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I. INTRODUCTION

The theory of wave propagation in anisotropic elastic
solids was historically developed for homogeneous crystals
with a priori known symmetry.1 The number of elastic
moduli are then well defined. However, the symmetry is not
always apparent in noncrystalline and generally complex ma-
terials, for which measurements can yield as many as 21
anisotropic elastic coefficients. Whether one has some idea
of the underlying material symmetry or simply prefers to
deal with fewer parameters, the question arises of how to
best fit the given set of elastic moduli to, for instance, a
transversely isotropic material model. This issue occurs in
acoustical measurements of composites composites,2 and in
geophysical applications3 where laboratory measurements
might yield 21 moduli, but seismic modeling requires a
higher symmetry, such as transverse isotropy. The purpose of
this paper is to provide a simple but unambiguous means to
find the reduced set of anisotropic elastic constants that is in
a certain sense the best acoustical fit to the given moduli. The
optimal material minimizes the mean-square difference in
the slowness surfaces of the given moduli and of all possible
sets of elastic constants of the chosen symmetry.

The prevailing approach to finding a reduced set of
moduli does not invoke acoustical properties, but views the
moduli as elements in a vector space which are projected
onto the higher elastic material symmetry. This is achieved
by defining a Euclidean norm for the moduli C according to
�C�2=CijklCijkl, where Cijkl are the elements of the stiffness
tensor. Lower case Latin suffices take on the values 1, 2, and
3, and the summation convention on repeated indices is as-
sumed here and in Eq. �A1�. This provides a natural defini-
tion for distance, from which one can find the elastic tensor
of a given symmetry nearest to an anisotropic elastic tensor,
or equivalently, define a projection appropriate to the higher
symmetry. Gazis et al.4 outline the procedure in terms of
fourth-order tensors, while more recently Browaeys and
Chevrot3 provide projection matrices for C expressed as a
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21-dimensional vector. Helbig5 provides a useful overview
of the problem from a geophysical perspective, Cavallini6

examines isotropic projection specifically, and Gangi7 gives
formulas for several other symmetries. One drawback of the
approach is that, while it minimizes the Euclidean distance
between the original and projected stiffness tensors, it does
not provide the analogous closest compliance �the inverse of
stiffness�. In this sense the stiffness projection method, while
simple and attractive, is unsatisfactory because it is not in-
variant under inversion. Alternative procedures based on
non-Euclidean norms such as the Riemannian8 or
log-Euclidean9 metrics do not have this deficiency, and, in
principle, provide a unique “projection” regardless of
whether one uses the stiffness or the compliance tensor.

An apparently quite different approach is to try to find
higher-symmetry moduli which in some way better approxi-
mate the acoustic properties of the given moduli. Thus,
Fedorov10 considered the question of what elastically
isotropic material is the best acoustic fit to a given set of
anisotropic moduli. He defined best fit to mean the effective
bulk and shear moduli �� ,�� which minimize the mean-
square difference between the slowness surfaces of the origi-
nal anisotropic material and the isotropic material character-
ized by �� ,�� �density is unaffected�. Fedorov obtained
explicit expressions for the moduli, Eq. �26.19� of Ref. 10, or
in the present notation

� = 1
9Ciijj, � = 1

10Cijij − 1
30Ciijj . �1�

Fedorov’s procedure for finding a suitable set of higher-
symmetry moduli is physically appealing, especially as it
seeks to approximate acoustical properties. Also, as Fedorov
and others10,4,3 have shown, � and � are precisely the isotro-
pic moduli found by the stiffness projection method. How-
ever, Fedorov only considered effective isotropic moduli and
it does not appear that anyone has attempted to generalize his
method to symmetries other than isotropic. The purpose of
this paper is to solve what may be termed the generalized
Fedorov problem. The solution is found for the acoustically
best-fitting moduli of arbitrary symmetry, which is of higher

symmetry than the given moduli but lower than isotropy. The

© 2006 Acoustical Society of America19�4�/2114/8/$22.50



central result is that the solution of the generalized Fedorov
problem possesses the same crucial property as the solution
obtained by Fedorov,10 that is, the best-fit moduli are identi-
cal to those obtained by the stiffness projection method. This
result provides a strong physical and acoustical basis for us-
ing the Euclidean projection scheme that has been absent
until now.

