immediately
computed.

For a given material, stress and strain, the strain deviation angle can be obtained from (5.2).
A more explicit method is to use the general identity for integer m:

1

1 m
cos Mg = 3 tr(QM) — 7 (5.3)
This follows from, for example, (2.10) and (2.11), which imply
QM(n,¢) =n®n+cosme (I —Nn® n) +sinme P. (5.4)

For instance, m = 1 gives the strain deviation angle explicitly in terms of the first invariant of Q:

¢ = cos 3 (rQ — 1)]. (5.5)

5.2 Weak anisotropy

Let 8](0)’ j = 1,2, 3, be the principal strains for the isotropic medium, that is, the principal axes of

q(jii), ok, Where gjj is given by (2.1) and/or (2.2). In order to determine ¢ we first need to find the
principal axes of strain. It is useful to express the strain as

gij = Siaon + ij, (5.6)
where

yij = sion = s+ ston + 5. (5.7)
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It is assumed that y is small, so that standard perturbation analysis may be used to find the first
correction to the directions of principal strain, {€/, €, €}, which to leading order are coincident
with the stress directions:

d=a+3 (0 —c0)" “(a-yej)ej, nosumoni. (5.8)
i

Let E and v be the isotropic Young’s modulus and Poisson’s ratio characterizing s”k,, then (5.8)
implies that, to leading order,

E V|J
1+V (0_] —U|)

Qij = —Qji ~ i # . (5.9)

Hence, the strain deviation angle for weak anisotropy is
2 2 2 1/2
|: V12 V23 V31 :| / . (510)
14+v [(a—ow?  (on—om)?  (om —o01)?
It is useful to write the stress dependence explicitly by eliminating y :
o~ E [(Ulsﬁn) + m|s§i“’ + U|||S§3n)> <6|S§n) + a||s§2“) + U|||S§§a-,n>>

1+v on — ol ol — oy

¢ ~sing ~

. (ms{Z")Jrau% +amS§a")> T/Z. (5.11)

o1 — o1l

This shows that the strain deviation angle depends upon the same nine moduli that appear in the
matrix E of (3.10).

The above formula breaks down for biaxial stress. In this case the choice of fixed axes is arbitrary
since any orthogonal pair in the plane spanned by the equal principal stresses are valid. However,
the choice can be made a posteriori such that the term that would otherwise be singular is zero. For
instance, if o) = o), then the axes e; and &, can be selected such that y1, = 0.

6. Conclusions

The six-dimensional notation of Mehrabadi et al. (15) is well suited to the problem of finding
optimal orientations of anisotropic solids. It leads quite naturally to the main results of this paper,
which we recapitulate.

REsuLT 1 The energy £ is stationary if and only if the stress and strain are coaxial.

RESULT la A necessary (but not sufficient) condition for this to hold is that det E = 0, where E is
defined in (3.10)

RESULT 2 The energy £ is a local minimum if the stress and strain are coaxial and the symmetric
matrix G of (3.20) is positive definite.

Result 2 provides for the first time an explicit set of conditions that must be satisfied if the
stationary condition is a minimum or a maximum.

Specific results are given for materials of cubic, transversely isotropic and tetragonal symmetries.
In each case the existence of a minimum or maximum depends on the sign of a single elastic
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constant. For cubic symmetry we have several new findings. For instance, (4.45) to (4.47) provide
a two-parameter set of stress states which minimize or maximize the strain energy if a material of
cubic symmetry is rotated about an arbitrary axis n by an angle ¢ (subject to the constraint (4.48)).
Alternatively, (4.52) and (4.53) provide a means to find the optimal orientation for a given state of
stress. In particular, the rotation of the material axes depends only upon the deviatoric stress. This
demonstrates that the stationary (minimum or maximum) value of energy can always be achieved
for cubic materials. Furthermore, it shows that the optimal orientation of a solid with cubic material
symmetry is not normally aligned with the symmetry directions.

The remainder of the new results concern the optimal orientation of TI and tetragonal materials,
and are in general agreement with results of Rovati and Taliercio (9) obtained by a different proce-
dure. However, the results obtained here are more direct and provide considerable insight into the
nature of the optimal states for these material symmetries. In particular, the problem for tetragonal
symmetry is very similar to that for T, with an additional energy term that can be simply minimized
or maximized (depending on the sign of the constant d of (4.73)).