We begin in Sec. II with the definition of elastic tensors
and associated notation. The generalized Fedorov problem is
introduced and solved in Sec. III. Examples are given in Sec.
IV.

II. PRELIMINARIES

A. The elasticity tensor and related notation

The solution of the generalized Fedorov problem is most
easily accomplished using tensors, which are reviewed here
along with some relevant notation. Boldface lower case Latin
quantities indicate three-dimensional vectors, such as the or-
thonormal basis �ei , i=1,2 ,3�, open-face symbols such as C
indicate fourth-order elasticity tensors, and boldface capitals,
e.g., A, are second-order symmetric tensors, with some ex-
ceptions. Components defined relative to the basis vectors
allow us to represent arbitrary tensors in terms of the funda-
mental tensors formed from the basis vectors, thus, A
=Aijei � e j, C=Cijklei � e j � ek � el, where � is the tensor
product. The identity tensors of second and fourth order are I
and I, respectively, and we will also use the fourth-order
tensor J. These have components

Iij = �ij, Iijkl = 1
2 ��ik� jl + �il� jk�, Jijkl = 1

3�ij�kl. �2�

Isotropic elasticity tensors can be expressed as a linear com-
bination of I and J. Using Lamé moduli � and �=�− 2

3�, for
instance,

C = 2�I + 3�J . �3�

Products of tensors are defined by summation over pairs of
indices: �CA�ij =CijklAkl and �AB�ijkl=AijpqBpqkl. Thus, II
=JI=I, II= I, JJ=J, and IJ=JI=J.

The inner product of a pair of tensors of the same order
is defined

�u,v	 = tr�uv� , �4�

where tr A=Aii and tr A=Aijij, and the Euclidean norm of a
tensor is

�u� 
 �u,u	1/2. �5�

This will be used to compare differences between tensors.
An anisotropic elastic stiffness tensor C relates stress T

and strain E according to the generalized form of Hooke’s
law,

T = CE . �6�

Stress and strain are symmetric second-order tensors, imply-
ing that their components are also symmetric, Tij =Tji, Eij

=Eji, which in turn implies the first two of the following

identities:
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Cijkl = Cijlk, Cijkl = Cjikl, Cijkl = Cklij . �7�

The third property is a consequence of the existence of a
positive strain energy of the form W= 1

2 �E ,CE	, which also
constrains the moduli to be positive definite. The squared
norm of the elasticity tensor is

�C�2 
 �C,C	 = CijklCijkl. �8�

The 21-dimensional space of elasticity tensors can be
decomposed as a 15-dimensional space of totally symmetric
fourth-order tensors plus a six-dimensional space of asym-
metric fourth-order tensors,11,12 by

C = C�s� + C�a�, �9�

where

Cijkl
�s� = 1

3 �Cijkl + Cilkj + Cikjl� . �10�

The elements of the totally symmetric part satisfy the rela-
tions Cijkl

�s� =Cikjl
�s� in addition to �7�. Thus, Cijkl

�s� is unchanged
under any rearrangement of its indices, and C�s� has at most
15 independent elements. This can be seen by the explicit
representation of the asymmetric part in terms of the remain-
ing six independent elements, which are the components of
the symmetric second-order tensor

Dij = Cijkk − Cikjk. �11�

Thus,

Cijkl
�a� = 1

3 �2DijIkl + 2DklIij − DikIjl − DilIjk − DjkIil − DjlIik

+ Dmm�Iijkl − 3Jijkl�� . �12�

An asymmetric tensor satisfies, by definition,11

Cijkl
�a� + Cilkj

�a� + Cikjl
�a� = 0. �13�

Note that the symmetric part of an asymmetric tensor is zero,
and vice versa, and that the decomposition �9� is orthogonal
in the sense of the Euclidean norm, �C�2= �C�s��2+ �C�a��2. The
partition of C as a sum of totally symmetric and traceless
asymmetric tensors is the first step in Backus’ harmonic de-
composition of elasticity tensors,11 a partition that has
proved useful for representations of elastic tensors13 and has
also been used to prove that there are exactly eight distinct
elastic symmetries.14 Finally, for future reference, note that
the totally symmetric part of the fourth-order identity is

Iijkl
�s� =

1

3
��ij�kl + �ik� jl + �il�kj� Û I�s� =

2

3
I + J . �14�

B. The acoustical tensor and the tensor C*

The acoustical tensor, also known as Christoffel’s
matrix,1 arises in the study of plane crested waves with dis-
placement of the form u�x , t�=bh�n ·x−vt�, where b is a
fixed unit vector describing the polarization, n is the phase
direction, also a unit vector, v is the phase velocity, and h is
an arbitrary but sufficiently smooth function. Substituting

this wave form into the equations of motion

Andrew N. Norris: Elastic moduli approximation 2115



Cijkl
�2uk

�xj�xl
= �üi, �15�

where � is the density, implies that it is a solution if and only
if b and �v2 are eigenvector and eigenvalue of the second
order tensor Q,

Qik�n� = Cijklnjnl. �16�

This definition of the acoustical tensor is not the product of a
fourth-order tensor with a second-order tensor. In order to
express it in this form, which simplifies the analysis later,
introduce the related fourth-order tensor C* defined by

Cijkl
* = 1

2 �Cikjl + Ciljk� . �17�

Thus,

Qij�n� = Cijkl
* nknl Û Q�n� = C*n � n . �18�

The operation defined by * is of fundamental importance in
solving the generalized Fedorov problem, and therefore
some properties are noted. First, * is a linear operator that
commutes with taking the symmetric and asymmetric parts
of a tensor: C�s�*=C*�s�=C�s� and C�a�*=C*�a�=− 1

2C
�a�. Accord-

ingly, C* is partitioned as

C* = C�s� − 1
2C

�a�, �19�

and repeating the * operation n times yields Cn*=C�s�

+ �−1/2�nC�a�. Taking n=2 implies the identity

C = 2C** − C*, �20�

from which C can be found from C*. Hence the mapping
*
C↔C is one-to-one and invertible, that is bijective. This

nents. A particular material symmetry is chosen with pre-
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property is important in the inverse problem of determining
elastic moduli from acoustic data.15 Acoustic wave speeds
and associated quantities are related primarily to C* through
the acoustical tensor also known as the Christoffel matrix,1

and this can be determined uniquely from C using �20�. De-
compositions of C and C* into totally symmetric and asym-
metric parts are unique, and knowledge of one decomposi-
tion implies the other. In particular, C=C* if and only if the
asymmetric parts of both are zero. This occurs if the moduli
satisfy Cijkk=Cikjk, which together with the symmetries �7�
are equivalent to the Cauchy relations; see Sec. 4.5 of
Musgrave.1 We note that the operation * is self-adjoint in the
sense that the following is true for any pair of elasticity ten-
sors:

�A,B*	 = �A*,B	 . �21�

Elastic moduli are usually defined by the Voigt notation:
Cijkl
cIJ, where I ,J=1,2 ,3 , . . . ,6 and I=1,2 ,3 ,4 ,5 ,6 cor-
respond to ij=11,22,33,23,13,12, respectively, i.e.,