Finally, we have defined and introduced the strain deviation angle. This angle is inherently
anisotropic, and directly related to the problem of energy minimization since the angle defines
the degree to which a state of stress or strain is not optimal. Future work will explore other conse-
guences of this new concept.
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APPENDIX
Two-dimensional elasticity

Optimal orientation for two-dimensional elastic anisotropy is an important special case of the general problem.
It was recently considered by Gea and Luo (12), and is reconsidered here in the context of the present theory.
We will see that some of the features Gea and Luo obtained transfer to the three-dimensional problem: in
particular, the dependence of the minimization upon a single elastic constant.

The two-dimensional strain—energy function is

£(O) = Si0f + S0f + 25101011, (A1)

where 1, &2 and S;o depend upon the angle 6 by which the material is rotated relative to the fixed e3 axis.
Consider an orthotropic material with compliance elements Sﬁ), Sgg), Sig), Ség) in the unrotated (fixed) axes.
Using the standard relations (21) for the transformation of the moduli, it can be shown that

1
£(0) = 7 dolon ~ 01)%(c0s 20 — A)? + by, (A2)
where A = (cp/dy) (o)) + a1)/(oy1 — o1) is a combination of stress and moduli, ¢y and dg are moduli,
(0) (0) (0) (0) (0) (0)
=91 =Sy, do=9; +S —29; —45, (A3)

and by = (a1 — a1)? (g) + Fon +a1)? (Sﬁ) + g(g) +2 (g) — 3/dg) is a constant.
It can easily be seen that the energy £ of (A.2) is stationary with respect to 6 when

cos20 =1, and c0s20 = -1 6 =0, andd = 7 /2, (A.4)

respectively. Which of these yields the smaller value for £ depends upon the sign of dy A or, equivalently, the
sign of (o5 — o?)co. Specifically, the minimum is at cos 20 = sgn[(o3 — o2)co]. A third stationary value is
possible if —1 < A < 1, and occurs at

c0s20 = A, = 0 = 6%, (A.5)
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where 60* = % cos~L A. If this stationary point occurs, it follows from explicit evaluation that it corresponds
to a global minimum or maximum of the energy. Thus,

£(0) = by + do(o — a1)?sin*0*,  E(w/2) = by + do(oy — a1)2 cos* 0, £6*) = by. (A.6)

Itis clear that & = +6* is a repeated global minimum (maximum) if dg > 0(dg < 0). This is the fundamental
result of Gea and Luo (12) (although their conclusion is slightly different since they do not start with the stress
in the principal axes frame): if —1 < A < land dy > O0then # = +6* is a repeated global minimum of £(#).
Otherwise, the minimum occurs when cos 20 = sgn[(c; — o2)Col.

The results of Gea and Luo are now reconsidered within the context of the general theory applied to two
dimensions. Based on the general theory for three dimensions, the two-dimensional condition for a stationary
orientation is 12 = 0 or, in terms of the stress, assuming for simplicity that aj;; = 0,

Si601 + Se011 = 0. (A7)

The latter is consistent with the general formulation, (3.8), under the assumption that o; and oy are distinct
(if they are not distinct, then the stress-based energy function is constant for all material orientations). The
additional condition that the stationary orientation is a local minimum follows from

d2£(9)
de?

=4F33, (A.8)
6=0

as F33 = 2(o — a|)2633 > 0. The exact form of G33 follows from (3.19) with o))} = 0 as

Gz = Sg6 + (o1 — o) T [(S11 — S12)a1 + (S1 — S2)onl/2. (A9)
Rearrangement gives
Gz = (o1 — o) [(o1 + o)C + (01 — on)dl /4, (A.10)
where c and d are
C=S1—-S  d=S1+ S —-252 —4Ss. (A11)

The specific case of an orthotropic material is considered next. It may be shown by use of standard relations
(21) that the combinations of moduli in (A.11) transform according to c(@) = cg cos 26, d(d) = dy cos 40,
where ¢y = ¢(0) and dp = d(0) are the same moduli defined in (A.3). Also,

1 1
Sie = _Z(CO +dgcos20) sin20, Sy = -7 (co — dg cos 209) sin 26. (A.12)

Hence, 12 = —% sin 20 [(a| ~+011)¢o + (o] — o11)dg COS 20] . The strain &1 vanishes if sin 26 = 0 or cos 26 =
A. Thus, the stationary points are 8 = 0, = /2 and +0* where cos20* = A, in agreement with (12).

Using the same notation, (A.10) becomes G33(0) = 1 do (A cos 20 — cos 46). In particular, if —1 < A < 1,
then G33(8*) = % dg sin? 26*. This implies that & = +6* is a local minimum of £ if and only if dg is positive.
The general analysis for three-dimensional optimal orientation does not provide an explicit statement about
global minima. In order to show that it is a global maximum one must compare the value of £ at § = +6* with
its value at the other local minimum, as done in (A.6).
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