C ↔ C =�
c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

S Y M c55 c56

c66

� . �22�

*
The components of C are then
C* ↔ C* =�
c11 c66 c55 c56 c15 c16

c22 c44 c24 c46 c26

c33 c34 c35 c45

1

2
�c44 + c23�

1

2
�c45 + c36�

1

2
�c46 + c25�

S Y M
1

2
�c55 + c13�

1

2
�c56 + c14�

1

2
�c66 + c12�

� . �23�
III. FEDOROV’S PROBLEM FOR PARTICULAR
SYMMETRIES

A. Definition of the problem

We assume as known the elasticity tensor C of arbitrary
material symmetry with as many as 21 independent compo-
scribed symmetry axes or planes, for instance, transverse
isotropy with symmetry axis in the direction a, or cubic sym-
metry with orthogonal cube axes a ,b ,c. Fedorov’s problem
for particular symmetries is to determine the elastic stiffness
Csym of the chosen material symmetry which is the best fit in
the sense that it minimizes the orientation-averaged squared
difference of the acoustical tensors. We introduce the acous-

tical distance function
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f�C,Csym� 

1

4�



0

2�

d�

0

�

sin � d� �Q�C,n�

− Q�Csym,n��2, �24�

with n=sin ��cos �e1+sin �e2�+cos �e3. The same func-
tion was considered by Fedorov10 with Csym restricted to
isotropic elasticity. Thus, substituting Csym=	1I+	2J into
�24� one obtains, after simplification, a positive-definite
quadratic in the two unknowns 	1 and 	2. A simple mini-
mization yields 	1=2� and 	2=3�−2�, where � and �
are defined in Eq. �1�. The symmetry of Csym can be con-
sidered as arbitrary for the general problem addressed
here, although Fedorov’s isotropic result is recovered as a
special case of the general solution discussed in Sec. IV.

The integral over directions in �24� can be removed us-
ing

1

4�



0

2�

d�

0

�

sin � d� n � n � n � n =
1

5
I�s�, �25�

where I�s� is defined in Eq. �14�. The identity follows by
noting that the integral must be a totally symmetric isotropic
fourth-order tensor of the form aI�s�. Taking the trace of both
sides and using tr I�s�= Iijij

�s� =5, tr�n � n � n � n�=1, gives a
=1/5. Thus, since

Q�C,n� = C*n � n, Q�Csym,n� = Csym
* n � n , �26�

the distance function reduces to

f = 1
5 ��C* − Csym

* �, I�s��C* − Csym
* �	 . �27�

Define the modified inner product for elasticity tensors

�A,B	a 
 tr�I�s�AB� = �A,I�s�B	 , �28�

and norm

�A�a = �A,A	a
1/2. �29�

Then, Fedorov’s problem for particular symmetries amounts
to

Fedorov Û minimize�C* − Csym
* �a. �30�

The reason the problem is expressed in this form is to make
the connection with the notion of projection onto the chosen
elastic symmetry, or equivalently of finding the elastic tensor
of the chosen symmetry nearest to the given elasticity C. As
mentioned in the Introduction, this question has been ad-
dressed by several authors and has an explicit solution. The
issue is to find the elastic tensor Csym which minimizes the
Euclidean distance function d, where

d�C,Csym� 
 �C − Csym� . �31�

Comparing Eqs. �30� and �31�, the two problems appear tan-
talizingly similar. It should be realized that Fedorov’s prob-
lem involves C*, not C, and that the norms are distinct. How-
ever, it will be proved that the problems share the same
solution,

�Csym:min
Csym

�C* − Csym
* �a� 
 �Csym:min

Csym

�C − Csym�� , �32�
which gives the central result of this paper, i.e.,
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Fedorov Û Euclidean projection. �33�

This equivalence enables us to provide an explicit solution to
the generalized Fedorov problem, e.g., using the methods of
Gazis et al.,4 Browaeys and Chevrot,3 or others. The remain-
der of this section develops a proof by construction of the
solution of the Fedorov problem, which is shown to be iden-
tical to the Euclidean projection. Some further concepts and
notation are required and introduced next.

B. Basis tensors

The solution uses a fundamental decomposition of the
chosen material symmetry using basis tensors. These form a
vector space for the symmetry in the sense that any elasticity
tensor of that symmetry may be expressed uniquely in terms
of N linearly independent tensors V1, V2 , . . . ,VN, where 2

N
13 is the dimension of the vector space for the mate-
rial symmetry. For instance, isotropic elasticity tensors are of
the form Ciso=	1I+	2J, 	1 ,	2�0. The procedure is analo-
gous for other material symmetries, cubic, transversely iso-
tropic, etc., and is described in detail by Walpole,16 who
provides expressions for the base tensors of the various sym-
metries. Thus, N=2,3 ,5 ,9 for isotropy, cubic symmetry,
transverse isotropy, and orthorhombic symmetry, respec-
tively. N=13 corresponds to monoclinic, which is the lowest
symmetry apart from triclinic �technically N=21�, which is
no symmetry. The precise form of the basis tensors is irrel-
evant here �examples are given in Sec. IV, full details are in
Ref. 16, and Kunin17 develops a similar tensorial decompo-
sition�; all that is required is that they be linearly indepen-
dent, and consequently any tensor with the desired symmetry
can be written

Csym = �
i=1

N

�iVi. �34�

The coefficients follow by taking inner products with the
basis tensors. Let � be the N
N symmetric matrix with
elements

�ij 
 �Vi,V j	 . �35�

� is invertible by virtue of the linear independence of the
basis tensors, and therefore

�i = �
j=1

N

�ij
−1�Csym,V j	 . �36�

Conversely, Eq. �34� describes all possible tensors with the
given symmetry, and in particular, Csym=0 if and only if
�i=0, i=1,2 , . . . ,N.

C. The elastic projection

It helps to first derive the solution that minimizes the
Euclidean distance function of �31�. By expressing the un-
known projected solution in the form �34�, it follows that the
minimum of �C−Csym�2 is determined by setting to zero the
derivatives with respect to �i, which gives the system of

simultaneous equations
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�
j=1

N

�Vi,V j	� j = �Vi,C	, i = 1,2, . . . ,N . �37�

The inner products are the elements of the invertible matrix
�, and so

Csym = �
i,j=1

N

�C,Vi	�ij
−1V j . �38�

Furthermore, the distance function at the optimal Csym satis-
fies

�C − Csym�2 = �C�2 − �Csym�2, �39�

as expected for a projection using the Euclidean norm. This
is essentially the method used by Arts et al.18 Helbig5 de-
scribes the procedure as the ’optimum approximation’ of an
arbitrary elasticity tensor by projection of a 21-dimensional
vector onto a subspace of fewer dimensions, and Browaeys
and Chevrot3 list the explicit forms of the 21D projection
operators for various symmetries.

Define the projection operator Psym which maps C onto
the chosen symmetry,

PsymC 
 �
i,j=1

N

�C,Vi	�ij
−1V j . �40�

Equations �38�–�40� imply that PsymC is the Euclidean pro-
jection, also equal to the closest elasticity tensor of the
chosen symmetry to C. We note the following important
property:

PsymC* = �PsymC�*. �41�

In other words, the operation * commutes with the projec-
tion operator. This is not surprising if one considers that the
* operation is a linear mapping on the symmetric and asym-

metric parts of C, and therefore * maintains the material
symmetry of C. However, a more detailed proof of the iden-
tity �41� is provided in the Appendix.

D. Solution of the generalized Fedorov problem

We now calculate the optimal Csym for the generalized
Fedorov problem, and show that it is equivalent to the
moduli from the Euclidean norm. The starting point this time
is to express the unknown Csym

* �rather than Csym� in terms of
the basis tensors,

Csym
* = �

i=1

N

	iVi. �42�

This is justified by the fact that all tensors of the given sym-
metry are linear combinations of the basis tensors. Further-
more, the coefficients 	i are related to those in Eq. �34� by
the N
N matrix P introduced in the Appendix. Let � and �
denote the N
1 arrays with elements 	i and 	i; then,

� = Pt� Û � = 2Pt� − � . �43�

Equation �30� implies that the coefficients 	1, 	2 , . . . ,	N sat-

isfy the system of N equations,
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�
j=1

N

�Vi,V j	a	 j = �Vi,C
*	a, i = 1,2, . . . ,N , �44�

or, in matrix format,

S�� = S� . �45�

Here, � with elements �i and the N
N matrix S are defined
by

�i = �Vi,C
*	 , �46a�

�
j=1

N

SijV j = 1
2 �I�s�Vi + ViI

�s�� 
 Ui. �46b�

The tensors Ui, i=1,2 , . . . ,N form a linearly indepen-
dent set of basis tensors for the given symmetry. This may be
seen by assuming the contrary, i.e., that there is a set of
nonzero coefficients ai such that

�
i=1

N

aiUi = 0. �47�

Let A be the nonzero tensor,

A = �
i=1

N

aiVi. �48�

Then, Eq. �47� requires that

2
3A + 1

2 �AI� � I + 1
2I � �AI� = 0. �49�

Multiplication by I implies

13
6 AI + 3

2 �J,A	I = 0, �50�

and taking the inner product with I gives

11�J,A	 = 0. �51�

Therefore,

A = 0, �52�

and the Ui tensors form a linearly independent basis for the
symmetry. In particular, the tensors Vi can be expressed in
terms of this alternate basis, and so the matrix S is invertible.
Hence,

� = �−1� . �53�

We are now in a position to determine the optimal Csym
*

and hence Csym. Equations �42� and �53�, along with �40�,
imply

Csym
* = �

i,j=1

N

�C*,Vi	�ij
−1V j = PsymC*. �54�

Using the fundamental property of the projection operator
�41�, the optimal elasticity as determined by �54� is seen to
be exactly the same as the Euclidean projection, i.e., of Eq.
�38�. This completes the proof of the main result, the equiva-

lence �33�.
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IV. EXAMPLES

The general procedure for projection is illustrated for
several symmetries, and an example application is discussed
in this section.

A. Basis functions for isotropic, cubic, and
hexagonal materials

The tensor decomposition procedure is described for the
three highest symmetries: isotropic, cubic, and transversely
isotropic. The fundamental matrices � and P are given ex-
plicitly.

1. Isotropic approximation „N=2…

Let the basis tensors be V1=J, V2=K
 I−J. Then, � is
a 2
2 diagonal matrix, �=diag�1,5�, and the optimal
moduli are

Ciso = 3�J + 2�K , �55�

where

� = 1
3 �J,C	, � = 1

10�K,C	 . �56�

This is precisely Fedorov’s original result,10 Eq. �1�. The *

operation is defined by the matrix P of Eq. �A1�, which is

P =�
1

3

1

3

5

3

1

6
� . �57�

2. Cubic materials „N=3…

Let a ,b ,c be the cube axes, and select as basis tensors16

V1=J, V2=L
 I−H, and V3=M
H−J, where

H = a � a � a � a + b � b � b � b + c � c � c � c .

�58�

Then, �=diag�1,3 ,2� and the optimal moduli of cubic
symmetry are

Ccub = 3��J + 2��L + 2�M , �59�

where

�� = 1
3 �J,C	, �� = 1

6 �L,C	 � = 1
4 �M,C	 . �60�

It is assumed here that the axes of the cubic material are
known; otherwise, a numerical search must be performed to
find the axes which give the closest, i.e., largest, projection.
This additional step is discussed in the numerical example
below. Also,

P =�
1

3

1

3

1

3

1
1

2
−

1

2

2
−

1 2 � . �61�
3 3 3
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3. Transverse isotropy/hexagonal symmetry „N=5…

Let a be the direction of the symmetry axis, and define16

V1 = A � A , �62�

V2= 1
2B � B , V3= 1

2 �A � B+B � A� , V4

=2V3
* , V5=2V2

*−V2,where A=a � a and B=I−A.
Then, �=diag�1,1 ,1 ,2 ,2� and the optimal transverse isot-
ropy �TI� moduli are given by

CTI = �
i=1

3

�C,Vi	Vi + 1
2�

i=4

5

�C,Vi	Vi. �63�

Also,

P =�
1 0 0 0 0

0
1

2
0 0

1

2

0 0 0
1

2
0

0 0 1
1

2
0

0 1 0 0 0

� . �64�

B. Application to acoustically measured data

Let us assume that the material has cubic symmetry but
the cube axes orientations are unknown. The effective cubic
moduli are, in coordinates coincident with the cube axes,

Ccub =�
c11

c c12
c c12

c 0 0 0

c12
c c11

c c12
c 0 0 0

c12
c c12

c c11
c 0 0 0

0 0 0 c66
c 0 0

0 0 0 0 c66
c 0

0 0 0 0 0 c66
c

� , �65�

where the three constants can be expressed in terms of the
bulk modulus and the two shear moduli,

c11
c = �� + 4

3�, c12
c = �� − 2

3�, c66
c = ��. �66�

The effective bulk modulus of �60� is an isotropic invariant
that is independent of the cube axes orientation,

�� = 1
9Ciijj = 1

9 �c11 + c22 + c33 + 2c12 + 2c23 + 2c31� . �67�

Similarly, the combination �3��+2�� /5=�, the isotropic
shear modulus implying

6�� + 4� = Cijij − 1
3Ciijj = 2

3 �c11 + c22 + c33 − c12 − c23

− c31� + 2�c44 + c55 + c66� . �68�

Only one of the three cubic parameters depends upon the
orientation of the axes, and it follows by considering the

squared length of the projected elastic tensor,
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�Ccub�2 = 9��2 + 12��2 + 8�2 = 9��2 + 1
5 �6�� + 4��2

+ 6
5 �2�� − 2��2. �69�

The first two terms are independent of the cube axes orien-
tation, and therefore the closest cubic projection maximizes
the final term. Note that

2�� − 2� = 1
3Cijij + 1

6Ciijj − 5
6 �C,H	 = 5

2�� + 2�� + 4
3�

− 5
6 �C,H	 . �70�

The moduli ��, ��, and � must all be positive in order for the
material to have positive-definite strain energy. Therefore,
�2��−2��2 is maximum when �C ,H	 is minimum. The latter
is also a positive quantity, which may be expressed as

�C,H	 = CijklHijkl = c11� + c22� + c33� , �71�

where cIJ� are the elements of C of �74� in the coordinate
system coincident with the cube axes.

We can also write

�C,H	 = ãtCã + b̃tCb̃ + c̃tCc̃ , �72�
where

bic moduli in this frame is simply
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ãt = �a1
2,a2

2,a3
2,2a2a3,2a3a1,2a1a2�, etc. �73�

The minimum can be found by numerically searching over
all possible orientations using Euler angles to transform from
the fixed vector basis to the cube axes. The rotated �cube�
axes are simply the columns of the 3
3 transformation ma-
trix R�SO�3�.

As a specific application we reconsider the elastic
moduli obtained from ultrasonic measurements by Francois
et al.2 In the notation of Eq. �22�, the raw data for the stiff-
ness tensor are

C =�
243 136 135 22 52 − 17

136 239 137 − 28 11 16

135 137 233 29 − 49 3

22 − 28 29 133 − 10 − 4

52 11 − 49 − 10 119 − 2

− 17 16 3 − 4 − 2 130

� �GPa� .

�74�

The element c53 is given as 49 in Ref. 2, which appears to
be a typographical error.
We find that
Ccub =�
213.4 148.5 148.5 0 0 0

148.5 213.4 148.5 0 0 0

148.5 148.5 213.4 0 0 0

0 0 0 139.8 0 0

0 0 0 0 139.8 0

0 0 0 0 0 139.8

� �GPa� , �75�
in agreement with Francois et al.2 The rotation from the co-
ordinate system �e1 ,e2 ,e3� of �74� can be expressed as a
rotation about a single axis n through angle � using Euler’s
theorem.19 The angle and axis follow from 2 cos �= trR−1
and 2 sin �n=skew R, where skew Y=−�ijkYijek, and �ijk is
the third-order alternating tensor. Thus, we find �=96°
and n= �0.18,0.06,0.98�, and the full set of moduli in the
rotated frame is

C� =�
228 141 148 − 5 − 1 − 2

141 209 156 − 6 23 − 1

148 156 203 − 7 − 2 4

− 5 − 6 − 7 144 12 − 3

− 1 23 − 2 12 139 11

− 2 − 1 4 − 3 11 136

� �GPa� . �76�

This set of cube axes is unique within rotation under the
group of transformations congruent with cubic symmetry. In
this preferred coordinate system, the projection onto the cu-
c11
c = 1

3 �c11� + c22� + c33� � = 213.4 �GPa� ,

c12
c = 1

3 �c12� + c23� + c31� � = 148.5,

c66
c = 1

3 �c44� + c55� + c66� � = 139.8. �77�

V. CONCLUSION

The main result of this paper is the proof that the
Euclidean projection of anisotropic elastic constants onto a
higher material is identical to minimizing the mean-square
difference of the slowness surfaces. This provides a well-
grounded acoustical basis for using the Euclidean projection
as a natural way to simplify ultrasonic or acoustic data. The
equivalence generalizes the original result of Fedorov for the
best isotropic acoustical fit to a given set of anisotropic

moduli.
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APPENDIX: THE MATRIX P AND PROOF OF EQ. „41…

The tensor Vi
* can be expressed using Eq. �19� in terms

of the totally symmetric and asymmetric parts of Vi. Both
Vi

�s� and Vi
�a� possess the same material symmetry as Vi, and

hence the symmetry is inherited by Vi
*. Since the Vi’s them-

selves form a basis for the material symmetry, it follows that
Vi

* can be written as a linear combination of them. Let P be
the N
N matrix which defines the * operation in terms of
the basis tensors, that is,

Vi
* = �

j=1

N

PijV j . �A1�

It follows from Eq. �20� that

Vi = − Vi
* + 2�

j=1

N

PijV j
*, �A2�

and hence the inverse of P is

P−1 = 2P − I�N�, �A3�

where I�N� is the N
N identity.
Consider the identity

�Vi
*,V j	 = �Vi,V j

*	 , �A4�

which follows from �21�. Using �A1� to eliminate Vi
* and V j

*

from the left and right members, Eq. �A4� implies

P� = �Pt. �A5�

It is worth noting the very specific nature of the matrix P that
is required to satisfy Eq. �A5�. This matrix essentially de-
fines the * operator, from which the totally symmetric and
asymmetric parts of a tensor can be found in terms of the
basis tensors. Some examples of P are given in Sec. IV.

We now turn to the proof of Eq. �41�. Starting with the
definition of Psym in �40�, we have

PsymC* = �
i,j=1

N

�C*,Vi	�ij
−1V j = �

i,j=1

N

�C,Vi
*	�ij

−1V j

= �
i,j=1

N

�C,Vi	XijV j
*, �A6�

where �21� has been used in the second line, and the matrix

X is defined as
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X = Pt�−1P−1. �A7�

Comparison with �A5� gives

X = �−1, �A8�

and substituting from �A8� into �A6� and comparing it with
�38� implies the fundamental property �41�.
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